
J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

DOI 10.1007/s10846-014-0146-2

A Depth Space Approach for Evaluating Distance to Objects

with Application to Human-Robot Collision Avoidance

Fabrizio Flacco · Torsten Kroeger ·

Alessandro De Luca · Oussama Khatib

Received: 30 May 2014 / Accepted: 2 October 2014 / Published online: 24 October 2014

© Springer Science+Business Media Dordrecht 2014

Abstract We present a novel approach to estimate

the distance between a generic point in the Cartesian

space and objects detected with a depth sensor. This

information is crucial in many robotic applications,

e.g., for collision avoidance, contact point identifica-

tion, and augmented reality. The key idea is to perform

all distance evaluations directly in the depth space.

This allows distance estimation by considering also

the frustum generated by the pixel on the depth image,

which takes into account both the pixel size and the

occluded points. Different techniques to aggregate dis-

tance data coming from multiple object points are

Electronic supplementary material The online version

of this article (doi:10.1007/s10846-014-0146-2) contains

supplementary material, which is available to authorized

users.

F. Flacco · A. De Luca (�)

Dipartimento di Ingegneria Informatica, Automatica e

Gestionale, Sapienza Università di Roma, Via Ariosto 25,

00185 Rome, Italy

e-mail: deluca@diag.uniroma1.it

F. Flacco

e-mail: fflacco@diag.uniroma1.it

T. Kroeger · O. Khatib

Artificial Intelligence Laboratory, Stanford University,

Stanford, CA 94305, USA

T. Kroeger

e-mail: tkr@stanford.edu

O. Khatib

e-mail: khatib@stanford.edu

proposed. We compare the Depth space approach with

the commonly used Cartesian space or Configuration

space approaches, showing that the presented method

provides better results and faster execution times. An

application to human-robot collision avoidance using

a KUKA LWR IV robot and a Microsoft Kinect sensor

illustrates the effectiveness of the approach.

Keywords Depth space · Depth sensor · Kinect ·

Distance · Collision avoidance

1 Introduction

Evaluating distances between a generic point in space

and multiple objects in the environment is an essen-

tial step for many applications, in robotics and beyond.

The use of vision systems is the most common

approach for this purpose, because of the capability of

monitoring large workspaces and due to the rich nature

of the information returned. While using a single cam-

era allows to obtain only qualitative information about

distances to moving objects (see, e.g., [6]), resorting

to stereo vision makes it possible to collect full 3-D

spatial information [12].

In the last few years, the release of powerful and

cheap RGB-D sensors, like the Microsoft Kinect [23],

that provide for each pixel in the image plane also the

depth of the closest object along that pixel’s projec-

tion, gave rise to novel uses and research solutions in

a large variety of applications, including: augmented

http://dx.doi.org/10.1007/s10846-014-0146-2
mailto:deluca@diag.uniroma1.it
mailto:fflacco@diag.uniroma1.it
mailto:tkr@stanford.edu
mailto:khatib@stanford.edu

S8 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

reality, where simulated objects have to interact with

a real environment [16, 17]; virtual fixtures in telema-

nipulation, with objects and shapes generating force

feedback to the operator via a haptic device [20]; col-

lision avoidance of a robot moving in a dynamic envi-

ronment cluttered with obstacles [5, 15, 21]; object

recognition, when the robot has to be distinguished

from other moving objects [18]; simultaneous local-

ization and mapping (SLAM), where a map of the

environment is built and used to localize the camera

position [13]; and, last but not least, human-robot col-

laboration, when robot and human have to coexist,

physically get in contact, and exchange forces [2, 3].

In all these works, as in most applications based

on the use of depth sensors, the on-line estimation

of distances between multiple obstacles and control

points, which may either belong to a real object (e.g.,

attached to the robot links) or be virtual ones, is a

basic requirement which needs to be performed in real

time.

The most common approach for estimating dis-

tances uses the cloud of points obtained by projecting

the depth image in the Cartesian space [8, 14], often

relying on the availability of open sources codes such

as the Point Cloud Library (PCL) [19]. While this

approach is suited to human natural reasoning about

distances in Cartesian space, it does not exploit the

information associated to a pixel in a complete way.

This is because neither the pixel size nor the occluded

points lying behind the detected obstacle along the

projection ray(s) associated to the pixel are taken into

account. In particular, this approach does not consider

the 3D region related to each pixel called frustum, i.e.,

the portion of a pyramid left after its upper part has

been cut off by a (skewed) plane.

In this paper, we show that the evaluation of point-

to-object distances performed directly in the depth

space allows a large performance improvement in

terms of computational times. Moreover, a correct

consideration of pixel frustum can be achieved in

this way. The manuscript is based on our preliminary

results presented in [5], where the use of the depth

space to estimate the distance between robot points

and obstacles was proposed for the first time. With

respect to the original conference paper [5]: (i) we pro-

vide a more detailed comparison between Depth space

and Cartesian space characteristics; (ii) the effect of

finite pixel size is taken into account in distance com-

putations; (iii) an experimental validation is added

to illustrate the effectiveness and performance of the

proposed approach; and, (iv) new collision avoid-

ance experiments with a KUKA LWR IV robot are

reported.

The paper is organized as follows. In Section 2, the

representation of a point in the Cartesian, Configura-

tion, and Depth spaces is recalled and their relations

are detailed. The distance evaluation is presented in

Section 3, where different techniques are proposed

for aggregating distances to multiple points into a

single information. Section 4 reports the results of

an experimental comparison, where a virtual point is

moved in the environment and different methods are

used to compute the distances between the virtual

point and real objects. Finally, the proposed approach

is applied to human-robot collision avoidance exper-

iments with a KUKA LWR IV and the results

are reported in Section 5 and in the accompanying

video.

2 Spaces for Object Representation

We consider an environment monitored by a depth

sensor. The information given by the sensor has to be

represented in a suitable, possibly discretized, space.

The classical spaces used in robotic applications are

the Cartesian space and the Configuration space. The

former is the representation that humans are used to

handle, while the latter is robot (and control) oriented.

The Depth space is the native representation of depth

sensor data, but it is not typically used as final rep-

resentation space of object data, which are instead

projected in one of the two previous spaces. The main

characteristics of Cartesian, Configuration, and Depth

spaces are recalled next.

2.1 Cartesian Space

The 3-dimensional Cartesian space is characterized by

a reference frame that identifies the origin (zero posi-

tion) of the space and is used to specify the position

of points and their distances, and the dimensions of

objects.

A generic Cartesian point CP =
(

Cx Cy Cz
)T

is described by three (dimensionally homogeneous)

coordinates, which represent the distances of the point

to the three orthogonal planes defined by the X, Y , and

Z axes of the reference frame (Fig. 1).

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S9

Fig. 1 Two points in

Cartesian space, and their

distance

Given two points CP 1 and CP 2, their Cartesian
distance is defined by using the (Euclidean) norm as

D(CP 1,
CP 2) = ‖CP 1−CP 2‖

=

√

(

Cx1−Cx2

)2
+

(

Cy1−Cy2

)2
+

(

Cz1−Cz2

)2
.

(1)

2.2 Configuration Space

The information given by the depth sensor is often

used to command and control the robot motion. In

this situation, it is quite common to represent objects

(usually defined as obstacles in this scenario) in the

robot Configuration space, or C-Space. The C-Space

is an n-dimensional manifold, where n is the mini-

mum number of generalized coordinates (organized

in an array q) needed to describe the robot pos-

ture. These coordinates may have non-homogeneous

units. For example, the generalized coordinates q of

a mobile robot include the Cartesian position (x, y)

on the plane and its orientation angle θ ; similarly, the

joint variables q of a manipulator may contain linear

and angular quantities.

An obstacle point in the Cartesian space is repre-

sented in the C-Space as a C-Obstacle, which is the

set of all robot configurations for which the robot is in

contact (collides) with the point. It is possible to define

the distance between two configurations as

DQ(q1, q2) = ‖q1 − q2‖. (2)

2.3 Depth Space

The Depth space is a non-homogeneous 2 1
2
-

dimensional space, where two elements represent the

coordinates of the projection of a Cartesian point on

a plane, and the third element represents the distance

between the point and the plane. The depth space of

an environment is the native representation given by

a depth sensor, which is usually modeled as a clas-

sic pin-hole camera. The pin-hole camera model is

composed by two sets of parameters: the intrinsic

parameters in matrix K, which model the projection of

a Cartesian point on the image plane, and the extrinsic

parameters in matrix E , which represent the coordinate

transformation between the reference and the sensor

frame, i.e.,

K =

⎛

⎝

f sx 0 cx

0 f sy cy

0 0 1

⎞

⎠ , E =
(

R | t
)

. (3)

In Eq. 3, f is the focal length of the camera, sx and sy
are the dimensions of a pixel (in meters), cx and cy are

the pixel coordinates of the center (on the focal axis)

of the image plane, and R and t are the rotation matrix

and translation vector between the sensor frame and a

reference frame.

Each pixel of a depth image contains the depth of

the observed point, namely the distance between the

Cartesian point and the camera image plane. Note that

only the depth of the closest point along a given ray is

stored. All occluded points that are beyond compose

a region of uncertainty called the gray area. A typical

gray area is illustrated in Fig. 2.

Consider a generic Cartesian point Cr P =
(

Cr x Cr y Cr z
)T

, as expressed in the reference

(world) frame. Its expression in the sensor frame is

Cs P =
(

Cs x Cs y Cs z
)T

= R Cr P + t, (4)

and its projection DP =
(

px py dp

)T
in the depth

space is given by

px =
Cs xf sx

Cs z
+ cx, py =

Cs yf sy
Cs z

+ cy, dp = Cs z,

(5)

S10 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 2 Illustration of the

gray area generated by a

depth sensor (with a human,

a robot, and a table in the

environment)

where px and py are the pixel coordinates in the image

plane and dp is the depth of the point. In the reverse

direction, a point in the depth space is projected in the

Cartesian sensor space as

Cs x =
(px − cx) dp

f sx
, Cs y =

(

py − cy

)

dp

f sy
, Cs z =dp.

(6)

Note that when a point in the camera depth image is

mapped in the Cartesian space, it represents only the

object point nearest to the image plane projected in

that pixel. On the other hand, also another informa-

tion is simply coded in the depth space, namely that all

Cartesian points generated by Eq. 6 with depth greater

than dp compose the gray area. Without any further

information, this gray area should be considered as

part of the perceived object.

3 Distance Evaluation

Consider a point of interest P in the Cartesian space1

that will be called Control Point (CP). We would like

to estimate the (minimum) distance between the Con-

trol Point and a generic object point O detected by the

depth sensor. The steps needed depend on the space

used to represent the points.

1In the rest of the paper, we omit the superscript for points

expressed in the Cartesian reference frame.

3.1 Cartesian Space

The most common procedure to obtain the distance

between the control point P and the recognized obsta-

cle point in the depth image DO is to project the latter

in the Cartesian space by Eq. 6, and then use the

simple point-to-point distance evaluation (1).

This solution does not consider entirely the infor-

mation embedded in the depth data, since occluded

points are not included in this way as part of the

object. Furthermore, we have to take into account that

the sensor provides a discretized version of the depth

space. In particular, an object point O is projected

on the pixel DŌ in the image plane, with coordi-

nates
(

ōx ōy do

)T
=

(

trunc(ox) trunc(oy) do

)T
.

The depth information given by the sensor refers to

the whole pixel, and thus also the pixel size has to be

considered in the distance evaluation.

The correct procedure should consider the frustum

generated by the depth space pixel, as illustrated in

Fig. 3. Therefore, after the projection in the Cartesian

space of depth data, the frustum representing the pixel

object has to be also computed, then the minimum dis-

tance between the obtained frustum and the control

point has to be evaluated.

3.2 Configuration Space

When the control point belongs to a robot and moves

thus rigidly with it, the knowledge of the distance

between the control point and the object in the config-

uration space is very useful for controlling the robot

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S11

Fig. 3 Example of the frustum generated by a pixel in the

image plane DŌ given by a point object O detected with the

depth sensor, and its minimum distance to the control point P

reaction or its interaction with the detected object.

Despite this advantage, the representation of the C-

Obstacle is not immediate, and in fact even a single

point is represented as a region in the configuration

space. A method for obtaining a discretized represen-

tation of the C-Obstacle associated to a real obstacle

as detected by a depth sensor (or by stereo vision) was

presented in [22]. The approach is indeed too costly in

terms of computational time, and especially unsuitable

whenever the dimension of the configuration space

becomes large (e.g., for robots that are kinematically

redundant w.r.t. the task).

3.3 Depth Space

Consider the depth space representation of the object

point DO =
(

ox oy do

)T
captured by the sen-

sor. In order to evaluate a useful Cartesian distance

between the obstacle point O and a point of interest

P , which is also represented in the depth space as
DP =

(

px py dp

)T
via Eqs. 4 and 5, two possible

cases can arise (see Fig. 4). If the obstacle point has a

larger depth than the point of interest (do > dp), then

the distance is computed as

vx =
(ox − cx) do − (px − cx) dp

f sx

vy =
(oy − cy) do − (py − cy) dp

f sy

vz = do − dp

D(P , O) ≃ DD(DP ,D O) =
√

v2
x + v2

y + v2
z .

(7)

Otherwise, the distance w.r.t. the occluded points

needs to be considered. For this, we assume the depth

of the obstacle to be do = dp and the distance is then

Fig. 4 Depth space distance evaluation to a point of interest P ,

showing the two possible cases of obstacle points whose depth

is smaller (O1) or larger (O2) than the depth of the point of

interest

computed again from Eq. 7. While the resulting value

is not the actual Cartesian distance, the difference is

expected to be negligible. Note that this distance eval-

uation is based on very simple relations, using only

depth space data associated to the camera. Moreover,

it takes into account properly and efficiently also the

gray area contrary to what is done on occluded points

with other methods.

At this stage, we can consider also the sensor dis-

cretization of the depth space. As already mentioned,

the object point O is projected on the pixel DŌ in

the image plane with coordinates
(

ōx ōy do

)T
=

(

trunc(ox) trunc(oy) do

)T
. With reference to Fig. 5,

the Cartesian object generated by the (finite) object

pixel DŌ is a frustum with base at do. The minimum

distance between the square frustum and the control

point is on the frustum surface. To obtain this distance,

we work directly in the depth space by finding the

Fig. 5 Depth space distance evaluation to a point of interest P

when also the pixel size is taken into account, showing the two

possible cases of obstacle depth smaller or larger than the depth

of the point of interest

S12 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

sub-pixel point DÔ =
(

ôx ôy do

)

nearest to
(

px py

)

that belong to the frustum, i.e.,

ôx =

⎧

⎨

⎩

ōx px < ōx

ōx +1 px > ōx +1

px otherwise,

ôy =

⎧

⎨

⎩

ōy py < ōy

ōy +1 py > ōy +1

py otherwise.

(8)

As illustrated in Fig. 5, the distance can be finally

evaluated as DD(DP ,D Ô).

In some applications, as in collision checking,

retrieving the distance information is sufficient, while

in some other cases, e.g., for collision avoidance, we

need also the unit (normalized) vector between the

control point and the nearest point on the frustum. This

vector is simply given by

V (DP ,D Ô) =

(

vx vy vz

)T

DD(DP ,D Ô)
. (9)

The complete distance evaluation method is summa-

rized in pseudocode form as Algorithm 1.

3.4 Aggregation of Multiple Obstacle Points

We would like now to evaluate distances between the

control point P and all obstacles sufficiently close to

it. Consider a Cartesian region of surveillance S, made

by a cube of side 2ρ centered at P , where the presence

of obstacles must be detected. The associated region

of surveillance in the image plane has dimensions

xs = ρ
f sx

dp − ρ
, ys = ρ

f sy

dp − ρ
. (10)

Thus, the distance evaluation should be applied to all

pixels in the depth image plane within the region of

surveillance

SD =
[

px −
xs

2
, px +

xs

2

]

×
[

py −
ys

2
, py +

ys

2

]

×
[

dp − ρ, dp + ρ
]

. (11)

Since the evaluation for each obstacle pixel is com-

pletely independent, distances may be computed also

in parallel, thus speeding up the method.

Most of the times, distances to multiple obstacle

points are computed in order to generate a reactive

motion of a (robot) control point in face of dynamic

obstacles. To this end, the contribution of all points in

the region of surveillance can be aggregated in differ-

ent ways into a single information, according to the

desired intended robot behavior. We present next a few

common aggregation methods, and illustrate how to

apply them within our depth space approach.

3.4.1 Minimum distance vector

When only the minimum distance is required, the

number of distance evaluations can be reduced by con-

sidering pixels that are closer to (px, py) first. As soon

as a new local minimum

Dmin(P) = min
DÔ∈S′

D

DD(DP ,D Ô) < ρ (12)

is found among the pixels in the already explored

area S′
D ⊂ SD , the region of surveillance can be

shrunk by setting ρ = Dmin and using again Eq. 10.

This contraction of the surveilled area, together with

the fact that distance computation is applied only to

pixels whose depth is in S′
D , reduces the computa-

tional burden of the algorithm. The associated unit

vector V min(P) = V (DP ,D Ômin) is the one obtained

with the obstacle point that generates the minimum

distance DÔmin = arg minDÔ∈S′
D

DD(DP ,D Ô).

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S13

3.4.2 Mean distance vector

In some cases, we would like to have a single distance

information about all objects surrounding the control

point. A possible aggregation method is to compute

the mean distance as

Dmean(P) =

∑

DÔ∈S′
D

DD(DP ,D Ô)

N
, (13)

where N is the number of object depth points detected

by the sensor inside the surveillance area SD . Simi-

larly, the associated unit vector is

V mean(P) =

∑

DÔ∈S′
D

V (DP ,D Ô)

N
. (14)

3.4.3 Hybrid distance vector

In applications where a control point is commanded

to react to the presence of objects, e.g., in collision

avoidance, both the minimum and the mean distance

approaches are not particularly effective. In fact, the

minimum distance method could drive the control

point toward a second object, and if this second object

becomes then the nearest one, it could push the con-

trol point back toward the first object, resulting in

an undesirable oscillating effect. On the other hand,

the mean distance approach is affected by the topol-

ogy of the obstacles, namely it depends on the ratio

of the number of near and far obstacles. Such behav-

ior is also not desirable, since the presence of a close

object should provide always the same control reac-

tion, no matter if other obstacles are near or far to

it. In such cases, we propose to use a hybrid method

with

Dhybrid(P) = Dmin(P) and V hybrid(P) = V mean(P).

(15)

This allows to react according to the nearest object

for the intensity, while taking into consideration all

the objects in the surveillance area for the reaction

direction.

3.5 Avoiding Self Distances

When the control point belongs to a real object which

is also detected by the depth sensor, it is important

to remove it from the depth image. Without remov-

ing the control point, the minimum distance to the

object would always be equal to zero. Different tech-

niques can be used to remove the object that contains

the control point. The simplest method is to remove a

portion of the image compatible with the actual shape

of the object, or removing all adjacent points. If a

3D-model of the object is known, an efficient method

for object removal from the depth image using the

GPU is presented in [1].

4 Validation and Comparison

To validate the proposed Depth space approach, and to

compare it with a common Cartesian space approach,

we present a simple experiment where a virtual con-

trol point moves in a real environment. The relevant

environment is mainly composed by two walls, one

horizontal and one vertical, positioned on the robot

supporting table as shown in Fig. 6. The presence of

the robot manipulator is here irrelevant, but for con-

venience we used the robot base frame as reference

frame.

The virtual control point P follows a line defined

by y = 0.4 and z = 0.2 [m], while the X coordinate

moves in the range x ∈ [−0.5, 0.5] [m]. The con-

trol point sees the horizontal wall as a planar X − Y

surface at a height Z = 0.04 [m], while the vertical

wall is seen as a planar Y − Z surface, with X = 0

and Y ∈ [0.33, 0.37] [m], and a planar X − Z sur-

face, with Y = 0.37 and X ∈ [−0.5, 0] [m]. From

the depth sensor view of the environment shown in

Fig. 6, it follows clearly that only the Y −Z surface of

the vertical wall is captured, while the X − Z surface

is completely occluded. By construction, the nearest

obstacle to the control point is the vertical wall when

x ∈ [−0.5, 0.1572] [m], and the horizontal wall when

x ∈ [0.1572, 0.5] [m]. The region of surveillance used

in the following tests is defined by ρ = 0.3 [m].

The first approach is a Cartesian space method that

evaluates the minimum distance between the control

point and the point cloud associated to the pixels in

the surveillance area. Each pixel in the surveillance

area SD is projected in the Cartesian reference frame

using Eqs. 4 and 6, and the distance to the control

point is evaluated then by Eq. 1. Figure 7 reports

the minimum distance estimated during the experi-

ment as a function of the X-coordinate of the control

point. Having considered only the point cloud, and not

the entire frustum, the vertical wall is not correctly

S14 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 6 Environment used for validation and comparison of

methods. The virtual control point moves on the red segment

shown in the left picture, while the depth image given by the

Kinect is shown on the left (lighter colors refer to obstacle points

with smaller depth)

taken into account, and points on the horizontal plane

are recognized as the nearest ones even around x ∈

[−0.5, −0.1572] [m], where the vertical plane is in

fact nearer. Furthermore, the sensor noise induces also

a discontinuous behavior in the distance unit vector

which may preclude its use in practical applications.

Figures 8, 9 and 10 refer to the proposed Depth

space approach, using different methods for aggregat-

ing multiple object points. The results obtained with

the minimum distance method are reported in Fig. 8.

It can be verified that the minimum distance is cor-

rectly estimated, since both walls are now taken into

account. The minimum estimated distance to the ver-

tical wall falls below 0.03 [m] (which is its real lower

bound) since, due to occlusion, the gray area appears

as nearer. The obtained distance unit vector is much

less sensitive to sensor noise than with the previ-

ous point cloud approach, but it still experiences a

discontinuity.

When the mean aggregation method is used, unde-

sired discontinuities of the distance unit vector are

eliminated, see Fig. 9. Moreover, the mean distance

vector considers all obstacles in the surveillance

area, which may be useful in some applications. The

Fig. 7 Minimum distance estimated with the Cartesian space approach. Distance vectors in the Cartesian space [left]; evaluated

magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S15

Fig. 8 Minimum distance estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated

magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

drawback is that the magnitude of this distance vec-

tor averages between near and far obstacles, and thus

the main information we were looking for, namely

minimum distance, will not be provided. The hybrid

method is a trade off between having information

about how close is the control point is to other objects

and how these objects are distributed around the con-

trol point. The result obtained with the hybrid distance

vector is shown in Fig. 10. A collision avoidance algo-

rithm based on this method is presented in Section 5.

Beside the extra capability of considering easily

occluded points and pixel size, another main feature

of the proposed Depth space approach is its compu-

tational efficiency, and thus its suitability for tracking

fast motion. We remark that, in general, it may not be

sufficient to compute distances at the same frequency

rate of the camera/sensor frames. In fact, the control

point could move at a fast speed, so that distances

have to be recomputed on the fly even before the depth

image is updated using the next image frame.

Figure 11 shows a comparison of the actual com-

putational times involved in the presented valida-

tion experiments. Because of the large differences in

computational times between the Cartesian and the

Depth approach, and also among aggregation meth-

ods used in the latter, a logarithmic scale has been

used. Experiments were conducted on a Intel Core i7-

2600 CPU 3.4GHz, with 8GB of RAM. Despite of

the fact that only the point cloud (and no frustum)

has been considered in the Cartesian space approach

that we implemented, this approach has 70.6 [ms]

(14.17 [Hz]) as worst (longest) execution cycle time

during the entire motion. With the proposed Depth

space approach. the minimum distance method has

Fig. 9 Mean distance vector estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated

magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

S16 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 10 Hybrid distance vector estimated with the Depth space approach. Distance vectors in the Cartesian space [left]; evaluated

magnitude of the distance vector [right, top] and components of the distance unit vector [right, bottom]

a worst execution time of 1.46 [ms] (684.76 [Hz]),

almost two order of magnitudes faster than before.

Thanks also to the contraction of the surveillance area,

as detailed in Section 3.4.1, when an obstacle is very

close to the control point only few pixels need to be

checked, which is then reflected in a small execution

time: in this experiment, the minimum execution time

was 5.3 [μs]. The mean and the hybrid methods for

aggregation of data have the same computational cost,

with their worst execution time equal to 3.335 [ms]

(299.86 [Hz]).

In conclusion, the presented validation experiment

shows that the Depth space approach not only provides

more information but distance information can also be

computed faster than with common Cartesian space

approaches.

5 Human-Robot Collision Avoidance

To show the effectiveness of the Depth space

approach, we present as a case study some laboratory

experiments where a fast and correct distance eval-

uation is crucial. This occurs in collision avoidance,

where robot-obstacle (or robot-human) distances need

to be computed in real time so as to generate evasive

maneuvers. More specifically, we will use the eval-

uated distances in two different ways, as a repulsive

Fig. 11 Execution times for estimating the final distance vector with the Cartesian space approach, and with the Depth space approach

when using the three reported methods

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S17

action at the velocity level for the robot end-effector

and as a virtual obstacle for a number of other control

points placed along the robot body.

5.1 Repulsive Action

Once the robot-obstacle distances have been eval-

uated, they are used to modify on-line the current

trajectory of the manipulator so as to avoid collision.

Many different approaches for obstacle avoidance

have been proposed, see, e.g., [7, 9, 21]. We present

here a simple but effective method based on the gen-

eration of repulsive vectors in Cartesian space, which

can then be used as basic input for any preferred

collision avoidance algorithm.

Associated to the hybrid distance vector from

detected obstacles to the end-effector position P EE ,

as obtained by Algorithm 1 and the aggregation

method (15), a repulsive vector is defined as

Cs � (P EE) = v (P EE) V hybrid(P EE). (16)

All obstacle points are taken into account for the direc-

tion of the unit vector V hybrid(P EE) of the repulsive

action. For its magnitude, we set

v (P EE) =
Vmax

1 + e(Dhybrid(P EE)(2/ρ)−1)α
, (17)

where Vmax is the maximum admissible magni-

tude and α > 0 is a shape factor. The magni-

tude v of the repulsive vector will approach Vmax

when Dhybrid(P EE) = 0, and will approach zero

when the distance reaches ρ (beyond ρ, Cs � is

not defined). A typical profile of the magnitude

as a function of the hybrid distance is shown in

Fig. 12.

Fig. 12 Repulsive magnitude in Eq. 17, with Vmax = 3 [m/s],

ρ = 0.4 [m], and α = 6

In this way, all obstacle points contribute to the

direction of the resulting repulsive vector, while the

magnitude depends only on the minimum distance

to all obstacle points. If the magnitude were com-

puted using all points, it would be influenced by the

number of obstacle points. Similarly, if the magni-

tude were given by the mean value of the distances, it

would be affected by the ratio of near to far obstacles.

Such behaviors are not desirable, especially for a close

obstacle with high risk of collision. The main benefits

of using all points for computing the repulsive (unit)

direction are that i) the repulsive vector is less sensi-

ble to noise of the depth sensor, producing a smoother

variation of the pointing direction, and ii) the pres-

ence of multiple obstacles is handled in a better way,

as shown in Fig. 13.

All above repulsive vectors are expressed in the

camera frame, but can be transformed in the refer-

ence frame as Cr �(P) = RT Cs �(P). The motion

task for the robot is specified by a desired end-effector

velocity ẋd in the Cartesian space. For obstacle avoid-

ance of the end-effector control point P EE , we simply

take the repulsive vector as a repulsive velocity. Thus,

the original desired end-effector velocity ẋd will be

modified into a commanded one ẋc as

ẋc = ẋd + Cr �(P EE). (18)

Without loss of generality, we consider the manipula-

tor to be commanded at the joint velocity level. The

joint velocity obtained by (pseudo)inversion as

q̇ = J #(q) ẋc (19)

is then used as target velocity command for the control

algorithm.

This is indeed a simple, particular form of the clas-

sical artificial potential field method [9], which has

been chosen here mainly to prove the effectiveness of

the computed repulsive vectors. It is well known that

the main drawback of this method is the presence of

local minima. However, note that from a safety point

of view (especially in human-robot interaction) it is

acceptable that the robot stops whenever it is not able

to pass by the obstacles. In any event, starting from

this basic algorithm, more complex versions can be

developed —see, e.g., [7].

S18 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

5.2 Cartesian Constraints

For the other control points placed along the robot

structure, we use a slightly different approach. Obsta-

cles do not produce repulsive velocities on these

control points, but are treated rather as Cartesian

constraints with artificial forces that are translated

into joint velocity constraints as detailed in [4].

Our approach, based on the modification of joint

velocity constraints while exploiting kinematic redun-

dancy, will preserve the desired end-effector task as

far as possible. Had we considered instead repul-

sive velocities as for the end-effector, we would

need to manage multiple robot tasks using the mag-

nitudes of the repulsive vectors as associated pri-

orities. While this approach is indeed feasible, it

presents some conflicting issues. If the end-effector

task has always the highest priority, then collision

avoidance for the robot links could not be guaran-

teed. On the other hand, if the end-effector task is

not privileged, then its trajectory could be arbitrarily

modified even when there is no risk of end-effector

collisions.

Let C be one of the control points belonging to a

generic robot link, and JC the Jacobian of the direct

kinematics for the position of C. Let Dmin(C) be the

minimum distance between the control point and all

obstacle points O ∈ S(C) in its associated surveil-

lance region. The risk of collision is defined by the

function

f (Dmin(C)) =
1

1 + e(Dmin(C)(2/ρ)−1)α
, (20)

where ρ and α have been introduced in Eqs. 10 and 17,

respectively. Scaling by Eq. 20 the unit vector V min

along the minimum distance direction, we treat the

resulting vector as a Cartesian constraint force and

convert it in the joint space as

s = J T
C [V min(C) f (Dmin(C))] . (21)

The component si of s represents the ‘degree of influ-

ence’ of the Cartesian constraint on the ith joint, for

i = 1, . . . , n. From these, we reshape the admissible

velocity limits of all joints that are influenced by the

Cartesian constraint using again the risk of collision

function as

if si ≥ 0, q̇max,i = Vmax,i

(

1 − f (Dmin(C))
)

else, q̇min,i = −Vmax,i

(

1 − f (Dmin(C))
)

,

(22)

where Vmax,i is the original bound on the ith joint

velocity, i.e., |q̇i | ≤ Vmax,i , for i = 1, . . . , n.

In practice, joint motions that are in contrast with

the Cartesian constraint are scaled down. When the

constraint is too close, all joint motions that are

not compatible with the constraint will be denied.

Multiple Cartesian constraints are taken into account

by considering, for each joint i, the minimum scal-

ing factor obtained for all the constraints. With this

approach, collision avoidance for the robot body has

always the highest priority, while the end-effector

task will continue to be correctly executed until it

Fig. 13 Example of repulsive vector computation. The point of

interest P is represented by a red circle, and the minimum dis-

tance is represented in cyan. The repulsive vector obtained by

using the minimum distance only is shown in green, while the

one obtained by using all points in the range of surveillance is

in blue. It can be seen that the green repulsive vector points to

another obstacle (dangerous), while the blue vector points to a

free area (safer)

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S19

is compatible with the Cartesian constraints. Other-

wise, the robot stops and a recovery method should be

applied.

5.3 Experiments

5.3.1 Setup

The experimental setup consists of a KUKA LWR

IV manipulator with n = 7 revolute joints, execut-

ing tasks that are defined only in terms of the position

of its end-effector (i.e., of dimension m = 3) while

unknown dynamic obstacles, including a human, enter

its workspace. For the primary Cartesian motion task,

this robot has degree of redundancy n − m = 4.

The robot operates at a control cycle of 2 ms. The

workspace is monitored by a Microsoft KinectTM

depth sensor, positioned at a horizontal distance of

1.5 [m] and at a height of 1.2 [m] w.r.t. the robot base

frame. The Kinect captures 640×480 depth images at

a frequency of 30 Hz. The implementation of our col-

lision avoidance approach runs on an eight-core CPU.

Four processors execute the repulsive velocity com-

putation, and the other four enable visualization and

robot motion control.

Note that three different run-time processes are

present, working at three different frequencies.

1. The vision process captures the depth image and

removes the manipulator from each new image at

the sensor frequency (30 Hz).

2. The on-line trajectory generation algorithm

of [10, 11] produces a joint velocity command

at the same cycle time of the robot controller

(500 Hz).

3. The obstacle avoidance process computes a

repulsive vector at a frequency lying between

those of the vision and control processes. In

fact, even if a new depth image is available

only at 30 Hz, the manipulator is moving dur-

ing this interval and the repulsive vector changes

accordingly.

Fig. 14 Scenario 1. A human operator tries to touch the robot

end-effector. First and second rows shows four instant of the

experiment, at t = 0, 1, 2, 3 [s], with snapshots in the first row

and evolution of variables in the second row: end-effector tra-

jectory [red]; distances between a control point and the nearest

obstacle [green]; end-effector repulsive velocity [blue]. The last

row shows the components of the end-effector repulsive veloc-

ity [left] and the minimum distances for the other control points

[right]

S20 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

Fig. 15 Scenario 2. A collision between the robot end-effector

and a planar object is avoided. First and second rows shows four

instant of the experiment, at t = 0, 3, 5, 7.5 [s], with snapshots

in the first row and evolution of variables in the second row:

end-effector trajectory [red]; distances between a control point

and the nearest obstacle [green]; end-effector repulsive velocity

[blue]. The last row shows the components of the end-effector

repulsive velocity [left] and the minimum distances for the other

control points [right]

Fig. 16 Scenario 3. An obstacle is positioned on trajectory of

the robot elbow. First and second rows shows four instant of the

experiment, at t = 0, 6, 10, 12 [s], with snapshots in the first

row and evolution of variables in the second row: end-effector

trajectory [red]; distances between a control point and the

nearest obstacle [green]; end-effector repulsive velocity [blue].

The last row shows the components of the end-effector repulsive

velocity [left] and the minimum distances for the other control

points [right]

J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22 S21

5.3.2 Results

We present three different scenarios that highlight the

features of the presented approach. The basic manip-

ulator task is to continuously move the end-effector

through six Cartesian points that forms an hexagon in

the Y −Z plane defined by X = −0.6 [m]. The param-

eters used are ρ = 0.4 [m], Vmax = 1.5 [m/s], and

α = 5.

The first scenario (Fig. 14) is one of human-robot

coexistence, in which the human tries to touch the

robot end-effector with his hand. With the proposed

approach, robot-to-hand distances are evaluated at a

high rate, allowing the robot to perform an immedi-

ate evasive maneuver. The accompanying video shows

also more results of this kind. In a second scenario

(Fig. 15), collision between a planar moving obsta-

cle and the robot end-effector has to be avoided.

In this case, the importance of having considered

also occluded points is emphasized. For instance, at

t = 5 [s] the plane is almost completely occluded;

nonetheless, the correct repulsive velocity is obtained.

In the third scenario (Fig. 16), an obstacle is inserted

on the motion trajectory of the robot elbow. Between

t = 0 and t = 6 [s], the manipulator executes the

desired Cartesian hexagon going through the same

robot postures. When the obstacle is inserted at t =

10 [s], it is considered as a Cartesian constraint and

converted into virtual joint velocity limits by our

algorithm. The robot exploits its task redundancy to

accommodate the new limits, and reconfigures its pos-

ture so as to continue successfully the execution of

the desired end-effector trajectory while avoiding the

obstacle. The complete experiments are included in

the video.

6 Conclusions

We have presented a new general approach to eval-

uate the distance between a point of interest in the

Cartesian space and the objects detected by a depth

sensor. Performing all necessary operations in the

Depth space allows to obtain distance information

with a reduced computational burden, while taking

into account the whole frustum generated by the depth

information stored in the pixels. We have shown the

superiority of the proposed approach both in terms

of correctness and performance by comparing it with

a state-of-the-art method based on clouds of points

in the Cartesian space. The real-time capabilities and

the practical effectiveness of the presented approach

have been demonstrated using a high dynamically

human-robot collision avoidance task.

An open issue is whether and how would it be

possible to integrate the information coming from

multiple depth sensors. In fact, each depth sensor has

its own depth space, and the associated data can-

not be directly merged without losing some essential

information, e.g., on occluded points.

Acknowledgments Work supported by the European Com-

munity, within the FP7 ICT-287513 SAPHARI project.

References

1. Realtime URDF filter. http://github.com/blodow/realtime

urdf filter

2. Cherubini, A., Passama, R., Meline, A., Crosnier, A.,

Fraisse, P.: Multimodal control for human-robot coopera-

tion. In: Proceedings 2013 IEEE/RSJ Int. Conf. on Intelli-

gent Robots and Systems, pp. 2202–2207 (2013)

3. De Luca, A., Flacco, F.: Integrated control for pHRI: Col-

lision avoidance, detection, reaction and collaboration. In:

Proceedings 4th IEEE Int. Conf. on Biomedical Robotics

and Biomechatronics, pp. 288–295 (2012)

4. Flacco, F., De Luca, A., Khatib, O.: Motion control of

redundant robots under joint constraints: Saturation in

the null space. In: Proceedings 2012 IEEE Int. Conf. on

Robotics and Automation, pp. 285–292 (2012)

5. Flacco, F., Kroger, T., De Luca, A., Khatib, O.: A

depth space approach to human-robot collision avoidance.

In: Proceedings 2012 IEEE Int. Conf. on Robotics and

Automation, pp. 338–345 (2012)

6. Gecks, T.: D., H.: Human-robot cooperation: Safe pick-and-

place operations. In: Proceedings 2005 IEEE Int. Works.

on Robot and Human Interactive Communication, pp. 549–

554 (2005)

7. Haddadin, S., Belder, S., Albu-Schaeffer, A.: Dynamic

motion planning for robots in partially unknown environ-

ments. In: Proceedings IFAC World Congr., pp. 6842–6850

(2011)

8. Jia, P., Ioan, S., Sachin, C., Dinesh, M.: Real-time collision

detection and distance computation on point cloud sensor

data. In: Proceedings 2013 IEEE Int. Conf. on Robotics and

Automation, pp. 3593–3599 (2013)

9. Khatib, O.: Real-time obstacle avoidance for manipulators

and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

10. Kröger, T.: Opening the door to new sensor-based robot

applications — The Reflexxes Motion Libraries. In:

Proceedings 2011 IEEE Int. Conf. on Robotics and

Automation (ICRA Communications). Shanghai, China

(2011)

http://github.com/blodow/realtime_urdf_filter
http://github.com/blodow/realtime_urdf_filter

S22 J Intell Robot Syst (2015) 80 (Suppl 1):S7–S22

11. Kröger, T., Wahl, F.M.: On-line trajectory generation: Basic

concepts for instantaneous reactions to unforeseen events.

IEEE Trans. Robot. 26(1), 94–111 (2010)

12. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation

to 3-D Vision: From Images to Geometric Models. Springer

Verlag (2003)

13. Meilland, M., Comport, A.: On unifying key-frame and

voxel-based dense visual SLAM at large scales. In: Pro-

ceedings 2013 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, pp. 3677–3683 (2013)

14. Mémoli, F., Sapiro, G.: Distance functions and geodesics

on point clouds (2003)

15. Peasley, B., Birchfield, S.: Real-time obstacle detection and

avoidance in the presence of specular surfaces using an

active 3D sensor. In: Proceedings 2013 IEEE Works. on

Robot Vision, pp. 197–202 (2013)

16. Piumsomboon, T., Clark, A., Billinghurst, M.: Physically-

based interaction for tabletop augmented reality using a

depth-sensing camera for environment mapping. In: Pro-

ceedings 26th Int. Conf. on Image and Vision Computing

New Zealand, pp. 161–166 (2011)

17. Placitelli, A., Gallo, L.: Low-cost augmented reality sys-

tems via 3D point cloud sensors. In: Proceedings 7th Int.

Conf. on Signal-Image Technology and Internet-Based Sys-

tems, pp. 188–192 (2011)
18. Rakprayoon, P., Ruchanurucks, M., Coundoul, A.: Kinect-

based obstacle detection for manipulator. In: Proceedings

2011 IEEE/SICE Int. Symp. on System Integration, pp. 68–

73 (2011)
19. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud

Library (PCL). In: Proceedinds 2011 IEEE Int. Conf.

on Robotics and Automation (ICRA Communications).

Shanghai, China (2011)
20. Ryden, F., Chizeck, H.: A method for constraint-based six

degree-of-freedom haptic interaction with streaming point

clouds. In: Proceedings 2013 IEEE Int. Conf. on Robotics

and Automation, pp. 2353–2359 (2013)
21. Saveriano, M., Lee, D.: Point cloud based dynamical sys-

tem modulation for reactive avoidance of convex and con-

cave obstacles. In: Proceedings 2013 IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, pp. 5380–5387 (2013)
22. Schiavi, R., Flacco, F., Bicchi, A.: Integration of active and

passive compliance control for safe human-robot coexis-

tence. In: Proceedings 2009 IEEE Int. Conf. on Robotics

and Automation, pp. 259–264 (2009)

23. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE

MultiMedia 19(2), 4–10 (2012)

	A Depth Space Approach for Evaluating Distance to Objects
	Abstract
	Introduction
	Spaces for Object Representation
	Cartesian Space
	Configuration Space
	Depth Space

	Distance Evaluation
	Cartesian Space
	Configuration Space
	Depth Space
	Aggregation of Multiple Obstacle Points
	Minimum distance vector
	Mean distance vector
	Hybrid distance vector

	Avoiding Self Distances

	Validation and Comparison
	Human-Robot Collision Avoidance
	Repulsive Action
	Cartesian Constraints
	Experiments
	Setup
	Results

	Conclusions
	Acknowledgments
	References

