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Abstract — Increase in number of elderly people who are 

living independently needs especial care in the form of healthcare 

monitoring systems. Recent advancements in depth video 

technologies have made human activity recognition (HAR) 

realizable for elderly healthcare applications. In this paper, a 

depth video-based novel method for HAR is presented using robust 

multi-features and embedded Hidden Markov Models (HMMs) 

to recognize daily life activities of elderly people living alone in 

indoor environment such as smart homes. In the proposed HAR 

framework, initially, depth maps are analyzed by temporal motion 

identification method to segment human silhouettes from noisy 
background and compute depth silhouette area for each activity 

to track human movements in a scene. Several representative 

features, including invariant, multi-view differentiation and 

spatiotemporal body joints features were fused together to explore 

gradient orientation change, intensity differentiation, temporal 

variation and local motion of specific body parts. Then, these 
features are processed by the dynamics of their respective class and 

learned, modeled, trained and recognized with specific embedded 
HMM having active feature values. Furthermore, we construct a 

new online human activity dataset by a depth sensor to evaluate 

the proposed features. Our experiments on three depth datasets 

demonstrated that the proposed multi-features are efficient and 
robust over the state of the art features for human action and 

activity recognition.

Keywords —Depth camera, Embedded Hidden Markov Models, 

Feature Extraction, Human Activity Recognition.

I. IntroductIon

MonItorInG human activities of daily living is an essential 

way of describing the functional and health status of a human 

[1]. Therefore, human activity recognition (HAR) is one of genuine 

components in personalized life-care and healthcare systems, especially 

for the elderly and disabled [2]. To monitor daily activities of the 

elderly people, video-cameras can be deployed in smart environments, 

such as smart homes or smart hospitals to acquire time-series activity 

video clips. According to the world health organization survey, the 

population of older people is rapidly increasing all over the world and 

their healthcare needs become more complex which consume more 

resources (i.e., human and healthcare expenditures). Thus, healthcare 

monitoring services are needed to overcome the extensive resource 

utilization and improve the quality of life of elder people [3]. Indeed, 

several studies support that personalized life-care and healthcare 

services can decrease the mortality rate especially for the elderly 

people. For instance, in the European countries, it is estimated that the 

survival proportion of older people is increasing while receiving the 

personalized healthcare services instead of receiving institutional care 

or nursing homecare [4]. Thus, the aim of this study is to propose an 

efficient depth video-based HAR system that monitors the activities of 
elder people 24 hours/day and provides them an intelligent living space 

which comfort their life at home.

To improve the personalized healthcare services of elderly people, 

automated HAR systems are required to monitor the elderly daily 

activities and provide safe and independent life at home [5], [6]. In 

automated HAR system, various sensors are used to extract signal or 

video data, provide continuous health monitoring by observing their 

daily routine activities and generate an alert in case of emergency to 

authorized person (i.e., doctor, nurse and relatives). Many researchers 

in the field of automated HAR frequently use wearable sensors or 
vision-based sensors to extract features data. In wearable sensor 

HAR technology, subjects are asked to wear sensing devices (i.e., 

accelerometer, magnetometer and gyroscope) at different locations of 

human body to capture sequence of data [7], [8]. However, HAR system 

built by wearable sensors have certain difficulties faced by elderly 
people to perform daily activities such as discomfort to wear sensors 

to their body parts for long time, elderly people often forget to wear 

proper suit equipment’s of wearable sensors, directional control issues 

causes unreliable data recording during complex subject’s movements 

(i.e., especially in smart phones and wrist bands/watches) and there 

is a relatively difficulty in terms of energy consumptions and device 

settings. On the other hand, video sensors have certain issues such as 

privacy, fixed devices at predetermined positions and pre-processing 

complexity. From the above literature, we have observed that video 

sensors have mostly solvable issues, richer information and have wider 

scope, therefore, we motivated to use vision-based HAR approach to 

recognize activities of elderly people at home.

Vision-based HAR system is a challenging research topic in the field 
of computer vision and pattern recognition. It enables the development 

of various practical applications such as security systems, elderly 

healthcare systems, video surveillance and smart homes systems [9], 

[10] which provide personal security, cost-effectiveness, friendly 

services and efficient health care for elderly people. In recent years, 
most of the researches of vision-based HAR are focused on daily 

activity monitoring due to the fact that less medical aid, not due 

attention by their relatives and loss of independence causes lives risks 

and injuries in elderly people. This paper annotated a novel set of 

continuous online daily routine activities consisting of sitting down, 

eating, falling-down, exercising, and taking-medicine and reading an 

article. To get realistic and natural scenes faced by elderly people in 

their life, activities are defined and selected after visiting healthcare 
medical centers, dealing with doctors/nurses and reviewing medical 

research papers [11]-[13].
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II. related Work

In this section, we will review related works from two different 

aspects including elderly healthcare applications and automatic activity 

recognition over multiple datasets.

A. Elderly Healthcare Applications

Elderly healthcare monitoring has a direct link with HAR systems, 

where the sensor devices capture and examine the indoor behaviors 

and activities of elderly at hospitals, home or offices. In smart hospitals 

[14], automatically estimating hospital-staff-patients activities are 

examined and empowered HAR to boost our vision for the hospital as 

a smart environment. In smart homes [15], home activities of elderly 

people are recognized based on invariant features characteristics. 

While, in smart offices [16], authors proposed comfort management 

system along with activity recognition solutions that handles multiple-

user and rapidly recognize office activities.

B. Automatic Activity Recognition

Many existing studies have applied HAR utilizing video sensors 

technologies (i.e., RGB cameras) for human detection, tracking and 

activity recognition. In [17], a new model is proposed for activity 

recognition that combines a powerful mid-level representation, in the 

form of HoG and BoW poselets, with discriminative key frame selection 

based on conventional videos. In [18], an epitomic representation for 

modeling is introduced where the video activity sequence is divided 

into segments to extract moving objects and short-time motion 

trajectories. This information is further processed by Iwasawa matrix 

decomposition to represent the effect of rotation, scaling and projective 

action on the state vector and used for activity recognition. In [19], a 

view-specific approach is proposed for representation of movements as 
temporal templates. These templates indicate the presence of motion 

in binary values and the function of the motion in a sequence. Then, a 

matching algorithm is used to construct a recognition system. However, 

these cameras have certain limitations such as technical infeasibility 

to differentiate between near and far parts of human body, limited 

information (binary or RGB intensity values), highly sensitive with 

lighting conditions and unreliable for postures having self-occlusions.

To improve HAR capabilities and human silhouettes representation, 

depth sensors [20]-[22] have been released to facilitate the human 

detection, feature extraction and activity recognition tasks. Compared 

with the digital RGB cameras, depth cameras provide additional 

human body parts information, insensitivity to light changes and easily 

normalized during body orientation/size changes. In addition [21]-

[26], several research articles have used depth maps information to 

explore their features extraction from two basic types such as depth 

silhouettes features and skeleton-based features for recognizing human 

activities using depth sequences. In the depth silhouettes features, 

many researches used a set of depth pixels of the depth images or 

human shape silhouettes to extract the features. In [20], action graph is 

used to model explicitly the dynamics of human motion and a bag of 

3D points to characterize a set of salient postures that corresponds to 

the nodes in the action graph for recognizing actions/activities. In [21], 

a new descriptor is proposed for activity recognition using a histogram 

capturing the distribution of the surface normal orientation in the 4D 

space of time, depth, and spatial coordinates. To build the histogram, 

they created 4D projectors, which quantize the 4D space and represent 

the possible directions for the 4D normal. In [22], semi-local features 

called random occupancy pattern (ROP) features are proposed which 

employed a novel sampling scheme and extracted from randomly 

sampled 4D subvolumes with different sizes and locations using depth 

images. 

Instead of relying on depth silhouettes features, many researchers 

have explored features based on skeleton joints information. In [23], 

a set of features such as body pose, hand position, motion information 

and point-cloud features are proposed having three dimensional 

Euclidean coordinates and the orientation matrix of each joint to 

recognition activities using RGBD images. In [24], an effective 

method is proposed that consists of a new type of features based on 

position differences of 3D joints and Eigenjoints. The Eigenjoints are 

able to capture the properties of posture, motion and offset of each 

frame. Then, they used frame descriptors of Eigenjoints without 

quantization and classify different actions based on Naïve Bayes 

Nearest Neighbor (NBNN). In [25], an actionlet ensemble model is 

developed to represent each action, capture the intra-class variance 

and recognize various actions and activities using benchmark depth 

datasets. Although, depth video-based HAR systems are quite feasible 

for recognizing activity, however, it is still difficult using just depth 
silhouettes features or joint point’s information especially during self-

occlusion. Therefore, our research work is focused on utilizing depth 

data based on merging both silhouettes and joint points information for 

feature representation, activity training and recognition.

Our main contribution of this paper is to propose a real-time body 

parts tracking method that has the ability to track the self-occluded 

human body parts especially in case of torso rotation. Also, the proposed 

method detects and controls the fast moving human body parts and has 

invariant characteristics with respect to body size and human position 

which strengthen our contributions in HAR. Combination of depth 

silhouettes and joint information features cover various factors such 

as robust to noises, missing joints and capture the local dependencies 

over the embedded HMM acting as a novel methodology in order to 

enhance the recognition rate over all three depth datasets. In addition, 

we provide a new online depth human activity dataset, which becomes 

a benchmark in HAR.

In this work, a novel approach is proposed for HAR by considering 

multi-features approach that is extracted in 3D coordinates along 

with time space (i.e., 3D human silhouettes and spatiotemporal joints 

values) and embedded HMMs. These features deal with intensity 

differentiation profiles, directional angular values, local motion of 
active body parts and temporal frame movements which provide 

compact and sufficient information for human action and activity 
recognition. All these features are concatenated together and converted 

into discrete symbols by considering vector quantization algorithm. 

Meanwhile, active regions of depth silhouettes (i.e., moving body 

regions, arms, legs and interest body joints) make specific classes for 
training and recognition using embedded HMMs. In order to determine 

the recognition performance, we build a new online depth activity 

dataset that contains segmented video sequences for training phase 

and unsegmented video sequences for testing phase, which will be a 

benchmark for activity recognition based on depth data. In addition, we 

evaluate our system according to the standard experimental protocols 

definition on three challenging depth datasets. Our results outperform 
all published state of the art feature extraction methods.

The rest of the paper is organized as follows. In Section III, we 

describe the system architecture including problem statement, dataset 

generation and proposed HAR system model. Section IV presents the 

detail description of HAR. Section V describes the experimental results 

and comparisons using proposed and state of the art methods. Finally, 

Section VI presents the conclusion of the paper.

III. SySteM archItecture and MethodoloGy

A. Problem Statement

Due to recognition of natural scenes of continuous human activities 

without any instructions to subjects, video based HAR systems faces 
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various problems such as dynamic backgrounds changes in a scene 

along with self-occlusion, object hurdles or body parts rotation (i.e., 

especially torso) of human subjects and body orientation or sizes 

changes frequently due to different subjects performing activities at 

different distances from cameras. Also, similar postures of different 

activities (i.e., falling-down and taking an object, take-medicine and 

eating and clapping and exercise) causes reduction in recognition 

performance and processing time consumption during testing of 

activities especially online datasets. 

  We proposed an online depth HAR system that utilized person-

tracking system, multi-features and embedded HMMs algorithms 

to solve the above mentioned problems. For the first problem, 
we developed our real-time body tracking system to control self-

occlusion and provide freely human movements in a scene. For the 

second problem, we normalized skeleton models and applied invariant 

features to manage body size changes. While, third problem is solved 

by considering multi-features having depth silhouettes and joints 

information to identify difference in between different activities having 

similar postures. For the fourth problem, we introduced embedded 

HMMs concept to overcome the redundant data usage during testing 

time, improve the computational processing and increase recognition 

performance.

B. Dataset Generation

During daily routine activities, elderly people are mainly involved 

in a mixture of static sequences (i.e., minor movements of body 

parts) and dynamic sequences (i.e., major movements of different 

body parts) of activities. Therefore, our dataset provided both types 

of activity sequences having natural routine behaviors and continuous 

recognition of elderly people such as eating, taking-medicine, sitting 

down, exercising, falling-down and cleaning. Due to monitoring of 

continuous elderly activities, detecting starting and ending times of all 

occurring activities are controlled by a sliding window approach. In 

Fig. 1 we annotated an online continuous depth dataset by considering 

the daily life activities of elderly people at home or offices. 

Fig. 1. Samples of human depth silhouettes along with joint point’s location in 

our depth annotated dataset. Top row: sitting down, taking-medicine, falling-

down, both hands waving, eating; Middle row: clapping, phone conversation, 

walking, exercising, stand up; Bottom row: cleaning, taking an object, reading 

an article, pointing as object and hand waving.

C. Proposed HAR System Model

The proposed framework of HAR system consists of the following 

processes namely as, (1) depth imaging acquisition, (2) human 

silhouettes segmentation and tracking, (3) feature representation 

and extraction based on multi-features, (4) clustering algorithm and 

vector quantization, and (5) human activity modeling, training and 

recognition. Fig. 2 shows the overall architecture of our proposed 

activity recognition system. 

Fig. 2. System architecture of the proposed activity recognition system.

IV. IMaGe acquISItIon, Feature extractIon and actIVIty 

recoGnItIon 

In this section, we describe depth imaging acquisition, feature 

extraction via multi-features approach, symbol representation via 

Linde-Buzo-Gray (LBG) clustering algorithm and activity training/

recognition using embedded HMMs. 

A. Depth Imaging Acquisition

To capture 3D information, we utilized a RGB-D camera (i.e., 

Kinect) to acquire a pair of RGB images and depth maps. These depth 

maps contain a considerable amount of noise data. However, noise 

reduction is an important process before extracting multi-features. 

Therefore, to remove the noisy background areas from the depth map, 

we applied pixel differentiation method as

( ) ( ) ( ), ,  , , , ,  t

t t valuesdP x y z b x y z d x y z T= − >
 (1)   

Where b
t 
(x, y, z) and d

t 
(x, y, z) are the background and depth 

intensity pixel values at time t and T
values

 is a positive threshold value. 

Meanwhile, to apply floor removal mechanism, we simply ignore 
ground line (i.e., y parameters) which acts as lowest value (i.e., equal 

to zero) corresponding to a given pair of x and z axis. However, to 

extract accurate human silhouette region [26] from the scene, we 

calculate depth intensity center values from the scenes using connected 

component labeling technique (see Fig. 3). In component labeling 

technique, the variation of pixel intensity in an image is observed using 

raster scanning where every depth pixel d
n
 of the connected component 

has depth value, intensity values of two neighboring pixels are within 

a threshold δ
n
 and each object/subject has its depth center d

c
 values is 

assigned as | d
c 
 − d

n
 |≤ δ

t 
. Due to depth center values, we monitored 

the pixel-neighboring intensity variation in between the consecutive 

frames which remove the unnecessary objects (i.e., cupboard, doors or 

chairs) from the scenes. 

Lastly, we applied human movement detection D(f) by considering 

temporal continuity constraints between consecutive frames.

( ) ( ) ( ) ( )2 2 2

1 1 1 x x y y z z

t t t t t tD f f f f f f f− − −= − + − + −  (2)

As a result, human silhouettes regions are enclosed within the 

rectangular bounding box having specific parametric values (i.e., 
height and width) based on motion detection. Fig. 3 describes the 

overall scenario of real time body tracking system including (a) depth 

maps having noisy information, (b) temporal human motion using 

ridge data, (c) human identification and (d) depth human silhouettes.
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Fig. 3. Overall description of human silhouettes identification as (a) depth maps 
having noisy information, (b) temporal human motion using ridge data, (c) 

labeled human body silhouette and (d) depth human silhouettes identification of 
reading an article, phone conversation and falling-down activities.

B. Feature Extraction via Multi-Features Approach 

In this section, we extract features from human body silhouettes 

and joints information (i.e., include 15 joint points) via depth images. 

However, a set of feature extraction techniques provide a compact 

representation of image content by describing invariant characteristics 

of local body parts, multi-view differentiation and spatiotemporal body 

joints motion which are derived to merge together having spatial and 

temporal depth silhouettes characteristics.

1) Invariant Features 

To process the human depth silhouettes, we compute the total pixel 

intensities along lines of different locations (i.e., 0 to 180 degrees) 

to identify specific view directions and the center points of human 
silhouettes are selected as the reference point, which is defined as

( ) ( )( , ) ,DR f x y xcos ysin dxdyρ θ δ ρ θ θ
−∞−∞

∞ ∞

− −∫ ∫
 (3)

( , )DR ρ θ  is the line integral of the 2D radon function along a 

line between positive to negative infinite value. These 2D information 
are passed through sum of the squared Radon transform values [27] to 

create a 1D profiles as shown in Fig. 4. These 1D profiles are strong 
candidates to provide translation and scaling invariant features. Finally, 

a feature vector with 180 dimensions is extracted, instead of the 2D 

shape matrix.

Fig. 4. Invariant features performed over various depth activities.

2) Multi-view Differentiation Features (MDF)  

Due to similar postures, object occlusions and missing body parts 

from the frontal view, extra views (i.e., side and top) are used for the 

feature vectors to improve the accuracy of the classifier. Therefore, we 
applied Cartesian planes over the human depth silhouettes to get the 2D 

images of side and top views. These images are passed through a frame 

differential mechanism where current frame is compared with the next 

frame to get pixel intensity information for feature processing. Fig. 

5 explains the multi-view differentiation features having (a) side and 

(b) top views of forward kick and bend actions using MSR Action3D 

dataset.

Fig. 5. Multi-view differentiation features based on (a) side and (b) top views 

in case of forward kick and bend actions using MSR Action3D dataset.

3) Spatiotemporal Body Parts Motion Features (BMF)  

To consider the discriminative information for determining how a 

person has moved (i.e., spatiotemporally) during the activity sequence, 

we considered the shape information having specific motion region 
of body parts in an activity. Therefore, we calculated the gradient 

orientation, pixel intensity in between initial frame till final frame and 
Mahalanobis distance for matching the input activity from the stored 

templates is defined as

( ) ( )1

1

, , , ,
N

t t

seq j j

j

D I x y z I x y z τ−

=

= − >∑
 (4)

where I
j
 is image sequence along with t and t-1 to evaluate the 

temporal sequential human motion of overall activity images. However, 

those regions having maximally confident patches of temporal values 
(i.e., greater than specific threshold values) are tracked based on optical 
flow mechanism which are enclosed by rectangular box as shown in 
Fig. 6.

(a) (b)

Fig. 6. Spatiotemporal body parts motion features based on maximally 

confident patches in case of (a) both hands waving and (b) walking activities 
using our depth annotated dataset.

However, both MDF and BMF features spaces produce a higher 

number of features dimension, thus, principal component analysis 

(PCA) is used here to extract global information [28] from all activities 

data and approximate the higher features dimension data into lower 

dimensional features. In this work, 200 and 150 principal components 

(PCs) are used for MDF and BMF features to process the activity data 

and are expressed PC = m
i
e

top
 where PC is the PCA projection of feature 

vectors, m
i
 is the zero mean vector and e

top 
is the top eigenvectors 

indicating higher variance among overall eigenvalues. 

4) Temporal Joints Difference Features (TDF)  

In addition to depth human silhouettes, the multi-features also 

provided skeleton motion joints features. In order to make use of the 

additional motion information from joints information, we applied 

current frame differentiation method to calculate joint points difference 
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between the current frame f
i
 and all the respective frames f

d
 of activity 

sequence can be represented as

{ }| 1; 2, , diff j j

current i rf f f i r N= − = = …   (5)

where 3D skeleton joints j having all three coordinates axis at frame t 

to t+1,…,t+N and the size of feature vector become 15x1, respectively.

5) Pairwise Joints Distance Features (PJF)

To consider the pairwise joint distance feature, we measure the 

joints distance between the active a body joints with the inner i body 

joints at each frame t. Here, the active body joints consist of head, 

shoulders, hands and feet, while, inner body joints include torso, neck, 

elbows, hips and knees. Thus, pairwise joints distance features D
pjf

 is 

represented as

( ) ( ) ( ) ( )2 2 2
x x y y z z

pjf a i a i a iD t j j j j j j= − + − + −
 (6)

where D
pjf

 becomes a vector of 54 dimensions. Fig. 7 shows 2D 

plots of TDF and PJF feature values using falling-down activity.

Fig. 7. Temporal joints difference and pairwise joints distance features are 

applied over falling-down activity.

6) Spatiotemporal Joints Angular Features

Moreover, the human body parts variation in terms of postures, 

direction, height and angular dimensions have a huge impact on the 

performance of the activity recognition. Therefore, we identify the 

gradients representation with respect to angles of each body joints 

in-between t and t-1 consecutive frames of each sequence can be 

expressed as

( ) ( ) ( ) ( )( )1 1

1 1 2 2
arctan /t t t t

tan C C C Cθ − −= − −   (7)

( ) '  '/ , , ,cos k k k karccos C C C C k x y zϕ = − =   (8)

where C
(1)

 and C
(2)

 are the pair-coordinates of all three respective 

axis. Both equations are examined for angular and sinusoidal features 

characteristics. As a result, the size of the feature vector of joints 

angular features representation of each activity frame become 45 x 2, 

respectively (See Fig 8.)

Fig. 8. 2D plot of spatiotemporal joints angular features using falling-down 

activity from our depth annotated dataset.

C. Symbol Representation and Code Matrix Selection

All these sub-features are merged together to make a multi-feature 

vector size of 689x1. These multi-features are symbolized from the 

activity frames and generated from Linde-Buzo-Gray (LBG) clustering 

algorithm. Here, LBG used a splitting mechanism where the centroid 

for the training activity sequence is calculated and split into two 

nearest vectors. Each partition is restricted into specific centroid value. 
Therefore, each vector is then split into two vectors and the iteration 

is repeated until N-level centroid values are obtained. Finally, for each 

cluster, samples are assigned to the same class (i.e., activity label) 

that is the one of the closest cluster centroid. Fig. 9 shows the internal 

concept of feature dimensional structure and code matrix selection of 

proposed features.

Fig. 9. Symbol representation and code matrix selection.

D. Embedded Hidden Markov Model

To model, train and recognize different activities using depth data, 

we introduced a new concept of embedded HMM method. Therefore, 

embedded HMM is introduced which focused specifically at active 
feature regions of human body joints such as hands, head, feet and 

shoulders. 

Also, it includes the overall human silhouettes information or 

all joints information which contain redundant information such 

as static body regions (i.e., torso, chest and forearms) and inactive 

body joints (i.e., elbows, neck and hips). These kinds of unnecessary 

information causes reduction during performance of recognition 

accuracy results.

Also, full-body silhouettes contain specific or active feature regions 
(i.e., moving body parts areas) which are augmented together to build 

a single HMM having O
a
 observation probabilities of M active feature 

regions of each activity as a.

( )
1,2, , , 1

|
M

l a la

l N a

A P O h
= … =

= ∑
 (9)

where A
l
 indicates the likelihood of l HMM with respect to N number 

of activities. Fig. 10 shows active feature regions of overall human 

silhouettes to calculate specific likelihood of each activity. Finally, 

recognized activity R is chosen as desired activity having maximum 

likelihood values [29] among all activities during testing. 

{ }/act lR argmax A l=
  (10)
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Fig. 10. Embedded HMM structure for all activities or actions using specific 
full-body silhouettes and joints information.

V. experIMental reSultS and dIScuSSIon

In this section, we divide our experimental results into two different 

research aspects such as 1) elderly healthcare applications and 2) 

automatic activity recognition datasets which evaluate the performance 

of proposed and the state of the art methods. 

A. Elderly Healthcare Applications

In this subsection, we evaluate our method by considering three 

benchmark datasets [15] performed by elderly people at multiple 

environments (i.e., hospital, home and office). Table I compares the 

recognition accuracy of proposed and state of the art methods based on 

same settings as [15].

taBle I

recoGnItIon accuracy coMparISon BetWeen propoSed and State oF the art 

MethodS uSInG three healthcare dataSet

Healthcare Applications
Invariant 

features [30]

Motion 

features [15]

Proposed 

method

Smart hospital activities 86.09 90.33 94.82

Smart home activities 88.68 92.33 95.15

Smart office activities 89.43 93.58 95.97

Similarly, we compare our detection activities along with active 

frames (i.e., frames that contain given activity types) having selected 

human silhouettes and obtained precision, recall and F-measure. Table 

II compares the performance of proposed and state of the art methods. 

It is quite obvious that our method is effective to encode relevant 

activity information.

taBle II

precISIon, recall and F-MeaSure coMparISonS on the SMart hoMe dataSet 

For actIVIty localIzatIon

Methods Precision Recall F-measure

Invariant features [30] 78.3 80.6 78.9

Motion features [15] 80.9 82.4 81.3

Proposed method 84.7 87.3 85.8

B. Experiments on Automatic Activity Recognition Datasets

In this subsection, we conduct experiments on three challenging 

depth-based activity and action datasets such as online self-annotated 

dataset [31], MSRDailyActivity3D and MSRAction3D for recognition 

purpose using multi-features and embedded HMM. However, the 

content of each dataset, experimental setting and results are described 

in the following sub-subsections.

1) Online Self-Annotated Dataset

In this experiment, the depth-video activity dataset [32] is collected 

for the fifteen different activities based on daily life healthcare 
monitoring scenarios often encountered by elderly people. These 

activities include: sitting down, taking-medicine, falling-down, 

both hands waving, eating, clapping, phone conversation, walking, 

exercising, stand up, cleaning, taking an object, reading an article, 

pointing an object and hand waving, respectively. All activities are 

captured in labs and halls. The total dataset consists of 705 video 

sequences performed by sixteen different subjects.

Its training datasets include 675 segmented video sequences and its 

testing phase contains 30 unsegmented video sequences having time 

duration of two to four minutes. From Table III, we illustrate that the 

proposed method achieved recognition rate of 71.6% for all fifteen 
activities.

taBle III

coMparISon oF recoGnItIon accuracy BetWeen propoSed and State oF the 

art MethodS uSInG onlIne SelF-annotated dataSet

Methods Accuracy (%)

Dynamic temporal warping [33] 38.7

Multi-part bag-of-poses [34] 47.6

HOJ3D [35] 49.6

Multimodal approach [36] 51.6

Depth silhouettes context features [32] 57.6

Multi-Features method 71.6

While, Table IV summarizes the comparison of our method with the 

state of the art methods by considering a decision of recognition results 

based on 100 frame sliding window approach.

taBle IV

Mean recoGnItIon accuracy oF propoSed MultI-FeatureS Method uSInG 

onlIne SelF-annotated dataSet

Activities Accuracy (%) Activities Accuracy (%)

Sitting down 38.7 Hand waving 67.7

Falling-down 47.6 Taking-medicine 78.1

Eating 51.6 Both hands waving 58.2

Phone conversation 89.9 Clapping 78.5

Exercising 54.8 Walking 81.3

Cleaning 73.4 Stand up 63.7

Reading an article 58.2 Take an Object 69.6

Pointing an Object 84.4

In addition, Table V shows the performance evaluation of online 

self-annotated activity recognition dataset from all three indicators 

such as precision, recall and F-measure. It is clearly justified that the 

proposed features are significantly better than conventional ones. 

taBle V

perForMance eValuatIon uSInG precISIon, recall and F-MeaSure paraMeterS 

For onlIne SelF-annotated dataSet

Methods Precision Recall F-measure

[30]

 [15]

 [36]

 [32]

53.7

58.3

61.6

63.9

56.2

61.8

62.1

65.3

55.8

60.5

62.8

64.2

Proposed method 68.4 67.9 67.3
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2) MSRDailyActivity3D Dataset

 The MSRDailyActivity3D dataset [25] was collected with human 

daily activities captured by the Kinect sensor. This dataset consists 

of sixteen activities including: drink, eat, read book, call cellphone, 

write, use laptop, vacuum cleaner, cheer up, sit still, toss paper, play 

game, lie down, walk, play guitar, stand up and sit down. All subjects 

perform activities into both standing and sitting on sofa poses. The 

number of activity video sequences is 320. While, dataset is quite 

challenging due to human object interactions. Some sample images of 

MSRDailyActivity3D dataset are shown in Fig. 11.

Fig. 11. Sample depth images used in MSRDailyActivity3D dataset.

However, this dataset includes one sample per subject, therefore, 

we applied leave-one-subject-out (LOSO) cross validation process 

in our experiment. Table VI presents the recognition accuracy of our 

proposed multi-features method.

 taBle VI

recoGnItIon accuracy coMparISon BetWeen propoSed and State oF the art 

MethodS uSInG MSrdaIlyactIVIty3d dataSet

Methods Accuracy (%)

Eigenjoints [24] 58.1

Joint position features [25] 68.0

Graph based genetic programming [37] 72.1

Moving Pose[38] 73.8

Integrating Joints features [39] 76.0

Motion features [40] 79.1

Actionlet ensemble[25] 85.7

Super normal vector [41] 86.2

Depth Cuboid Similarity features[42] 88.2

Multi-Features method 92.2

Also, we compare the recognition performance using 

MSRDailyActivity3D dataset where the proposed method achieved a 

superior mean recognition rate of 92.2% over the state of the methods 

[24], [25], [37]-[42] as shown in Table VII.

taBle VII

recoGnItIon perForMance reSultS oF propoSed MultI-FeatureS Method uSInG 

MSrdaIlyactIVIty3d dataSet

Activities Accuracy (%) Activities Accuracy (%)

Drink 89.6 Eat 96.2

Read Book 93.4 Call cell phone 97.7

Write 87.5 Use laptop 89.6

Vacuum Cleaner 98.8 Cheer up 96.4

Sit still 87.3 Toss paper 88.1

Play game 89.3 Lie down 98.3

Walk 95.7 Play guitar 87.3

Stand up 90.9 Sit down 89.4

3) MSRAction3D Dataset

The MSRAction3D dataset [20] was captured with a depth sensor 

(i.e., Kinect device) by the Microsoft Researcher team. It includes 

20 different action types as: high arm wave, horizontal arm wave, 

hammer, hand catch, forward punch, high throw, draw x, draw tick, 

draw circle, hand clap, two hand wave, side boxing, bend, forward 

kick, side kick, jogging, tennis swing, tennis serve, golf swing and 

pick up & throw. The dataset consists of 567 depth map sequences 

performed by 10 subjects. Also, the background of this dataset is clean 

and the human silhouettes are available in each frame. This dataset is 

quite challenging due to similar postures of different actions especially 

hands and legs movements. Several samples of MSRAction3D dataset 

are shown in Fig. 12. 

Fig. 12. Sample depth images of MSRAction3D dataset.

Also, we follow the same experimental setting as [25] and obtained 

the recognition accuracy of 93.1% as shown in Table VIII.

taBle VIII

recoGnItIon accuracy coMparISon uSInG MSractIon3d dataSet

Methods Accuracy (%)

Dynamic temporal warping [33] 54.0

Bag of 3D points [20] 74.7

HOJ3D [35] 79.0

Motion and Shape features [43] 82.1

Eigenjoints [24] 82.3

Semi Supervised learning [44] 83.5

Grassmannian manifold [45] 86.2

HON4D [21] 88.3

Pose Set [46] 90.0

HOD Descriptor [47] 91.2

Euclidean group algorithm [48] 92.4

Multi-Features method 93.1

In addition, we compare our method with the state of the art methods 

[31], [20], [35], [24], [21], [43]-[48] on the cross subject test setting 

and obtained a significantly improved recognition performance over 
existing works as shown in Table IX.

taBle Ix

Mean recoGnItIon rate oF propoSed MultI-FeatureS Method uSInG 

MSractIon3d dataSet

Activities Accuracy (%) Activities Accuracy (%)

High arm wave 89.5 Horizontal arm wave 90.9

Hammer 98.6 Hand catch 89.8

Forward punch 96.4 High throw 93.6

Draw x 94.1 Draw tick 95.5

Draw circle 98.8 Hand clap 87.7

Two hand wave 97.2 Side boxing 98.8

Bend 98.7 Forward kick 83.9

Side kick 94.1 Jogging 88.7

Tennis swing 88.5 Tennis serve 86.8

Golf swing 93.6 Pick up and throw 97.4

To evaluate the recognition performance based on various codebook 

sizes, Fig. 13 shows the recognition accuracies of all three depth 

datasets having different codebook sizes. We determine the codebook 

size as 128 experimentally using LBG clustering algorithm because the 

greater codebook size makes minor changes in HAR accuracy. 
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Fig. 13. Recognition accuracies versus different codebook sizes of all three 

depth datasets.

However, three-state HMM model is selected for the training/testing 

of all three depth activity/actions datasets after experimenting with 

different number of states HMMs models as shown in Fig. 14.

Fig. 14. Recognition accuracies versus different number of states for HMMs 

using all three depth datasets.

VI. concluSIon

 In this paper, a novel approach has been proposed for robust HAR 

system utilizing multi-features along with embedded HMMs from 

depth video sensor. The HAR framework contains novel characteristics 

as (1) a novel real-time body parts tracking system is introduced to 

extract human silhouettes from noisy background, (2) a robust spatio-

temporal multi-features obtained from the full-body human depth 

silhouettes and joints body parts information, (3) development of new 

online depth dataset which become a benchmark for video-based HAR 

systems, and (4) a new concept of embedded HMMs. Our experimental 

results on three challenging depth datasets have shown the significant 
recognition performance of our features over the state of the art features 

extraction techniques. The proposed system is directly applicable 

to any e-health monitoring systems, such as monitoring healthcare 

problems for elderly and sick people, or examines the indoor activities 

of people at home or hospitals.

In the future work, we will exploit the effectiveness of our features 

by merging the RGB features along with multi-view invariant 

characteristics over more complex activities datasets including 

human-to-human interactions and human-object interactions. Also, 

some discriminative/generative models are used to robust training/

recognition phase to strengthen our HAR algorithm.  
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