
A Dependency-based Method for Evaluat ing Broad-Coverage Parsers

D e k a n g L i n "
Department of Computer Science

University of Mani toba
Winnipeg, Mani toba, Canada R3T 2N2

lindek'OJcs umamtoba ca

A b s t r a c t
Wi th th t emergence of broad-coverage parsers, quan

titative evaluation of parsers becomes increasingly more
important We propose a dependency-based method for
evaluating broad-coverage parsers The method offers
several advantages over previous methods that are based
on phrase boundaries The error count score WL propose
here is not only more mtui t ivt lv meaningful than other
scores but also more relevant lo semantic interpreta
tion We will also present an algorithm for transform
ing constituency trees into dependency trees so thai the
(.valuation method is applicable to both dependency and
constituency grammars Finally we discuss a set of op
erations for modifying dependency trees that can be used
lo eliminate inconsequential differences among different
parse trees and allow us to selectively evaluate different
aspects of a parser

1 Introduction
With the emergence of broad-coverage parsers, quanti
tative evaluation of parsers becomes increasingly more
important It is generally accepted thai such evaluation
should bt conducted b\ comparing the parser-generated
parse trees (we call them answers) with manually con
structed parse trees (we call them keys) However, how
such comparison should be performed is sti l l subject to
debate Several proposals have been put forward [Black
ct al 1991 1992, Magerman, 1994], all of which are
based on Lhe comparison between phrase boundaries in
answers and kev«, Wt propose a dependency-based eval
uation scheme m which tht dependency relations rather
than phrase boundaries, are the focus in the compari
son between answers and keys We then show that the
dependency based scheme offers several advantages over
previous proposals Note that the use of dependency

'The aulhor wishes to Lhank 1JCAI reviewers for point
ing out several errors in the draft and Mr Wei Xiao for lm
plementing the algorithms presented in the paper The au
thor is a member of the Institute for Robotics and Intelligent
Systems (IRIS) and wishes to acknowledge Lhe support of
the Networks of Centres of Excellence Program of the Gov
eminent of Canada the Natural Sciences and Engineering
Research Council (NSERC), and the participation of PRE-
CARN Associates Inc Thi6 research has also been partially
supported by NSERC Research Grant OGP121338

relations here does not mean that the scheme is onlv ap
plicable to dependency grammars It only means that
constituency trees have Lo be transformed into depen
dency trees before answers and keys are compared A
transformation procedure wil l be presented in Section
4 3

2 P r e v i o u s A p p r o a c h e s
G iven a node in a parse tret, the sequence of words dom
inated bv the node form a phrase and the boundary of
the phrase can be denoted by an integer interval [i,j]
where ; is the index of the first word m the phrasr and j
is the index of the last word in the phrase For Lxample
the parse tree in (1) contains three phrase boundaries
[0,2], [1,1], and [1,2]
(1) [They [[came] yesterday]]

Previous evaluation schemes can be classified as
phrase- leve l or sentence level In a phrase-level (val
uation, the following goodness scores are computed
Prec is ion and reca l l The phrase boundaries in the

answer and the key art treated as two sets (A and K
respectively) The recall is defined as the percent
age of phrase boundaries in the kev that are also
found in the answer (kfSf1) The precision is de
fined as the percentage of phrase boundaries in the
answer that are also found in the key (UnAI

Ml '
N u m b e r of cross ing-brackets A pair of phrase

boundaries [i j] and [i ' j'] are said to be crossing
brackets if i < i' < j < / Parsers can be evalu
ated by the dverage pairs of crossing brackets per
sentence

For example, suppose, (1) is the key and (2) is the an
swer
(2) [[They [came]] [yesterday]]
The phrase boundaries in (2) are [0 2], [1,1], [0,1], and
[2,2] Thus, the scores of (2) are precision=^=50%,
reca l l= |=66 7% and there is one pair of crossing brack
ets [0,1] in the key and [1,2] in the answer These scores
have to be considered together to be meaningful For ex
ample, treating the sentence "they came yesterday as
a flat list of words [they came yesterday] would achieve
0-crossing-brackets and 100% precision However, the
recall is quite low (1/3=33 3%)

1420 NATURAL LANGUAGE

LIN 1421

1413 NATURE LANGUAGE

l i l t evaluate(DepTree key DepTree anseer)

errorCount
f o r each word in the sentence

i f (the p o s i t i o n of the key is not equal to ' and the p o s i t i o n
or the head of the key is not equal to tha t at the answer)

errorCount - error-Count

r e t u r n errorCount

parsers and treebanks use constituency grammars a cru
cial issue that must be resolved is how to apply the
method to constituency grammars

In th is section we preterit an a lgor i thm lu transform
the constituency trees into dependency trees IF one or
both of the key and the answer arc represented as con
stituency trees, we first t ransform them into dependency
trees and then evaluatetc the parser w i th the result ing de
pendency trees

The t ransformat ion a lgor i thm is based on Magerman's
method for determin ing heads (lexical representatives) in
(FG parse trees [Magerman, 1994 p 64-66] fo l low ing
Mager rman thf4 t ransformat ion is driven bv a Tree Head
Table which contains an entry Tor every non-terminal
symbol in the grammar Given a node in a constituency
tree the corresponding entry in the Tret. Head Table can
be used to determine the h e a d c h i l d of the node (the
head chi ld of a node is either its lexical head or a child
that dominates its lexical head)

Untries in a tree head table are triples (p a r e n t
d i r e c t i o n h e a d - l i s t) where p a r e n t is a grammat
ical catagory, d i r e c t i o n is either r i g h t - t o - l e f t or
l e t t - t o - r i g h t and h e a d - l i s t is a l ist o f g rammat i
cal categories Three sample entries are shown in (8)
(8) (S r i g h t - t o - l e f t (Aux VP HP AP Pp)>

(VP l e l t - t o - n g h t (V VP))
(HP r i g h t - t o - l e f t (Pron N HP))

The firtst entry means tha t the head hi ld of an S node
is the first A.ux node f rom r ight to left or if the S node
does not have an Aux child the first VP node from r ight
to left, For example given the tree head table in (8)
and the constituency tree in (9a) the lexical heads and
the head children of the nodes in (9a) are l isted in (9b)

(9)

child of any given node in a constituency tree using the
tree head table

Unlike [Magerman, 1994], where lexical heads of
phrase are identif ied f rom bo t tom up vvc use a top dovvn
recursm procedure makeDeps to construct dep> ndency
trert, according to parse trees 7 lie procedure returns
the lexical head of the tree
(l l) Tree ■&keDepB(Tree r o o t , DepTree depe)

{
i f (roo t i s a l ea f node) r e t u r n roo t
Tree headChild - f indHeadChi ld (root)
Tree lexHead " MakeDepsGieadChild deps)
f o r each non-head c h i l d ol roo t {

lexHeadOfChild - BakeDepa(chi ld, deps)
addDepRelQejcHead lexHeadOfChild, deps),

>
r e t u r n leiHead

>
The funct ion addDepReKhead, m o d i f i e r , depTree)
inserts the dependency between head and m o d i f i e r into
the dependency tree depTree The main idea of the al
gor i thm is as follows

• find the head child of the root

• make a recursive call to construct the dependency
tree according to the subtree rooted at the head
chi ld and return the lexical li<°ad of th f head child
(which ih also the lexical head of the root node)

• for all other children of the root

- recursively construct a dependency tree accord
ing to the subtree rooted at that child and re
turn the lexical head of the child
add the dependency relat ionship between the
lexical head of the root and the lexical head of
the child

5 M o d i f y i n g d e p e n d e n c y t r e e s

In [Black cl al, 199l] , certain nodes in the answers and
keys arc F ased before they are compared I he erased el
ements include for instance auviharies 'not and pre-
n inr i i t iva l ' to I h e reason for the removal is that there
are many possible ways to analyse structures involv ing
ihest elements, al l of which are correct m their own way
A evaluation scheme should not prefer any one of the
theories and penalize the others

There are many other kinds of allowable differences
tha t may not be e l iminated by s imply removing elements
f rom parse trees In this s tc t ion, we propose a set of op
erations for mod i fy ing dependency trees in a more flex
ible and pr incipled fashion We then demonstrate, by

LIN 1423

(10) Tree findHead Child(Tree node) node is assumed to be i n t e r i o r

TreeHeadEntry entry search_entry(label(node) treeHeadTable)
fo r each h in headList(entry)

enumerate chi ldren of node according to d i rect ion(ent ry)
i f (labe l (cur rentChi ld)~h) re turn current Chi ld,

i f (d i r e c t i o n (e n t r y) - ' l e f t - t o - n g h t ') re turn f l r s t Child (node)
else re turn las t Child (node)

means of examples, how these operations can be used to
eliminate inconsequential differences and to allow selec
tive evaluation

The process of dependency-based parser evaluation is
depicted in Figure 1 The modify module normalize the
dependency trees before they are evaluated The modify
module consists of a sequence of operations Each op
eration specifies a possible alternation to a dependency
relationship It consists of a c o n d i t i o n part and an
a c t i o n part If a dependency relationship satisfy the
condition, the corresponding action wil l be performed
on the dependency The algorithm for modify is shown
in (12)

A c o n d i t i o n is a triple
(head m o d i f i e r [r e l a t i o n s h i p])

where head and m o d i f i e r are restrictions on the head
and the modifier of a dependency relationship The op-
tional r e l a t i o n s h i p component is a restriction on the
type of the dependency relationship The first column
in Table 1 contains several example conditions The sec
ond column contains the dependency relationships that
satisfy the conditions

The a c t i o n part specifies the modifications to the
dependency relationship We have implemented three
types of actions {deletion, inversion and transfer]
D e l e t i o n de le t s (head , m o d i f i e r , depTree)

removes the dependency relationship between head
and m o d i f i e r from the dependency tree depTree

I nve rs ion i n v e r t (head m o d i f i e r , depTree)
reverses the direction of the dependency relationship
between head and mod i f i e r In the mean time, if
head also has a head (called head of Head), then the

dependeniy between the head Of Head and head is
replaced with the dependency between headOfHead
and m o d i f i e r

Transfer t r a n e f e r (head, m o d i f i e r , depTree)
transfers modifiers of m o d i f i e r to head In other
words, all the modifiers of m o d i f i e r now become
modifiers of head

Figure 2 shows an example of each of these actions

In the remainder of this section, we demonstrate how
these modifications can be used to eliminate inconse
quential differences and to allow selective evaluation

5 1 E l i m i n a t i n g inconsequent ia l d i f ferences
Different grammars often treat adverbs differently For
example, in 'she wil l leave soon", the adverb 'soon' can
either be analyzed as the modifier of 'wil l ' (Figure 3a)
or "leave' (Figure 3b) If the operation

(i f ((cat Aux) (cat V)) (inver t t rans fe r))
is applied to both trees, they become identical (Figure
3r) In Figure 3a the dependency link from wilT to
' leave' is first inverted, so that "wi l l ' becomes a modifier
of "leave" Then, the modifiers of " w i i r ("she and
'soon') are transferred to ' leave', resulting in Figure

3c
Conjunction is another syntactic phenomenon that

tends to be treated differently in different theories Fig
ure 4 shows three alternative analyses of the dependency
tree of "saw A and B " They can be transformed into
an identical form by the operations shown in the figure
Note that such variations in the analyses of conjunctions
cannot be normalized by simply removing elements from
parse trees

5 2 Select ive eva lua t i on
The modification to the dependency tree also allows us
to selectively evaluate the performance of parsers with

1424 NATURAL LANGUAGE

(12) vold modify (operations DepTree depTree)

fo r each operation (condit ion, action) in operations
fo r each dependency re la t i on dep in depTree

if (dep sa t i s f ies condition) perform act ion on dep

regard to various syntactic phenomena. Vor example
if we want Lo find out how successfuly a parser deals
with prepositional phrase attachments wo can use the
following operation to delete all the other dependencies
except those in which the modifier is A preposition

(i f (t (not (cat P))) (delete))
On the other hand evaluating the result of applying

(i f (t (cat P)) (delete))
to dependency trees would tell us how a parser would
fare if attachments of prepositional phrases are ignored

6 C o n c l u s i o n
We have presented a dependency-based method for eval
uating broad-cover age parsers The method offers sev
eral advantages over previous methods that relied on
the comparison of phrase boundaries The error count

score is not only more intuitively meaningful than other
scores but also more relevant lo semantic inUrprc t i -
lion We also presented an algorithm that transforms
consti tuent trees into dependency tree so that the val
uation method is applicable lo both dependency -ind
constituency grammars Finally w< proposed a set of
operations for modifying dependency treeb thd(can ht
used to eliminate inconsi quentnl difference? among dif
ferenl parse trees and allow us to s thc t iu l v cvaluite
different, aspects of a parstr

R e f e r e n c e s

[Black ti al 1901] L Black, S Ahne> D Thckenger
(Gdaniec, R (irishman P Harrison D ll intl le,
R I n g n i t Jflinek J KldVans M Libt rm in
M Marcus S Roukos B Sanlonni and I Str/a-
lkowski A proc(dur(for quantitatively comparing
Ihe syntactic coverage of enghsh grammars In Pro
ceedings of Speech and \atvral Language \\ tukshop^
pages 306-311 DARPA February 19<)1

[Black el al 1992] E?ra Black John Laffertv and Sihin
Rouko<; Developrmnl d,nd i \?Ju<ilie>u <>f i broad-
coveragi probabilistic grammar of ! nglish-language
computer manuals In Proceedings of AC L-9J pa^es
IB') 192 Newark Delaware WJ2

[Magermau, 1994] Davtd M Magirman \atuial Lan
guage Parsing a& Statistical Pattern Recognition PhD
thesis Stanford University, l994

[MelVuk 1987] Igor A Melcuk Dependent y syntex
theory and practice state University of New. york
Press Albany 1987

LIN 1425

