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In multilabel classification, each instance in the training set is associated with a set of labels, and the task is to output a label
set whose size is unknown a priori for each unseen instance. The most commonly used approach for multilabel classification is
where a binary classifier is learned independently for each possible class. However, multilabeled data generally exhibit relationships
between labels, and this approach fails to take such relationships into account. In this paper, we describe an original method for
multilabel classification problems derived from a Bayesian version of the k-nearest neighbor (k-NN) rule. The method developed
here is an improvement on an existing method for multilabel classification, namely multilabel k-NN, which takes into account
the dependencies between labels. Experiments on simulated and benchmark datasets show the usefulness and the efficiency of the
proposed approach as compared to other existing methods.

1. Introduction

Traditional single-label classification assigns an object to
exactly one class, from a set of Q disjoint classes. Multilabel
classification is the task of assigning an instance simulta-
neously to one or multiple classes. In other words, the
target classes are not exclusive: an object may belong to an
unrestricted set of classes, rather than to exactly one class.
For multilabeled data, an instance may belong to more than
one class not because of ambiguity (fuzzy membership),
but because of multiplicity (full membership) [1]. Note
that traditional supervised learning problems (binary or
multi-class) can be regarded as special cases of the problem
of multilabel learning, where instances are restricted to
belonging to a single class.

Recently, multilabel classification methods have been
increasingly required by modern applications where it is
quite natural for some instances to belong to several classes
at once. Typical examples of multilabel problems are text cat-
egorization, functional genomics, and scene classification. In
text categorization, each document may belong to multiple

topics, such as arts and humanities [2–5]; in gene functional
analysis, each gene may be associated with a set of functional
classes, such as energy, metabolism, and cellular biogenesis
[6]; in natural scene classification, each image may belong to
several image types at the same time, such as sea and sunset
[1].

A common approach to a multilabel learning problem is
to transform it into one or more single-label problems. The
best known transformation method is the binary relevance
(BR) approach [7]. This approach transforms a multilabel
classification problem with Q possible classes into Q single-
label classification problems. The qth single-label classifica-
tion problem (q ∈ {1, . . . ,Q}) consists in separating the
instances belonging to class ωq from the others. This problem
is solved by training a binary classifier (0/1 decision) where
each instance in the training set is considered to be positive
if it belongs to ωq, and negative otherwise. The output of
the multilabel classifier is determined by combining the
decisions provided by the different binary classifiers. The
BR approach tacitly assumes that labels can be assigned
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independently: when one label provides information about
another, the binary classifier fails to capture this effect. For
example, if a news article belongs to a “music” category,
it is very likely that it also belongs to an “entertainment”
category. Although the BR approach is generally criticized
for its assumption of label independencies [8, 9], it is a
simple, intuitive approach that has the advantage of having
low computational complexity.

In [10], the authors present a Bayesian multilabel k-
nearest neighbor (MLkNN) approach where, in order to
assign a set of labels to a new instance, a decision is made
separately for each label by taking into account the number
of neighbors containing the label to be assigned. This method
therefore fails to take into account the dependency between
labels.

In this paper, we present a generalization of the MLkNN-
based approach to multilabel classification problems where
the dependencies between classes are considered. We call
this method DMLkNN, for dependent multilabel k-nearest
Neighbor. The principle of the method is as follows. For each
unseen instance, we identify its k-NNs in the training set.
According to the class membership of neighboring instances,
a global maximum a posteriori (MAP) principle is used in
order to assign a set of labels to the new unseen instance. Note
that unlike MLkNN, in order to decide whether a particular
label should be included among the unseen instance’s labels,
the global MAP rule takes into account the numbers of
different labels in the neighborhood, instead of considering
only the number of neighbors having the label in question.

Note that this paper is an extension of a previously
published conference paper [11]. Here, the method is more
thoroughly interpreted and discussed. Extensive compar-
isons on several real world datasets and with some state-of-
the-art methods are added in the experimental section. In
addition, we provide an illustrative example on a simulated
dataset, where we explain step by step the principle of our
algorithm.

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 describes the
principle of multilabel classification and the notion of
label dependencies. Section 4 introduces the DMLkNN
method and its implementation. Section 5 presents some
experiments and discusses the results. Finally, Section 6
summarizes this work and makes concluding remarks.

2. RelatedWork

Several methods have been proposed in the literature for
multilabel learning. These methods can be categorized into
two groups. A first group contains the indirect methods that
transform a multilabel classification problem into binary
classification problems (a binary classifier for each class or
pairwise classifiers) [1, 9] or into multi-class classification
problem (each subset of classes is considered as a new class)
[7]. A second group consists in extending common learning
algorithms and making them able to manipulate multilabel
data directly [12]. Some multilabel classification methods are
briefly described below.

In [13], an adaptation of the traditional radial basis
function (RBF) neural network for multilabel learning is
presented. It consists of two layers of neurons: a first layer
of hidden neurons representing basis functions associated
with prototype vectors, and a second layer of output
neurons related to all possible classes. The proposed method,
named MLRBF, first performs a clustering of the instances
corresponding to each possible class; the prototype vectors
of the first-layer basis functions are then set to the centroids
of the clustered groups. In a second step, the weights of the
second-layer are fixed by minimizing a sum-of-squares error
function. The output neuron of each class is connected to all
input neurons corresponding to the prototype vectors of the
different possible classes. Therefore, information encoded in
the prototype vectors of all classes is fully exploited when
optimizing the connection weights and predicting the label
sets for unseen instances.

In [6], a multilabel ranking approach based on support
vector machines (SVM) is presented. The authors define
a cost function and a special multilabel margin and then
propose an algorithm named RankSVM based on a ranking
system combined with a label set size predictor. The set size
predictor is computed from a threshold value that separates
the relevant from the irrelevant labels. The value is chosen by
solving a learning problem. The goal is to minimize a ranking
loss function while having a large margin. RankSVM uses
kernels rather than linear dot products, and the optimization
problem is solved via its dual transformation.

In [12], an evidence-theoretic k-NN rule for multilabel
classification is presented. This rule is based on an evidential
formalism for representing uncertainties in the classification
of multilabeled data and handling imprecise labels, described
in detail in [14]. The formalism extends all the notions of
Dempster-Shafer theory [15] to the multilabel case, with
only a moderate increase in complexity as compared to the
classical case. Under this formalism, each piece of evidence
about an instance to be classified is represented by a pair of
sets: a set of classes that surely apply to the unseen instance,
and a set of classes that surely do not apply to this instance.

A distinction should be made between multilabel and
multiple-label learning problems. Multiple-label learning
[16] is a semisupervised learning problem for single-label
classification where each instance is associated with a set
of labels, but where only one of the candidate labels is
the true label for the given instance. For example, this
situation occurs when the training data is labeled by several
experts and, owing to conflicts and disagreements between
the experts, a set of labels, rather than exactly one label, is
assigned to some instances. The set of labels of an instance
contains the decision (the assigned label) made by each
expert about this instance. This means that there is an
ambiguity in the class labels of the training instances.

Another learning problem is multi-instance multilabel
learning, where each object is described by a bag of instances
and is assigned a set of labels [17]. Different real-world appli-
cations can be handled under this framework. For example,
in text categorization, each document can be represented by a
bag of instances, with each instance representing a section of
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the document in question, while the document may deal with
several topics at the same time, such as culture and society.

In [18], dynamic conditional random fields (DCRFs) are
presented for representing and handling complex interac-
tion between labels in sequence modeling, such as when
performing multiple, cascaded labeling tasks on the same
sequence. DCRFs are a generalization of conditional random
fields. Inference in DCRFs can be done using approximate
methods, and training can be done by maximum a posteriori
estimation.

3. Multilabel Classification

3.1. Principle. Let X = Rd denote the domain of instances
and let Y = {ω1,ω2, . . . ,ωQ} be the finite set of labels.
The multilabel classification problem can be formulated as
follows. Given a set D = {(x1,Y1), (x2,Y2), . . . , (xn,Yn)} of
n training examples, independently drawn from X× 2Y, and
identically distributed, where xi ∈ X and Yi ⊆ Y, the goal
of the learning system is to build a multilabel classifier H :
X → 2Y in order to assign a label set to each unseen instance.
As for standard classification problems, we can associate
with the multilabel classifier H a scoring function f : X ×
Y → R, which assigns a real number to each instance/label
combination (x,ω) ∈ X × Y. The score f (x,ω) corresponds
to the probability that instance x belongs to class ω. Given
any instance x with its known set of labels Y ⊆ Y, the scoring
function f is assumed to give larger scores for labels inY than
it does for those not in Y . In other words, f (x,ωq) > f (x,ωr)
for any ωq ∈ Y and ωr /∈ Y . The scoring function f allows
us to rank the different labels according to their scores. For
an instance x, the higher the rank of a label ω, the larger
the value of the corresponding score f (x,ω). Note that the
multilabel classifier H(·) can be derived from the function
f (·, ·) via thresholding:

H(x) = {ω ∈ Y | f (x,ω) ≥ t
}

, (1)

where t is a threshold value.

3.2. Label Dependencies in Multilabel Applications. In multi-
label classification, the assignment of class ω to an instance x
may provide information about that instance’s membership
of other classes. Label dependencies exist when the prob-
ability of an instance belonging to a class depends on its
membership of other classes. For example, a document with
the topic politics is unlikely to be labeled as entertainment,
but the probability that the document belongs to the class
economic is high.

In general, relationships between labels are high order
or even full order, that is, there is a relation between a label
and all remaining labels, but these relations are more difficult
to represent than second-order relations, that is, relations
that exist between pairs of labels. The dependencies between
labels can be represented in the form of a contingency matrix
mat that allows us to express only second-order relations
between labels. Let H

q
1 denote the hypothesis that instance

x belongs to class ωq ∈ Y. Given a multilabeled dataset D
with Q possible labels, mat[q] [r] = Pr(H

q
1 | Hr

1), where
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Figure 1: Contingency matrix for the emotion dataset.

q and r ∈ {1, . . . ,Q} with q /= r, indicates the second-
order relationship between labels ωq and ωr . Pr(H

q
1 | Hr

1)
represents the proportion of data in D belonging to ωr

to which label ωq is also assigned. mat[q] [q] = Pr(H
q
1)

indicates the frequency of label ωq in the dataset D . Figure 1
shows the contingency matrix for the emotion dataset (Q =
6) used in the experiments in Section 5. In this dataset, each
instance represents a song and is labeled by the emotions
evoked by this song. We can see in Figure 1 that mat[1] [4] =
Pr(H1

1 | H4
1) = 0, meaning that labels ω1 and ω4 cannot

occur together. This is easily interpretable, as ω1 corresponds
to “amazed-surprised” while ω4 corresponds to “quiet-still”,
and these two emotions are clearly opposite. We can also see
that mat[5] [4] = Pr(H5

1 | H4
1) = 0.6, which means that

ω5, representing “sad-lonely”, frequently coexists in the label
sets with ω4. We can deduce from these examples that labels
in multilabeled datasets are often mutually dependent, and
exploiting relationships between labels will be very helpful in
improving classification performance.

4. The DMLkNNMethod for
Multilabel Classification

We use the same notation as in [10] in order to facilitate
comparison with the MLkNN method. Given an instance x
and its associated label set Y ⊆ Y, let N k

x denote the set of
the k closest training examples of x in the training dataset
D according to a distance function d(·, ·), and let yx be the
Q-dimensional category vector of x whose qth component
indicates whether x belongs to class ωq:

yx
(
q
) =

⎧
⎨

⎩

1, if ωq ∈ Y ,

0, otherwise,
∀q ∈ {1, . . . ,Q}. (2)

Let us represent by cx the Q-dimensional membership
counting vector of x, the qth component of which indicates
how many examples amongst the k-NNs of x belong to class
ωq:

cx
(
q
) =

∑

xi∈N k
x

yxi
(
q
)
, ∀q ∈ {1, . . . ,Q}. (3)
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4.1. MAP Principle. Let x now denote an instance to be
classified. Like in all k-NN based methods, when classifying
a test instance x, the set N k

x of its k nearest neighbors
should first be identified. Under the multilabel assumption,
the counting vector cx is computed. As mentioned before,
let H

q
1 denote the hypothesis that x belongs to class ωq, and

H
q
0 the hypothesis that x should not be assigned to ωq. Let

E
q
j ( j ∈ {0, 1, . . . , k}) denote the event that there are exactly

j instances in N k
x belonging to class ωq. To determine the

qth component of the category vector yx for instance x, the
MLkNN algorithm uses the following MAP [10]:

ŷ′x
(
q
) = arg max

b∈{0,1}
Pr
(

H
q
b | E

q

cx(q)

)

, (4)

while for the DMLkNN algorithm, the following MAP is
used:

ŷx
(
q
) = arg max

b∈{0,1}
Pr

⎛

⎝H
q
b |

∧

ωl∈Y
El
cx(l)

⎞

⎠

= arg max
b∈{0,1}

Pr

⎛

⎝H
q
b | E

q

cx(q),
∧

ωl∈Y\{ωq}
El
cx(l)

⎞

⎠.

(5)

In contrast to decision rule (4), we can see from (5) that the
assignment of label ωq to the test instance x depends not only
on the event that there are exactly cx(q) instances having label
ωq in N k

x , that is, E
q
cx(q), but also on

∧
ωl∈Y\{ωq}E

l
cx(l), which is

the event that there are exactly cx(l) instances having label
ωl in N k

x , for each ωl ∈ Y \ {ωq}. Thus, it is clear that
label correlation is taken into account in (5), since all the
components of the counting vector cx are involved in the
assignment or not of label ωq to x, which is not the case in
(4).

4.2. Posterior Probability Estimation. Regarding the counting
vector cx, the number of possible events

∧
ωl∈YEl

cx(l) is upper

bounded by (k + 1)Q. This means that, in addition to the
complexity problem, the estimation of (5) from a relatively
small training set will not be accurate. To overcome this
difficulty, we will adopt a fuzzy approximation for (5). This
approximation is based on the event Fl

j , j ∈ {0, 1, . . . , k},
which is the event that there are approximately j instances
in N k

x belonging to class ωl, that is, Fl
j , denotes the event that

the number of instances in N k
x that are assigned label ωl is in

the interval [ j − δ; j + δ], where δ ∈ {0, . . . , k} is a fuzziness
parameter. As a consequence, we can derive a fuzzy MAP rule

ŷx
(
q
) = arg max

b∈{0,1}
Pr

⎛

⎝H
q
b |

∧

ωl∈Y
Fl
cx(l)

⎞

⎠. (6)

To remain closer to the initial formulation and for compari-
son with MLkNN, (6) will be replaced by the following rule:

ŷx
(
q
) = arg max

b∈{0,1}
Pr

⎛

⎝H
q
b | E

q

cx(q),
∧

ωl∈Y\{ωq}
Fl
cx(l)

⎞

⎠. (7)

For large values of δ, the results of our method will be
similar to those of MLkNN. In fact, for δ = k, the MLkNN
algorithm is a particular case of the DMLkNN algorithm,
where

∧
ωl∈Y\{ωq}F

l
cx(l) will be certain, because for each ωl ∈

Y \ {ωq}, the number of instances in N k
x belonging to class

ωl will surely be in the interval [ j− k; j + k]. For small values
of δ, the assignment or not of label ωq to test instance x
will not only depend on the number of instances in N k

x that
belong to label ωq, but also on the number of instances in N k

x
belonging to the remaining labels.

Using Bayes’ rule, (4) and (7) can be written as follows:

ŷ′x
(
q
) = arg max

b∈{0,1}

Pr
(

H
q
b

)
Pr
(

E
q

cx(q) | H
q
b

)

Pr
(

E
q

cx(q)

)

= arg max
b∈{0,1}

Pr
(

H
q
b

)
Pr
(

E
q

cx(q) | H
q
b

)
.

(8)

ŷx
(
q
) = arg max

b∈{0,1}

Pr
(

H
q
b

)
Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l) | H

q
b

)

Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l)

)

= arg max
b∈{0,1}

Pr
(

H
q
b

)
Pr

⎛

⎝E
q

cx(q),
∧

ωl∈Y\{ωq}
Fl
cx(l) | H

q
b

⎞

⎠.

(9)

To rank labels in Y, a Q-dimensional real-valued vector
rx can be calculated. The qth component of rx is defined as
the posterior probability Pr(H

q
1 | E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l))

rx
(
q
) = Pr

⎛

⎝H
q
1 | E

q

cx(q),
∧

ωl∈Y\{ωq}
Fl
cx(l)

⎞

⎠

=
Pr
(

H
q
1

)
Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l) | H

q
1

)

Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l)

)

=
Pr
(

H
q
1

)
Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l) | H

q
1

)

∑
b∈{0,1} Pr

(
H

q
b

)
Pr
(

E
q

cx(q),
∧

ωl∈Y\{ωq}F
l
cx(l) | H

q
b

) .

(10)

For comparison, the real-valued vector r′x for MLkNN has
the following expression:

r′x
(
q
) = Pr

(

H
q
1 | E

q

cx(q)

)

=
Pr
(

H
q
1

)
Pr
(

E
q

cx(q) | H
q
1

)

Pr
(

E
q

cx(q)

)

=
Pr
(

H
q
1

)
Pr
(

E
q

cx(q) | H
q
1

)

∑
b∈{0,1} Pr

(
H

q
b

)
Pr
(

E
q

cx(q) | H
q
b

) .

(11)
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[yx, rx] = DMLkNN(D , x, k, s, δ)
%Computing the prior probabilities and the number of instances belonging to each class

(1) For q = 1, . . . ,Q
(2) Pr(H

q
1) = (

∑m
i=1 yxi (q))/(n); Pr(H

q
0) = 1− Pr(H

q
1);

(3) u(q) =∑n
i=1 yxi (q); u′(q) = n− u(q);

EndFor
%For each test instance x

(4) Identify N(x) and cx
%Counting the training instances whose membership counting vectors satisfy the constraints (15)

(5) For q = 1, . . . ,Q
(6) v(q) = 0; v′(q) = 0

EndFor
(7) For i = 1, . . . ,n
(8) Identify N(xi) and cxi
(9) If cx(q)− δ ≤ cxi (q) ≤ cx(q) + δ,∀q ∈ Y Then
(10) For q = 1, . . . ,Q
(11) If cxi (q) == cx(q) Then
(12) If yxi (q) == 1 Then v(q) = v(q) + 1;

Else v′(q) = v′(q) + 1;
EndFor
EndFor

%Computing yx and rx
(13) For q = 1, . . . ,Q
(14) Pr(E

q
cx(q) ,

∧
ωl∈Y\{ωq}F

l
cx (l) | H

q
1) = (s + v(q))/(s×Q + u(q));

(15) Pr(E
q
cx(q) ,

∧
ωl∈Y\{ωq}F

l
cx (l) | H

q
0) = (s + v′(q))/(s×Q + u′(q));

(16) yx(q) = arg maxb∈{0,1}Pr(H
q
b)Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
b)

(17) rx(q) = Pr(H
q
1)Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
1)

∑
b∈{0,1} Pr(H

q
b)Pr(E

q
cx (q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
b)

EndFor

Algorithm 1: DMLkNN algorithm.

In order to determine the category vector ŷx and the
real-valued vector rx of instance x, we need to deter-
mine the prior probabilities Pr(Hl

b) and the likelihoods
Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
b), for each q ∈ {1, . . . ,Q}, and

b ∈ {0, 1}. These probabilities are estimated from a training
dataset D .

Given an instance x to be classified, the output of the
DMLkNN method for multilabel classification is determined
as follows:

H(x) =
{
ωq ∈ Y | ŷx

(
q
) = 1

}
,

f
(
x,ωq

)
= rx

(
q
)
, for each ωq ∈ Y.

(12)

Algorithm 1 shows the pseudocode of the DMLkNN
algorithm. The value of δ may be selected through cross-
validation and provided as input to the algorithm. The prior
probabilities Pr(H

q
b), b = {0, 1}, for each class ωq are first

calculated and the instances belonging to each label are
counted (steps (1) to (3)):

Pr
(

H
q
1

)
= 1

n

n∑

i=1

yxi
(
q
)
,

Pr
(

H
q
0

)
= 1− Pr

(
H

q
1

)
.

(13)

Recall that n is the number of training instances. u(q) is
the number of instances belonging to class ωq, and u′(q)
indicates the number of instances not having ωq in their label
sets:

u
(
q
) =

n∑

i=1

yxi
(
q
)
,

u′
(
q
) = n− u

(
q
)
.

(14)

For test instance x, the k-NNs are identified and the
membership counting vector cx is determined (step (4)).
To decide whether or not to assign the label ωq to x, we
must determine the likelihoods Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) |

H
q
b), b ∈ {0, 1}, using the training instances such that

their corresponding membership counting vectors satisfy the
following constraints:

cxi
(
q
) = cx

(
q
)
,

cx(l)− δ ≤ cxi (l) ≤ cx(l) + δ, for each ωl ∈ Y \
{
ωq

}
.

(15)

This is illustrated in steps (5) to (12). The number of
instances from the training set satisfying these constraints
and belonging to class ωq is stored in v(q). The number of
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Figure 2: Estimated label set (in bold) for a test instance using the DMLkNN (a) and MLkNN (b) methods.

remaining instances satisfying the previous constraints and
not having ωq in their sets of labels is stored in v′(q). The
likelihoods Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
b), b ∈ {0, 1}, are

then computed

Pr

⎛

⎝E
q

cx(q),
∧

ωl∈Y\{ωq}
Fl
cx(l) | H

q
1

⎞

⎠ = s + v(l)
s×Q + u(l)

,

Pr

⎛

⎝E
q

cx(q),
∧

ωl∈Y\{ωq}
Fl
cx(l) | H

q
0

⎞

⎠ = s + v′(l)
s×Q + u′(l)

,

(16)

where s is a smoothing parameter [19]. Smoothing is
commonly used to avoid zero probability estimates. When
s = 1, it is called Laplace smoothing. Finally, the category
vector yx and the real-valued vector rx to rank labels in Y
are calculated using (9) and (10), respectively (steps (13) to
(17)).

Note that, in the MLkNN algorithm, only the first con-
straint in (15) is considered when computing the likelihoods
Pr(E

q
cx(q) | H

q
b), b ∈ {0, 1}. As a result, the number of

examples in the learning set satisfying this constraint is
larger than the number of examples satisfying (15). MLkNN
and DMLkNN should therefore not necessarily be compared
using the same smoothing parameter.

4.3. Illustration on a Simulated Dataset. In this subsection,
we illustrate the behavior of the DMLkNN and MLkNN
methods using simulated data.

The simulated dataset contains 1019 instances in R2

belonging to three possible classes, Y = {ω1,ω2,ω3}.
The data were generated from seven Gaussian distribu-
tions with means (0, 0), (1, 0), (0.5, 0), (0.5, 1), (0.25, 0.6),
(0.75, 0.6), (0.5, 0.5), respectively, and equal covariance
matrix

(
1 0
0 1

)
. The number of instances in each class

is chosen arbitrarily (see Table 1). Taking into account
the geometric distribution of the Gaussian data, the
instances of each set were, respectively, assigned to label(s)
{ω1}, {ω2}, {ω1,ω2}, {ω3}, {ω1,ω3}, {ω2,ω3}, {ω1,ω2,ω3}.

Figure 2 shows the neighboring training instances and
the estimated label set for a test instance x using DMLkNN
and MLkNN. For both methods, k was set to 8, and Laplace

smoothing (s = 1) was used. For DMLkNN, δ was set to 1.
Below we describe the different steps in the estimation of the
label set of x using the DMLkNN and MLkNN algorithms
applied to the test data. For the sake of clarity we recall some
definitions of events already given above. The membership
counting vector of the test instance is cx = (7, 3, 2). Using the
DMLkNN method, in order to estimate the label set of x, the
following probabilities need to be computed from (9):

ŷx(1) = arg max
b∈{0,1}

Pr
(

H1
b

)
Pr
(

E1
7, F2

3, F3
2 | H1

b

)
,

ŷx(2) = arg max
b∈{0,1}

Pr
(

H2
b

)
Pr
(

E2
3, F1

7, F3
2 | H2

b

)
,

ŷx(3) = arg max
b∈{0,1}

Pr
(

H3
b

)
Pr
(

E3
2, F1

7, F2
3 | H3

b

)
.

(17)

We recall that E1
7 is the event that there are seven instances in

N k
x which have label ω1, and F2

3 is the event that the number
of instances in N k

x belonging to label ω2 is in the interval [3−
δ; 3 + δ] = [2, 4]. In contrast, for estimating the label set of
the unseen instance using the MLkNN method, the following
probabilities must be computed from (8):

ŷ′x(1) = arg max
b∈{0,1}

Pr
(

H1
b

)
Pr
(

E1
7 | H1

b

)
,

ŷ′x(2) = arg max
b∈{0,1}

Pr
(

H2
b

)
Pr
(

E2
3 | H2

b

)
,

ŷ′x(3) = arg max
b∈{0,1}

Pr
(

H3
b

)
Pr
(

E3
2 | H3

b

)
.

(18)

First, the prior probabilities are computed from the training
set according to (13):

Pr
(

H1
1

)
= 0.4527, Pr

(
H1

0

)
= 0.5473,

Pr
(

H2
1

)
= 0.5038, Pr

(
H2

0

)
= 0.4962,

Pr
(

H3
1

)
= 0.4396, Pr

(
H3

0

)
= 0.5604.

(19)

Secondly, the posterior probabilities for the DMLkNN and
MLkNN algorithms are calculated using the training set (For



EURASIP Journal on Advances in Signal Processing 7

DMLkNN, this is done according to steps (7) to (15), as
shown in Algorithm 1 and explained in Section 4.2.)

Pr
(

E1
7, F2

3, F3
2 | H1

1

)
= 0.0478, Pr

(
E1

7, F2
3, F3

2 | H1
0

)
= 0.0139,

Pr
(

E2
3, F1

7, F3
2 | H2

1

)
= 0.0237, Pr

(
E2

3, F1
7, F3

2 | H2
0

)
= 0.0218,

Pr
(

E3
2, F1

7, F2
3 | H3

1

)
= 0.0394, Pr

(
E3

2, F1
7, F2

3 | H3
0

)
= 0.1161,

Pr
(

E1
7 | H1

1

)
= 0.1108, Pr

(
E1

7 | H1
0

)
= 0.0431,

Pr
(

E2
3 | H2

1

)
= 0.1231, Pr

(
E2

3 | H2
0

)
= 0.1746,

Pr
(

E3
2 | H3

1

)
= 0.0655, Pr

(
E3

2 | H3
0

)
= 0.0593.

(20)

Using the prior and the posterior probabilities, the category
vectors associated to the test instance by the DMLkNN and
MLkNN algorithms can be calculated

ŷx(1) = 1, ŷ′x(1) = 1,

ŷx(2) = 1, ŷ′x(2) = 0,

ŷx(3) = 0, ŷ′x(3) = 0.

(21)

Thus, the estimated label set for instance x given by the
DMLkNN method is Ŷ = {ω1,ω2}, while that given by
MLkNN is Ŷ ′ = {ω1}. The true label set for x is Y =
{ω1,ω2}. Here, we can see that no error has occurred when
estimating the label set of x using the DMLkNN method,
while for MLkNN the estimated label set is not identical
to the ground truth label set. Seven training instances
in N k

x have class ω1 in their label sets, while only three
instances belong to ω2. In fact, the existence of class ω1 in
the neighborhood of x gives some information about the
existence or not of class ω2 in the label set of x. If we take
a look at the training dataset, we remark that 14.7% of
instances belong to ω1, 15.9% to ω2, and 29.8% to ω1 and
ω2 simultaneously. Thus, the probability that an instance
belongs to both classes ω1 and ω2 is approximately twice the
probability that it belongs to only one of the two classes.
DMLkNN is able to capture the relationship between classes
ω1 and ω2, while MLkNN is not able to capture this relation.
This example shows that the DMLkNN method, which takes
into account the dependencies between labels, may improve
the classification performance and estimate the label sets of
test instances with greater accuracy.

5. Experiments

In this section, we report a comparative study between
DMLkNN and some state-of-the-art methods on several
datasets collected from real world applications, and using
different evaluation metrics.

5.1. Evaluation Metrics. There exist a number of evaluation
criteria that evaluate the performance of a multilabel learn-
ing system, given a set D = {(x1,Y1), . . . , (xn,Yn)} of n test

Table 1: Summary of the simulated data set.

Label set Number of instances

{ω1} 150

{ω2} 162

{ω1,ω2} 304

{ω3} 262

{ω1,ω3} 43

{ω2,ω3} 78

{ω1,ω2,ω3} 20

examples. We now describe some of the main evaluation
criteria used in the literature to evaluate a multilabel learning
system [3, 7]. The evaluation metrics can be divided into
two groups: prediction-based and ranking-based metrics.
Prediction-based metrics assess the correctness of the label
sets predicted by the multilabel classifier H , while ranking-
based metrics evaluate the label ranking quality depending
on the scoring function f . Since not all multilabel classifica-
tion methods compute a scoring function, prediction-based
metrics are of more general use.

5.1.1. Prediction-Based Metrics

Accuracy. The accuracy metric is an average degree of
similarity between the predicted and the ground truth label
sets of all test examples:

Acc (H ,D) = 1
n

n∑

i=1

∣
∣
∣Yi ∩ Ŷi

∣
∣
∣

∣
∣
∣Yi ∪ Ŷi

∣
∣
∣

, (22)

where Ŷi = H(xi) denotes the predicted label set of instance
xi.

F1-Measure. The F1-measure is defined as the harmonic
mean of two other metrics known as precision (Prec) and
recall (Rec) [20]. The former computes the proportion
of correct positive predictions while the latter calculates
the proportion of true labels that have been predicted as
positives. These metrics are defined as follows:

Prec (H ,D) = 1
n

n∑

i=1

∣
∣
∣Yi ∩ Ŷi

∣
∣
∣

∣
∣
∣Ŷi

∣
∣
∣

,

Rec (H ,D) = 1
n

n∑

i=1

∣
∣
∣Yi ∩ Ŷi

∣
∣
∣

|Yi| ,

F1(H ,D) = 2 · Prec · Rec
Prec + Rec

= 1
n

n∑

i=1

2
∣
∣
∣Yi ∩ Ŷi

∣
∣
∣

|Yi| +
∣
∣
∣Ŷi

∣
∣
∣
.

(23)

Hamming Loss. This metric counts prediction errors (an
incorrect label is predicted) and missing errors (a true label
is not predicted)

HLoss (H ,D) = 1
n

n∑

i=1

1
Q

∣
∣
∣YiΔŶi

∣
∣
∣, (24)
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Table 2: Characteristics of datasets.

Dataset Domain Number of instances Feature vector dimension Number of labels Label cardinality Label density Distinct label sets

Emotion Music 593 72 6 1.868 0.311 27

Scene Image 2407 294 6 1.074 0.179 15

Yeast Biology 2417 103 14 4.237 0.303 198

Medical Text 978 1449 45 1.245 0.028 94

Enron Text 1702 1001 53 3.378 0.064 753

Table 3: Characteristics of the webpage categorization dataset.

Number of
instances

Feature vector
dimension

Number of
labels

Label
cardinality

Label
density

Distinct label
sets

Arts and Humanities 5000 462 26 1.636 0.063 462

Business and Economy 5000 438 30 1.588 0.053 161

Computers and Internet 5000 681 33 1.508 0.046 253

Education 5000 550 33 1.461 0.044 308

Entertainment 5000 640 21 1.420 0.068 232

Health 5000 612 32 1.662 0.052 257

Recreation and Sports 5000 606 22 1.423 0.065 322

Reference 5000 793 33 1.169 0.035 217

Science 5000 743 40 1.451 0.036 398

Social and Science 5000 1047 39 1.283 0.033 226

Society and Culture 5000 636 27 1.692 0.063 582

where Δ stands for the symmetric difference between two
sets.

Note that the values of the prediction-based evaluation
criteria are in the interval [0, 1]. Larger values of the first
four metrics correspond to higher classification quality, while
for the Hamming loss metric, the smaller the symmetric
difference between predicted and true label sets, the better
the performance [7, 20].

5.1.2. Ranking-Based Metrics. As stated before, this group of
criteria is based on the scoring function f (·, ·) and evaluates
the ranking quality of the different possible labels [6, 10].
Let rank f (·, ·) be the ranking function derived from f and
taking values in {1, . . . ,Q}. For each instance xi, the label
with the highest scoring value has rank 1, and if f (xi,ωq) >
f (xi,ωr), then rank f (xi,ωq) < rank f (xi,ωr).

One-Error. The one-error metric evaluates how many times
the top-ranked label, that is, the label with the highest score,
is not in the true set of labels of the instance:

OErr
(
f ,D

) = 1
n

n∑

i=1

〈[

arg max
ω∈Y

f (xi,ω)

]

/∈ Yi

〉

, (25)

where for any proposition H , 〈H〉 equals to 1 ifH holds and 0
otherwise. Note that, for single-label classification problems,
the one-error is identical to ordinary classification error.

Coverage. The coverage measure is defined as the average
number of steps needed to move down the ranked label list
in order to cover all the labels assigned to a test instance:

Cov
(
f ,D

) = 1
n

n∑

i=1

max
ω∈Yi

rank f (xi,ω)− 1. (26)

Ranking Loss. This metric calculates the average fraction of
label pairs that are reversely ordered for an instance:

RLoss
(
f ,D

)

= 1
n

n∑

i=1

1

|Yi|
∣
∣
∣Yi

∣
∣
∣

×
∣
∣
∣
{(

ωq,ωr

)
∈ Yi × Yi | f

(
xi,ωq

)
≤ f (xi,ωr)

}∣∣
∣,

(27)

where Yi denotes the complement of Yi in Y.

Average Precision. This criterion was first used in informa-
tion retrieval and was then adapted to multilabel learning
problems in order to evaluate the effectiveness of label
ranking. This metric measures the average fraction of labels
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Table 4: Experimental results (mean ± std) on the emotion dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.562 ± 0.029 0.536 ± 0.032• 0.551 ± 0.030• 0.548 ± 0.029• 0.476 ± 0.027•

Prec+ 0.691 ± 0.032 0.674 ± 0.033• 0.689 ± 0.033◦ 0.686 ± 0.037◦ 0.601 ± 0.031•

Rec+ 0.653 ± 0.030 0.622 ± 0.041• 0.637 ± 0.031• 0.639 ± 0.032• 0.589 ± 0.032•

F1+ 0.671 ± 0.028 0.648 ± 0.033• 0.663 ± 0.029• 0.662 ± 0.031• 0.592 ± 0.027•

HLoss− 0.189 ± 0.015 0.197 ± 0.015• 0.190 ± 0.016◦ 0.191 ± 0.015◦ 0.221 ± 0.016•

OErr− 0.266 ± 0.033• 0.285 ± 0.035• 0.261 ± 0.036• 0.255 ± 0.045 0.313 ± 0.039•

Cov− 1.762 ± 0.111 1.803 ± 0.115• 1.789 ± 0.125• 1.765 ± 0.120◦ 1.875 ± 0.117•

RLoss− 0.161 ± 0.019• 0.167 ± 0.021• 0.190 ± 0.017• 0.159 ± 0.021 0.181 ± 0.021•

AvPrec+ 0.804 ± 0.019◦ 0.794 ± 0.022• 0.798 ± 0.020• 0.809 ± 0.024 0.779 ± 0.020•

AvRank 1.4 4 2.5 2.1 5
+(−)

: the higher (smaller) the value, the better the performance.
• (◦): statistically significant (nonsignificant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

Table 5: Experimental results (mean ± std) on the scene dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.676 ± 0.015 0.668 ± 0.020• 0.658 ± 0.018• 0.631 ± 0.016• 0.521 ± 0.016•

Prec+ 0.704 ± 0.017 0.695 ± 0.021• 0.684 ± 0.019• 0.652 ± 0.017• 0.505 ± 0.019•

Rec+ 0.677 ± 0.015 0.669 ± 0.022◦ 0.661 ± 0.018• 0.644 ± 0.018• 0.660 ± 0.017•

F1+ 0.692 ± 0.016 0.683 ± 0.023• 0.672 ± 0.019• 0.649 ± 0.017• 0.526 ± 0.017•

HLoss− 0.084 ± 0.004 0.087 ± 0.003◦ 0.092 ± 0.005• 0.086 ± 0.003◦ 0.135 ± 0.004•

OErr− 0.219 ± 0.017• 0.228 ± 0.016• 0.245 ± 0.018• 0.206 ± 0.015 0.279 ± 0.017•

Cov− 0.461 ± 0.035◦ 0.476 ± 0.035• 0.558 ± 0.042• 0.451 ± 0.041 0.939 ± 0.041•

RLoss− 0.071 ± 0.007 0.077 ± 0.009◦ 0.110 ± 0.009• 0.072 ± 0.008◦ 0.118 ± 0.009•

AvPrec+ 0.869 ± 0.010◦ 0.865 ± 0.009• 0.843 ± 0.011• 0.876 ± 0.009 0.801 ± 0.011•

AvRank 1.3 2.5 3.5 2.5 5
+(−)

: the higher (smaller) the value, the better the performance.
•(◦): statistically significant (nonsignificant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

ranked above a particular label ωq ∈ Yi which actually are in
Yi:

AvPrec
(
f ,D

)

= 1
n

n∑

i=1

1
|Yi|

×
∑

ωq∈Yi

∣
∣
∣
{
ωr ∈ Yi | rank f (xi,ωr) ≤ rank f

(
xi,ωq

)}∣∣
∣

rank f

(
xi,ωq

) .

(28)

For the ranking-based metrics, smaller values of the first
three metrics correspond to better label ranking quality,
while AvPrec( f ,D) = 1 means that the labels are perfectly
ranked for all test examples [6].

5.2. Benchmark Datasets. Given a multilabeled dataset D =
{(xi,Yi), i = 1, . . . ,n} with xi ∈ X and Yi ⊆ Y, the following
measures give some statistics about the “label multiplicity”
of the dataset D [7]:

(i) The label cardinality of D , denoted by LCard(D),
indicates the average number of labels per instance:

LCard (D) = 1
n

n∑

i=1

|Yi|. (29)

(ii) The label density of D , denoted by LDen(D), is
defined as the average number of labels per instance
divided by the number of possible labels Q:

LDen (D) = LCard(D)
Q

. (30)

(iii) DL(D) counts the number of distinct label sets
appeared in the dataset D :

DL(D) = ∣∣{Yi ⊆ Y | ∃xi ∈ X : (xi,Yi) ∈D
}∣∣. (31)

Several real datasets were used in our experi-
ments. The datasets used are from different appli-
cation domains, namely, text categorization, bioin-
formatics and multimedia applications (music and
image). These datasets can be downloaded from
http://mlkd.csd.auth.gr/multilabel.html.

http://mlkd.csd.auth.gr/multilabel.html
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(i) The emotion dataset, presented in [21], consists of 593
songs annotated by experts according to the emotions
they generate. The emotions are: amazed-surprised,
happy-pleased, relaxing-calm, quiet-still, sad-lonely,
and angry-fearful. Each emotion corresponds to a
class. Consequently there are 6 classes, and each song
was labeled as belonging to one or several classes.
Each song was also described by 8 rhythmic features
and 64 timbre features, resulting in a total of 72
features. The number of distinct label sets is equal to
27, the label cardinality is 1.868, and the label density
is 0.311.

(ii) The scene dataset consists of 2407 images of natural
scenery. For each image, spatial color moments are
used as features. Images are divided into 49 blocks
using a 7 × 7 grid. The mean and variance of
each band are computed corresponding to a low-
resolution image and to computationally inexpensive
texture features, respectively [1]. Each image is then
transformed into a 49 × 3 × 2 = 294-dimensional
feature vector. A label set is manually assigned to each
image. There are 6 different semantic types: beach,
sunset, field, fall-foliage, urban, and mountain. The
average number of labels per instance is 1.074, thus
the label density is 0.179. The number of distinct sets
of labels is equal to 15.

(iii) The yeast dataset contains data regarding the gene
functional classes of the yeast Saccharomyces cere-
visiae [6]. It includes 2417 genes, each of which is
represented by 103 features. A gene is described by
the concatenation of microarray expression data and
a phylogenetic profile and is associated with a set of
functional classes. There are 14 possible classes and
there exist 198 distinct label combinations. The label
cardinality is 4.237, and the label density is 0.303.

(iv) The medical dataset consists of 978 examples, each
example represented by 1449 features. This dataset
was provided by the Computational Medicine Center
as part of a challenge task involving the automated
processing of free clinical text, and is the dataset used
in [8]. The average cardinality is 1.245, and the label
density is 0.028 with 94 distinct label sets.

(v) The Enron email dataset consists of 1702 examples,
each represented by 1001 features. It comprises
email messages belonging to users, mostly senior
management of the Enron Corp. This dataset was used
in [8]. 753 distinct label combinations exist in the
dataset. The label cardinality is 3.378, and the label
density is 0.064.

Table 2 summarizes the characteristics of the emotion,
scene, yeast, medical, and Enron datasets.

(vi) The webpage categorization dataset was investigated
in [10, 22]. The data were collected from the
“http://www.yahoo.com/” domain. Eleven different

webpage categorization subproblems are considered,
corresponding to 11 different categories: Arts and
Humanities, Business and Economy, Computers and
Internet, Education, Entertainment, Health, Recre-
ation and Sports, Reference, Science, Social and
Science, and Society and Culture. Each subproblem
consists of 5000 documents. Over the 11 subprob-
lems, the number of categories varies from 21 to
40 and the instance dimensionality varies from 438
to 1.047. Table 3 shows the statistics of the different
subproblems within the webpage dataset.

5.3. Experimental Results. The DMLkNN method was com-
pared to two other binary relevance-based approaches,
namely, MLkNN and BRkNN. The model parameters for
DMLkNN are the number of neighbors k, the fuzziness
parameter δ, and the smoothing parameter s. Parameter
tuning can be done via cross-validation. For fair comparison,
k was set to 10 for the three methods, and s was set to 1, as
in [10]. Note that as stated in Section 4.2, the parameter δ
should be set to a small value. When k is set to 10, extensive
experiments have shown that the value δ = 2 generally gives
good classification performances for DMLkNN.

In addition to the two k-NN based algorithms, our
method was compared to two other state-of-the-art multi-
label classification methods that have been shown to have
good performances: MLRBF [13], derived from radial basis
function neural networks, and RankSVM [6], based on the
traditional support vector machine. As used in [13], the
fraction parameter for MLRBF was set to 0.01 and the scaling
factor to 1. For RankSVM, polynomial kernel was used as
reported in [6].

For all k-NN based algorithms, the Euclidean distance
was used. Note that usually, when feature variables are
numeric and are not of comparable units and scales,
that is, there are large differences in the ranges of values
encountered (such as in the emotion dataset), the distance
metric implicitly assigns greater weight to features with
wide ranges than to those with narrow ranges. This may
affect the nearest neighbors search. In such cases, feature
normalization is recommended to approximately equalize
the ranges of features so that they will have the same effect
on distance computation [23]. In addition, we may remark
that in the cases of the medical, and Enron datasets, the
dimensions of feature vectors are very large as compared to
the number of training instances (see Table 2). We applied
the χ2 statistic approach for feature selection on these two
datasets, and we retained 20% of the most relevant features
[24].

Five iterations of ten-fold cross-validation were per-
formed on each dataset. Tables 4, 5, 6, 7, and 8 report
the detailed results in terms of the different evaluation
metrics for the emotion, scene, yeast, medical and Enron
datasets, respectively. On the webpage dataset, ten-fold cross
validation was performed on each subproblem, and Table 9
reports the average results.

For each method, the mean values of the different
evaluation criteria, as well as the standard deviations (std)

http://www.yahoo.com/
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Table 6: Experimental results (mean ± std) on the yeast dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.511 ± 0.011 0.508 ± 0.014◦ 0.510 ± 0.010◦ 0.510 ± 0.011• 0.492 ± 0.014•

Prec+ 0.726 ± 0.014 0.714 ± 0.015• 0.693 ± 0.014• 0.703 ± 0.013• 0.585 ± 0.021•

Rec+ 0.586 ± 0.012◦ 0.578 ± 0.017• 0.599 ± 0.014 0.594 ± 0.012◦ 0.547 ± 0.019•

F1+ 0.623 ± 0.011 0.612 ± 0.014• 0.615 ± 0.014• 0.616 ± 0.011• 0.556 ± 0.015•

HLoss− 0.192 ± 0.005 0.194 ± 0.005◦ 0.199 ± 0.005• 0.197 ± 0.005• 0.202 ± 0.008•

OErr− 0.226 ± 0.021 0.230 ± 0.017◦ 0.243 ± 0.019• 0.239 ± 0.019• 0.240 ± 0.023•

Cov− 6.240 ± 0.104 6.275 ± 0.100• 6.631 ± 0.152• 6.489 ± 0.136• 6.997 ± 0.368•

RLoss− 0.165 ± 0.007 0.167 ± 0.006◦ 0.210 ± 0.009• 0.175 ± 0.008• 0.183 ± 0.011•

AvPrec+ 0.770 ± 0.010 0.765 ± 0.010• 0.754 ± 0.011• 0.758 ± 0.011• 0.753 ± 0.014•

AvRank 1.2 2.4 3.5 2.6 4.8
+(−)

: the higher (smaller) the value, the better the performance.
• (◦): statistically significant (non-significant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

Table 7: Experimental results (mean ± std) on the medical dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.634 ± 0.039• 0.609 ± 0.052• 0.565 ± 0.049• 0.689 ± 0.029 0.501 ± 0.041•

Prec+ 0.692 ± 0.037• 0.667 ± 0.048• 0.628 ± 0.048• 0.709 ± 0.031 0.522 ± 0.040•

Rec+ 0.724 ± 0.041 0.628 ± 0.053• 0.574 ± 0.048• 0.701 ± 0.025• 0.556 ± 0.038•

F1+ 0.708 ± 0.037 0.646 ± 0.050• 0.599 ± 0.051• 0.703 ± 0.027◦ 0.531 ± 0.036•

HLoss− 0.015 ± 0.001• 0.015 ± 0.002• 0.016 ± 0.002• 0.011 ± 0.002 0.019 ± 0.002•

OErr− 0.212 ± 0.044• 0.220 ± 0.052• 0.271 ± 0.048• 0.153 ± 0.048 0.215 ± 0.028•

Cov− 2.454 ± 0.567• 2.514 ± 0.538• 3.218 ± 0.763• 1.449 ± 0.296 3.310 ± 0.781•

RLoss− 0.035 ± 0.010• 0.037 ± 0.009• 0.099 ± 0.028• 0.022 ± 0.009 0.049 ± 0.019•

AvPrec+ 0.831 ± 0.026• 0.826 ± 0.033• 0.799 ± 0.029• 0.898 ± 0.038 0.791 ± 0.028•

AvRank 1.7 3 4.2 1.3 4.7
+(−)

: the higher (smaller) the value, the better the performance.
• (◦): statistically significant (non-significant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

are given in the tables. A two-tailed paired t-test at 5%
significance level was performed in order to determine the
statistical significance of the obtained results in comparison
with the best performances indicated in bold. In addition, for
each dataset, the methods were ranked in decreasing order of
performance. The average ranks over the different evaluation
criteria are reported in the tables.

To give some idea about the computational complexity of
the different algorithms, Table 10 provides the corresponding
runtime statistics (in seconds) on the different datasets, using
train/test experiments. All the algorithms were implemented
in Matlab 7.4 and executed on the same computer (Intel Core
Duo 2.13 GHz, 2 Go RAM).

Using the Sign test, a statistical comparison between the
classifiers was made over the different datasets cited above.
Table 11 reports the average ranking on each evaluation
metric.

From the experimental results presented, the following
observations can be made:

(i) DMLkNN performs better than MLkNN with respect
to all evaluation metrics and on all datasets. In
addition, DMLkNN performs better than BRkNN

and is very competitive with the remaining methods
that are based on more sophisticated classifiers (SVM
and RBF). When the results obtained on the different
datasets are averaged, DMLkNN gives the best per-
formances with respect to all evaluation metrics apart
from One-error and Average-precision. The next best
results are obtained from MLRBF.

(ii) The experimental results show that, generally,
DMLkNN performs better with respect to predicted-
based metrics than with respect to ranking-based
metrics, as for example on the emotion and scene
datasets. In fact, for each instance to be classified,
the output of DMLkNN is determined by combining
binary decisions made about that instance’s mem-
bership of the different classes. Thus, this method is
concerned more with the pertinence of the predicted
sets of labels than with the ranking of all labels.
A ranking-based method, such as RankSVM, on
the other hand, will normally tend to be more
competitive with other methods as regards ranking-
based metrics. This may be explained by the fact that
ranking-based methods operate by ranking the labels
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Table 8: Experimental results (mean ± std) on the Enron dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.348 ± 0.033 0.305 ± 0.035• 0.346 ± 0.025◦ 0.340 ± 0.031◦ 0.298 ± 0.041•

Prec+ 0.646 ± 0.041 0.572 ± 0.043• 0.602 ± 0.020• 0.587 ± 0.039• 0.525 ± 0.033•

Rec+ 0.378 ± 0.029◦ 0.343 ± 0.034• 0.382 ± 0.028◦ 0.386 ± 0.038 0.342 ± 0.041•

F1+ 0.477 ± 0.034 0.428 ± 0.038• 0.470 ± 0.027◦ 0.464 ± 0.040 ◦ 0.418 ± 0.030•

HLoss− 0.051 ± 0.001 0.052 ± 0.001◦ 0.053 ± 0.002◦ 0.052 ± 0.001◦ 0.062 ± 0.006•

OErr− 0.270 ± 0.017 0.271 ± 0.018◦ 0.304 ± 0.019• 0.281 ± 0.028◦ 0.324 ± 0.026•

Cov− 13.571± 0.308 13.507 ± 0.342◦ 19.838 ± 0.467• 16.318 ± 0.689• 18.133 ± 0.671•

RLoss− 0.095 ± 0.004 0.097 ± 0.004◦ 0.228 ± 0.014• 0.113 ± 0.009• 0.178 ± 0.012•

AvPrec+ 0.638 ± 0.008◦ 0.635 ± 0.009◦ 0.598 ± 0.015• 0.642 ± 0.018 0.586 ± 0.019•

AvRank 1.3 3 3.1 2.4 4.7
+(−)

: the higher (smaller) the value, the better the performance.
• (◦): statistically significant (non-significant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

Table 9: Experimental results (mean ± std) on the webpage dataset.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Acc+ 0.296 ± 0.204• 0.285 ± 0.184• 0.286 ± 0.179• 0.398 ± 0.146 0.234 ± 0.171•

Prec+ 0.351 ± 0.257• 0.340 ± 0.227• 0.341 ± 0.211• 0.462 ± 0.171 0.228 ± 0.212•

Rec+ 0.308 ± 0.205• 0.291 ± 0.189• 0.296 ± 0.195• 0.407 ± 0.153 0.276 ± 0.186•

F1+ 0.319 ± 0.219• 0.304 ± 0.198• 0.317 ± 0.203• 0.421 ± 0.156 0.249 ± 0.195•

HLoss− 0.041 ± 0.014• 0.043 ± 0.015• 0.052 ± 0.021• 0.039 ± 0.013 0.043 ± 0.014•

OErr− 0.466 ± 0.165• 0.474 ± 0.157• 0.565 ± 0.184• 0.375 ± 0.120 0.440 ± 0.143•

Cov− 4.069 ± 1.255 4.097 ± 1.237◦ 8.455 ± 1.887• 4.689 ± 1.403◦ 7.508 ± 2.396•

RLoss− 0.099 ± 0.046 0.102 ± 0.045◦ 0.312 ± 0.101• 0.107 ± 0.039◦ 0.193 ± 0.065•

AvPrec+ 0.630 ± 0.120◦ 0.625 ± 0.116◦ 0.522 ± 0.151• 0.688 ± 0.092 0.601 ± 0.117•

AvRank 2 3.4 4.1 1.2 4.1
+(−)

: the higher (smaller) the value, the better the performance.
• (◦): statistically significant (non-significant) difference of performance as compared to the best result in bold, based on two-tailed paired t-test at 5%
significance.

Table 10: Run time of the compared algorithms on the different
datasets in seconds.

DMLkNN MLkNN BRkNN MLRBF RankSVM

Emotion 0.506 0.268 0.126 0.696 3.635

Scene 9.984 5.963 3.067 3.851 22.319

Yeast 11.966 4.096 1.696 12.224 248.532

Medical 3.674 2.216 1.275 4.519 233.549

Enron 20.009 11.422 4.173 28.193 1781.644

according to their relevance to a given instance to be
classified, and then splitting the ordered set of labels
into subsets of relevant and irrelevant labels for that
instance.

(iii) DMLkNN has good performances and is more com-
petitive with the other algorithms on datasets with
high label-density, such as on the emotion and yeast
datasets. The proposed method is intended primarily
to take into account the dependencies between labels,
and DMLkNN tends to perform better on datasets
with high label multiplicity, in which labels may be
potentially more interdependent.

Table 11: Comparisons of the classifiers over the different datasets.

Acc+ DMLkNN �MLRBF > BRkNN � MLkNN > RankSVM

Prec+ DMLkNN �MLRBF > MLkNN � BRkNN > RankSVM

Rec+ DMLkNN �MLRBF > BRkNN � MLkNN > RankSVM

F1+ DMLkNN �MLRBF > BRkNN � MLkNN > RankSVM

HLoss− DMLkNN �MLRBF � MLkNN � BRkNN > RankSVM

OErr− MLRBF � DMLkNN > MLkNN � BRkNN > RankSVM

Cov− DMLkNN �MLkNN > MLRBF � BRkNN > RankSVM

RLoss− DMLkNN � MLRBF > MLkNN > BRkNN > RankSVM

AvPrec+ MLRBF � DMLkNN > MLkNN > BRkNN > RankSVM

>: statistically significant difference of performance based on Sign test;
�: non-significant difference of performance.

(iv) MLkNN is computationally faster than DMLkNN.
In fact, in the MLkNN method, the likelihoods
Pr(E

q
cx(q) | H

q
b), b ∈ {0, 1}, are calculated from

the training set, stored, and then used only when
predicting the label set of each query instance. In
contrast, when DMLkNN is used, the number of
likelihoods Pr(E

q
cx(q),

∧
ωl∈Y\{ωq}F

l
cx(l) | H

q
b), b ∈

{0, 1}, is far greater; consequently, unlike MLkNN,



EURASIP Journal on Advances in Signal Processing 13

it is impractical to calculate these probabilities in
advance and then store them. There is therefore
not a training process for DMLkNN. The probabil-
ities are computed locally for each instance to be
classified. Regarding the different methods, BRkNN
is the fastest algorithm. Apart from the number
of possible labels, the computing time of BRkNN
depends primarily on the computing time of the
nearest neighbors search. There are no prior and
posterior probabilities to compute for BRkNN, as
there are for DMLkNN and MLkNN. The RankSVM
method requires the greatest computing time. For
RankSVM, the resolution of the quadratic problem
and the choice of the support vectors is known
to be very hard [25]. The complexity of MLRBF
depends primarily on the complexity of the K-means
algorithm used for clustering the instances belonging
to each possible class. MLRBF therefore has a linear
complexity with respect to the number of classes, the
number of clusters, the number of instances, and the
dimensionality of the corresponding features vectors.

6. Conclusion

In this paper, we proposed an original multilabel learn-
ing algorithm derived from the k-NN rule, where the
dependencies between labels are taken into account. Our
method is based on the binary relevance approach, that
is frequently criticized for ignoring possible correlations
between labels [8], but here, this disadvantage is overcome.
The classification of an instance is accomplished through the
use of local information given by the k nearest neighbors,
and by using the maximum a posteriori rule. This method,
referred to as DMLkNN, generalizes the MLkNN algorithm
presented in [10].

The proposed method is particularly useful in practical
situations where data are significantly multilabeled. Using
a variety of benchmark datasets and different evaluation
criteria, the experimental results clearly demonstrate this and
confirm the usefulness and the effectiveness of DMLkNN as
compared to other state-of-the-art multilabel classification
methods.

Note that when the number of classes grows, more data
are required in order to compute the posterior probabilities
for DMLkNN. On limited datasets, it will be hard to capture
relationships between labels. In addition, the performances
of the proposed method depend on the distance computation
metric used to determine the nearest neighbors.
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