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Abstract. Within the scope of the three-dimensional theory of homogeneous
incampressible inviscid fluid, this paper contains a derivation of a system
of equations for propagation of waves in water of variable depth. The deriva-
tion is effected by means of the incompressibility condition, the energy equa-
tion, the invariance requirements under superposed rigid body motions, together
with a single epproximation for the (three-dimensional) velocity field.

1. Introduction

Although the classical nonlinear three-dimensional theory of an ideal
elastic body -- which includes the theory of an inviscid fluid =-- is well
uwnderstood and accepted, it is notoriously difficult to obtain exact solutions
of the resulting equations except in rather special situations. 1In the case
of the propagation of water waves under gravity, governed by the incompressible
inviscid fluid theory, the difficulties are due to the nonlinear inertia terms
and the nonlinear boundary condition over an unknown surface. In view of these
difficulties and because those aspects of the propagation of water waves of
especial interest are inherently two-dimensional in character, various methods
have been evolved for replacing the (nonlinear) three-dimensional theory of

water waves by a two-dimensional theory. The procedure is approximate and is
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singular in the sense that the order of the partial differential equations is
usually reduced. One well-known method of approximation is to introduce one or
more non-dimensional parameters which in some sense may be regarded as small.

Approximations are then obtained by what is usually called asymptotic expansion,

and leads to equations which have received wide acceptance. The methods appear
to be powerful, systematic and compelling; however, this is somewhat deceptive
as tne method involves a scaling of certain variasbles which amounts to a priori
special assumptions. Proof is usually lacking that the expansions obtained
are asymptotic or unique or that solutions of the resulting equations are
asymptotic expansions of corresponding solutions of the three-dimensional
equations. Such criticisms do not underrate the values of these expansion
procedures since the problems posed are quite complex. It may be that
eventually the obstacles can be overcome and the problems can be solved ﬁy
proper mathematical analysis, but meanwhile we are usually content to make use
of the approximations mentioned above in special circumstances.

In view of the incomplete nature of the asymptotic expansion methods in
terms of small parameters or other approximation procedures, an attempt has been
made in recent years to approach the subject from another point of view,
namely via the theory of directed fluid sheets based on & two-dimensional
continuum model called a Cosserat surface? A direct two-dimensional theory
of this kind was recently employed by Green and Naghdi (1976) to construct a
theory for wave propagation in water of variable initial depth. The resulting
nonlinear differential equations which include the effect of surface tension
weré obtained in detail for one-dimensional flow, although the two-dimensional
equations were given previously (Green, Laws and Naghdi 1974) for a fluid with

a horizontal bed. Of course, these papers include some results from the

§Background information concerning the theory of a Cosserat surface can be found
in the article by Naghdi (1972) which contains detailed applications to elastic
shells.
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three-dimensional equations in so far as the identification of the inertia
coefficients and the specification of forces on the free surface of the water
wave is concerned, but the main developments (Green, Laws and Naghdi 197L;
Green and Naghdi 1976) are based on a two-dimensional theory of a directed
medium. It is perhaps worth recalling here that in regard to the relevance
and applicability of the direct formulation, the papers cited include some
detailed studies of & number of two-dimensional problems of inviscid fluid
sheets, as well as some comparison with other existing works on the subject.
For example, it was shown that the derived nonlinear differential equations
admit a solitary wave solution which is the same as that attributed by Lamb
(1932, §252) to Boussinesq and Rayleigh. Moreover, comparison with such
equations as Korteweg-deVries (K.dV.) indicated that the derived equations
have a wider range of applicability (Green, Laws and Naghdi 1974), apart from
the advantage that they are derived from a complete set of integral conserva-
tion laws. Additional specific examples discussed previously (Green and
Naghdi 1976) include the steady motion of a class of two-dimensional flows

in a stream of finite depth in which the bed of the stream may change from
one constant level to another and the related problem of hydraulic jumps.

The chief purpose of the present paper is to see if the same system of
equations may also be derived in some systematic way from the three-
dimensional equations of the classical fluid dynsmics alone. The deriva-
tion given here differs from similar derivations of equations for wave
propagation in water of variable depth utilizing asymptotic expansion
techniques of the type mentioned above. Among the latter, reference may
be made to the papers by Peregrine (1967,1972), by Grimshaw (1970) and by

Johnson (1973). Thus, in the following sections, we start with known
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equations of incompressibility and energy in the three-dimensional theory of a
homogeneous incompressible inviscid fluid. With the use of these equations and
invariance requirements under superposed rigid body transiation of tne whole
fluid, together with a single approximation for the velocity field, we derive a
system of field equations for water waves making no further approximations.
When specialized to unidirectional flow, these equations become identical with
those obtained by Green and Naghdi (1976) via a direct two-dimensional theory.
Also, the nature of the linearized version of the resulting equations and their

comparisons with those which follow from the work of Peregrine (1967) is briefly

discussed.

In the present derivation from the three-dimensional equations, the kine-

matic assumption from which the approximate expression for the velocity field
follows is introduced in terms of Lagrangian coordinates [see Eq. (4.6)] but
subsequently [following (4.12)] we employ Eulerian coordinates and express all
quantities in terms of their Eulerian (spatial) descriptions. The approximation

adopted for the velocity field [see Eq. (4.9)] is equivalent to assuming that it

; is a linear function of the vertical coord:'mzate'r z (of a fixed rectangular Cartesian
j coordinate system x,y,z) in the present configuration and that the horizontal com-
ponents of the velocity are independent of z; this form enables us to satisfy

exactly the condition of incompressibility. In this connection, it should be

remarked thet in the ordinary derivation of the K.dV. equations (e.g., by
asymptotic expansion procedures) the horizontal velocity depends on z; but the
K.dV. equations also follow by approximation from the general equations of this
paper (or the corresponding differential equations obttained by direct approach),
even though the horizontal velocity does not depend on z. This is because our

method of approach and derivation is very different from that usually pursued in
.T

The form of the velocity field in (4.9) is equivalent to assuming that the
vertical velocity is linear in the Lagrangian coordinate @3 and hence linear
in the rectangular Cartesian coordinate z.
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the literature on water wave theory. Instead of finding an approximation to a
system of differential equations, in our approach which involves an approximate
velocity field, we satisfy the incompressibility condition, the boundary condi-
- tions at the free surface and at the bed of the fluid and an energy equation in
] integral form without further approximation. The assumed velocity field allows
for rotational flow in horizontal planes but rules out simple shear flows in
vertical planes without removing all the vorticity components in these planes.

OJur basic kinematic assumption, which also reflects the nature of our approximate

velocity field, is likely to render the resulting theory appropriate for propaga-

tion of fairly long water waves.




1 2, Preliminaries and notatiocn.

Let the particles of a three-dimensional ccntimnm be identified by a
3 s . .t . . .
. convected (Lagrangian) coordinate system 3 . Ccvariant and cortravariant base
vactors at points of the continuun at time t are denoted by Ei
i

responding metric tensors gij,g . Thus

i,
»& with cor-

ij i J i
g = e T = g . g .= 8
i3 gi Ry ° g £ £ » g ,%J j? \
(p.1)
i i,
g = B/, p=rplent)
where p is the position vector of s typical particle el, 53 is the Kronecker
*
delts and "atin indices take the values 1,2,3. The velocity vector v at
time t is
* .
\' :E ’ (2.2)

where a superposed dot denctes material time derivative nolding ei fixed. An

elenent cf volume dv is given by
$..1..2. 3
dv = g-d8 de de” , g = det gis (2.3)
J

Trhe stroes vecter t across 2 curface whose unit normal is n can be put in the

~

form feee Sreen and Zorne 196%)

‘ 2 ; ;
| + = - = no- o I s
] < e Khy s B il
' (2.4,
2 = 3
L E'Tjé: ’
2 g
R So . . . . .
ard - -8 thc syrmetric contraveriant str_ss tznsgor.
. . e e A A sEan o . _ .
-tz reraretrlc equation 37 =10 defines a grface o in frace st time t,

which we sssum2 tc te smooth and non-intersec-ing, th- pcsition vector of any

point of J being given ty




o

r = r(eh,6%,t) = p(85,6°,0,t) . (2.5)

Let the continuum be bounded by the surfaces

E.'}:a 5 a3=h [a!&aih:l ; (2.6)

where a and b sre constants. We assume that the surfaces (2.6}1 p 8re non-
3

intersecting with themselves, with each other or with o, and which are such

that o lies entirely between them.
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3. Incompressible inviscid fluid.

Suppose that the continuum consists of an inviscid incompressible homogeneous
* 4+ *
fluid with constant mass density p under a constant gravity field g parallel

to the unit constant vector -e3. Then,

* i
divy =0 or g2 =0 . (3.1)
¥
Also, if p 1is the pressure, then
¥*
t=-pn . (3.2)

¥*
Let an arbitrary material volume of the continuum occupy & region @ at
* ¥*
time t and let 3P designete the closed surface of @ . Then, the conservation

of energy for every material volume at time t can be stated as

* * *

d * *
EEJ‘*"(%‘L -V +g§,3'£+€ )dv
c.!
* * r * *
=I*prdv-J *(pl +%)-’rlda s (3.3)
P P

* *
where r 1is the rate of supply of external heat per unit mass, ¢ is the internal
¥*
energy per unit mass and g 1is the heat conduction vector and de is an element
of area. Also, making use of invariance conditions under superposed rigid body

%*
motions of the whole continuum, q takes the form

¥*
q =-«(9, grad @ - grad @)grad 8 , (3.4)

where @ is temperature snd K is a scalar function. In eddition, for an inviscid
*  NA*

and incompressible fluid, we assume that € =e (@). With the use of invariance

conditions under superposed rigid body motions the equation of linear momentum

can be derived from (3.3) in the form

*To avoid ambiguity with the notation employed in (2.3), we ure g* (instead of
the usual symbol g) for gravity.

8.
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g o v dv == p g e.dv- P nda . (3.5)
at Jor P 2 IP* ~3 IaP*

With the help of the local equation resulting from (3.5), the energy equation

(3.3) can be reduced to
* ¥* ¥
pr-div g -pe*zo . (3-6)

In the rest of this paper we restrict attention to isothermal motions so

that § is constant. It then follows from (3.4) and (3.6) that
%:O,r:O (3-7)

*
and that ¢ is a constant. Moreover, if @ is everywhere continuous, then (3.3)

reduces to

d * * * * »
EEI*P{%E'i*sz-ﬁ}d“:'JaP+Pf.*nda : (3.8)
P

The equation (3.8) is a statement of the law of conservation of energy for
isothermal motions of an incompressible inviscid fluid. It should not be con-
fused with simile: expressions representing an energy theorem which can be
derived in the context of the purely mechanical theory of an incompressible
inviscid fluid.

In subsequent sections, our develoﬁment will be based solely on the energy

equation (3.8) end the incompressibility condition (3.1).



4. Water of variable depth

We suppose that the continuum consists of an inviscid homogeneous incom-

pressible fluid moving over & bed specified by the equation
B =xe tygtalxyle, (k.1)

where &5 is a constant orthonormel system of vectors. The surface of the fluid

is specified by

g: Xgl+y§2+B(X,y,t)g3 . ()4.2)

In (4.1), o is a given function of x,y but B in (4.2) depends also on t. At

the surface (4.2) of the stream there is & constant normal pressure p_ and a
constant surface tension T. At the bed the (unknown) pressure 5 depends on

X,y and t. Thus, the fluid moves with the surface (4.2) and et this surface

*
P =p,-qa , (4.3)
where o 2
T -
: _TQ+g )8, - 2B, BB, + (148 )8 ]
q - 2 2 3/2 3 (u.u)
1+ +8,)
i At the bed (4.1) the normal velocity of the fluid is zero and
: * —
P =p(x,y,t) . (4.5)
where 5 is to be determined.

For the motion of the fluid under consideration, which is governed by the
theory of sections 2 and 3 subject to appropriate boundary and initiasl con-
¥ —
ditions? it is required to determine the values of v or p (and the pressure p).

Since exact methods for finding p are not known in general, other procedures

must be adopted.

9The boundary conditions are given by the kinematic conditions over the surfaces
(k.1) and (4.2), together with the condition (4.3) for the pressure at the free
surface, as well as suitable conditions over the remaining boundary.

10.
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Under suitable continuity assumptions in any bounded region of values of

63 such as (2.6), the vertical component of p can be represented to any required

3

degree of approximation by a polynomial in 8 which can be differentiated once

with respect to 93 and twice with respect to 61,92 and t. We assume that the
vertical component of 1 is given approximately by a linear functicn of 53; this is
equivalent to assuming that the vertical velocity is a linear function of the vertic
coordinate in the present configuration at time t. If we wish to satisfy the con-
dition of incompressibility (3.1) exactly, then it is consistent to assume that the

norizontal componentsof p are independent of‘9 63. Thus, for the motion of the fluid

between the surfaces (4.1) and (4.2), we assume that p is given approximately byf

p=rtope, (8=0°) , (4.6)

1

where the surfaces (2.6) (4.1) and (4.2) correspond to ©=3% 5 and

1,27 or

r = xsl+y'€2+‘yg . (4.7)

In (4.6) and (4.7), Xx,y,¥ and ¢ are functions of 91,92,t and

v=y-%0 , B=y+ip . (4.8)
Adopting (4.6), we now use only the exact three-dimensional equations (3.1) and
(3.8) and exact boundary conditions (4.3) and (4.5).

*
The velocity vector v corresponding to (4L.6) is

*

v = v+0w = ue, +ve_+ (ATBw)e, |,
LI, wevey
where
W=x , V=y , A=@ , w=g¢ . (4.10)

3

§We could also include terms proportional to §
flow but we omit these at present.

representing a linear shear

YThe use of the symbol @ in (4.6) and in the remainder of the paper need not be

confused with the temporary usage of the same symbol (for a different designa-
tion) in section 3.

11.
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From (2.1) and (4.6) it follows that

& -3 —E-’L’f‘la)— (4.11)
a(e7,87)
and the incompressibility condition (3.1) becomes
L
g = w Bx,y) + 2 2upy) + 9 2xv) o . (k.12)

1 2 1 1
3(e,8 ) a(e,6°) a(e’,e%)
In subsequent operations we take x and y as independent (Eulerian)

variables instead of the Lagrangian variables 61,92. Then, for example

u = ut+14mx+vuy R (4.13)

where subscripts denote partial differentiation. Alsc, (4.12) reduces to
ux+vy+§=0 » w=¢;=¢=$t+u¢x+vay (h-lh)

and from (4.11) and (2.1) we have

3 .. .
g =- (v, + 00 )e) - (4,488 Je,+e; . (4.15)
; We next use the expressions (4.6) and (4.9) in the energy equation (3.8).

*
For this purpose we suppose that @ 1is a region bounded by the surfaces (L.l)
and (k.2), i.e., by 8 = ¥ %, and by a closed cylinder defined by an equation of
the form

| £(e,8) =0 . (4.16)

Let an arbitrary material surface 9=0 occupy a region P at time t and let 3f

* *
denote the closed boundary of @. F‘urther? let apn refer to a part of P

¥*
specified by the cylindrical surface (4.16) so that BP:= P =3P on §=0, and
™ * * * ¥*
let apn =3P - apn stand for the complement of an in 3P .
Now, with the help of (4.3), (4.8) and (4.15), at the surface =4 we have
» * 1,2
P nda =p g%g3de de

(b -a)(-8,e) - B ey +e;) ;—?—%‘% de'ae® et g-1 (4.17)
’

§The terminoclogy and related development leading to (4.19) are similar to those
employed in shell theory derived from the three-dimeisional equations; see,
in this connection, section 11 of Naghdi (1972).
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and similarly at the bed of the stream

o = v _lx,y) 1. 2 1 4.18
p nda =-p(-a e a eyt ey ol dg°de” at §=5 . (k.18)

s

D

’

Alsc, the integral on the right-hand side of (3.%) when evelusted over the

surfece L.16) becomes

n

" x » * .
I PV .nda I p pde{u dy-v dx,

o ~ it
i BF%
= I p(u dy -v dx) (4.19)
1 3
where
f‘% -
p=¢ p de . (4.20)

|
1]
With the help of (4.6), (4.9) and (4.17) to (L.20), the energy equation

(3.8) reduces to

a ° *» 2 2 2 1 2 =
Tl 2o p(uS+vE +s5 W +2g y)dx dy

P
=-J"Pupo-q><-axu-ayv+x+§w)-'ﬁ(-axu-ayvu-%wnax ay
- [ pluay-vax) . (4.21)
vapP
This equation, together with (4.8), (4.10) and (4.1k), form the besic equations
of the present theory. It should perheps be emphasized that our develupment
depends only on one assumption (4.6), along with two accepted exact equations
(3.1) and (3.8) from three-dimensional theory. The resulting equations are,
however, not yet sufficient for a complete theory. We now show how additicnsal
equations may be deduced from (4.21) using only invariance considerations under
superposed rigid body motions which are well established in the three-
dimencsional theory.
Using & fixed frame of reference, we assume that a superposed rigid vcdy

translationsl velocity is imposed on the fluid (and its boundaries). Thus we

13.
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* *
assume that x,y,v,v are replaced by x, y, t+‘k3t, v +-kiei, where ki are
constants (and a,f are replaced by a*-kBt, 34-k3t). We assume that this rigid

*
vody motion does not affect the pressure p. Then, from (4.21), we have

dd—t Jppé p~¢[(u+k} )2+ (v+k2)2+ (‘A+k3)2+li2- w2+2g’(¢+k3t)]dx dy
—-‘E‘PHPC‘Q){-BX(‘A'*RI\)—By(v+k2)+)\+k3+%w}
- 5{-ax(u"kl) -ay(v+k2)+k+k3-% w}] dx dy
- ‘lnap p{(u+kl)dy- (v+k2)d.x} (L.22)

for all arbitrary constant values of k, , the remaining quantities in (L.22)

veing independent of k,. From (4.21) and (L.22) it followe that

d r » " -
ey p pudxdy ="' [(p_-q)B, -p a ldx dy- pdy , (4.2k)
dtup JP 0 X X ap
dd_tj‘ D*¢vd.xdy=Jr[(po-q)B -Ea]d.x dy+I p d&x , (4.25)
e e oy 2P
a ° * * r -—
rral pp(A+g t)ix dy = - ! (p,-a-pldx dy . (L.26)
P z

The local field equations can now be obtained from (4.23) to (L.2€¢) under
suitable smoothness assumptions. The first of these, which follows from

(4.23), is given by

é+¢(ux+vy) =0 , (k.27)

and is identical with (4.14). The remaining three, deduced from (L.2L; to

(4.26), are

’Although this is the key invariance assumption it is one which is widely
accepted.

1k,



|
o #u=-p +(p, -a)B, ~Dar,_ (k.28)
* - -—
pav=-p +(p -a)p -Pa (k.29)
o*¢i=-o*g*¢-po+q+5 . (4.30)

With the help of (L4.27) to (4.30) the local equation corresponding to (4.21)

reduces to

*

1 .
lzp‘bw"

s o

- 3(p -a+p) . (4.31)

The derived field equations (4.27) to (4.31) correspond to consequences of

the conservation laws after the latter have been suitably integrested with respect

3

to ”: the equation (k.27) is a consequence of the integrated conservation of

mass (4.23), the three equations (4.28) to (4.30) are consequences of linear
momentum in the x,y,z-directions associated with the velocity components

u,v,\ of Zf in (A.9)l which are independent of the vertical coordinate z, and
(4.31) represents consequence of linear momentum in the z-direction associated
with the part of the velocity !f which is linear in z. The field equations (4.1k4)
and (4.28) to (4.31), together with (2+.8)l with o specified, as well as the rela-
! tions (h.8)2 and (4.10), are the basic equations from which we determine the

7 functions u,v,¢,¢,p,§. For unidirectional wave propagstion in the x-direction,

these equations reduce to those obtained previously (Green and Naghdi 1976) by

a direct two-dimensional approach.
In the derivation of the field equations (4.28) to (4.31), we have not
imposed any condition that the fluid motion should be irrotational. 1In other

existing developments of the water wave equations (from three-dimensional theory),

this condition can only be satisfied approximately. Here the velocity field
(4.9) rules out simple shear flows in the (x,z) and the (y,z) planes but does

not demand that the vorticity components in the (x,y) plane be zeroc. On the

150




other hand, consistent with (4.9), the vorticity component perpendicular to the
(x,y) plane could be zero so that the flow could be irrotational in this plane

if we impose the sdditional condition

u -v. =0 . (k.32)

Before closing this section, we make one other observation concerning a
first integral of equations (4.28) to (4.31) when the motion is steady and not

necessarily irrotational. Let

2,1 .2

2 i vl 4y tisw v2g ) +D/P . (4.33)

*
H=4%p (u

Then, with the help of (4.8), (4.10) and (4.27) to (L.31), it may be verified

that
k
'; F pH = ¢(Ht+uHx+va) = pt+(q-po)¢t . (b.34)

Alternatively, the equation (U4.34) may be deduced directly from the energy

equation (4.21). When the motion is steady and u,v,\,w,p,q,0,y are functions
only of x,y, then Py and ¢t vanish and we have a Bernouli type first integral

of the equations of motion of the form

N O e N IR RiCE LR (4.35)

I
|
|
i
I where F is an arbitrary function of 91,92. When the motion is unidirectional
! with v=0 and H a function only of x, then (4.35) reduces to

| H(x) = 3 p*(u2+12+512- W +2g §) +p/¢ = constant . (4.36)
i
!
|
16.




5. Linearized equations

Here we obtain the linearized version of the differentisl equations derived
in the previous section in which the various results are linearized sbout an
equilibrium position. We sct p0=O in (4.2%) to (4.30) without loss in generality,
and limit the discussion to flows in the x-direction only so that, from (L.8),

(4.10) and (4.27) to (4.31), we have

uax=)\-%w ’ w=¢t+u¢x ’

TEH
p-a=9p , qu R (5.1)
‘TP
¢t+(u¢)x=0

and
* —
p:rl[utJruuxJ =EPL RSP,
* i * * -
po(h *tur) =-pgd+ta+p , (5.2)

&0 0Pw +w ) =p-20(-a) .
In these equations a=a(x) and all other variables depend on x,t. If the fluid
is in equilibrium with a level surface g= B, @ constant, then
u=A=w=q=0 , ¢ = h(x) ,c:r(x)+h(x)=ao R
P=pgh , p=bpegn . 5-3)

Following usual procedures we set
- * K - * * 2
9 =h+e’ , B=p,+B , P=pgh+p’ , p=tpgh+p’ (5.4)

and, after substitution in (5.1) and (5.2), we retain only terms linear in

¢',8'sD' 5P’ su,\,w and their space and time derivatives. Hence, we obtain

— - Z - - = ’ \
w=-hu o, A %hux uh, , a=To (5.5)

and

17.




! -
¢+ (hu)x =0 ,
“hu, =-p'+p'h
Py Py x
(5.6)
p*hk =5'-p*g*¢’+'m’
t x
l *2 — * X
Sphw =p -k +i e -Leene’ .
Elimination of p’,p’,@ ',A,w yields an equation for u of the form
1 - .12
(1-3nhy Juge =hhu, =3 0 0
* \ *
=g () - (T/p )(hu) - (5.7)

When the equilibrium depth h of the stream is éonstant this equation reduces

to one given previously (Green et al. 197L4). We also observe that if the equa-

tions obtained by Peregrine (1967) for waves on water of variable depth are
§ linearized about an equilibrium state, then we recover the same equation as
- (5.7) in the absence of surface tension.
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