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Abstract: Many machine learning problem domains, such as the detection of fraud, spam, outliers,
and anomalies, tend to involve inherently imbalanced class distributions of samples. However,
most classification algorithms assume equivalent sample sizes for each class. Therefore, imbalanced
classification datasets pose a significant challenge in prediction modeling. Herein, we propose a
density-based random forest algorithm (DBRF) to improve the prediction performance, especially for
minority classes. DBRF is designed to recognize boundary samples as the most difficult to classify
and then use a density-based method to augment them. Subsequently, two different random forest
classifiers were constructed to model the augmented boundary samples and the original dataset
dependently, and the final output was determined using a bagging technique. A real-world material
classification dataset and 33 open public imbalanced datasets were used to evaluate the performance
of DBRF. On the 34 datasets, DBRF could achieve improvements of 2–15% over random forest in
terms of the F1-measure and G-mean. The experimental results proved the ability of DBRF to solve
the problem of classifying objects located on the class boundary, including objects of minority classes,
by taking into account the density of objects in space.

Keywords: density-based random forest; imbalanced data classification; boundary and density
domain partition

1. Introduction

Real-world datasets generally exhibit notable imbalances between different data
classes, and the effectiveness of computational classification methods is typically lim-
ited by this uneven distribution. For example, in medical cancer detection from testing
data [1], relatively few samples may be expected to be detected as cancer patients, whereas
most samples are normal. Similar examples have been noted in the fields of intrusion
detection [2], fraud identification [3], and credit loans [4], among others. Most classification
algorithms are proposed based on balanced data, and their performance is reduced when
processing imbalanced data. Samples are primarily divided into majority and minority
types in imbalanced datasets, according to the number of samples. Given that most clas-
sification algorithms focus on overall accuracy as their key evaluation metric, they tend
to perform better when classifying samples as belonging to the majority class and heavily
neglect the minority class. However, the negative effect of majority classes misclassification
is less important than that of minority classes in some real application scenarios. Therefore,
the development of new or improved methods to reduce the misclassification of minority
classes is required.

The primary motivation of this work is to improve the prediction on minority samples
in imbalanced datasets. The main idea of our proposed method is to integrate the ideas
of data density with random forest classifiers to address the imbalance problem. This
increases the training opportunity for minority class sets and boundary samples to reduce
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the misclassification of minority classes in imbalanced data. Specifically, we propose
the density-based random forest (DBRF) integration method. The DBRF classifier model
constructs a density domain in the sample datasets, defined as the collection of all minority
and boundary samples. The poor performance of prior models is not caused by the
number of categories, but rather the potential ambiguity of the decision boundary between
categories. Therefore, we used ensemble learning, i.e., a random forest algorithm, to
perform additional training for boundary and minority samples to improve the prediction
accuracy of the model on minority samples. First, we define boundary and density domains.
Then, the original dataset and these two domains are used to build the DBRF model. While
improving on the sample diversity of prior models, the proposed approach is also biased
toward minority samples. The contributions of this study are summarized below:

(1) We used a method to identify the boundary minority samples and remove noise
minority samples. The method determines whether a minority sample is a boundary
minority sample or a noise sample based on the number of majority samples in its
nearest neighbor samples;

(2) We applied a density-based method to identify the boundary samples by boundary
minority samples. The density-based method identifies the class boundary samples
by taking into account the density of objects in space, as is done when solving the
clustering problem with the DBSCAN algorithm;

(3) A density-based random forest (DBRF) is proposed to deal with the imbalanced data
problem. There are two types of classifiers in DBRF. One is built from the original
dataset, and the other is constructed with boundary class samples identified by the
density method, including minority class samples;

(4) The performance of DBRF was evaluated based on the public binary-class-imbalanced
datasets. We also compared DBRF with other common algorithms.

The remainder of this paper is organized as follows. Section 2 briefly reviews the
relevant problems in this area and some related state-of-the-art approaches. Section 3
describes the improved DBRF method. Section 4 provides the experimental results and
analyzes the differences between DBRF and other methods. Section 6 concludes the work
and discusses some possible directions for future research.

2. Related Work

Conventional machine learning algorithms are predominantly based on balanced
data; when the input data are imbalanced between classes, they cannot perform well.
Generally, methods for processing imbalanced data may be divided into two categories:
methods that operate at the data processing level and methods that operate at the algorithm
framework level.

2.1. Data-Level Imbalanced Data Processing

At the data level, oversampling and undersampling are the main categories of methods
used to process imbalanced data [5]. Oversampling balances the number of classes by
duplicating the minority class samples, but this may lead to overfitting. Undersampling
involves balancing the training sets by deleting some majority class samples. However,
some useful information may be lost in this process, leading to underfitting.

The synthetic minority oversampling technique (SMOTE) [6] is common in practical
applications. It is designed to use the nearest neighbor algorithm to select randomly
N samples from the k nearest neighbors for linear interpolation, which can balance the
categories in the original dataset by adding new minority class samples. Many novel
methods have been proposed to further improve on this idea [7–9].

In classification, boundary samples are typically more likely to be misclassified. There-
fore, the borderline SMOTE algorithm [10] was proposed based on the SMOTE algorithm.
In contrast to other oversampling methods, the algorithm uses only relatively few class
samples from the boundary samples to construct new samples.



Future Internet 2022, 14, 90 3 of 20

The ADASYN algorithm [11] extends each minority class sample according to the
density distribution of the training set with different weights to balance the training set. In
contrast, DBRF uses the density method to find all the samples at the boundary without
re-synthesizing new data points.

The compressed nearest neighbor rule (CNNR) [12] was developed to remove redun-
dant information by undersampling the majority samples using the one-nearest neighbor
algorithm and removing the majority samples far from the decision boundary. Then, a
reduced dataset E is obtained from the original dataset D(E ⊆ D). Because the CNNR
method selects samples randomly, it causes unnecessary samples, such as noise, to remain
in E.

The TomekLinks algorithm [13] is an undersampling algorithm for removing noise
and boundary samples. Given two samples xi and xj from different classes, dist(xi, xj)
represents the distance between the two samples. If no sample x meets the conditions
that dist(xi, x) < dist(xi, xj) or dist(xj, x) < dist(xi, xj), the sample pair (xi, xj) constitutes
a TomekLink. Either one of the two samples in TomekLink is noise or both are on the
boundary of the two types. Using this property, the method can delete the noise and
redundant samples by constituting the TomekLinks.

The one-sided selection algorithm (OSS) [14] attempts intelligent undersampling of
most classes by removing redundant data or artificial noise.

The edited nearest neighbor (ENN) algorithm [15] reduces majority samples through a
3NN method. First, the ENN finds three samples that have the nearest distances to a certain
sample x. Then, if two or more of them have a different class than the sample x, the sample
x is deleted. Because most samples are often surrounded by majority classes, relatively few
majority samples are deleted by the ENN algorithm. Therefore, the neighborhood cleaning
rule [16] was modified from the ENN. If the sample is a majority sample, it will do the
same as the ENN. Majority samples are removed if the sample is a minority sample and
more than two of three samples chosen by the 3NN are majority samples.

2.2. Algorithm-Level Methods for Imbalanced Data

Three approaches for imbalanced datasets at the algorithmic level are predominantly
used: cost-sensitive learning [17], ensemble learning [18], and single-class classification [19].
Cost-sensitive learning methods apply various misclassification costs to classification
decision-making. The goal is to minimize the overall misclassification cost rather than
reduce the error rate. When the amount of data between categories is severely imbalanced,
the classifier tends to predict all testing data as belonging to a majority category. To solve
this problem, a classification method based on distinction is no longer applicable; therefore,
a method based on learning recognition and single-class learning is proposed herein. The
single-class learning method is designed to learn only the samples of the target class
of interest, that is to train only the samples of majority classes and to fully learn their
features. The goal is to identify the majority class sample from the test sample instead of
distinguishing whether a sample belongs to the minority or majority class. A new sample
is distinguished by comparing the similarities between the sample and the target class.

In ensemble learning, multiple basic learners are combined to obtain better general-
ization performance than a single classifier [18]. Three approaches have been explored
for ensemble-learning-based imbalanced data processing: data resampling combined with
ensemble learning, cost-sensitive learning combined with ensemble learning, and increas-
ing the diversity of classifiers in ensemble learning. SMOTEBoost [20] is a combination
of SMOTE and AdaBoost [21]. First, the SMOTE algorithm is used to generate new mi-
nority samples in each iteration. Then, the minority samples receive more attention in
the next iteration. Because each base classifier is constructed using different training sets,
this method improves the decision domain after the vote integration. Chen et al. [22]
developed a method that combines oversampling and undersampling and is effective for
highly imbalanced data. First, it balances the sample set with undersampling and then
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optimizes the basic properties of the dataset, such as the data distribution and diversity,
by oversampling.

The AdaCost algorithm [23] improves the recall rate and accuracy of the boosting
algorithm [24] by introducing the misclassification cost of each training sample during the
weight update of the boosting algorithm. In AdaCost, the weight update rule is as follows:
(1) if the weak classifier misclassifies the samples with higher misclassification cost, its
weight is increased; (2) if it classifies correctly, its weight is decreased.

Chen et al. [25] proposed the random forest variants balanced random forest (BRF) and
weighted random forest (WRF). BRF performs the random replication of the minority class
when constructing the training subset. WRF integrates the idea of cost-sensitive learning
with random forest classifiers, that is increasing the weight of minority classes. Meanwhile,
during voting, the weight multiplied by the number of votes is used as the final result.
The weight is updated using the out-of-bag error data. These methods improve the data
prediction of the algorithm.

The imbalance problem involves other factors in addition to class bias, such as class
overlap, decision boundaries, and sample distribution. Choudhary and Shukla [26] pro-
posed an algorithm that decomposes the complex imbalance problem into simpler sub-
problems by a fuzzy clustering method and then assigns weights to each sub-classifier for
voting classification.

Biased random forest (BRAF) [27] reduces the prediction error rate of minority classes
by increasing the diversity of ensemble learning. First, undersampling is used to construct
the critical areas on the original dataset. Then, the critical areas are used to train the subtree.
Finally, the trained subtree is merged with the standard random forest. A new method
based on an information granule (IGRF) [28] applied the idea of BRAF to crime detection.
The IGRF process combines information granularity and the series of crime pairs in k
neighbors to form the critical areas. Then, the same procedure as BRAF is used to construct
the model.

With the widespread use of deep learning, some scholars have studied the class-
balanced loss function, distinct block processing of images, data augmentation techniques,
etc. Olusola et al. [29] proposed a novel data augmentation technique based on covariate
synthesis minority oversampling (SMOTE) to address data scarcity and category imbalance.
Jeyaprakash et al. [30] proposed an efficient malware detection system based on deep
learning to address imbalances in malware datasets. Oyewola et al. [31] proposed a novel
deep residual convolutional neural network (DRNN) for cassava mosaic disease detection
in cassava leaf images. Inzamam et al. [32] proposed a new data augmentation technique
that uses the secondary dataset RVL-CDIP to normalize imbalanced datasets.

To sum up, on the data level, oversampling methods (SMOTE, ADASYN, etc.) balance
the dataset for classification by adding minority samples. If there are too many noise
samples in the minority samples, the distribution of the original dataset will change after
the sample expansion. Undersampling methods (ENN, etc.) balance the dataset by reducing
the number of majority samples. For highly imbalanced datasets, deleting too many valid
samples makes it impossible to fully train the dataset. On the algorithm level, BRAF
finds the k-nearest majority neighbors for each minority sample. Then, it merges the k-
nearest majority neighbors with the minority samples directly to construct critical areas.
The method used in BRAF cannot identify boundary samples accurately and introduces
noise and redundant samples. It also impacts the subsequent classifications. To solve this
problem, we propose a DBRF algorithm. DBRF obtains a random forest using the density
distribution method to build the density domain based on BRAF. DBRF constructs the
density domain based on the boundary minority samples. The aim of the study was to
locate samples lacking a clear decision boundary and enhance the ability to identify them.

3. Methods

Inspired by the borderline SMOTE [10], DBSCAN [33], and BRAF [27] algorithms, we
herein propose DBRF to solve the problem of insufficient prediction accuracy for minority
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classes in imbalanced datasets. The DBRF algorithm has two main purposes. (1) Additional
training is performed on boundary samples. In the imbalanced dataset, the main factor
resulting in the poor performance of prior models is not the balance of the number of
categories between classes, but the ambiguity of the decision boundaries between the
categories. Therefore, additional training can be performed on the boundary samples to
reduce the prediction error rate of the minority class by increasing the diversity of the
model. (2) The additional training samples are constructed to meet the minority sample
distribution as much as possible through the density method, aiming to accurately locate
samples with unclear decision boundaries, referred to as boundary samples.

Therefore, our objective was to locate boundary samples as accurately as possible.
We define two domains: boundary and density domains. These domains are constructed
to locate the boundary samples more accurately for additional training. The boundary
domain functions to determine the boundary minority samples. We aimed to find the
boundary minorities to determine the final dataset for additional training because it is
mainly used to improve the prediction of minority classes. The density domain functions
to locate the boundary samples, that is the final dataset, for additional training. The density
domain serves to determine the majority class samples by density, that is the majority class
samples according to the distribution of the boundary minority class samples. Figure 1
shows an imbalanced dataset. In Figure 1, the green, gray, and red points represent the
samples used for additional training.

Figure 1. Illustrative diagram of the process for determining boundary samples. Here, the triangles
represent the minority class samples and the circles represent the majority class samples. The blue
circles are the majority class with a clear decision boundary, and the red triangles are the minority
class with a clear decision boundary. The gray triangles indicate the boundary minority samples,
i.e., the boundary domain. The green circles indicate the boundary majority class samples. The red
triangles, gray triangles, and green circles constitute the overall density domain.

3.1. Definition
3.1.1. Boundary Domain

This is a set of minority samples and requires that the number of majority samples
in the m-nearest neighbors of the minority samples be greater than the number of minor-
ity samples.

BoundaryDomain = {xi |
m
2

6 N(dist(xi, D)) < m, xi ∈ D′, i = 1, 2, ..., s} (1)

In Equation (1), xi represents the i-th sample in minority class D′, s represents the
total number of minority samples, m represents the number of neighboring samples to be
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selected, D represents the original dataset, dist(xi, D) represents the Euclidean distance
from sample xi to all samples in the original dataset D, and N(dist(xi, D)) represents the
number of samples of the majority class in the first m samples near the sample xi.

3.1.2. Direct Density-Reachability and Density-Reachability

Before introducing the density domain, we introduce two core concepts defined in
DBSCAN: direct density-reachability and density-reachability. These two concepts are used
when defining the density domain:

- Direct density-reachability: If dist(xi, xj) 6 η, and ‖Dη(xi)‖ > ω, then sample xj
is directly-reachable by the density of xi, where xi ∈ BoundaryDomain, xj ∈ (D′′ ∪
Boundary). Here, D′′ represents the set of majority class samples, dist(xi, xj) represents
the distance between samples xi and xj, η represents the maximum distance that xi can
reach, Dη(xi) represents a set of majority samples whose distance from sample xi is
less than or equal to η, and ‖Dη(xi)‖ represents the total number of sets. ω represents
the minimum number of sets whose distances between the samples in the set and
sample xi are less than or equal to η;

- Density-reachability: For samples xj and xi, if there are sample sequences p1, p2, . . . , pn
where p1 = xj, pn = xi, and pi+1 is directly density-reachable by pi, then it is said that
xi is density-reachable by xj.

3.1.3. Density Domain

This is a set consisting of the majority class samples around the boundary domain and
the minority class samples in the original dataset. More specifically,

DensityDomain = D′ ∪ Z (2)

In Equation (2), D′ represents the minority class set, and Z represents all sample sets
whose density can be reached by the boundary domain samples. Therefore, Z can be
defined by Equation (3), where D′′ is the set of majority class samples.

Z = {xj | xj is density-reachable by xi, xj ∈ (D′′ ∪ BoundaryDomain),

xi ∈ BoundaryDomain}
(3)

Figure 2 shows an example of direct density-reachability and density-reachability.

Figure 2. Example of direct density-reachability and density-reachability, supposing ω = 4. The
dotted line indicates the maximum distance from the sample. “N” is the sample in the boundary
domain, and the “circle shape” is the majority class. q2 is directly density-reachable by q1, and q3 is
density-reachable by q1.

The most notable aspect of the proposed approach is the integration of oversampling
and undersampling. However, the distinction between the process of DBRF and under-
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sampling and oversampling is that DBRF uses the characteristics of ensemble learning to
improve the results at the algorithmic model level, rather than at the data processing level.

3.2. DBRF Algorithm

An overview of the entire DBRF procedure is shown in Figure 3, divided into four
steps: data splitting, boundary domain construction, density domain construction, and
model merging.The details of the algorithm are presented in Algorithm 1.

 

... ...

Model Merging

Locate the boundary 

minority samples

Locate direct density-reachability 

and density-reachability samples 

according to Boundary Domain

Boundary Domain 
Construction

 Data Splitting

Density Domain 
Construction

Figure 3. Framework of the density-based random forest (DBRF) algorithm.

For data splitting, the original dataset was divided into majority and minority sets. The
details of the algorithm are presented in Algorithm 2. The boundary domain construction
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first counts m′, which is the number of majority classes in m neighbors of a single minority
sample in the original dataset. Then, if m

2 6 m′ < m, the sample is added to the boundary
domain. This is shown by the gray triangles in Figure 1. The details of the algorithm are
presented in Algorithm 3.

Density domain construction determines the majority class samples based on the
distribution of the boundary minority class samples. DBRF uses the clustering method
to identify the boundary samples from boundary minority samples, as is done when
solving the clustering problem with the DBSCAN algorithm. Then, it merges them with
the minority class D′ to build the density domain. The green, gray, and red sample points
in Figure 1 represent the density domain. The details of the algorithm are presented in
Algorithm 4.

Algorithm 1 Density-based random forest (DBRF).

Require: Training set D = {x1, x2, ..., xn}, Labelmaj: majority class, Labelmin: minority class,
η: domain maximum distance, ω: minimum number of majority class samples in the
neighbors, n: number of nearest neighbors, size: total number of trees, p: allocation
ratio;

Ensure: Merged classifier
1: D′, D′′ = DataSplit(D, Labelmaj, Labelmin) . Data splitting
2: Boundary = BoundaryConstruction(D, D′), . Boundary domain construction
3: Density = DensityConstruction(Boundary, D′′, η, ω), . Density domain construction
4: RF1 = BuildForest(D, size× (1− p)), . Train random forest RF1 with original data.
5: RF2 = BuildForest(Density, size× p), . Train random forest RF2 with the density

areas.
6: RF = RF1 + RF2, . Merging two random forests

Algorithm 2 Data splitting.

Require: Training set D = {x1, x2, ..., xn}, Labelmaj: majority class, Labelmin: minority class
Ensure: Majority set D′′, minority set D′

1: for each xi ∈ D do
2: if label(xi) ∈ Labelmaj then
3: D′′ = D′′ ∪ {xi}
4: else
5: D′ = D′ ∪ {xi}
6: end if
7: end for

Algorithm 3 Boundary domain construction.

Require: Training set D = {x1, x2, ..., xn}, minority set D′

Ensure: Boundary minority sample set Boundary
1: Boundary = {}
2: for each xi ∈ D′ do
3: Compute the m nearest neighbors of xi from the dataset D;
4: m′ = Number of m nearest neighbors that are majority class samples;
5: if m

2 ≤ m′ < m then
6: Boundary = Boundary ∪ {xi};
7: end if
8: end for
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Algorithm 4 Density domain construction.

Require: Boundary minority sample set Boundary = {x1, x2, ..., xn}, majority set: D′′, do-
main maximum distance: η, minimum number of majority class samples in the neigh-
borhood: ω

Ensure: Density domain: Density
1: mergeSet = D′′ ∪ Boundary . Merge the majority class and boundary
2: Density = {}
3: while Boundary 6= ∅ do
4: Record the current set of unvisited samples: DataOld = mergeSet
5: Randomly select a sample from Boundary and initialize the Queue
6: mergeSet = mergeSet−Queue
7: while Queue 6= ∅ do
8: Fetch the first sample xi of the Queue
9: ‖Dη(xi)‖ = the number of samples whose distance from xi is no greater than η

in DataOld
10: if ‖Dη(xi)‖ ≥ ω then
11: temp = Dη(xi) ∩mergeSet
12: Queue = Queue ∪ temp
13: Density = Density ∪ temp
14: mergeSet = mergeSet− temp
15: end if
16: Queue = Queue− {xi}
17: end while
18: Boundary = Boundary− (Density ∩ Boundary)
19: end while
20: Density = Density ∪ D′ . Combine minority class samples with the found majority

class samples

4. Experimental Setup and Results’ Analysis
4.1. Experimental Dataset

In this study, imbalanced datasets from different areas were used to evaluate the
DBRF algorithm with three categories of data. Dataset (A) contained metal glass, vehicle
evaluation, and Haberman’s survival. The metal glass data were obtained from [34].
The vehicle evaluation and Haberman’s survival data were obtained from the UCI open
database [35]. Dataset (B) contained a combination of 19 real datasets. Dataset (C) contained
12 synthetic datasets. The 19 real datasets and 12 synthetic datasets were obtained from the
Keel database [36].

For Dataset (A), vehicle assessment and Haberman’s survival were classified into two
categories. The metal glass data were classified into three categories—crystalline alloy
(CRA), ribbon metallic glass (RMG), and bulk metallic glass (BMG)—in a ratio of 6:3:1.
BMG has excellent material properties, whereas the others do not, such as wear resistance
and high yield strength [34,37–39]. Therefore, we focused more on BMGs.

For Dataset (B), each of the 19 real datasets was a two-category dataset, and the
imbalance ratio was distributed from 1.82 to 25.58. For each of the datasets, the number of
samples ranged from 173 to 5472.

For Dataset (C), the 12 synthetic datasets were divided into three categories: clover,
paw, and subclus. To increase the classification difficulty, the degree of confusion in the
minority and majority classes in each category was increased by 30%, 50%, and 70%,
respectively. Each dataset was a two-category dataset with 800 samples, and the imbalance
ratio was 1:7. The detailed information of the datasets is shown in Table 1, including
the imbalance ratio, sample size, number of minority classes, dataset names, number of
features, and number of majority classes.

The experimental environment was Windows 10, 64 bit edition, with Python 3.7.7,
sklearn 0.23.2, pandas 1.0.5, and imblearn 0.7.0.
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Table 1. Detailed description of the three experimental datasets.

Dataset Name Sample Size Feature Number Majority Class Number Minority Class Number Imbalance Ratio

A
Metal glass 5936 98 3708 675 5.493
Vehicle evaluation 1728 6 1210 518 2.3359
Haberman survival 306 4 225 81 2.7778

B

glasses0 214 9 144 70 2.06
glasses1 214 9 138 76 1.82
glasses5 214 9 205 9 22.81
Ecoli1 336 7 259 77 3.36
Ecoli2 336 7 284 52 5.46
Ecoli3 336 7 301 35 8.19
Ecoli0-1 244 7 220 24 9.17
car-good 1728 6 1659 69 24
car-vgood 1728 6 1663 65 25.58
cleveland 173 13 160 13 12,62
dermatology 358 34 338 20 16.9
page-blocks0 5472 10 4913 559 8.77
Vehicle0 846 18 647 199 3.23
Vehicle1 846 18 629 217 2.52
Vehicle2 846 18 628 218 2.52
Vehicle3 846 18 634 212 2.52
Wisconsin 683 9 444 239 1.86
Yeast1 1484 8 1055 429 2.46
Connectionist Bench 990 13 900 90 10

C

Clover0 800 2 700 100 7
Clover30 800 2 700 100 7
Clover50 800 2 700 100 7
Clover70 800 2 700 100 7
Subclus0 800 2 700 100 7
Subclus30 800 2 700 100 7
Subclus50 800 2 700 100 7
Subclus70 800 2 700 100 7
Paw0 800 2 700 100 7
Paw30 800 2 700 100 7
Paw50 800 2 700 100 7
Paw70 800 2 700 100 7

4.2. Algorithm Evaluation Indicators

The performance metrics compared in this study were principally the overall accu-
racy rate (accuracy), recall, precision, F1-measure (F1), and G-mean (GM). Ten-fold cross
evaluation was performed for each dataset. F1 is based on the harmonic average of recall
and precision. GM attempts to maximize the accuracy of each class while maintaining
a balance of accuracy. For imbalanced data, it is typically inadvisable to evaluate the
performance of classifier models in terms of accuracy. In Equation (8), m represents the
total number of categories. F1 and GM are unbiased evaluation indicators for imbalanced
classification. In imbalanced classification tasks, F1 and GM can better evaluate model
performance compared to accuracy, recall, and precision; therefore, we mainly compared
F1 and GM. Table 2 shows the confusion matrix used in the two-class classification in this
experiment [40]. True positive (TP) indicates the number of samples in which the original
class and predicted class are both minority classes. False positive (FP) indicates the number
of samples in which the original class is a majority class, whereas the predicted class is a
minority class. True negative (TN) indicates the number of samples in which the original
class and the predicted class are both majority classes. False negative (FN) indicates the
number of samples in which original class is the minority class, whereas the predicted class
is the majority.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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F1 =
2× Precision× Recall

Precision + Recall
(7)

GM = m

√
m

∏
i=1

recalli (8)

Table 2. Confusion matrix.

Predict

Minority Class Majority Class

Actual
Minority class TP FN

Majority class FP TN

4.3. Experimental Results and Analysis
4.3.1. Parameter Setting on η and p

We compared the random forest and DBRF algorithms on the metal glass, vehicle
evaluation, and Haberman’s survival data. To make the experimental results more com-
parable, the relevant parameters involved in the models were consistent. The RF model
only involves the number of trees size = 100. The DBRF model involves neighborhood
distance η, minimum number of samples in the domain ω = 10, allocation ratio of trees p,
and number of trees size = 100.

In DBRF, owing to the different datasets, the neighborhood distance η correspondingly
differed. First, η was set as the average of the nearest neighbor distances of 20 majority
class samples of a certain minority sample. Then, we adjusted the parameter based on
η. Figure 4 shows the trend of the density domain as η changes. Figure 4 indicates that
as η increases, the majority class samples gradually increased until all the majority class
samples were selected. With the increase of the selected majority class samples, the role
played by the density domain gradually became smaller, which deviated from our aim in
proposing DBRF to improve the prediction of minority classes through additional training
boundary samples. Therefore, choosing a suitable η significantly impacts the performance
of predictions involving minority classes.

Figure 5 presents the experimental results obtained on the metal glass, vehicle evalu-
ation, and Haberman’s survival data with different values of η. Each point in the figure
represents the average value of the ten-fold cross-validation experiments. The experimental
results were consistent with our expectations. For example, as η increased, the accuracy
gradually increased, whereas F1 and GM gradually decreased. This means that the role
of the density domain gradually weakened. When all the samples were included, it was
equivalent to training a random forest classifier with the original dataset, nullifying the
performance improvement of the proposed approach.

For the metal glass dataset, GM decreased as η increased, whereas F1 and Accuracy
increased. The main reason for the growth of F1 is that as the number of majority classes
increased, the model’s prediction accuracy gradually increased for the majority class and
gradually decreased for the minority class samples. The increase in the majority class
compensated for the decreases in the minority class, resulting in an increase in F1 with
increasing η.

For the Haberman’s survival dataset, both GM and F1 decreased with increasing η,
and accuracy increased with increasing η. The experimental results were consistent with
our expectations.

For the vehicle evaluation dataset, accuracy, F1, and GM first decreased and then
gradually stabilized as η increased. This shows that η for the vehicle evaluation dataset
could only be adjusted to one. When η > 2, the density domain contained all the majority
samples. Therefore, there was a sharp drop when η = 1 and η = 2.



Future Internet 2022, 14, 90 12 of 20

Figure 4. Data visual distribution for synthetic dataset paw50 with different η. Here, (a) is the
original dataset; the red point is the minority class, and the blue point is the majority class. In (b–f),
the red and gray points are the minority class samples in the entire dataset, whereas the green and
blue points are the majority class samples in the entire dataset. The red points show the boundary
domain. The gray points show the minority class with a clear decision boundary. The green points
show the majority class selected by the DBRF algorithm. The green, red, and gray points form the
density domain.
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Figure 5. Three real-world datasets on (a) the metal glass, (b) Haberman’s survival, and (c) vehicle
evaluation with different η. The horizontal axis is the η, and the vertical axis shows the F1, GM,
and accuracy.
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Figure 6 presents the results obtained on the metal glass, vehicle evaluation, and
Haberman’s survival datasets with different values of p. It can be observed that the overall
accuracy decreased as p increased in Figure 6. Although the recall of the minority class
increased with increasing p, the majority class was also miscategorized. Through F1 and
GM, the results showed that after p = 0.5, the performance of the model began to decline,
mainly because the prediction accuracy of the majority class began to decline. Therefore,
for the metal glass dataset, p was set at 0.4.

In Figure 6, for the vehicle evaluation dataset, it can be observed that DBRF outper-
formed the base model RF for F1 and GM. The reason that DBRF was higher in F1, GM,
and accuracy than those of RF was mainly that the TP of the other two models was very low,
while DBRF compensated for the drop in FP due to the increase in TP. Therefore, the F1
and GM of DBRF were higher than those of RF. Therefore, the best p value for the vehicle
evaluation dataset was 0.5.

In Figure 6, for the Haberman’s survival dataset, it can be seen that the F1 and GM
of DBRF were higher than those of RF. To avoid losing too much overall accuracy, we
set p = 0.6. When p = 0.6, the F1 and GM of the DBRF were improved, and the overall
accuracy loss was less.
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Figure 6. Three real-world datasets on the (a) metal glass, (b) vehicle evaluation, and (c) Haberman’s
survival with different p. F1 focused on the minority class: comparisons with different p. The
horizontal axis is p, and the vertical axis is accuracy, F1, and GM in the different sub-figures. For
metal glass, η = 80; for Haberman’s survival, η = 2; for vehicle evaluation, η = 1.

Figure 7 shows a box plot of the 10-fold cross-validation on the three datasets with the
best p and η. Figure 7 indicates that the maximum value of DBRF was larger than that of
the base algorithm RF, and the minimum value was larger than that of RF. In addition, the
distribution of the 10 experimental results revealed that DBRF was relatively stable.
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Figure 7. Box plot of 10-fold cross-validation on the on the (a)metal glass, (b) vehicle evaluation, and
(c) Harberman’s suvival with the best p and η.

4.3.2. Performance on Public Imbalanced Datasets

In this experiment, we first compared random forest with DBRF and then the ran-
dom forest combined with oversampling methods through the remaining 19 datasets and
12 synthetic datasets. The oversampling methods included SMOTE, borderline SMOTE,
and ADASYN. The comparison experiment was conducted to evaluate whether DBRF is
effective at handling imbalanced datasets.

In Table 3, (A) shows the F1 and GM results for metal glass, vehicle evaluation, and
Haberman’s survival. Figure 8 shows the averaging confusion matrices of metal glass. In
Figure 8, DBRF exhibited better prediction accuracy for BMG than RF. Compared to other
algorithms, DBRF was less competitive, but had better performance on F1 and GM. Figure 9
shows the averaging AUC curve and ROC of metal glass. DBRF had good performance on
the AUC and ROC curve compared with the other algorithms.

In Table 3, (B) shows the F1 and GM results for the 19 public imbalanced datasets.
DBRF improved F1 by 2–5% compared with the other models. DBRF was more competitive
than the other models in most imbalanced datasets. ADASYN + RF, RF, b-SMOTE + RF,
and ADASYN + RF were more competitive than DBRF on glasses1, dermatology, page-
blocks0, Vehicle0, Vehicle1, and Vehicle2. DBRF improved the GM by 2–6% compared
with the other models. Specifically, DBRF was more competitive than RF on the 19 public
imbalanced datasets. SMOTE + RF, b-SMOTE + RF, and ADASYN + RF outperformed
DBRF on glassed1, car-good, car-vgood, page-blocks0, Vehicle0, Vehicle1, and Vehicle2.

In Table 3, (C) shows the average value of 12 synthetic datasets after 10-fold cross-
validation. Among all 12 datasets, the difficulty increased with the number of interference
samples. For example, in Paw0, the boundary between the minority class and the majority
class was clear, and F1 and GM were generally high. However, in the Paw70 dataset,
the boundary was unclear. As the number of interference samples increased, F1 and GM
began to decline, indicating that the decision boundary between the minority class and the
majority class began to become difficult to distinguish. For F1 and GM, DBRF was best on
most datasets. In particular, DBRF was more competitive than RF on GM. This indicates
that our proposed model can achieve an improvement in the minority class prediction
accuracy over prior methods while remaining relatively stable even when the decision
boundary is very difficult to distinguish.
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Figure 8. Averaging confusion matrices of (a) RF; (b) DBRF; (c) SMOTE + RF; (d) bSMOTE + RF;
(e) ADASYN + RF. “BMG” is the minority class.



Future Internet 2022, 14, 90 16 of 20

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Mean ROC of RF(AUC=  0.97 ±  0.01)
Mean ROC of DBRF(AUC=  0.98 ±  0.01)
Mean ROC of SMOTE + RF(AUC=  0.97 ±  0.01)
Mean ROC of bSMOTE + RF(AUC=  0.97 ±  0.01)
Mean ROC of ADASYN + RF(AUC=  0.96 ±  0.01)

Figure 9. Averaging AUC curve and ROC of metal glass.

Table 3. Comparison of random forest, SMOTE + RF, b-SMOTE + RF, ADASYN + RF, and DBRF
on three dataset categories. The bold results in the table are optimal after 10-fold cross-validation.
DBRF’s parameter values are size = 100, ω = 10, p = 0.4–0.6, and η = 0.5–50. RF denotes random
forest. SMOTE + RF signifies that each dataset was balanced with SMOTE, then classified with RF.
b-SMOTE + RF signifies that each dataset was balanced with borderline SMOTE, then classified with
RF. ADASYN + RF signifies that each dataset was balanced with ADASYN, then classified with RF.

Dataset
RF DBRF SMOTE + RF b-SMOTE + RF ADASYN + RF

F1 GM F1 GM F1 GM F1 GM F1 GM

A
metal glass 0.889 ± 0.01 0.871 ± 0.02 0.894 ± 0.01 0.892 ± 0.02 0.858 ± 0.01 0.879 ± 0.01 0.857 ± 0.02 0.877 ± 0.01 0.838 ± 0.01 0.879 ± 0.02
vehicle evaluation 0.824 ± 0.03 0.826 ± 0.03 0.875 ± 0.02 0.910 ± 0.02 0.862 ± 0.03 0.887 ± 0.03 0.865 ± 0.03 0.890 ± 0.03 0.865 ± 0.02 0.895 ± 0.02
Haberman’s survival 0.541 ± 0.08 0.435 ± 0.17 0.603 ± 0.08 0.615 ± 0.07 0.533 ± 0.07 0.526 ± 0.08 0.524 ± 0.07 0.512 ± 0.1 0.551 ± 0.09 0.558 ± 0.11

B

glasses0 0.830 ± 0.11 0.812 ± 0.14 0.858 ± 0.1 0.854 ± 0.11 0.835 ± 0.1 0.838 ± 0.11 0.823 ± 0.1 0.833 ± 0.1 0.831 ± 0.1 0.850 ± 0.09
glasses1 0.839 ± 0.08 0.825 ± 0.09 0.818 ± 0.09 0.819 ± 0.09 0.821 ± 0.06 0.819 ± 0.07 0.848 ± 0.07 0.845 ± 0.08 0.845 ± 0.08 0.850 ± 0.08
glasses5 0.651 ± 0.22 0.340 ± 0.45 0.737 ± 0.26 0.497 ± 0.52 0.693 ± 0.22 0.421 ± 0.46 0.692 ± 0.22 0.421 ± 0.46 0.693 ± 0.22 0.426 ± 0.47
Ecoli1 0.843 ± 0.07 0.844 ± 0.10 0.870 ± 0.05 0.910 ± 0.05 0.862 ± 0.07 0.889 ± 0.06 0.869 ± 0.06 0.901 ± 0.06 0.849 ± 0.06 0.853 ± 0.08
Ecoli2 0.874 ± 0.08 0.826 ± 0.12 0.891 ± 0.09 0.891 ± 0.12 0.878 ± 0.09 0.863 ± 0.12 0.868 ± 0.09 0.833 ± 0.11 0.839 ± 0.08 0.844 ± 0.12
Ecoli3 0.745 ± 0.17 0.593 ± 0.34 0.805 ± 0.14 0.808 ± 0.28 0.803 ± 0.14 0.801 ± 0.28 0.765 ± 0.17 0.623 ± 0.34 0.763 ± 0.12 0.793 ± 0.29
Ecoli0-1 0.816 ± 0.13 0.775 ± 0.28 0.853 ± 0.15 0.783 ± 0.29 0.837 ± 0.14 0.824 ± 0.29 0.827 ± 0.14 0.809 ± 0.29 0.829 ± 0.14 0.822 ± 0.29
car-good 0.921 ± 0.06 0.861 ± 0.09 0.946 ± 0.04 0.903 ± 0.07 0.910 ± 0.04 0.991 ± 0 0.927 ± 0.04 0.993 ± 0 0.917 ± 0.03 0.992 ± 0
car-vgood 0.966 ± 0.04 0.94 ± 0.07 0.974 ± 0.03 0.970 ± 0.04 0.949 ± 0.05 0.996 ± 0.01 0.948 ± 0.06 0.996 ± 0.01 0.963 ± 0.05 0.997 ± 0
cleveland 0.565 ± 0.18 0.171 ± 0.35 0.749 ± 0.22 0.523 ± 0.44 0.697 ± 0.21 0.423 ± 0.43 0.697 ± 0.21 0.423 ± 0.43 0.628 ± 0.18 0.299 ± 0.38
dermatology 0.550 ± 0.14 0.141 ± 0.3 0.724 ± 0.18 0.608 ± 0.43 0.749 ± 0.23 0.523 ± 0.46 0.731 ± 0.22 0.520 ± 0.46 0.739 ± 0.23 0.521 ± 0.46
page-blocks0 0.936 ± 0.02 0.930 ± 0.02 0.932 ± 0.02 0.939 ± 0.02 0.927 ± 0.02 0.956 ± 0.02 0.925 ± 0.02 0.957 ± 0.02 0.910 ± 0.02 0.960 ± 0.01
Vehicle0 0.965 ± 0.02 0.966 ± 0.02 0.961 ± 0.02 0.960 ± 0.02 0.945 ± 0.03 0.962 ± 0.03 0.950 ± 0.02 0.965 ± 0.03 0.950 ± 0.02 0.969 ± 0.02
Vehicle1 0.704 ± 0.05 0.661 ± 0.06 0.721 ± 0.03 0.736 ± 0.04 0.743 ± 0.03 0.773 ± 0.04 0.743 ± 0.03 0.775 ± 0.04 0.760 ± 0.03 0.796 ± 0.03
Vehicle2 0.982 ± 0.02 0.977 ± 0.03 0.980 ± 0.02 0.976 ± 0.03 0.982 ± 0.01 0.984 ± 0.02 0.983 ± 0.01 0.985 ± 0.01 0.983 ± 0.01 0.984 ± 0.02
Vehicle3 0.684 ± 0.08 0.609 ± 0.11 0.723 ± 0.05 0.749 ± 0.07 0.672 ± 0.06 0.621 ± 0.09 0.716 ± 0.05 0.737 ± 0.06 0.719 ± 0.05 0.749 ± 0.07
Wisconsin 0.971 ± 0.02 0.973 ± 0.02 0.972 ± 0.02 0.978 ± 0.02 0.966 ± 0.02 0.970 ± 0.02 0.963 ± 0.02 0.969 ± 0.02 0.966 ± 0.02 0.972 ± 0.02
Yeast1 0.709 ± 0.05 0.664 ± 0.07 0.718 ± 0.04 0.727 ± 0.05 0.717 ± 0.05 0.727 ± 0.06 0.717 ± 0.04 0.689 ± 0.05 0.706 ± 0.03 0.721 ± 0.04
Connectionist Bench 0.982 ± 0.03 0.971 ± 0.05 0.990 ± 0.02 0.993 ± 0.02 0.987 ± 0.02 0.987 ± 0.02 0.965 ± 0.03 0.989 ± 0.02 0.989 ± 0.02 0.987 ± 0.03

C

03subcl0 0.907 ± 0.04 0.901 ± 0.06 0.824 ± 0.07 0.941 ± 0.02 0.824 ± 0.06 0.930 ± 0.04 0.824 ± 0.06 0.930 ± 0.04 0.822 ± 0.06 0.924 ± 0.04
03subcl30 0.747 ± 0.14 0.645 ± 0.27 0.683 ± 0.06 0.828 ± 0.04 0.700 ± 0.07 0.822 ± 0.07 0.701 ± 0.06 0.823 ± 0.07 0.675 ± 0.07 0.812 ± 0.06
03subcl50 0.682 ± 0.12 0.551 ± 0.25 0.701 ± 0.06 0.751 ± 0.09 0.650 ± 0.06 0.796 ± 0.05 0.648 ± 0.07 0.791 ± 0.06 0.643 ± 0.05 0.799 ± 0.04
03subcl70 0.592 ± 0.09 0.408 ± 0.25 0.641 ± 0.06 0.648 ± 0.14 0.627 ± 0.06 0.791 ± 0.04 0.628 ± 0.06 0.791 ± 0.05 0.628 ± 0.06 0.794 ± 0.05
04clover0 0.878 ± 0.05 0.859 ± 0.1 0.741 ± 0.04 0.886 ± 0.04 0.710 ± 0.06 0.863 ± 0.06 0.712 ± 0.07 0.864 ± 0.06 0.706 ± 0.05 0.862 ± 0.06
04clover30 0.758 ± 0.08 0.687 ± 0.13 0.687 ± 0.07 0.832 ± 0.08 0.672 ± 0.05 0.815 ± 0.08 0.674 ± 0.06 0.815 ± 0.08 0.642 ± 0.04 0.805 ± 0.06
04clover50 0.628 ± 0.09 0.480 ± 0.15 0.679 ± 0.06 0.806 ± 0.06 0.638 ± 0.06 0.800 ± 0.07 0.642 ± 0.06 0.804 ± 0.07 0.640 ± 0.06 0.805 ± 0.07
04clover70 0.594 ± 0.08 0.421 ± 0.11 0.656 ± 0.06 0.761 ± 0.09 0.646 ± 0.06 0.799 ± 0.06 0.632 ± 0.06 0.781 ± 0.07 0.615 ± 0.07 0.776 ± 0.09
paw0 0.939 ± 0.04 0.932 ± 0.04 0.889 ± 0.08 0.956 ± 0.03 0.778 ± 0.07 0.907 ± 0.04 0.778 ± 0.07 0.907 ± 0.04 0.781 ± 0.06 0.916 ± 0.03
paw30 0.830 ± 0.06 0.793 ± 0.1 0.817 ± 0.04 0.836 ± 0.07 0.705 ± 0.06 0.830 ± 0.06 0.708 ± 0.05 0.835 ± 0.05 0.665 ± 0.05 0.822 ± 0.04
paw50 0.757 ± 0.09 0.693 ± 0.16 0.743 ± 0.04 0.832 ± 0.06 0.669 ± 0.07 0.814 ± 0.05 0.673 ± 0.07 0.817 ± 0.07 0.652 ± 0.06 0.820 ± 0.04
paw70 0.668 ± 0.05 0.599 ± 0.12 0.666 ± 0.09 0.818 ± 0.07 0.654 ± 0.07 0.814 ± 0.05 0.656 ± 0.07 0.816 ± 0.05 0.645 ± 0.08 0.809 ± 0.06

Average 0.787 0.704 0.804 0.820 0.779 0.811 0.779 0.808 0.772 0.812

Table 4 shows the average time during training for RF, DBRF, SMOTE + RF, b-SMOTE
+ RF, and ADASYN + RF. As the number of features and samples in the dataset increased,
DBRF took more time to train the model than other algorithms. In particular, DBRF took
twice the time of RF on the metal glass and page-blocks0 datasets.
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Table 4. Average time spent by the RF, DBRF, SMOTE + RF, b-SMOTE + RF, and ADASYN + RF
training datasets. The results are in seconds.

RF DBRF SMOTE + RF b-SMOTE + RF ADASYN + RF

A
metal glass 3.038 8.190 4.672 4.572 4.630
vehicle evaluation 0.140 0.374 0.159 0.162 0.222
Haberman’s survival 0.120 0.379 0.127 0.126 0.165

B

glasses0 0.120 0.380 0.131 0.131 0.153
glasses1 0.123 0.409 0.131 0.130 0.148
glasses5 0.114 0.381 0.126 0.125 0.143
Ecoli1 0.121 0.386 0.132 0.131 0.192
Ecoli2 0.119 0.379 0.134 0.134 0.198
Ecoli3 0.118 0.381 0.140 0.138 0.202
Ecoli0-1 0.115 0.368 0.126 0.125 0.164
car-good 0.134 0.359 0.165 0.164 0.195
car-vgood 0.128 0.370 0.157 0.160 0.160
cleveland 0.113 0.355 0.125 0.124 0.183
dermatology 0.117 0.357 0.128 0.126 0.146
page-blocks0 0.734 1.584 0.899 0.907 0.948
Vehicle0 0.149 0.478 0.181 0.226 0.187
Vehicle1 0.176 0.505 0.206 0.248 0.210
Vehicle2 0.176 0.505 0.206 0.248 0.210
Vehicle3 0.176 0.540 0.205 0.255 0.211
Wisconsin 0.125 0.438 0.134 0.136 0.164
Yeast1 0.185 0.544 0.214 0.280 0.225
Connectionist Bench 0.165 0.531 0.215 0.235 0.219

C

03subcl0 0.163 0.353 0.145 0.145 0.147
03subcl30 0.166 0.368 0.151 0.147 0.150
03subcl50 0.162 0.368 0.149 0.148 0.148
03subcl70 0.166 0.371 0.148 0.147 0.149
04clover0 0.164 0.360 0.147 0.147 0.148
04clover30 0.167 0.365 0.148 0.147 0.149
04clover50 0.166 0.366 0.151 0.150 0.150
04clover70 0.168 0.369 0.151 0.149 0.150
paw0 0.151 0.349 0.145 0.146 0.146
paw30 0.165 0.364 0.149 0.147 0.148
paw50 0.167 0.370 0.149 0.148 0.149
paw70 0.168 0.369 0.149 0.149 0.151

We used the Wilcoxon signed rank test, which is a non-parametric test, to statistically
analyze the results of the experiments on 34 datasets. The function of the Wilcoxon signed-
rank test is to determine whether the corresponding overall distribution of the data is the
same without assuming that the data obey a normal distribution. In this test, the confidence
interval was set at 0.05. When the test yields a p-value significantly less than 0.05, the two
methods are significantly different. From Table 5, it can be seen that the p-values for DBRF
versus RF, SMOTE + RF, b-SMOTE + RF, and ADASYN + RF were all less than 0.05. This
suggests that the differences between them were significant. It also indicates that DBRF
was more competitive than the other models in handling imbalanced data.

Table 5. Results of the Wilcoxon signed-rank test for F1 and GM of 34 datasets. W+ represents the
positive differential rank sum. W− represents the negative differential rank sum.

Comparison W+ W− p-Value Hypothesis (0.05)

F1
DBRF vs. RF 370 191 3.89× 10−4 Rejected
DBRF vs. SMOTE + RF 492 69 6.64× 10−7 Rejected
DBRF vs. b-SMOTE+ RF 498 63 4.62× 10−7 Rejected
DBRF vs. ADASYN + RF 507 54 2.65× 10−7 Rejected

GM
DBRF vs. RF 553 8 1.32× 10−8 Rejected
DBRF vs. SMOTE + RF 351 210 8.81× 10−4 Rejected
DBRF vs. b-SMOTE+ RF 343 218 1.23× 10−3 Rejected
DBRF vs. ADASYN + RF 331 230 1.98× 10−3 Rejected
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5. Discussion

Despite its performance, DBRF has the following limitations:

(1) Parameter setting problem. DBRF has two parameters, η and p. Figures 4–6 show
that different parameters need to be set for different datasets. If η is too large, the
density domain will have all samples in the dataset. This results in the failure of DBRF
to classify the minority class. Choosing which parameters to use to train the model
requires some tuning experience;

(2) Questions about datasets. For this question, there are two main problems: (a) Time-
consuming problem. DBRF can effectively train large datasets, but it takes much time
in the training process. Metal glass is a dataset with 98 features and 5936 samples.
It is the largest of the 34 datasets. According to the experimental results in Table 2,
DBRF took more time to train on it than other algorithms. Therefore, for large datasets
with high-dimensional features, the training time of DBRF will obviously become
long; (b) The number of minority class samples problem. DBRF will be ineffective
if the dataset has few minority class samples. Owing to the excessively scattered
distribution of minority class samples, they will be deleted as noise samples when
DBRF constructs the boundary domain. This will lead to an inability to build the
density domain. Our proposed method will not work;

(3) The problem of unclear decision boundaries between minority classes. DBRF cannot
solve this problem. DBRF can just deal with the problem of the unclear decision
boundary between majority samples and minority samples. This is because DBRF
takes one class from the minority class group separately as the only minority class for
density domain construction.

6. Conclusions and Future Work

We proposed a density-based random forest algorithm (DBRF) to improve the predic-
tion performance, especially for minority classes. We aimed to improve the original random
forest algorithm in a way that enhances its performance on imbalanced sets. To achieve
this aim, we proposed to borrow some ideas from the DBSCAN algorithm. In particular,
we took into account the density of objects in space to improve the prediction performance,
especially for minority classes. At the same time, we considered already known approaches
for the development of classifiers for imbalanced datasets, including the SMOTE algorithm.
DBRF was designed to recognize boundary objects, and it uses a density-based method
to recognize them. Two different random forest classifiers were constructed to model the
augmented boundary objects and the original dataset dependently, and the final output
was determined using a bagging technique. Table 3 shows the average of 34 public im-
balanced datasets. Our proposed method (DBRF) was the best among the five algorithms.
On F1, DBRF improved classification by 1.7–2.5% on average. On GM, DBRF there was
an improvement of approximately 1–2.5% on average. The experimental results proved
the ability of the proposed algorithm (DBRF) to solve the problem of classifying objects
located on the class boundary, including objects of minority classes, by taking into account
the density of objects in space (as is done when solving the clustering problem with the
DBSCAN algorithm).

Several directions deserve further study in the future. First, in imbalanced data
processing, the imbalance is caused by a variety of factors. To address this problem, the
integration of domain knowledge into the classification models is very important. Second,
we used a random forest classifier as the basic model, which suggests that our density-based
method may also be effective for other models, such as XGBoost, LightGBM, and neural
networks. Finally, data labeling is time-consuming; thus, methods to utilize the unlabeled
data in imbalanced data classification also constitute an interesting potential avenue for
future research.
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