
A Depth Space Approach to

Human-Robot Collision Avoidance

Fabrizio Flacco∗ Torsten Kröger∗∗ Alessandro De Luca∗ Oussama Khatib∗∗

Abstract— In this paper a real-time collision avoidance ap-
proach is presented for safe human-robot coexistence. The main
contribution is a fast method to evaluate distances between
the robot and possibly moving obstacles (including humans),
based on the concept of depth space. The distances are used
to generate repulsive vectors that are used to control the robot
while executing a generic motion task. The repulsive vectors can
also take advantage of an estimation of the obstacle velocity.
In order to preserve the execution of a Cartesian task with a
redundant manipulator, a simple collision avoidance algorithm
has been implemented where different reaction behaviors are
set up for the end-effector and for other control points along the
robot structure. The complete collision avoidance framework,
from perception of the environment to joint-level robot control,
is presented for a 7-dof KUKA Light-Weight-Robot IV using
the Microsoft Kinect sensor. Experimental results are reported
for dynamic environments with obstacles and a human.

I. INTRODUCTION

A flexible, reactive, and safety-oriented control of physi-

cal interaction between humans and robots allows a closer

cooperation in service and industrial tasks that require the

adaptability skills of humans to be merged with the high

performance in terms of precision, speed and payload of

robots [1]. The avoidance and safer handling of collisions

are basic components of this challenge. While potential in-

juries of unexpected human-robot impacts can be limited by

lightweight/compliant mechanical design of manipulators [2]

and collision detection/reaction strategies [3], preventing col-

lisions in a dynamic and largely unpredictable environment

relies on the extensive use of exteroceptive sensors.

A real-time collision avoidance method is composed es-

sentially by three parts: (1) Perception of the environment;

(2) Collision avoidance algorithm; (3) Robot control. For

its importance collision avoidance has been one of the

most studied field in robotics, and many different planning

and control approaches for obstacle avoidance have been

proposed. A large majority of the real-time capable planning

concepts are based on the famous potential field approach

introduced in [4] and further elaborated, e.g., in [5], [6].

Virtual repulsive and attractive fields are associated respec-

tively to obstacles and target, such that a motion towards

the goal is achieved while obstacles are avoided. Real-time

adaptive motion planning methods [7]–[9] are key to give

reactive motion control behaviors to robotic systems. These

works use parametrized collision-free paths (e.g, splines) to

represent calculated trajectories, and update the trajectory

∗Dipartimento di Informatica e Sistemistica, Università di
Roma “La Sapienza”, Via Ariosto 25, 00185 Rome, Italy
{fflacco,deluca}@dis.uniroma1.it. ∗∗ Artificial Intelligence Laboratory,
Stanford University, Stanford, CA 94305, USA {tkr, khatib}@stanford.edu.

parameters at runtime as the environment changes or is

discovered by the robot sensors. An on-line motion planning

approach where paths and trajectories are calculated on line

in the configuration × time space, so that the robot can

act in unknown dynamic environments has been proposed

in [10]. Collision-free vertices (“milestones”) and edges

on a road map, which is another kind of representation

of currently planned trajectories, are used in [11], [12].

In [13] both the robot and the human are represented by a

number of spheres and a collision-free trajectory is obtained

by exploring possible end-effector movements in predefined

directions. A combination of potential and circular fields,

which is suitable for complex environments and provides

good convergence properties to the goal, has been recently

proposed in [14]. Finally, the concept proposed in [15] uses

virtual springs and damping elements to be used as input

values for a Cartesian impedance controller that will generate

the motion trajectories.

Most of the above works assume that the information

about the environment needed to avoid obstacles is already

available, skipping the perception part. As a common charac-

teristic, collision avoidance algorithms are based at least on a

measure of the distances between the robot and the obstacles.

The idea of computing this distance directly from an image

of the environment was introduced in [16]. The minimum

robot-obstacle distance is obtained by expanding the convex

hull associated to the robot until the image associated to an

obstacle is reached. Since this method use only on a 2D

image, knowledge of the vector between the two points of

minimum distance is not available. The distance information

alone is useful just to slow down or to stop the robot motion

for collision prevention.

Fig. 1. A robot arm reacts instantaneously to motions of humans and other
dynamic obstacles that are detected in depth space, such that collisions are
avoided

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1404-6/12/$31.00 ©2012 IEEE 338

Nowadays, visual sensing is one of the best choices

for integrating sensor-based collision avoidance concepts in

motion control system. Moreover, the development of new

low-cost depth sensors such as the Microsoft KinectTM [17]

allows to meet many requirement with a very cheap and

powerful sensor system.. The classical way to use depth data

is to project them into a robot-oriented space, reassemble

representations of obstacles in this space, and finally compute

the information needed for collision avoidance. Examples

of this approach are [18], where Cartesian space control is

used, and [19], in which obstacles are represented in the

configuration space.

With reference to the setup shown in Fig. 1, with a

lightweight KUKA LWR IV robot [20] sharing its workspace

with a human and the associated depth image of a monitoring

Kinect camera, in this paper a new fast approach is pro-

posed that computes distances between robot and workspace

obstacles directly from depth data. This mimics the human

behavior for obstacle avoidance where, at least at the reflex

level, only visual feedback is used for a rough estimation of

the relative distances between the obstacles and ourselves.

The robot to obstacles distances are then used in a simple

variant of a classical potential field method, so as to generate

repulsive commands for the robot to avoid collisions.

The paper is organized as follows. The concept of depth

space is summarized in Sect. II. Section III introduces our

new approach to estimate robot-obstacle distances based on

depth space computations. In Sect. IV, the obtained distances

are used to generate a repulsive vector from obstacle(s) to a

point of interest on the robot. The basic repulsion concept

can be improved by considering also estimated velocities of

the obstacles (Sect. IV-A) and by the use of multiple points

of interest (control points) along the manipulator (Sect. IV-

B). Section V presents the general framework of our robot

motion controller, where the collision avoidance scheme

has been integrated. The laboratory setup and the obtained

experimental results are described in Sec. VI, using a 7-dof

KUKA LWR IV.

II. DEPTH SPACE

The depth space is a non-homogeneous 2 1
2 -dimensional

space, where two elements represent the coordinate of the

projection of a Cartesian point on a plane, and the third

element represents the distance between the point and the

plane. The depth space of an environment can be captured

by a depth sensor (e.g., a stereo, time of flight, or structured

light camera), which is modeled as a classic pin-hole camera.

The pin-hole camera model is composed by two sets of

parameters, the intrinsic parameters in matrix K, which

model the projection of a Cartesian point on the image plane,

and the extrinsic parameters in matrix E , which represent

the coordinate transformation between the reference and the

sensor frame, i.e.,

K =

fsx 0 cx

0 fsy cy

0 0 1

 , E =
(

R | t
)

, (1)

where f is the focal length of the camera, sx and sy are

the dimensions of a pixel in meters, cx and cy are the pixel

coordinates of the center (on the focal axis) of the image

plane, and R and t are the rotation and translation between

the camera and the reference frame. Each pixel of a depth

image contains the depth of the observed point, namely the

distance between the Cartesian point and the camera image

plane. Note that only the depth of the closest point along

a given ray is stored; all occluded points that are beyond

compose, for all camera rays, a region of uncertainty called

gray area, see the example in Fig. 2.

Fig. 2. Generation of a depth image, with lighter intensities representing
closer objects. Points occluded by the obstacle compose the gray area in
the Cartesian space. The manipulator does not contribute to the gray area,
because it is removed from the image as explained in Sec. IV-B

Consider a generic Cartesian point expressed in the refer-

ence frame as P R =
(

xR yR zR

)T
. Its expression in

the sensor frame is

P C =
(

xC yC zC

)T
= R P R + t, (2)

and its projection P D =
(

px py dp

)T
in the depth

space is given by

px =
xCfsx

zC
+ cx

py =
yCfsy

zC
+ cy

dp = zC ,

(3)

where px and py are the pixel coordinates in the image plane

and dp is the depth of the point.

III. DISTANCE EVALUATION

The distance between the robot and an obstacle is the es-

sential information needed for obstacle avoidance. Consider

an obstacle point O and its depth space representation OD =
(

ox oy do

)T
captured by the camera. To evaluate an

useful Cartesian distance between the obstacle point O and

a point of interest P , also represented in the depth space as

P D =
(

px py dp

)T
by means of eqs. (2) and (3), two

possible cases arise (see Fig. 3). If the obstacle point has a

larger depth than the point of interest (do > dp), then the

339

distance is computed as

vx =
(ox − cx) do − (px − cx) dp

fsx

vy =
(oy − cy) do − (py − cy) dp

fsy

vz = do − dp

‖D(P ,O)‖ =
√

v2
x + v2

y + v2
z ,

(4)

where D(P ,O) =
(

vx vy vz

)T
. Otherwise, the dis-

tance w.r.t. the occluded points is considered. For this, we

assume the depth of the obstacle to be do = dp and the

distance is then obtained from eq. (4). Note that the resulting

value is not the actual Cartesian distance, but it contains

enough information for collision avoidance. This distance

evaluation is based on simple relations using only depth

space data associated to the camera. Moreover, it properly

takes into account also the gray area whereas with other

methods the distance for occluded points would not be

evaluated in an useful way.

Fig. 3. Depth space distance evaluation to a point of interest P : The two
possible cases of obstacle depth larger or not than the depth of the point of
interest are shown

Next, we would like to evaluate the distances between P

and all obstacles sufficiently close to it. Consider a Cartesian

region of surveillance, constituted by a cube of side 2ρ
centered at P , where the presence of obstacles must be

detected. The associated region of surveillance in the image

plane has dimensions

xs = ρ
fsx

dp − ρ
, ys = ρ

fsy

dp − ρ
. (5)

Therefore, all pixels in the image plane within the region of

surveillance S =
[

px − xs

2 , px + xs

2

]

×
[

py − ys

2 , py + ys

2

]

must be considered. The distance evaluation for each obsta-

cle pixel is completely independent, thus distances can be

computed concurrently speeding up the method. Moreover,

if only the minimum distance is required, the number of

distance evaluations can be reduced by considering pixels

that are closer to (px, py) first. As soon as a new local

minimum Dmin(P) = minO∈S′ ‖D(P ,O)‖ < ρ is found

among the pixels in the already explored area S′ ⊂ S, the

region of surveillance can be shrunk by setting ρ = Dmin and

using again eq. (5). Finally, distance computation is applied

only to pixels whose depth is compatible with the workspace

of the robot manipulator, so that points too far or too near

are rejected.

IV. REPULSIVE ACTION

Once the robot-obstacle distances have been evaluated,

they are used to modify on-line the current trajectory of

the manipulator so as to avoid collision. Many different

approaches for obstacle avoidance have been proposed (see

Sect. I). We present here a simple but effective method

based on the generation of repulsive vectors in Cartesian

space, which can be used as input of any preferred collision

avoidance algorithm.

Associated to the distance vector from the obstacle O to

the point of interest P obtained from eq. (4), a repulsive

vector is defined as

V C (P ,O) = v (P ,O)
D(P ,O)

‖D(P ,O)‖
, (6)

i.e., having the same direction of D(P ,O) but with magni-

tude

v (P ,O) =
Vmax

1 + e(‖D(P ,O)‖(2/ρ)−1)α
, (7)

where Vmax is the maximum admissible magnitude and α
is a shape factor. The magnitude v of the repulsive vector

will be Vmax if ‖D(P ,O)‖ = 0, and will approach zero

when the distance reaches ρ (beyond, V C is not defined).

An example profile is shown in Fig. 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

Distance (m)

R
e

p
u

ls
e

 M
a

g
n

it
u

d
e

Fig. 4. Repulsive magnitude from eq. (7), with parameters Vmax = 3 [m/s],
ρ = 0.4 [m], and α = 6

A first possibility for obstacle avoidance would be to use

the repulsive vector associated only to the obstacle point with

the minimum distance

Omin = argmin
O∈S

‖D(P ,O)‖, (8)

namely

V Cmin
(P) = V C(P ,Omin) = max

O∈S

V C(P ,O),

which is also the most common choice in the related liter-

ature. We propose instead to consider in a suitable way all

obstacle points that lie inside the region of surveillance:

V CT
(P) =

∑

O∈S
V C (P ,O)

V Call
(P) = v (P ,Omin)

V CT
(P)

‖V CT
(P)‖

.
(9)

In this way, all obstacle points contribute to the direction of

the resulting repulsive vector, while the magnitude depends

only on the minimum distance to all obstacle points. If all

points were used to compute the magnitude, this would be

influenced by the number of obstacle points, or if the mean

value of the distances were used, it would still be affected

340

by the ratio of near and far obstacles. These behaviors

are not desirable, since the presence of a close obstacle

with high risk of collision should provide always the same

repulsive vector magnitude. The main benefit of using all

points are that i) the repulsive vector is less sensible to noise

of the depth sensor, producing a smoother variation of the

vector direction, and ii) the presence of multiple obstacles is

handled in a better way, as shown in Fig. 5.

Fig. 5. Example of repulsive vector computation. Lighter colors refer to
obstacle points with smaller depth, the point of interest P is represented by a
red circle, and the minimum distance is represented in cyan. The repulsive
vector obtained by using the minimum distance only is shown in green,
while the one obtained by using all points in the range of surveillance is in
blue. It can be seen that the green repulsive vector points to another obstacle
(dangerous), while the blue vector points to a free area (safer)

All above repulsive vectors are expressed in the camera

frame, but can be transformed in the reference frame as

V R(P) = RT V C(P). In the following, V R(P) will be

a generic repulsive vector generated by the obstacles on the

point of interest P and expressed in the reference frame.

We shall indicate with an additional subscript a particular

implementation of the repulsive vector (e.g., V Rall
(P)).

A. Using an Estimation of the Obstacle Velocity

Knowing in advance the velocity of a moving obstacle

or, more realistically, estimating it on-line in a reliable way

would clearly improve the collision avoidance behavior. For

example, when an obstacle proceeds towards the manipulator

with a greater speed than the motion capability of the manip-

ulator it would be hopeless to avoid collision by retracting

the robot in the same direction of the obstacle velocity. Like

for humans, a better reaction strategy is to escape collision

by moving the manipulator in a direction (approximately)

normal to the obstacle velocity.

Fig. 6. When an obstacle moves in the vicinity of the control point, the
pivot effect is clearly visible

The estimation of the obstacle velocity from depth images

is not trivial, and also computational expensive. Our idea

to tackle this problem is to extrapolate velocity information

by observing the time variation of the repulsive vector, i.e.,

V̇ R(P) = dV R(P)/dt. Figure 6 sketches the behavior of

the repulsive vector when an obstacle moves in the vicinity

of the point of interest (also called control point) in different

ways. This point acts like a ‘pivot’ for the repulsive vector,

and the variation V̇ R(P) approximately describes a vortex

flow around this pivot.

Taking into account this effect, we developed the following

Pivot Algorithm, which modifies the direction of the repul-

sive vector according to its variation:

a =
V̇ R(P)

‖V̇ R(P)‖
, r =

V R(P)

‖V R(P)‖
, β = arccos

(

aT r
)

if β < π
2 then

n = a × r, v =
n × a

‖n × a‖
,

γ = β +
β − π

2

1 + e−(‖V̇ R(P)‖(2/V̇Rmax)−1)c
,

V Rpivot
(P) = ‖V R(P)‖ (cos γ a + sin γ v)

else

V Rpivot
(P) = V R(P)

end if

In this algorithm, β represents the angle between V R(P)
and V̇ R(P). If β is larger than π/2, the obstacle is moving

away from the control point, such that no modification of

the repulsive vector is needed. Vector n is normal to the

plane Π to which both V R(P) and V̇ R(P) belong, while

vector v is normal to n and V̇ R(P). The orthonormal base

specified by the unitary vectors (a,n,v) is used to modify

the orientation of V R(P) on the plane Π. The new angle γ of

the repulsive vector on the plane Π is defined as a function

(shaped by the positive scalar c) of the magnitude of the

variation of the repulsive vector ‖V̇ R(P)‖, and it is equal

to β if the variation of the repulsive vector is zero while it

converges to π/2 if the variation of the repulsive vector tends

to the maximum allowed variation of the repulsive vector

V̇Rmax
. When β is very close to zero (i.e., a and r are

almost orthogonal), a small perturbation to the orientation

of V̇ R(P) is needed in order to apply the algorithm in a

robust fashion. Figure 7 shows two simple simulations of a

point-wise obstacle moving close to the control point. In the

first case the repulsive vector is used directly, while in the

second our pivot algorithm is applied with success.

B. Using Multiple Control Points

The repulsive vector for obstacle avoidance introduced so

far is computed for and acts on a specific point of interest.

When this point of interest is associated with the robot

manipulator, it is usually referred to as control point. We

typically consider multiple control points distributed along

the manipulator structure. From the current known config-

uration q of the robot, it is possible in principle to obtain

341

Fig. 7. Two simulations of collision avoidance using obstacle velocity
information: The obstacle (trace in blue, moving to the right) has a speed
of 1 [m/s], while the control point (in red) can move with a maximum
speed of 0.8 [m/s]. The repulsive vector is either used directly as a repulsive
velocity (top) or is processed by the pivot algorithm (bottom): In the first
case, collision cannot be avoided

the projection in the depth space of every point belonging to

the manipulator body by using the robot kinematic model to

express the point in the reference frame, and then applying

eqs. (2) and (3) to obtain its projection in the depth space.

Obviously, this is quite cumbersome since not all manipulator

points are needed or useful for collision avoidance. In a more

efficient algorithm the manipulator body is overbounded by

a sequence of spheres, each characterized by its center and

radius. The centers of the spheres will be used as control

points, and their radius will be subtracted in the distance

evaluation of eq. (4) in order to consider the sphere size.

Fig. 8. The control points on the manipulator are the red centers of the
blue spheres containing the robot body. The image on the screen below left
visualizes the depth map sensed by the sensor in which the manipulator
projection has been removed

Furthermore, the image captured by the depth sensor will

contain also points that belong to the manipulator. Indeed,

these points should not be considered as obstacles (otherwise,

the minimum obstacle-robot distance would always be zero).

To avoid this condition, the image of the manipulator is

removed from the depth space as in the screen image shown

in Fig. 8.

V. MOTION CONTROL

In this section, we discuss how repulsive vectors obtained

for the control points chosen on the manipulator can be used

in a simple way to modify the robot motion within an on-

line trajectory generation architecture. The primary task for a

robot is typically to control its end-effector motion. For this

reason, we used a different approach for the end-effector and

for other manipulator points.

A. Collision Avoidance for the End-Effector

Without loss of generality, we consider to command the

manipulator at the joint velocity level. The given motion task

for the robot is specified by a desired end-effector velocity ẋd

in the Cartesian space. For the obstacle avoidance by the end-

effector control point P EE , we simply consider the repulsive

vector as a repulsive velocity. Thus, the commanded end-

effector velocity will be

ẋc = ẋd + V R(P EE). (10)

The joint velocity is obtained by (pseudo)inversion as

q̇ = J#(q) ẋc, (11)

which is used as target velocity command for the control

algorithm.

This is indeed a simple form of the classical artificial

potential field method, which has been chosen to prove the

effectiveness of repulsive vectors. The main drawback of

this approach is the presence of local minima, which are

not considered. Note that from a safety point of view it is

acceptable that the robot stops when it is not able to avoid the

obstacles. Starting from this simple algorithm, more complex

ones can be developed (see, e.g., [14]).

B. On-Line Trajectory Generation

The repulsive action has to be very reactive in order to

avoid fast obstacles. The result of this requirement is a jerky

end-effector motion, which can both exceed the robot capa-

bilities and give to the human a feeling of an unsafe motion.

To overcome this behavior, we have used an intermediate

layer with an on-line trajectory generation algorithm [21],

[22] as interface between the proposed repulsive method and

the low-level motion controller. Thanks to this intermediate

layer, a number of advantages are achieved:

• Jerk-limited and continuous motions are guaranteed

independently of image processing signals.

• Acceleration and velocity constraints due to limited

dynamic robot capabilities can be directly considered.

• Physical and/or artificial workspace limits can be ex-

plicitly applied.

• In case of sensor failures or inappropriate image pro-

cessing results, deterministic and safe reactions and

continuous robot motions are guaranteed.

• The image processing hard- and software does not

necessarily have to be real-time capable.

• High performance due to low latencies, because motion

trajectories are computed within one low-level control

cycle (typically, 1 msec or less).

• The proposed architecture is of a very simple nature and

can be integrated in many existing robot motion control

systems.

Figure 9 shows the input and output parameters of the

corresponding algorithm. Because the underlying concept of

this framework is based on motion states only, all input

parameters may change arbitrarily based on image processing

signals, and a steady jerk-limited, executable motion trajec-

tory is always generated as output.

342

Fig. 9. The interface of the on-line trajectory generation algorithm. Based
on the current state of motion and the kinematic motion constraints, a new
state of motion is calculated which lies exactly on the time-optimal trajectory
reaching the desired target state of motion (see [22] for details)

C. Collision Avoidance for the Robot Body

For the other control points along the robot, we use a

slightly different approach. Obstacles points do not generate

repulsive velocities on these control points, but they are

rather treated as Cartesian constraints with artificial forces

that are translated into joint velocity constraints as detailed

in [23]. Our approach, based on generating and eventually

imposing joint velocity constraints while exploiting kine-

matic redundancy, will preserve the desired end-effector task

as long as possible. If we had considered instead repulsive

velocities, as for the end-effector, we would have needed to

work with multiple tasks and manage these tasks using the

magnitudes of the repulsive vectors as associated priorities.

While this approach is indeed feasible, if the end-effector

task has always the highest priority then collision avoidance

for the robot links would not be guaranteed. On the other

hand, if the end-effector task is not privileged then its

trajectory could be arbitrarily modified even when there is

no risk of end-effector collisions.

Let C be one of the control points belonging to a generic

robot link and JC be its associated (partial) Jacobian. The

minimum distance between the control point and all obstacle

points O ∈ S(C) is Dmin(C) = ‖D(C,Omin)‖. The risk

of collision is defined by the function

f (Dmin(C)) =
1

1 + e(Dmin(C)(2/ρ)−1)α
, (12)

where ρ and α have been introduced in eqs. (5) and (7),

respectively. When projected in the joint space, this collision

risk function generates a vector

s = JT
C

D(C,Omin)

‖D(C,Omin)‖
f (Dmin(C)) . (13)

The component si of s represents the ‘degree of influence’

of the Cartesian constraint on the ith joint, for i = 1 . . . n.

From these, we reshape the admissible limits of the velocity

of all joints that are influenced by the Cartesian constraint

by the risk of collision function as

if si ≥ 0, q̇max,i = Vmax,i

(

(1 − f (Dmin(C))
)

else q̇min,i = −Vmax,i

(

(1 − f (Dmin(C))
)

,
(14)

where Vmax,i is the original bound on the ith joint velocity,

i.e., |q̇i| ≤ Vmax,i, for i = 1, . . . , n. In practice, joint motions

that are in contrast with the Cartesian constraint are scaled

down. When the constraint is too close, all joint motions

that are not compatible with the constraint will be denied.

Multiple Cartesian constraints are taken into account by

considering, for each joint i, the minimum scaling factor

obtained for all the constraints. With this approach, collision

avoidance for the robot body has always the highest priority,

while the end-effector task will continue to be correctly

executed until it is compatible with the Cartesian constraints.

Otherwise, the manipulator will stop and a recovery method

should be applied.

VI. EXPERIMENTS

A. Experimental Setup

The scenario is composed by a manipulator that exe-

cutes positional only (i.e., of dimension m = 3) motion

tasks through a sequence of desired Cartesian points, while

unknown obstacles enter its workspace (see Fig. 1). Ex-

periments have been performed on the KUKA LWR IV

manipulator having n = 7 revolute joints, with a control

cycle of 1 ms. For the primary Cartesian task, this robot has

degree of redundancy n − m = 4. The robot workspace is

monitored by a Microsoft KinectTM depth sensor, positioned

at a horizontal distance of 2 meters and at a height of 1.2 me-

ters w.r.t. the robot base frame. The Kinect captures 640×480

depth images at a frequency of 30 Hz. The implementation

of our new collision avoidance approach is executed on

an eight-core CPU. Four processors execute the repulsive

velocity computation, and the other four enable visualization

and robot motion control.

Note that three different run-time processes coexist, work-

ing at three different frequencies:

1) The vision process captures the depth image and

removes the manipulator from the image each time a

new image is captured at the sensor frequency (30 Hz).

2) The on-line trajectory generation algorithm of [21],

[22] produces a joint velocity command at the same

cycle time of the robot controller (1 kHz).

3) The obstacle avoidance process computes a repulsive

vector at a frequency lying between those of the vision

and the control processes; in fact, even if a new depth

image is available only at 30 Hz, the manipulator is

343

moving during this interval and the repulsive vector

changes.

B. Results

The following experimental results are shown in the ac-

companying video clip.

In Experiment 1, the goal is to keep the robot in the

constant (initial) configuration while avoiding any collision

between a human and the end-effector only. The parameters

used for the end-effector repulsive action are ρ = 0.4 [m],

Vmax = 2 [m/s], and α = 6. For the pivot algorithm, we used

V̇Rmax
= 0.5 [m/s] and c = 5. Two different modalities are

tested; in the former, repulsive velocities are generates using

only distance information, while in the latter also obstacle

velocities are taken into account. Figure 10 shows a human

who tries to touch the end-effector. The benefits of using

obstacle velocity estimation is visible in the corresponding

plots of Fig. 11.

Fig. 10. Experiment 1: Image flows when repulsive velocity due only
to distances is used (top) and when also obstacle velocities are considered
(bottom)

Fig. 11. Experiment 1: End-effector trajectories. The red line refers to
when repulsive velocity is due only to distances and the blue line when
also obstacle velocity is considered. The green lines are the commanded
Cartesian velocities

Figures 12–13 show similarly the results for Experiment

2, in which the manipulator task is to move the end-effector

through three Cartesian points without and with dynamic

obstacles. We used here ρ = 0.3 [m] and Vmax = 0.5 [m/s].

In this case, the human does not try to collide intentionally

with the robot, so that a less reactive action is obtained.

Experiment 3 considers collision avoidance also for other

control points on the manipulator, see Fig. 14. The arm and

forearm of the robot are both covered with five control points

as shown in Fig. 7, while the base link is not considered

Fig. 12. Experiment 2: Image flows for a motion through three points in the
absence of dynamic obstacles (top) and simultaneous collision avoidance of
a human entering the workspace (bottom)

Fig. 13. Experiment 2: End-effector trajectories. The blue line refers to
the absence of dynamic obstacles and the red line to the case of collision
avoidance of a human entering the workspace. The green lines are the
commanded Cartesian velocities

because it always occupies the same Cartesian area. The task

and parameters are the same as in Experiment 2. The image

sequence and the relative plot show how the elbow avoids

the collision with the box.

Fig. 14. Experiment 3: Image flow (on the left) and end-effector (in blue)
and elbow (in red) trajectories (on the right) when all moving parts of the
robot are considered for collision avoidance. The dashed lines in the plot
represents the motion in the absence of obstacles

Fig. 15. Experiment 4: Same as for Experiment 3 but with multiple
obstacles

Finally, Experiment 4 illustrates the robot behavior when

multiple obstacles that occlude the end-effector and el-

bow trajectories are avoided simultaneously. In particular,

Figure 15 shows a situation where the end-effector turns

around the human arm. An exemplary evaluation of the

execution frequency of the repulsive velocity computations

344

is reported in Fig. 16. The average value is 689.41 Hz,

which is much faster than other robot to obstacles distance

evaluation methods, leading to no significant loss of robot

motion performance.

0 50 100 150
0

100

200

300

400

500

600

700

800

900

1000

Time [s]

F
re

q
u
e
n
c
y
 [
H

z
]

Fig. 16. Experiment 4: Instantaneous (blue) and average (red) computa-
tional frequency of the repulsive velocities

VII. CONCLUSIONS

We have presented a new collision avoidance method for

robot manipulators equipped with an exteroceptive depth

sensor. The core of the algorithm is an innovative approach

to evaluate the distances between the robot and the dynamic

obstacles in its workspace, which is based only on simple and

efficient computations on depth space data. These distances

are used to generate repulsive vectors which are processed so

as to obtain smooth and feasible joint velocity commands that

avoid obstacles. Further improvements in terms of natural

robot behavior were obtained by using also an estimation of

the obstacle velocity. A different repulsive action has been

designed for the end-effector and for the other control points

on the manipulator in order to be able to avoid collisions

while executing at best the original Cartesian motion task.

A series of experiments on the KUKA LWR IV robot using

the Kinect sensor confirmed the real-time effectiveness and

good performance of the method.

Future work will address an even closer integration of

human-robot coexistence and cooperation by monitoring the

physical interaction by means of exteroceptive and propri-

oceptive sensors and by applying safer and reactive control

methods. For instance, we would like to allow intentional

contacts between human and robot while dangerous and

undesired collisions should still be avoided. These and re-

lated problems are being addressed within the European FP7

project SAPHARI (2011-15).

ACKNOWLEDGEMENTS

This work was performed while the first author was

visiting the Artificial Intelligence Laboratory of the Stanford

University, whose hosting is gratefully acknowledged. Work

supported by the European Community, within the FP7 ICT-

287513 SAPHARI project.

REFERENCES

[1] A. Bicchi, M. Peshkin, and J. Colgate, “Safety for physical human-
robot interaction,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 1335–1348.

[2] A. Bicchi and G. Tonietti, “[Fast and Soft Arm Tactics: Dealing
with the Safety-Performance Trade-Off in Robot Arms Design and
Control,” IEEE Robotics and Automation Mag., vol. 11, pp. 22–33,
2004.

[3] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, Nice, F, September 2008, pp. 3356–3363.
[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” Int. J. of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
[5] C. W. Warren, “Global path planning using artificial potential fields,”

in Proc. of the IEEE International Conference on Robotics and

Automation, vol. 1, Scottsdale, AZ, USA, May 1989, pp. 316–321.
[6] P. Ögren, M. Egerstedt, and X. Hu, “Reactive mobile manipulation

using dynamic trajectory tracking,” in Proc. of the IEEE International

Conference on Robotics and Automation, San Francisco, CA, USA,
Apr. 2000, pp. 3473–3478.

[7] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments.” Int. J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[8] S. Lindemann and S. LaValle, “Current issues in sampling-based
motion planning,” in Proc. of the Eighth Int. Symp. on Robotics

Research, P. Dario and R. Chatila, Eds. Berlin, Germany: Springer,
2004, pp. 36–54.

[9] O. Brock, J. Kuffner, and J. Xiao, “Manipulation for robot tasks,” in
Springer Handbook of Robotics, 1st ed., B. Siciliano and O. Khatib,
Eds. Berlin, Heidelberg, Germany: Springer, 2008, ch. 26, pp. 615–
645.

[10] J. Vannoy and J. Xiao, “Real-time adaptive motion planning (RAMP)
of mobile manipulators in dynamic environments with unforeseen
changes,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1199–1212,
Oct. 2008.

[11] Y. Yang and O. Brock, “Elastic roadmaps: Globally task-consistent
motion for autonomous mobile manipulation in dynamic environ-
ments,” in Proc. of Robotics: Science and Systems, Philadelphia, PA,
USA, Aug. 2006.

[12] ——, “Elastic roadmaps — motion generation for autonomous mobile
manipulation,” Autonomous Robots, vol. 28, no. 1, pp. 113–130, Jan.
2010.

[13] L. Balan and G. Bone, “Real-time 3D collision avoidance method
for safe human and robot coexistence,” in Proc. IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, Beijing, PRC, October 2006, pp.
276–282.

[14] S. Haddadin, S. Belder, and A. Albu-Schaeffer, “Dynamic motion
planning for robots in partially unknown environments,” in IFAC World

Congress (IFAC2011), Milan, Italy, September 2011.
[15] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka, J. Roßmann,

A. Albu-Schäffer, and G. Hirzinger, “Real-time reactive motion gen-
eration based on variable attractor dynamics and shaped velocities,” in
Proc. of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, Taipei, Taiwan, Oct. 2010, pp. 3109–3116.
[16] S. Kuhn and D. Henrich, “Fast vision-based minimum distance deter-

mination between known and unknown objects,” in Proc. IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, San Diego, CA, USA,
November 2007, pp. 2186–2191.

[17] Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052-7329,
USA, “Microsoft kinect homepage. http://xbox.com/Kinect (accessed:
Mar. 28, 2011),” Internet, 2011.

[18] L. Bascetta, G. Magnani, P. Rocco, R. Migliorini, and M. Pelagatti,
“Anti-collision systems for robotic applications based on laser Time-
of-Flight sensors,” in IEEE/ASME Int. Conf. on Advanced Intelligent

Mechatronics, July 2010, pp. 278–284.
[19] R. Schiavi, F. Flacco, and A. Bicchi, “Integration of active and passive

compliance control for safe human-robot coexistence,” in Proc. IEEE

Int. Conf. on Robotics and Automation, 2009, pp. 259–264.
[20] KUKA Laboratories GmbH, Zugspitzstraße 140, D-86165 Augsburg,

Germany, “Homepage. http://www.kuka-labs.com/en (accessed: Aug.
22, 2011),” Internet, 2011.

[21] T. Kröger and F. M. Wahl, “On-line trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE

Trans. on Robotics, vol. 26, no. 1, pp. 94–111, Feb. 2010.
[22] T. Kröger, “Opening the door to new sensor-based robot

applications — The Reflexxes Motion Libraries,” in Proc. of the IEEE

International Conference on Robotics and Automation, Shanghai,
China, May 2011.

[23] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant
robots under constraints: Saturation in the null space,” in Proc. IEEE

Int. Conf. on Robotics and Automation, 2012.

345

