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Abstract

The purpose of this note is to provide an alternative proof of two

transformation formulas contiguous to that of Kummer’s second trans-

formation for the confluent hypergeometric function 1F1 using a differ-

ential equation approach.
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1 Introduction

Kummer’s second transformation [2] for the confluent hypergeometric function

1F1 we consider here is given by

e−z
1F1

[

a
2a

; 2z
]

= 0F1

[

−−

a+ 1

2

; 1

4
z2

]

, (1.1)
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valid when 2a is neither zero nor a negative integer. In the standard text of
Rainville [5, p. 126], the transformation (1.1) was derived using the differential
equation satisfied by 1F1. Bailey [1] re-derived this result by employing the
Gauss second summation theorem and in 1998, Rathie and Choi [6] obtained
the result by employing the classical Gauss summation theorem.

In 1995, Rathie and Nagar [7] established two transformation formulas con-
tiguous to (1.1) using contiguous forms of Gauss’ second summation theorem
[3]. These are given in the following theorem.

Theorem 1. If 2a± 1 is neither zero or a negative integer, respectively, then

e−z
1F1

[

a
2a+ 1

; 2z
]

= 0F1

[

−−

a+ 1

2

; 1

4
z2

]

−
z

2a+ 1
0F1

[

−−

a+ 3

2

; 1

4
z2

]

(1.2)

and

e−z
1F1

[

a
2a− 1

; 2z
]

= 0F1

[

−−

a− 1

2

; 1

4
z2

]

+
z

2a− 1
0F1

[

−−

a+ 1

2

; 1

4
z2

]

. (1.3)

Here we give an alternative demonstration of the contiguous transformations
(1.2) and (1.3) by adopting the differential equation approach employed by
Rainville. It is worth remarking that these transformations cannot be derived
completely by the hypergeometric differential equation, but that a related
second-order differential equation has to be solved by the standard Frobenius
method.

Before we give our alternative derivation of (1.2) and (1.3) in Section 3, we
first present an outline of the arguments employed by Rainville [5, p. 126] to
establish the Kummer transformation (1.1).

2 Derivation of (1.1) by Rainville’s method

The confluent hypergeometric function 1F1(a; b; x) satisfies the differential equa-
tion [4, Eq. (13.2.1)]

x
d2w

dx2
+ (b− x)

dw

dx
− aw = 0. (2.1)

If we put b = 2a, make the change of variable x → 2z and let w = ezy, then
(2.1) becomes

z
d2y

dz2
+ 2a

dy

dz
− zy = 0, (2.2)
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of which one solution is (when 2a 6= 0,−1,−2, . . .)

y = e−z
1F1

[

a
2a

; 2z
]

. (2.3)

The differential equation (2.2) is invariant under the change of variable
from z to −z. Hence, if we introduce the new independent variable σ = z2/4
the equation describing y becomes

σ2
d2y

dσ2
+ (a+ 1

2
)σ

dy

dσ
− σy =

{

σ
d

dσ

(

σ
d

dσ
+ a− 1

2

)

− σ
}

y = 0, (2.4)

which is the differential equation for the 0F1 function. Two linearly indepen-
dent solutions are given by [4, §16.8(ii)] 0F1(−; a + 1

2
; σ) and σ

1

2
−a

0F1(−; 3

2
−

a; σ), so that if a + 1

2
is non-integral (that is, if 2a is not an odd integer)

y = A 0F1

[

−−

a+ 1

2

; 1

4
z2

]

+Bz1−2a
0F1

[

−−
3

2
− a

; 1

4
z2

]

,

where A and B are arbitrary constants.
But the differential equation (2.4) also has the solution (2.3). Hence we

must have

e−z
1F1

[

a
2a

; 2z
]

= A 0F1

[

−−

a + 1

2

; 1
4
z2

]

+Bz1−2a
0F1

[

−−
3

2
− a

; 1
4
z2

]

.

The left-hand side and the first member on the right-hand side of the above
expression are both analytic at z = 0, but the remaining term is not due to
the presence of the factor z1−2a. Hence B = 0 and by considering the terms
at z = 0 it is easily seen that A = 1. When 2a is an odd positive integer, the
second solution in (2.4) involves a log z term, and the same argument shows
that A = 1, B = 0. This leads to the required transformation given in (1.1).

3 An alternative derivation of Theorem 1

We first establish the contiguous transformation (1.2). With b = 2a + 1 in
(2.1) and the change of variable x → 2z we obtain, with w = ezy,

z
d2y

dz2
+ (2a+ 1)

dy

dz
+ (1− z)y = 0, (3.1)

of which a solution is consequently (when 2a+ 1 6= 0,−1,−2, . . .)

y = e−z
1F1

[

a
2a + 1

; 2z
]

.
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The differential equation (3.1) is not invariant under the change of variable z
to −z, and so we cannot reduce it to the differential equation for 0F1.

Inspection of (3.1) shows that the point z = 0 is a regular singular point.
Accordingly, we seek two linearly independent solutions of (3.1) by the Frobe-
nius method and let

y = zλ
∞
∑

n=0

cnz
n (c0 6= 0), (3.2)

where λ is the indicial exponent. Substitution of this form for y in (3.1) then
leads after a little simplification to

∞
∑

n=0

cnz
n−1(n+ λ)(n+ λ+ 2a) +

∞
∑

n=0

cnz
n(1− z) = 0.

The coefficient of z−1 must vanish to yield the indicial equation

λ(λ+ 2a) = 0,

so that λ = 0 and λ = −2a. Equating the coefficients of zn for non-negative
integer n, we obtain

c1 =
−c0

(1 + λ)(1 + λ+ 2a)
, cn =

cn−2 − cn−1

(n+ λ)(n+ λ+ 2a)
(n ≥ 2). (3.3)

With the choice λ = 0, we have

c1 =
−c0

(2a+ 1)
, cn =

cn−2 − cn−1

n(n+ 2a)
(n ≥ 2).

Solution of this three-term recurrence with the help of Mathematica generates
the values given by

c2n =
2−2nc0

n! (a + 1

2
)n
, c2n+1 =

2−2nc1
n! (a+ 3

2
)n
,

the general values being established by induction. Substitution in (3.2) then
yields one solution of (3.1) given by

y1 = c0

{

0F1

[

−−

a+ 1

2

; 1
4
z2

]

−
z

2a+ 1
0F1

[

−−

a+ 3

2

; 1

4
z2

]

}

.

A second solution is obtained by taking λ = −2a in (3.3) to yield

c1 =
c0

(2a− 1)
, cn =

cn−2 − cn−1

n(n− 2a)
(n ≥ 2).
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This generates the values (provided 2a 6= 1, 2, . . .)

c2n =
2−2nc0

n! (1
2
− a)n

, c2n+1 =
2−2nc1

n! (3
2
− a)n

.

A second solution of (3.1) is therefore given by

y2 = c0z
−2a

{

0F1

[

−−
1

2
− a

; 1

4
z2

]

−
z

1− 2a
0F1

[

−−
3

2
− a

; 1
4
z2

]

}

.

It then follows, provided 2a+ 1 is neither zero nor a negative integer, that
there exist constants A and B such that

e−z
0F1

[

a
2a+ 1

; 2z
]

= Ay1 +By2. (3.4)

Now the left-hand side of (3.4) and the solution y1 are both analytic at z = 0,
whereas the solution y2 is not analytic at z = 0 due to the presence of the
factor z−2a. Hence B = 0 and, by putting z = 0 in (3.4), it is easily seen that
A = 1. When 2a = 1, 2, . . . , the indicial exponents differ by an integer and y2
may involve a term in log z; we again have A = 1, B = 0. This then yields
the result stated in (1.2).

A similar procedure can be employed to establish the contiguous trans-
formation in (1.3). Putting b = 2a − 1 in (2.1) and carrying out the same
sequence of transformations, we obtain the differential equation satisfied by
(when 2a− 1 6= 0,−1,−2, . . .)

y = e−z
0F1

[

a
2a− 1

; 2z
]

(3.5)

in the form

z
d2y

dz2
+ (2a− 1)

dy

dz
− (1 + z)y = 0. (3.6)

Substitution of (3.2) then leads to the three-term recurrence for the coefficients
cn

c1 =
c0

(1 + λ)(λ+ 2a− 1)
, cn =

cn−2 + cn−1

(n + λ)(n+ λ+ 2a− 2)
(n ≥ 2),

subject to the indicial equation λ(λ + 2a − 2) = 0. The choice of indicial
exponent λ = 0 yields the values of the coefficients given by

c2n =
2−2nc0

n! (a− 1

2
)n
, c2n+1 =

2−2nc1
n! (a+ 1

2
)n
,
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with c1 = c0/(2a− 1), and the choice λ = 2− 2a yields

c2n =
2−2nc0

n! (3
2
− a)n

, c2n+1 =
2−2nc1

n! (5
2
− a)n

,

with c1 = c0/(3− 2a).
Consequently two solutions of the differential equation (3.6) are

y1 = c0

{

0F1

[

−−

a− 1

2

; 1

4
z2

]

+
z

2a− 1
0F1

[

−−

a+ 1

2

; 1

4
z2

]

}

and, provided 2a 6= 2, 3, . . . ,

y2 = c0z
2−2a

{

0F1

[

−−
3

2
− a

; 1

4
z2

]

+
z

3− 2a
0F1

[

−−
5

2
− a

; 1

4
z2

]

}

.

It then follows, provided 2a − 1 is neither zero nor a negative integer, that
there exist constants A and B such that the function in (3.5) can be expressed
as Ay1 + By2. When 2a = 2, 3, . . . , the solution y2 may involve a log z term.
For the same reasons as in the previous case we find A = 1 and B = 0, thereby
establishing (1.3).
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