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A Derivation of Equations for Wave Propagation 

in Water of Variable Depth 

by 

A. E. Green^ and P. M. Naghdi* 

Abstract. Within the scope of the three-dimensional theory of homogeneous 
incompressible inviscid fluid, this paper contains a derivation of a system 
of equations for propagation of waves in water of variable depth. The deriva¬ 
tion is effected by means of the incompressibility condition, the energy equa¬ 
tion, the invariance requirements under superposed rigid body motions, together 

1. Introduction 

Although the classical nonlinear three-dimensional theory of an ideal 

elastic body *- which includes the theory of an inviscid fluid -- is well 

understood and accepted, it is notoriously difficult to obtain exact solutions 

of the resulting equations except in rather special situations. In the case 

of the propagation of water waves under gravity, governed by the incompressible 

inviscid fluid theory, the difficulties are due to the nonlinear inertia terms 

and the nonlinear boundary condition over an unknown surface. In view of these 

difficulties and because those aspects of the propagation of water waves of 

especial interest are inherently two-dimensional in character, various methods 

have been evolved for replacing the (nonlinear) three-dimensional theory of 

water waves by a two-dimensional theory. The procedure is approximate and is 
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that the order of the partial differential equations is singular in the sense 

usually reduced. One well-known method of approximation is to introduce one or 

more non-dimensional parameters which in some sense may be regarded as small. 

Approximations are then obtained by what is usually called asymptotic expansion, 

and leads to equations which have received wide acceptance. The methods appear 

to be powerful, systematic and compelling; however, this is somewhat deceptive 

as the method involves a scaling of certain variables which amounts to a ßriori 

special assumptions. Proof is usually lacking that the expansions obtained 

are asymptotic or unique or that solutions of the resulting equations are 

asymptotic expansions of corresponding solutions of the three-dimensional 

equations. Such criticisms do not underrate the values of these expansion 

procedures since the problems posed are quite complex. It may be that 

eventually the obstacles can be overcome and the problems can be solved by 

proper mathematical analysis, but meanwhile we are usually content to make use 

of the approximations mentioned above in special circumstances. 

In view of the incomplete nature of the asymptotic expansion methods in 

terms of small parameters or other approximation procedures, an attempt has been 

made in recent years to approach the subject from another point of view, 

namely via the theory of directed fluid sheets based on a two-dimensional 

continuum model called a Cosserat surface! A direct two-dimensional theory 

of this kind was recently employed by Green and Naghdi (1976) to construct a 

theory for wave propagation in water of variable initial depth. The resulting 

nonlinear differential equations which include the effect of surface tension 

were obtained in detail for one-dimensional flow, although the two-dimensional 

equations were given previously (Green, Laws and Naghdi 1974) for a fluid with 

a horizontal bed. Of course, these papers include some results from the 

^Background information concerning the theory of a Cosserat surface can be found 
in the article by Naghdi (1972) which contains detailed applications to elastic 

shells. 
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three-dimensional equations in so far as the identification of the inertia 

coefficients and the specification of forces on the free surface of the water 

wave is concerned, but the main developments (Green, Laws and Naghdi 197*+; 

Green and Naghdi 1976) are based on a two-dimensional theory of a directed 

medium. It is perhaps worth recalling here that in regard to the relevance 

and applicability of the direct formulation, the papers cited include some 

detailed studies of a number of two-dimensional problems of inviscid fluid 

sheets, as well as some comparison with other existing works on the subject. 

For example, it was shown that the derived nonlinear differential equations 

admit a solitary wave solution which is the same as that attributed by Lamb 

(I932, §252) to Boussinesq and Rayleigh. Moreover, comparison with such 

equations as Korteweg-deVries (K.dV.) indicated that the derived equations 

have a wider range of applicability (Green, Laws and Naghdi 197*+), apart from 

the advantage that they are derived from a complete set of integral conserva¬ 

tion laws. Additional specific examples discussed previously (Green and 

Naghdi 1976) include the steady motion of a class of two-dimensional flows 

in a stream of finite depth in which the bed of the stream may change from 

one constant level to another and the related problem of hydraulic jumps. 

The chief purpose of the present paper is to see if the same system of 

equations may also be derived in some systematic way from the three- 

dimensional equations of the classical fluid dynamics alone. The deriva¬ 

tion given here differs from similar derivations of equations for wave 

propagation in water of variable depth utilizing asymptotic expansion 

techniques of the type mentioned above. Among the latter, reference may 

be made to the papers by Peregrine (1967,1972), by Grimshaw (197O) and by 

Johnson (1973). Thus, in the following sections, we start with known 

3. 
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equations of incompressibility and energy in the three-dimensional theory of a 

homogeneous incompressible inviscid fluid. With the use of these equations and 

invariance requirements under superposed rigid body translation of the whole 

fluid, together with a single approximation for the velocity field, we derive a 

system of field equations for water waves making no further approximations. 

When specialized to unidirectional flow, these equations become identical with 

those obtained by Green and Naghdi (1976) via a direct two-dimensional theory. 

Also, the nature of the linearized version of the resulting equations and their 

comparisons with those which follow from the work of Peregrine (I967) is briefly 

discussed. 

In the present derivation from the three-dimensional equations, the kine¬ 

matic assumption from which the approximate expression for the velocity field 

follows is introduced in terms of Lagrangian coordinates [see Eq. (U.6)] but 

subsequently [following (4.12)] we employ Eulerian coordinates and express all 

quantities in terms of their Eulerian (spatial) descriptions. The approximation 

adopted for the velocity field [see Eq. (4.9)] is equivalent to assuming that it 

is a linear function of the vertical coordinate^" z (of a fixed rectangular Cartesian 

coordinate system x,y,z) in the present configuration and that the horizontal com¬ 

ponents of the velocity are independent of z; this form enables us to satisfy 

exactly the condition of incompressibility. In this connection, it should be 

remarked that in the ordinary derivation of the K.dV. equations (e.g., by 

asymptotic expansion procedures) the horizontal velocity depends on z; but the 

K.dV. equations also follow by approximation from the general equations of this 

paper (or the corresponding differential equations obtained by direct approach), 

even though the horizontal velocity does not depend on z. This is because our 

method of approach and derivation is very different from that usually pursued in 

The form of the velocity field in (4.9) is equivalent to assuming that the 

vertical velocity is linear in the Lagrangian coordinate 03 and hence linear 
in the rectangular Cartesian coordinate z. 



the literatiare on water wave theory. Instead of finding an approximation to a 

system of differential equations, in our approach which involves an approximate 

velocity field, we satisfy the incompressibility condition, the boundary condi¬ 

tions at the free surface and at the bed of the fluid and an energy equation in 

integral form without further approximation. The assumed velocity field allows 

for rotational flow in horizontal planes but rules out simple shear flows in 

vertical planes without removing all the vorticity components in these planes. 

Dur basic kinematic assumption, which also reflects the nature of our approximate 

velocity field, is likely to render the resulting theory appropriate for propaga¬ 

tion of fairly long water waves. 

i 



2. Preliminaries and notation. 

Let the particles of a three-dimensional continuum be identified by a 

convected (lagrangian) coordinate system 9*. Covariant and contravariant base 

vectors at points of the continuum at time t are denoted by g.,g with cor 

responding metric tensors ij Th.us 

g- • 
10 

= g1 ^ > g1 - 6 

L - òp/âe1 , p = p(ei,t) , 
'-'l. rvy 

(2.1: 

where p is the position vector of a typical particle 01, is the Kronecker 

★ 

delta and Latin indices take the values 1,2,3. The velocity vector v at 
rs* 

time t is 

* 
v (2.2) 

where a superposed dot denotes material time derivative holding 0* fixed, 

element of volume dv is given by 

dv = g:5d01d02d0^ , g = det g. ., . 

An 

(2.3) 

The stress vector t across a surface wlios^ unit normal is n can be put in the 

form 'see ireen and Terna 1963) 

1 ? 

12.U; 

Í 1 
and - ^ Is the symmetric contravariant stress tensor. 

The parametric equation 0^ = 0 defines a S'trface J in space at time t, 

which we assume to be smooth and non-intersec*ing, th- position vector of any 

point of J being given by 





\v 

3. Incompressible inviscid flaid. 

Suppose that the continuum consists of an inviscid incompressible homogeneous 

* + * 
fluid with constant mass density p under a constant gravity field g parallel 

to the unit constant vector -e_• Then, 

div V = 0 or 
.1 
?2 = 0 (3.1: 

Also, if p is the pressure, then 

t = - p n . (3.2: 

1r 
Let an arbitrary material volume of the continuum occupy a region P at 

time t and let dp* designate the closed surface of P . Then, the conservation 

of energy for every material volume at time t can be stated as 

_d_ 

dt L ^ * * * *\ 
V - V +ge„*p + e jdv 

'P 
~ 

r ** ^ /** j p r dv - [ (p V +q j • n da , 

V V ~ ~ ~ 
(3.3) 

* 
where r* is the rate of supply of external heat per unit mass, e is the internal 

energy per unit mass and q* is the heat conduction vector and da is an element 

of area. Also, making use of invariance conditions under superposed rigid body 

* 
motions of the whole continuum, q takes the form 

q* = - tc(e, grad 0 • grad 8)grad 0 , (3.4) 

where 0 is temperature and K is a scalar function. In addition, for an inviscid 

* A*, A* 
and incompressible fluid, we assume that e =e (9). With the use of invariance 

conditions under superposed rigid body motions the equation of linear momentum 

can be derived from (3*3) in the form 

hTo avoid ambiguity with the notation employed in (2.3), we ure g (instead of 

the usual symbol g) for gravity. 

8. 
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(3-5) 

Kith the help of the local equation resulting from (3-5) > the energy equation 

(3.3) can be reduced to 

p*r - div q* - pV = 0 . 

In the rest of this paper we restrict attention to isothermal motions so 

that e is constant. It then follows from (3-^) and (3.6) that 

* * 
q = 0 , r = 0 (S-?) 

and that e* is a constant. Moreover, if 0 is everywhere continuous, then (3*3) 

reduces to 

(3.8) 

The equation (3.8) is a statement of the law of conservation of energy for 

isothermal motions of an incompressible inviscid fluid. It should not be con¬ 

fused with similes expressions representing an energy theorem which can be 

derived in the context of the purely mechanical theory of an incompressible 

inviscid fluid. 

In subsequent sections, our development will be based solely on the energy 

equation (3.8) and the incompressibility condition (3*l)« 

ajama....mm.. 



4. Water of variable depth 

We suppose that the continuum consists of an inviscid homogeneous incom¬ 

pressible fluid moving over a bed specified by the equation 

£ = X^l + yS2+ûi(x’y)Î3 ’ (4.1) 

where is a constant orthonormal system of vectors. The surface of the fluid 

is specified by 

p = xetL + y^ + ß(x,y,t)e3 . (4.2) 

In (4.1), or is a given function of x,y but ß in (4.2) depends also on t. At 

the surface (4.2) of the stream there is a constant normal pressure p and a 

constant surface tension T. At the bed the (unknown) pressure p depends on 

x,y and t. Thus, the fluid moves with the surface (4.2) and at this surface 

P = P0 - q 

where 

Tf(l+ß2)ß -2ßßß +(1+B2)b 1 
a = __!y pxx pxpypxy v VPwJ 

n + e2 + eh3/2 Kx Ky 

At the bed (4.1) the normal velocity of the fluid is zero and 

* — 
P = p(x,y,t) . 

where p is to be determined. 

(4.3) 

(4.4) 

(4.5) 

For the motion of the fluid under consideration, which is governed by the 

theory of sections 2 and 3 subject to appropriate boundary and initial con- 

ditions, it is required to determine the values of v or p (and the pressure p). 

Since exact methods for finding p are not known in general, other procedures 

must be adopted. 

- ^ __ • 

The boundary conditions are given by the kinematic conditions over the surfaces 

(4.1) and (4.2;, together with the condition (4.3) for the pressure at the free 
suri.ace, as well as suitable conditions over the remaining boundary. 

10. 
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Under suitable continuity assumptions in any bounded region of values of 

93 such as (2.6), the vertical component of p can be represented to any required 

degree of approximation by a polynomial in 03 which can be differentiated once 

Q 12 
with respect to 0J and twice with respect to 0 ,9 and t. We assume that the 

3 
vertical component of p is given approximately by a linear function of 0 ; this is 

equivalent to assuming that the vertical velocity is a linear function of the vertical 

coordinate in the present configuration at time t. If we wish to satisfy the con¬ 

dition of incompressibility (3.1) exactly, then it is consistent to assume that the 

& 3 
horizontal components of p are independent of’ 0 . Thus, for the motion of the fluid 

between the surfaces (4.1) and (4.2), we assume that p is given approximately by" 

p = r + 0# e_ (0=0^) , (4.6) 

where the surfaces (2.6), 0, or (4.1) and (4.2) correspond to 0=i | and 

r = xe^ + ye^ + . (4.7) 

.1 .2 
In (4.6) and (4.7)» x,y,i|r and 0 are functions of © ,0 ,t and 

a = ÿ - ir 0 , 0=i(i + 20 (4.8) 

Adopting (4.6), we now use only the exact three-dimensional equations (3-1) and 

(3.8) and exact boundary conditions (4.3) and (4.5). 

■X 
The velocity vector v corresponding to (4.6) is 

r+s 

* N 
v = v + 0w = ue^ + ve_ + (\ t 8w)e , 

(4.9) 

v = r " — 

where 

u = X V = y w = 0 

%e could also include terms proportional to ©3 representing a linear shear 
flow but we omit these at present. 

'The use of the symbol 0 in (4.6) and in the remainder of the paper need not be 
confused with the temporary usage of the same symbol (for a different designa¬ 
tion) in section 3* 

m ÉttiÉÉMlliMlÉÉMiliiili&iÉÉiiititi B—gri^ 

(4.10) 

’vrmmm?'. 
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From (2.1) and (4.6) it follows that 

«i.» 
Me1^2) 

and the incompressibility condition (3.1) becomes 

.1 
g w 

0(01^2) 
+ i 

d(ex,92) 
+ 0 

0(01^2) 
In subsequent operations we take x and y as independent (Eulerian) 

1 2 
variables instead of the Lagrangian variables 0,0. Then, for example 

(4.11) 

(4.12) 

u = ut + uux + vUy , (4.13) 

where subscripts denote partial differentiation. Also, (4.12) reduces to 

UX + Vy+Ç = 0 » w = 05 = Î = it+U0x+Vîy (4.14) 

and from (4.11) and (2.1) we have 

Jg3 --Ux+ ’ ^-151 

We next use the expressions (4.6) and (4.9) in the energy equation (3.8). 

* 
For this purpose we suppose that P is a region bounded by the surfaces (4.1) 

and (4.2), i.e., by 0 = t and by a closed cylinder defined by an equation of 

the form 

ft©1,©2) = 0 . (4.16) 

Let an arbitrary material surface 0=0 occupy a region P at time t and let dP 

5 * * 
denote the closed boundary of P. Further; let dPn refer to a part of dP 

* # 
specified by the cylindrical surface (4.16) so that dp = dP = dP on 0=0, and 

n 
*c * * * # 

let dP„ = dp - dP stand for the complement of dP in dP . 
n n n 

Now, with the help of (4.3), (4.8) and (4.15), at the surface 0 = ^ we have 

* * 4 3 1 2 
p nda = p g2g d0 d0 

= Pyeg + e3) doW at 0=^ (4.1?) 

d(0 ,0 ) 

®The terminology and related development leading to (4.19) are similar to those 

employed in shell theory derived from the three-dimensional equations; see, 
in this connection, section 11 of Naghdi (1972). 
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and similarly at the bed of the stream 

p n da = - p(-a en - a e + e ) j/).. at 6=2 • 
x~L y~2 ~3 0(e"5e2, 

Also, the integral on the right-hand side of (3.?) when evaluated over the 

surface ;U.l6) becomes 

(4.16) 

where 

* * 
p V • n da i Pi de(u dy - V dx; 

F p(u dy - V dx) , 
JBP 

À * 
p = 0 < p d0 . 

v-h 

(4.19) j 

: 

(4.20) 

With the help of (4.6), (4.9) and (4.17) to (4.20), the energy equation 

(3.6) reduces to 

i P* 0 (u2 + V2 + \2 + w2 + 2g t)dx dy 

= - I [(pn - q)(-0u - ß v + \ + | w) - p(.Qi u-Qf V + I w)]dx dy 
j p o a. y X y 

- j* p(u dy - V dx) . (4.21) 

•'ap 

This equation, together with (4.8), (4.10) and (4.14), form the basic equations 

of the present theory. It should perhaps be emphasized that our development 

depends only on one assumption (4.6), along with two accepted exact equations 

(3.1) and (3.8) from three-dimensional theory. The resulting equations are, 

however, not yet sufficient for a complete theory. We now show how additional 

equations may be deduced from (4.21) using only invariance considerations under 

superposed rigid body motions which are well established in the three- 

dimensional theory. 

Using a fixed frame of reference, we assume that a superposed rigid pcdy 

translational velocity is imposed on the fluid (and its boundaries). Thus we 

13. 
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assume that x,y,^,v are replaced by x, y, * + k t, v +k.e., where k. are 
~ 1^1 1 

constants (and 0,0 are replaced by or + k^t, p + k^t). We assume that this rigid 

* 
DOdy motion does not affect the pressure p. Then, from (4*21), we have 

j i p ¢( (u + k, )2 + (v + k2;2 + (X + k3)2 + ^ w2 + 2g (\|i + k^tjjdx dy 

~ - J f (Pc - q){-Px(- +k1) - 0y(v + k2) + X + k3 + | w} 

- p{-ax(u + ; - ory(v + k2) + \ + k^ - | w}] dx dy 

- I p((u + k )dy - (v + k0)dx} (4.22) 
"àp 1 

for all arbitrary constant values of k^, the remaining quantities in (4.22) 

oeing independent of k^. From (4.21) and (4.22) it follows that 

d " * 
— ! p 0 dx dy = 0 , 
dt 

, J* * f* mm. I* 
— p ÿ u dx dy = ; [(p -q)0 -P or ]dx dy - p dy 
an jp jp o x x j^p 

dx ^-1* p* 0 v dx dy = f [(p - q)0 " P a ]dx dy + f p 
an Jp *lp ü y y •I5P 

4: T p*0(x + g t)dx dy = - r (p.-q-p)dx dy . 
dt jp •’p 0 

The local field equations can now be obtained from (4.23) to (4.26) under 

suitable smoothness assumptions. The first of these, which follows from 

(4.23), is given by 

0+0(u+v)=O , 
x y 

and is identical with (4.14). The remaining three, deduced from (4.24) to 

(4.26), are 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

# 
Although this is the key invariance assumption it is one which is widely 
accepted. 



c*í U =-Px+(po-q)Px-perx , (4.28) 

★ «b 

P í V =-py+(po-q)By-pay , (4.29) 

-K- • -#•-#- — 
pí\=-pgí-P0 + q + P . (4.30) 

With the help of (4.27) to (4.30) the local equation corresponding to (4.21) 

reduces to 

p%w = ^ - |(po-q + p) - (4.31) 

The derived field equations (4.2?) to (4.31) correspond to consequences of 

the conservation laws after the latter have been suitably integrated with respect 

to 0 . the equation (4.27) iß a consequence of the integrated conservation of 

mass (4.23)j the three equations (4.28) to (4.30) are consequences of linear 

momentum in the x,y,z-directions associated with the velocity components 

-X- 

u,v,\ of 'v in (4.9)^ which are independent of the vertical coordinate z, and 

(4.31) represents consequence of linear momentum in the z-direction associated 

with the part of the velocity v which is linear in z. The field equations (4.14) 

and (4.28) to (4.31), together with (4.8^ with a specified, as well as the rela¬ 

tions (4.8)2 and (4.10), are the basic equations from which we determine the 

functions u,v,0,^,p,p. For unidirectional wave propagation in the x-direction, 

these equations reduce to those obtained previously (Green and Naghdi I976) by 

a direct two-dimensional approach. 

In the derivation of the field equations (4.28) to (4.31), we have not 

imposed any condition that the fluid motion should be irrotational. In other 

existing developments of the water wave equations (from three-dimensional theory), 

this condition can only be satisfied approximately. Here the velocity field 

(4.9) rules out simple shear flows in the (x,z) and the (y,z) planes but does 

not demand that the vorticity components in the (x,y) plane be zero. On the 

15. 
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other hand, consistent with (4.9), the vorticity component perpendicular to the 

(x,y) plane could be zero so that the flow could be irrotational in this plane 

if we impose the additional condition 

u - V = 0 . (4.32) 
y X 

] 
Before closing this section, we make one other observation concerning a 

I 
first integral of equations (4.28) to (4.31) when the motion is steady and not 

necessarily irrotational. Let 

H = I p*(u2 + v2 + X2+^-w2 + 2g*t)+p/î • (4.33) I 

Then, with the help of (4.8), (4.10) and (4.27) to (4.31), it may be verified 

that 

0H = 0(Ht + uHx +vHy) = pt+(q-po)0t . (4.34) < 

Alternatively, the equation (4.34) may be deduced directly from the energy 

equation (4.21). When the motion is steady and u,v,\,w,p,q,0,i|| are functions 

only of x,y, then and vanish and we have a Bernouli type first integral 

of the equations of motion of the form 

i p*(u2 + v2 + \2 + jjw2+2g%)+p/0 = Fte1,^) , (4.35) 

1 2 
where F is an arbitrary function of 0 ,0 . When the motion is unidirectional 

with v = 0 and H a function only of x, then (4.35) reduces to 

H(x) p (u2 + X2w2 + 2g ♦ )+p/0 = constant . (4.36) 

16. 
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5. Linearized equations 

Here we obtain the linearized version of the differential equations derived 

in the previous section in which the various results are linearized about an 

equilibrium position. We Set P0=0 in (4.20) to (4.30) without loss in generality, 

and limit the discussion to flows in the x-direction only so that, from (4.8), 

(4.10) and (4.2?) to (4.31), we have 

uax = \ - I w , w = 0t + u0x 

(5.1) 3 - a = 0 , q = -=-T7? 

0t+ (^)x = 0 
and 

P 0(\t+u\x) = - p g 0+q + p , 

— p 0 (wt + uwx) = P-! 0(p-q) . 

In these equations ar = a(x) and all other variables depend on x,t. If the fluid 

is in equilibrium with a level surface 3=P0> a constant, then 

u=\ = w = q = 0 , 0 = h(x) , a(x) +h(x) = 3q , 

__ * * * * 2 (5*3) 
p = pgh , P = f P g h . 

Following usual procedures we set 

0 = h + 0 ' , 3=30 + 07 » P = P*g*h + p' , p = èp*g*h2 + p/ (8.4) 

and, after substitution in (5*1) and (5*2), we retain only terms linear in 

0',3,,P/»P/,u,X,w and their space and time derivatives. Hence, we obtain 

w = - hu 
X 

\ = - £ hux - uhx , q = T0x 

and 

17. 



0¿ + (hu)x = 0 , 

p hut = - Pj; + p 'hx , 

*T mmm * 

p h\ =p'-pg $' + 1$' , 
t XX 

(5.6) 

¿ pVwt = p ' - i hp ' + ^ Th0^ - I p Vh0 ' . 
* * 

Elimination of p ,p ,0 ,X,w yields an equation for u of the form 

U - è hh^ >utt - hhxuttx - i h2uttxx 

' s’d^ui^-(1//)(hu)^ (5.7) 

When the equilibrium depth h of the stream is constant this equation reduces 

to one given previously (Green et al. 197*0. We also observe that if the equa 

tions obtained by Peregrine (I967) for waves on water of variable depth are 

linearized about an equilibrium state, then we recover the same equation as 

(5.7) in the absence of surface tension. 

3 
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