
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220065386

A derivation system and compositional logic for security protocols

Article in Journal of Computer Security · August 2005

DOI: 10.3233/JCS-2005-13304 · Source: DBLP

CITATIONS

143
READS

209

4 authors, including:

Ante Derek

University of Zagreb

21 PUBLICATIONS 1,006 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dusko Pavlovic on 13 November 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220065386_A_derivation_system_and_compositional_logic_for_security_protocols?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220065386_A_derivation_system_and_compositional_logic_for_security_protocols?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ante-Derek?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ante-Derek?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Zagreb?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ante-Derek?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dusko_Pavlovic?enrichId=rgreq-fc97b3d24e6524f6297699bef3cb303c-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA2NTM4NjtBUzoxNjI5NDc2NjE4MzYyODhAMTQxNTg2MTE1ODc3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Computer Security 13 (2005) 423–482 423
IOS Press

A derivation system and compositional logic
for security protocols

Anupam Datta a,∗, Ante Derek a, John C. Mitchell a and Dusko Pavlovic b

a Computer Science Department, Stanford University, Stanford, CA 94305-9045, USA
E-mail: {danupam,aderek,jcm}@cs.stanford.edu
b Kestrel Institute, Palo Alto, CA 94304, USA
E-mail: dusko@kestrel.edu

Many authentication and key exchange protocols are built using an accepted set of standard concepts
such as Diffie–Hellman key exchange, nonces to avoid replay, certificates from an accepted authority,
and encrypted or signed messages. We propose a general framework for deriving security protocols from
simple components, using composition, refinements, and transformations. As a case study, we examine
the structure of a family of key exchange protocols that includes Station-To-Station (STS), ISO-9798-3,
Just Fast Keying (JFK), IKE and related protocols, deriving all members of the family from two basic
protocols. In order to associate formal proofs with protocol derivations, we extend our previous security
protocol logic with preconditions, temporal assertions, composition rules, and several other improve-
ments. Using the logic, which we prove is sound with respect to the standard symbolic model of protocol
execution and attack (the “Dolev–Yao model”), the security properties of the standard signature based
Challenge-Response protocol and the Diffie–Hellman key exchange protocol are established. The ISO-
9798-3 protocol is then proved correct by composing the correctness proofs of these two simple protocols.
Although our current formal logic is not sufficient to modularly prove security for all of our current pro-
tocol derivations, the derivation system provides a framework for further improvements.

1. Introduction

While many historical authentication and secrecy protocols, such as those cata-
loged by Clark and Jacob [13], may be analyzed independently, modern protocols
often have a number of different subprotocols and interrelated modes. The Internet
Key Exchange (IKE) protocol [27], for example, offers digital signature authentica-
tion, public-key encryption-based authentication, and pre-shared key authentication,
each potentially used in one of several modes (e.g., Main Mode, Aggressive Mode,
Quick Mode, New Group Mode). In both protocol design and protocol analysis, it is
essential to understand a complex protocol in a systematic way, characterizing prop-
erties that are independent of specific modes or options and clearly understanding
the security differences between different options.

*Corresponding author. Tel.: +1 650 723 1658; Fax: +1 650 725 4671.

0926-227X/05/$17.00 2005 – IOS Press and the authors. All rights reserved

424 A. Datta et al. / A derivation system and compositional logic for security protocols

Many researchers and practitioners working in the field of protocol security recog-
nize that common authentication and key exchange protocols are built using an
accepted set of standard concepts. The common building blocks include Diffie–
Hellman key exchange, nonces to avoid replay, certificates from an accepted au-
thority to validate public keys, and encrypted or signed messages that can only be
created or read by identifiable parties. An informal practice of presenting proto-
cols incrementally, starting from simple components and extending them by fea-
tures and functions, is used in [21], with efforts to formalize the practice appearing
in [8]. More recently, Bellare, Canetti and Krawczyk [5], for example, have stud-
ied protocol transformations that add authentication to a protocol scheme. However,
there is no comprehensive theory about how each standard protocol part works,
and how properties of a compound protocol can be derived from properties of its
parts.

In this paper, we describe a methodology for deriving protocols from components,
and an associated logic for reasoning about components and their composition. As
a step toward a general theory, we examine the structure of a family of key ex-
change protocols that includes Station-To-Station (STS), ISO-9798-3, Just Fast Key-
ing (JFK) and related protocols, showing how all the protocols in this family may
be derived systematically. The protocol derivation system for this class of protocols
consists of two base protocol components, a composition operation, three transfor-
mations, and seven refinements. The two protocol components are Diffie–Hellman
key exchange [20] and a two-message signature-based challenge and response au-
thentication protocol. The refinements (which add data to message fields) include
extending messages by certificates in order to discharge the assumption that each
participant knows the other’s public key. The transformations include moving data
from a later message to an earlier one, and reordering messages using a denial-of-
service prevention “cookie” technique. While additional refinements and transforma-
tions may be needed to derive other kinds of protocols, we have found in subsequent
work [17] that the relatively small set described in this paper covers some interesting
ground.

Our long-term goal is to develop a logic in which protocol correctness proofs fol-
low the derivation steps. With each protocol component, we hope to prove properties
that will be sufficient to reason about useful protocols built from that component.
When components are composed, composition proof rules presented in this paper
allow us to conclude properties of the composition. Although we do not present a
systematic way of reasoning about a general class of refinements and transforma-
tions, we hope the logic originally presented in [23,24] and further developed in this
paper can be extended to modular proofs that follow the structure of many protocol
derivations. With this goal in mind, we extend our previous security protocol logic
in several ways, prove the logic sound with respect to the standard symbolic model
of protocol execution and attack (the “Dolev–Yao model”), and use the formal logic
to establish security properties of protocols involving the standard signature based

A. Datta et al. / A derivation system and compositional logic for security protocols 425

Challenge-Response protocol and the Diffie–Hellman key exchange protocol are es-
tablished.

The logic presented in [23,24] uses assertions of the form [actions]Aφ, which
states that after principal A performs the indicated actions, the formula φ will be
true, regardless of actions of any malicious attacker. By proving such assertions about
each role of a protocol, security properties of the protocol may be established. We ex-
tend the logic of [23,24] with preconditions, temporal operators, the ability to reason
more accurately about multiple roles executed by the same principal, asynchronous
communication through buffers, signatures, and Diffie–Hellman exponentiation. The
main reason for preconditions is to allow reasoning about protocol composition, as
described in the next paragraph. Temporal operators allow us to express authenti-
cation properties, in the form of matching conversations. For example, a postcon-
dition of the form ActionsInOrder(Send(X , . . .), Receive(Y , . . .), Send(Y , . . .),
Receive(X , . . .), expressible using temporal operator E– referring to the past and �
referring to the previous state, says that actions of principals X and Y occurred in
a certain order. If principal X can be sure of this order, then X is assured that Y
saw certain actions occur in a certain order. The addition of signatures and Diffie–
Hellman exponentiation extend the range of applicability of the logic.

Conceptually, reasoning about protocol composition involves two basic problems.
The first may be called additive combination – we wish to combine protocol com-
ponents in a way that accumulates security properties. The second basic problem is
ensuring nondestructive combination. If two mechanisms are combined, each serv-
ing a separate purpose, then it is important to be sure that neither one degrades the
security properties of the other. An interesting illustration of the significance of non-
destructive combination is the construction in [30], which shows that for every secu-
rity protocol there is another protocol that interacts with it insecurely.

Intuitively, additive combination is captured in the logic by a before-after formal-
ism for reasoning about steps in protocol execution. Suppose P is a sequence of
protocol steps, and φ and ψ are formulas asserting secrecy of some data, past actions
of other principals, or other facts about a run of a protocol. The triple φ[P]Aψ means
that if φ is true before principal A does actions P , then ψ will be true afterwards. For
example, the precondition might assert that A knows B’s public key, the actions P
allow A to receive a signed message and verify B’s signature, and the postcondition
may say that B sent the signed message that A received. The importance of before-
after assertions is that we can combine assertions about individual protocol steps to
derive properties of a sequence of steps: if φ[P]Aψ and ψ[P ′]Aθ, then φ[PP ′]Aθ.
For example, an assertion assuming that keys have been successfully distributed can
be combined with steps that do key distribution to prove properties of a protocol that
distributes keys and uses them.

Nondestructive combination is useful for reasoning about running older versions
of a protocol concurrently with current versions (e.g., SSL 2.0 and SSL 3.0) and for
verifying protocols like IKE [27] which contain a large number of sub-protocols.

426 A. Datta et al. / A derivation system and compositional logic for security protocols

Within the logic, this notion is captured using invariance assertions. The central as-
sertion in our reasoning system, Γ � φ[P]Aψ, says that in any protocol satisfying
the invariant Γ, the before-after assertion φ[P]Aψ holds in any run (regardless of
any actions by any dishonest attacker). Typically, our invariants are statements about
principals that follow the rules of a protocol, as are the final conclusions. For exam-
ple, an invariant may state that every honest principal maintains secrecy of its keys,
where “honest” means simply that the principal only performs actions that are given
by the protocol. A conclusion in such a protocol may be that if Bob is honest (so no
one else knows his key), then after Alice sends and receives certain messages, Alice
knows that she has communicated with Bob. Under the specific conditions described
in this paper, nondestructive combination occurs when two protocols are combined
and neither violates the invariants of the other.

The rest of the paper is organized as follows. Section 2 describes the main ideas
underlying the protocol derivation system. In Section 3, we present the derivations
of the STS family of key exchange protocols. Section 4 discusses the logic, us-
ing which we prove security properties of protocols, and methods for formalizing
protocol composition. To illustrate the use of these methods, the ISO-9798-3 pro-
tocol is formally derived from two component subprotocols based on the Diffie–
Hellman key exchange protocol and the signature-based Challenge-Response proto-
col. Section 5 surveys previous work on protocol derivation and composition. Finally,
Section 6 presents our conclusions and propose some interesting themes for future
work.

2. Derivation framework

Our framework for deriving security protocols consists of a set of basic building
blocks called components and a set of operations for constructing new protocols from
old ones. These operations may be divided into three different types: composition,
refinement and transformation.

A component is a basic protocol step or steps, used as a building block for larger
protocols. Since the present paper uses key exchange protocols as a worked exam-
ple, we take Diffie–Hellman key exchange as a basic component. A composition
operation combines two protocols. Parallel composition and sequential composition
with term substitution are two examples of composition operations. A refinement op-
eration acts on message components of a single protocol. For example, replacing a
plaintext nonce by an encrypted nonce is a refinement. A refinement does not change
the number of messages or the basic structure of a protocol. A transformation oper-
ates on a single protocol, and may modify several steps of a protocol by moving data
from one message to another, combining steps, or inserting one or more additional
steps. For example, moving data from one protocol message to an earlier message
(between the same parties) is a transformation.

A. Datta et al. / A derivation system and compositional logic for security protocols 427

In principle, there may be many possible protocol refinements and transforma-
tions. Our goal in this paper is to show how protocol composition, refinement, and
transformation may be used by working out some examples and expanding our for-
mal proof system. In the next section, we examine the structure of a set of key ex-
change protocols (which we call the STS family) to illustrate the use of this method.
Among the derived protocols are STS [21], the standard signature-based challenge-
response protocol [46], JFKi, JFKr, ISO-9798-3 [2], and the core of the IKE proto-
col [27].

3. Derivation of the STS family

The STS family includes protocols like IKE which have been deployed on the
Internet and JFKi and JFKr which were considered by IETF as replacements for
IKE. The security properties relevant to the STS family of protocols include key
secrecy, mutual authentication, denial-of-service protection, identity protection and
computational efficiency. Computational efficiency is achieved by reusing Diffie–
Hellman exponentials across multiple sessions.

We begin by describing the basic components, and the composition, refinement
and transformation operations used in deriving the STS family of key exchange pro-
tocols. The components and operations are presented tersely, with additional intu-
ition and explanation given where they are used.

In informally describing the derivation system, we use a standard messages-and-
arrows notation for protocol steps. Experience suggests that this simple notation is
useful for conveying some of the central ideas. However, the reader should bear in
mind that, in addition, a protocol involves initial conditions, communication steps,
and internal actions. When we derive a protocol, the derivation step may act on the
initial conditions, network messages, or internal actions.

3.1. Components

A protocol component consists of a set of roles (e.g., initiator, responder, server),
where each role has a sequence of inputs, outputs and protocol actions. Intuitively, a
principal executing a role of the protocol starts in a state where it knows the inputs
(e.g., its private signing key), executes the prescribed actions (e.g., generates nonces,
sends or receives messages) and then produces the outputs (e.g., a shared key if the
protocol is a key exchange protocol). In this derivation, we use Diffie–Hellman key
exchange and a signature-based authenticator as basic components.

Diffie–Hellman component, C1
The Diffie–Hellman protocol [20] provides a way for two parties to set up a shared

key (gir) which a passive attacker cannot recover. There is no authentication guar-
antee: the secret is shared between two parties, but neither can be sure of the iden-
tity of the other. Our component C1 contains only the internal computation steps

428 A. Datta et al. / A derivation system and compositional logic for security protocols

of the Diffie–Hellman protocol. The initiator and responder role actions are given
below.

I: generates random value i and computes gi (for previously agreed base b)
R: generates random value r and computes gr (for previously agreed base b)

In this component no messages are sent; the exponentials are considered to be the
output of this protocol fragment.

Signature-based authenticator, C2
The signature-based challenge-response protocol shown below is a standard mech-

anism for one-way authentication (see Section 10.3.3 of [46])

I −→ R : m
R −→ I : SIGR(m)

It is assumed that m is a fresh value or nonce and that the initiator, I , possesses the
public key certificate of responder, R, and can therefore verify the signature.

3.2. Composition

The composition operation used is sequential composition of two protocol compo-
nents with term substitution. The precise definition of this operation is in Section 4.4.
Intuitively, the roles of the composed protocol have the following structure: the input
sequence is the same as that of the first component and the output is the same as that
of the second component; the actions are obtained by concatenating the actions of
the first component with those of the second (sequential composition) with an appro-
priate term substitution – the outputs of the first component are substituted for the
inputs of the second.

3.3. Refinements

While defining refinements, we use the notation a ⇒ b to indicate that some
instance of message component a in the protocol should be replaced by b.

Refinement R1. SIGX (m) ⇒ EK (SIGX (m)), where K is a key shared with the
peer. The purpose of this refinement is to provide identity protection against passive
attackers. In all the protocols that we consider in this paper, everything signed is
public. So, an attacker can verify guesses at identities of a principal if the signature
is not encrypted.

Refinement R2. SIGX (m) ⇒ SIGX (HMACK (m, IDX)), where K is a key
shared with the peer. While the signature by itself proves that this term was gen-
erated by X , the keyed hash in addition proves that X possesses the key K. This
additional property is crucial for mutual authentication guaranteed by IKE. It is fur-
ther elaborated in the derivation below.

A. Datta et al. / A derivation system and compositional logic for security protocols 429

Refinement R3. SIGX (m) ⇒ SIGX (m), HMACK (m, IDX), where K is a key
shared with the peer. This refinement serves the same purpose as R2 and is used to
the derive the core of the JFKr protocol.

Refinement R4. SIGX (m) ⇒ SIGX (m, IDY), where Y is the peer. It is assumed
that X possesses the requisite identifying information for Y , e.g., Y ′s public key
certificate, before the protocol is executed. This assumption can be discharged if
X receives Y ′s identity in an earlier message of the protocol. In public-key based
challenge-response protocols, the authenticator should identify both the sender and
the intended recipient. Otherwise, the protocol is susceptible to a person-in-the-
middle attack. Here, the signature identifies the sender and the identity inside the sig-
nature identifies the intended recipient. In an encryption-based challenge-response
protocol (e.g., Needham–Schroeder [53]), since the public encryption key identifies
the intended recipient, the sender’s identity needs to be included inside the encryp-
tion. The original protocol did not do so, resulting in the property discovered nearly
twenty years later by Lowe [33].

Refinement R5. gx ⇒ gx, nx, where nx is a fresh value. In many Diffie–Hellman
based key exchange protocols, the Diffie–Hellman exponentials serve two purposes:
(a) they provide the material to derive secret keys; (b) they provide the freshness
guarantee for runs required in order to prevent replay attacks. However, Diffie–
Hellman exponentials are expensive to compute. This refinement makes participants
exchange nonces in addition to Diffie–Hellman exponentials, thereby offloading
function (b) onto the nonces. The use of nonces enables the reuse of exponentials
across multiple sessions resulting in a more efficient protocol. On the other hand,
when exponents are reused, perfect forward secrecy is lost. This tradeoff is offered
both by JFKi and JFKr.

Refinement R6. SIGX (m) ⇒ SIGX (m), IDX , where IDX denotes the public
key certificate of X . Since the other party may not possess the signature-verification
key, it is necessary to include the certificate along with the signature. Unlike refine-
ments R1 and R5 above, which add properties to a protocol (identity protection and
efficiency respectively), this is an example of a refinement which discharges the as-
sumption that the principals possess each other’s public key certificates before the
session.

Refinement R7. EK (m) ⇒ EK (m), HMACK′ (role, EK (m)), where K and K ′

are keys shared with the peer and role identifies the protocol role in which this term
was produced (initiator or responder). This refinement is used in the derivation of
JFKr. Here, each party includes a keyed hash of the encrypted signature and its own
role (i.e., initiator or responder) in addition to the signature. The hash serves the same
purpose as in refinements R2, R3. The protocol role is included inside the hash to
prevent reflection attacks.

430 A. Datta et al. / A derivation system and compositional logic for security protocols

3.4. Transformations

Message component move, T1
This transformation moves a top-level field t of a message m to an earlier mes-

sage m′, where m and m′ have the same sender and receiver, and if t does not contain
any data freshly generated or received between the two messages. One reason for us-
ing this transformation is to reduce the total number of messages in the protocol.

Binding, T2
Binding transformations generally add information from one part of a protocol

to another in order to “bind” the two parts in some meaningful way. The specific
instance of this general concept that we use in this paper adds a nonce from an earlier
message into the signed portion of a later message, as illustrated in Fig. 1.

We can understand the value of this transformation by considering the signature-
based authenticator, C2, described above. Protocol C2 provides one-sided authentica-
tion: after executing the protocol, I is assured that the second message was generated
by R in response to the first message. However, R does not know the identity of I .
Since the goal of a mutual authentication protocol is to provide the authentication
guarantee to both parties, it seems likely that we can construct a mutual authentica-
tion protocol from two instances (executed in opposite directions) of C2. However,
the sequential composition of two runs of C2 does not quite do the job, since neither
party can be sure that the other participated in one of the runs. If we take the protocol
obtained by sequential composition of two instances of C2, apply transformation T1
on nonce n to obtain the protocol on the left side of Fig. 1, and then apply the binding
transformation to obtain the one on the right, the resulting protocol with both nonces
inside the signatures ensures that m and n belong to the same session.

We note, however, that the protocol on the right side of Fig. 1 does not guarantee
mutual authentication in the conventional sense. Specifically, after I completes a ses-
sion with R, initiator I cannot be sure that R knows she has completed the same ses-
sion with I . The stronger guarantee may be achieved by including the peer’s identity
inside the signatures, as discussed further in Section 3.5. Also, note that our formal
model does not allow type confusion attacks, which is essential for the soundness of
this transformation.

Cookie, T3
The purpose of the cookie transformation is to make a protocol resistant to blind

Denial-of-Service (DoS) attacks. Under certain assumptions, it guarantees that the
responder does not have to create state or perform expensive computation before a

I −→ R : m I −→ R : m
R −→ I : n, SIGR(m) =⇒ R −→ I : n, SIGR(n, m)
I −→ R : SIGI (n) I −→ R : SIGI (m, n)

Fig. 1. An example of a binding transformation.

A. Datta et al. / A derivation system and compositional logic for security protocols 431

I −→ R : m1 I −→ R : m1
R −→ I : m2 R −→ I : mc

2, HMACHKR

(
m1, mc

2

)

I −→ R : m3 =⇒ I −→ R : m3, m1, mc
2,

HMACHKR

(
m1, mc

2

)

. . . R −→ I : me
2

. . .

Fig. 2. An example of a cookie transformation.

round-trip communication is established with the initiator. The cookie transformation
is described in detail in [19], where it is derived using more primitive operations.
Here, we only touch on the main idea.

An example of a cookie transformation is shown in Fig. 2. The protocol on the left
hand side is a standard three message protocol in which after receiving message m1,
R creates state and replies with message m2. Clearly, this protocol is vulnerable to
both computation and memory DoS attacks. Now assume that the components of
message m2 can be divided into two sets: those that can be computed without per-
forming any expensive operation (denoted by mc

2) and those that require expensive
operations (denoted by me

2). In the transformed protocol, upon receiving the first
message, the responder R does not create local state and does not perform any ex-
pensive computation. Instead, R sends an unforgeable token (cookie) back to I which
captures the local state, and resumes the protocol only after the cookie is returned
by I . Here the cookie is a keyed hash of message m1 and mc

2. The key used for this
purpose, HKR, is known only to R. Since expensive computation and creation of
state is deferred till it is established that the initiator can receive messages at the IP
address which it claimed as its own, the resulting protocol is resistant to blind DoS
attacks.

3.5. The derivation

We now use the components and operations of the derivation system defined above
to systematically derive the protocols in the STS family. The complete derivation
graph is shown in Fig. 3. In what follows, we trace the derivations of the various
protocols in the graph. At each derivation step, we explain what property that step
helps achieve.

Protocol P1. Obtained by sequential composition of two symmetric copies of com-
ponent C2.

I −→ R : m
R −→ I : SIGR(m)
R −→ I : n
I −→ R : SIGI (n)

432 A. Datta et al. / A derivation system and compositional logic for security protocols

Fig. 3. Derivation graph of the STS protocol family.

This is the first step in constructing a mutual authentication protocol from two
instances of an unilateral authentication protocol. Here, it is assumed that m and n
are fresh values and that I and R possess each other’s public key certificates and so
can verify the signatures.

Protocol P2. Obtained from protocol P1 by using transformation T1: the compo-
nent of message 3 is moved up to message 2.

I −→ R : m
R −→ I : n, SIGR(m)
I −→ R : SIGI (n)

A. Datta et al. / A derivation system and compositional logic for security protocols 433

This refinement serves to reduce the number of messages in the protocol from 4
to 3.

Protocol P3. Obtained from protocol P2 by using the binding transformation, T2.

I −→ R : m
R −→ I : n, SIGR(n, m)
I −→ R : SIGI (m, n)

After executing this protocol, I is assured that R generated the second message
and moreover that the message was freshly generated. However, as elaborated below,
it would be incorrect of I to conclude that R believes that she was talking to I . The
source of the problem is that the authenticator does not indicate who the message
was meant for. One way to get around it is by applying refinement R4 mentioned in
the previous section. There are other ways too as we will see while proceeding with
the derivation.

The following attack describes a scenario in which R and I hold different beliefs
about who they completed the session with. Attacker M intercepts and then forwards
the first two messages, obtaining nonces m and n. Then M blocks the final mes-
sage from I and substitutes SIGM (m, n). After these steps, I believes nonces m
and n were exchanged with R, but R believes the nonce m was generated by im-
poster M .

Protocol P5. Obtained by composing component C1 with protocol P3.

I −→ R : gi

R −→ I : gr, SIGR

(
gr, gi

)

I −→ R : SIGI

(
gi, gr

)

The nonces m and n were instantiated to Diffie–Hellman exponents gi and gr.
The assumption that m and n are fresh values is still valid as long as i and r are
fresh. This is an example of composition by term substitution. Intuitively, the actions
that any principal carries out in P5 is the sequential composition of the actions that
she carries out in C1 and in P3, except that instead of sending and receiving nonces,
she sends and receives Diffie–Hellman exponentials. That is why it makes sense to
regard term substitution as a composition operation. Protocol P5 possesses all the
properties of protocol P3. In addition, whenever I completes a session supposedly
with R, then if R is honest, then I and R share a secret, gir. Note that since the
person-in-the-middle attack described above is still possible, R may not believe that
she has a shared secret with I .

After protocol P5, four different derivation paths can be seen in Fig. 3. The first
path includes STS, JFKi and JFKr; the second path includes the core of IKE; the third
path includes a protocol that forms the core of IKE-sigma [32] and JFKr; the fourth

434 A. Datta et al. / A derivation system and compositional logic for security protocols

path includes the ISO-9798-3 protocol. We now describe these derivation paths one
by one.

Path 1: STS, JFKi and JFKr

Protocol P6. Obtained by applying refinement R1 to protocol P5, where K is a key
derived from the Diffie–Hellman secret. This is the STS protocol.

I −→ R : gi

R −→ I : gr, EK

(
SIGR(gr , gi)

)

I −→ R : EK

(
SIGI (gi, gr)

)

In addition to the properties of P5, P6 provides identity protection against pas-
sive attackers. As mentioned before, refinement R1 is geared towards adding this
property to the protocol on which it is applied. P6 also provides a mutually authenti-
cated shared secret. The person-in-the-middle attack described while presenting pro-
tocol P3 (and which is applicable to protocol P5 too) does not work anymore since
an attacker cannot compute the encryption key, K, which depends on the Diffie–
Hellman secret, gir, and hence cannot replace I’s signature in the third message by
her own. However, Lowe describes another attack on this protocol in [34]. It is not
quite clear whether that attack breaks mutual authentication.

Protocol P7. Obtained by applying refinement R5 to protocol P6.

I −→ R : gi, ni

R −→ I : gr, nr , EK (SIGR(gr, nr , gi, ni))
I −→ R : EK (SIGI (gi, ni, gr, nr))

P7 retains all the properties of P6 except perfect forward secrecy. As mentioned
while describing refinement R5, the use of fresh nonces enables the reuse of Diffie–
Hellman exponentials across multiple sessions resulting in a more computationally
efficient protocol.

Protocol P8. Obtained by applying refinement R6 to protocol P7.

I −→ R : gi, ni

R −→ I : gr, nr ,
EK (SIGR

(
gr, nr , gi, ni

)
, IDR)

I −→ R : EK (SIGI

(
gi, ni, gr , nr

)
, IDI)

By applying refinement R6 to P7, no new properties are introduced. Instead, the
assumption that the protocol principals possessed each other’s public key certifi-

A. Datta et al. / A derivation system and compositional logic for security protocols 435

cates apriori is discharged by explicitly exchanging certificates alongside the signa-
tures.

Protocol P9. Obtained by applying the cookie transformation, T3, to protocol P8.

I −→ R : gi, ni

R −→ I : gr, nr , HMACHKR

(
gr, nr , gi, ni

)

I −→ R : gi, ni, gr , nr , HMACHKR

(
gr, nr , gi, ni

)
,

EK

(
SIGI (gi, ni, gr , nr

)
, IDI)

R −→ I : EK (SIGR

(
gr, nr , gi, ni

)
, IDR)

The cookie transformation ensures that in addition to the properties of protocol P8,
this protocol also possesses the additional property of resistance to blind Denial-of-
Service attacks.

At this point, we have derived a protocol that provides key secrecy, mutual authen-
tication, identity protection (for initiator against passive attackers and for respon-
der against active attackers), DoS protection and computational efficiency, i.e., all
the stated security properties for this family of protocols. Both JFKi and JFKr are
obtained from P9 and only differ in the form of identity protection that they of-
fer.

Path 1.1: JFKr

Protocol P10. Obtained by applying refinement R7 to P9. This is essentially JFKr.
We ignore some of the message fields (e.g., the security association and the group
identifying information) which can be added using two more refinements.

I −→ R : gi, ni

R −→ I : gr, nr , HMACHKR

(
gr, nr , gi, ni

)

I −→ R : gi, ni, gr , nr , HMACHKR

(
gr, nr , gi, ni

)
,

EK

(
SIGI

(
gi, ni, gr , nr

)
, IDI

)
,

HMACK′
(
I , EK

(
SIGI

(
gi, ni, gr , nr

)
, IDI

))

R −→ I : EK

(
SIGR

(
gr, nr , gi, ni

)
, IDR

)
,

HMACK′
(
R, EK

(
SIGR

(
gr, nr , gi, ni

)
, IDR

))

P10 retains all the properties of P9. The keyed hash of the encrypted signature
appears to serve the same purpose as the encryption of the signature in protocol P6.
It guarantees that since the computation of the keys K and K ′ requires knowledge
of gir, the adversary cannot launch the person-in-the-middle attack described while
presenting protocol P3, since she cannot compute the encrypted signature and the
keyed hash.

436 A. Datta et al. / A derivation system and compositional logic for security protocols

Path 1.2: JFKi

Protocol P11. Obtained by applying transformation T1 to protocol P9.

I −→ R : gi, ni

R −→ I : gr, nr , IDR, HMACHKR

(
gr, nr , gi, ni

)

I −→ R : gi, ni, gr , nr , HMACHKR

(
gr, nr , gi, ni

)
,

EK

(
SIGI

(
gi, ni, gr , nr

)
, IDI

)

R −→ I : EK

(
SIGR

(
gr, nr , gi, ni

))

The message component IDR is moved from message 4 in P9 to message 2 here.
The reason for applying this transformation becomes clear in the next step when the
principals include the peer’s identity inside the signatures. Since I’s signature is part
of the third message of the protocol, she must possess R’s identity before she sends
out that message. This protocol retains all the properties of P9 except for the fact that
the form of identity protection is different. Unlike P9, here the responder’s identity
is not protected. The initiator’s identity is still protected against active attackers.

Protocol P12. Obtained by applying refinement R4 to protocol P11. This is JFKi
(except for one additional signature in the second message which can be added using
one more transformation). As with JFKr, some of the message fields which do not
contribute to the core security property are ignored.

I −→ R : gi, ni

R −→ I : gr, nr , IDR, HMACHKR

(
gr, nr , gi, ni

)

I −→ R : gi, ni, gr , nr , HMACHKR

(
gr, nr , gi, ni

)
,

EK

(
SIGI

(
gi, ni, gr , nr , IDR

)
, IDI

)

R −→ I : EK

(
SIGR

(
gr, nr , gi, ni, IDI

))

The refinement added the peer’s identities inside the signatures. IDR and IDI are
added inside I’s and R’s signatures in message 3 and message 4 respectively. Includ-
ing the identities inside the signatures obviates the attack described while presenting
protocol P3 and Lowe’s attack on STS [34]. P12 retains all the properties of P11.

Path 2: IKE

We now consider the second path starting from protocol P5. This path includes two
protocols closely related to IKE [27].

Protocol P13. Obtained by applying refinement R2 to protocol P5. This protocol
has been described as the core for IKE in [2].

I −→ R : gi

R −→ I : gr, SIGR

(
HMACK

(
gr, gi, IDR

))

I −→ R : SIGI

(
HMACK

(
gi, gr , IDI

))

A. Datta et al. / A derivation system and compositional logic for security protocols 437

Instead of just signing the Diffie–Hellman exponentials, each principal now signs a
keyed hash of the exponentials and their own identities. Since the key used is derived
from the Diffie–Hellman secret, gir, which is known only to I and R, an adversary
cannot launch the person-in-the-middle attack described while presenting P3 and to
which P5 is also susceptible. This protocol therefore provides both mutual authenti-
cation and a shared secret between I and R.

Protocol P14. Obtained by applying refinement R5 to protocol P13.

I −→ R : gi, ni

R −→ I : gr, nr , SIGR

(
HMACK

(
gr, nr , gi, ni, IDR

))

I −→ R : SIGI

(
HMACK

(
gi, ni, gr, nr , IDI

))

This step in the derivation exactly parallels the step in the derivation of JFKi and
JFKr where, in addition to Diffie–Hellman exponentials, nonces where exchanged.
The purpose, as before, is to allow reuse of Diffie–Hellman exponentials across mul-
tiple sessions resulting in a more efficient protocol. The tradeoff is that perfect for-
ward secrecy is lost in the process. Note that the original IKE specification did not
stipulate the reuse of Diffie–Hellman exponentials across sessions.

Path 3: JFKr/SIGMA-core

The third path starting from protocol P5 consists of a protocol that has been described
as the core for JFKr and IKE-SIGMA in [2].

Protocol P15. Obtained by applying refinement R3 to protocol P5.

I −→ R : gi

R −→ I : gr, SIGR

(
gr, gi

)
, HMACK

(
gr, gi, IDR

)

I −→ R : SIGI

(
gi, gr

)
, HMACK

(
gi, gr, IDI

)

This protocol is very similar to protocol P13 and possesses exactly the same prop-
erties (mutual authentication and shared secret). The only difference is that instead of
signing the keyed hash, the principals send the hash separately. Since computation of
the hash requires possession of the Diffie–Hellman secret, gir, which is known only
to I and R, an adversary cannot launch the person-in-the-middle attack described
while presenting P3 and to which P5 is also susceptible.

Path 4: ISO-9798-3

Protocol P16. Obtained by applying refinement R4 to protocol P5. This is the ISO-
9798-3 protocol.

I −→ R : gi

R −→ I : gr, SIGR

(
gr, gi, IDI

)

I −→ R : SIGI

(
gi, gr, IDR

)

438 A. Datta et al. / A derivation system and compositional logic for security protocols

This protocol provides a means for I and R to set up a mutually authenticated
shared secret. The person-in-the-middle attack possible on protocol P5 (and de-
scribed while presenting protocol P3) is not possible in this protocol since the princi-
pals indicate who the authenticated message is intended for by including the identity
of the intended recipient inside the signature. Thus the attacker M cannot forward
the second message of the protocol that R sends to her to I since the signature will
contain IDM and not IDI .

Alternative derivation of the ISO-9798-3 protocol
Now we present a derivation of protocol P16, ISO-9798-3 .

Protocol P4. Obtained by applying refinement R4 to protocol P3. This is the stan-
dard challenge-response protocol.

I −→ R : m
R −→ I : n, SIGR

(
n, m, IDI

)

I −→ R : SIGI

(
m, n, IDR

)

P3 is refined so that the peer’s identity is included inside the signatures. Conse-
quently, the person-in-the-middle attack on P3 doesn’t succeed against P4. P4 there-
fore provides mutual authentication. Protocol P16 is now derived by composing com-
ponent C1 with protocol P4 in exactly the same way that P5 was derived.

3.6. Other issues

3.6.1. Commutativity of rules
As suggested by protocol P16 above, many protocols have several different deriva-

tions, obtained by applying compositions, refinements and transformations in differ-
ent orders. Such commutativities of the derivation steps are usually justified by the
fact that the properties that they realize are logically independent. For instance, the
refinements R1 (encrypting the signatures) and R5 (adjoining nonces to the expo-
nentials) commute, because the corresponding properties – identity protection and
reusability of exponentials – are logically independent.

3.6.2. Generalization of refinements
In this introductory presentation, we often selected the refinements leading to the

desired properties by a shortest path. Building a library of reusable derivations of
a wider family of protocols would justify more general rules. For example, refine-
ment R1 is a special case of a general refinement: m ⇒ EK (m), where m is any
term and K is a shared key. The purpose of this refinement would be to remove the
term m from the set of publicly known values.

A. Datta et al. / A derivation system and compositional logic for security protocols 439

4. Logical formalization

In this section, we present a formalization of a part of the derivation system. We
describe a formal language called cord calculus for representing protocols and a
logic for reasoning about protocol properties. With protocols expressed as cords,
the composition operations of the derivation system become syntactic operations on
sets of cords. To illustrate protocol derivation as a more formal operation, the ISO-
9798-3 protocol is derived by composing a Diffie–Hellman component and a
challenge-response component. This corresponds to the step in the derivation tree
for the STS family where C1 and P4 are composed to yield P16. In continuing work,
we have extended cord calculus and the protocol logic to reason about a class of
refinements and transformations (see [17] for a preliminary report).

Cord calculus and a form of protocol logic were initially developed in [23,24].
While we use cord calculus in essentially its original form, the protocol logic has
been significantly extended and some original concepts have been revised. The most
important extension is a rigorous treatment of protocol composition. Other exten-
sions include preconditions, temporal assertions, and a compositional variant of the
honesty rule. Furthermore, session-ids are incorporated into predicates in order to
distinguish actions executed by a principal in different sessions. An axiomatic treat-
ment of digital signatures and Diffie–Hellman key exchange is also presented.

The rest of this section is organized as follows. Section 4.1 describes cord calculus.
The syntax and semantics of the protocol logic are presented in Section 4.2. The
core proof system is detailed in Section 4.3. The extension of the proof system with
composition rules and the general methodology for proving protocol composition
results is discussed in Section 4.4. Finally, in Section 4.5, we present the formal
modular proof of the ISO-9798-3 protocol.

4.1. Cord calculus

One important part of security analysis involves understanding the way honest
agents running a protocol will respond to messages from a malicious attacker. The
common informal arrows-and-messages notation is generally insufficient, since it
only presents the executions (or traces) of the protocol that occur when there is no
attack. In addition, our protocol logic requires more information about a protocol
than the set of protocol executions obtained from honest and malicious parties; we
need a high-level description of the program executed by each agent performing each
protocol role so that we know not only which actions occur in a run, but why they
occur.

As explained in [23], we used a form of process calculus that we call cords. Cords
form an action structure [47,48,55], based on π-calculus [50], and related to spi-
calculus [1]. The cords formalism is also similar to the approach of the Chemical
Abstract Machine formalism [7], in that the communication actions can be viewed as

440 A. Datta et al. / A derivation system and compositional logic for security protocols

Fig. 4. ISO-9798-3 as arrows-and-messages.

Fig. 5. Cords for ISO-9798-3 .

reactions between “molecules”. Cord calculus serves as a simple “protocol program-
ming language” which supports our Floyd-Hoare style logical annotations, and ver-
ifications in an axiomatic semantics. Although cord calculus is presented in [23,24],
a brief summary is included in Appendix A to make this paper more self-contained.

In this section, we show how protocols are represented in cord calculus with an
example. Figure 4 shows the ISO-9798-3 protocol [29] in the informal arrows-and-
messages notation. The roles of the same protocol are written out as cords in Fig. 5,
writing X̂ and Ŷ for the agents executing cords Init and Resp, respectively. The
arrows between the cords in the figure are meant to show how messages sent by one
cord may be received by the other, but they are not part of the cords formalism. In
this example, the protocol consists of two roles, the initiator role and the responder
role. The sequence of actions in the initiator role are given by the cord Init in Fig. 5.
In words, the actions of a principal executing cord Init are: generate a fresh ran-
dom number; send a message with the Diffie–Hellman exponential of that number
to the peer, Ŷ ; receive a message with source address Ŷ ; verify that the message
contains Ŷ ’s signature over data in the expected format; and finally, send another
message to Ŷ with the initiator’s signature over the Diffie–Hellman exponential that
she sent in the first message, the data she received from Ŷ (which should be a Diffie–
Hellman exponential generated by Ŷ) and Ŷ ’s identity. The notations (νx), 〈t〉, (x)
refer respectively to the actions of nonce generation, sending a term and receiving a
message. Formally, a protocol is given by a finite set of closed cords, one for each
role of the protocol. In addition to the sequence of actions, a cord has static input
and output parameters (see Appendix A for detailed definitions and Section 4.5 for a
complete example).

4.2. Protocol logic

4.2.1. Syntax
The formulas of the logic are given by the grammar in Table 1, where ρ may

be any role, written using the notation of cord calculus. Here, t and P denote a

A. Datta et al. / A derivation system and compositional logic for security protocols 441

Table 1

Syntax of the logic

Action formulas

a ::= Send(P , m) |Receive(P , m) |New(P , t) |Decrypt(P , t) |Verify(P , t)

Formulas

φ ::= a |Has(P , t) |Fresh(P , t) |Honest(N) |Contains(t1, t2) |φ ∧ φ | ¬φ | ∃x.φ |E–φ | � φ |
Start(P)

Modal formulas

Ψ ::= φ ρ φ

term and a thread, respectively. A thread is the sequence of actions by a principal
executing an instance of a role, e.g., Alice executing the initiator role of a protocol.
As a notational convention, we use X̂ to refer to the principal executing the thread X .
We use φ and ψ to indicate predicate formulas, and m to indicate a generic term we
call a “message”. A message has the form (source, destination, protocol-identifier,
content), giving each message source and destination fields and a unique protocol
identifier in addition to the message contents. The source field of a message may
not identify the actual sender of the message since the intruder can spoof the source
address. Similarly, the principal identified by the destination field may not receive
the message since the intruder can intercept messages. Nonetheless, the source and
destination fields in the message may be useful for stating and proving authentication
properties while the protocol-identifier is useful for proving properties of protocols.

Most protocol proofs use formulas of the form θ[P]Xφ, which means that after
actions P are executed in thread X , starting from a state where formula θ is true,
formula φ is true about the resulting state of X . Here are the informal interpretations
of the predicates, with the basis for defining precise semantics discussed in the next
section.

The formula Has(X , x) means that principal X̂ possesses information x in the
thread X . This is “possesses” in the limited sense of having either generated the
data or received it in the clear or received it under encryption where the decryp-
tion key is known. The formula Send(X , m) means that the last action in a run
of the protocol corresponds to principal X̂ sending message m in the thread X .
Receive(X , m), New(X , t), Decrypt(X , t), and Verify(X , t) are similarly associ-
ated with the receive, new, decrypt and signature verification actions of a protocol.
Fresh(X , t) means that the term t generated in X is “fresh” in the sense that no one
else has seen any term containing t as a subterm. Typically, a fresh term will be a
nonce and freshness will be used to reason about the temporal ordering of actions in
runs of a protocol. This form of reasoning is useful in proving authentication proper-
ties of protocols. The formula Honest(X̂) means that the actions of principal X̂ in
the current run are precisely an interleaving of initial segments of traces of a set of
roles of the protocol. In other words, X̂ assumes some set of roles and does exactly
the actions prescribed by them. Contains(t1, t2) means that t2 is a subterm of t1.

442 A. Datta et al. / A derivation system and compositional logic for security protocols

This predicate helps us identify the components of a message. The two temporal op-
erators E– and � have the same meaning as in Linear Temporal Logic [36]. Since we
view a run as a linear sequence of states, E– φ means that in some state in the past φ
holds, whereas � φ means that in the previous state φ holds. Start(X) means that
thread X did not preform any actions in the past.

We note here that the temporal operator E– and some of the predicates (Send,
Receive) bear semblance to those used in NPATRL [61], the temporal requirements
language for the NRL Protocol Analyzer [43,44]. However, while NPATRL is used
for specifying protocol requirements, our logic is also used to infer properties of
protocols.

Our formalization of authentication is based on the notion of matching records of
runs [21] which requires that whenever Â and B̂ accept each other’s identities at the
end of a run, their records of the run should match, i.e., each message that Â sent was
received by B̂ and vice versa, each send event happened before the corresponding re-
ceive event, and moreover the messages sent by each principal (Â or B̂) appear in the
same order in both the records. Including the source and destination fields in the mes-
sage allows us to match up send-receive actions. Since in this paper, we reason about
correctness of a protocol in an environment in which other protocols may be execut-
ing concurrently, it is important that when Â and B̂ accept each other’s identities,
they also agree on which protocol they have successfully completed with the other.
One way to extend the matching histories characterization to capture this require-
ment is by adding protocol identifiers to messages. Now if Â and B̂ have matching
histories at the end of a run, not only do they agree on the source, destination and
content of each message, but also on which protocol this run is an instance of.

4.2.2. Semantics
A formula may be true or false at a run of a protocol. More precisely, the main

semantic relation, Q, R |= φ, may be read, “formula φ holds for run R of proto-
col Q”. In this relation, R may be a complete run, with all sessions that are started in
the run completed, or an incomplete run with some principals waiting for additional
messages to complete one or more sessions. If Q is a protocol, then let Q̄ be the set
of all initial configurations of protocol Q, each including a possible intruder cord.
Let Runs(Q̄) be the set of all runs of protocol Q with intruder, each a sequence of
reaction steps within a cord space. If φ has free variables, then Q, R |= φ if we have
Q, R |= σφ for all substitutions σ that eliminate all the free variables in φ. We write
Q |= φ if Q, R |= φ for all R ∈ Runs(Q̄).

The inductive definition of Q, R |= φ is given in Appendix B. Because a run is a
sequence of reaction steps, each step resulting from a principal executing an action, is
possible to assert whether a particular action occurred in a given run and also to make
assertions about the temporal ordering of the actions. An alternative view, similar to
the execution model used in defining Linear Temporal Logic (LTL) semantics, is to
think of a run as a linear sequence of states. Transition from one state to the next is
effected by an action carried out by some principal in some role. Associating that

A. Datta et al. / A derivation system and compositional logic for security protocols 443

action with the state that the system ends up in as a consequence, allows us to use
the well-understood terminology of LTL in our logic. A formula is true in a run if it
is true in the last state of that run. An action formula a is therefore true in a run if it
is the last action in that run. On the other hand, a past formula E– a is true if in the
past the action formula a was true in some state, i.e., if the action had occurred in the
past.

4.3. Proof system

The proof system contains a complete axiom system for first-order logic (not listed
since any axiomatization will do), together with axioms and proof rules for protocol
actions, temporal reasoning, and a specialized form of invariance rule. The axioms
and inference rules specific to reasoning about protocols are presented briefly here,
with additional explanation given in Appendix C.

4.3.1. Axioms for protocol actions
The axioms about protocol actions are listed in Table 2. All the axioms state prop-

erties that hold in the state reached by executing one of the actions from a state in
which a precondition related to the action is assumed. Note that the a in axioms
AA1 and AA2 is any one of the 5 actions and a is the corresponding predicate in
the logic. AA1 states that if a principal has executed an action in some role, then
the corresponding predicate asserting that the action had occurred in the past is true.
AA2 states that if a term t is fresh in some state, then it remains fresh until the cor-
responding thread executes an action. If thread X generates a new value n and does
no further actions, then AN2 says that no one else knows n, and AN3 says that n is
fresh.

4.3.2. Axioms relating atomic predicates
Table 3 lists axioms relating various propositional properties, most of which fol-

low naturally from the semantics of atomic formulas. The possession axioms charac-
terize the terms that a principal can derive if it possesses certain other terms. ORIG
and REC state respectively that a principal possesses a term if she freshly generated
it (a nonce) or if she received it in some message. TUP and ENC enable construction
of tuples and encrypted terms if the parts are known. PROJ and DEC allow decom-
position of a tuple into its components and decryption of an encrypted term if the
key is known. The next two axioms are aimed at capturing the black-box model of

Table 2

Axioms for protocol actions

AA1 φ[a]X E– a

AA2 Fresh(X , t)[a]X E– (a ∧ �Fresh(X , t))

AN2 φ[(νn)]X Has(Y , n) ⊃ (Y = X)

AN3 φ[(νn)]X Fresh(X , n)

ARP E– Receive(X , p(x))[(q(x)/q(t))]X E– Receive(X , p(t))

444 A. Datta et al. / A derivation system and compositional logic for security protocols

Table 3

Basic axioms

Possession Axioms:

ORIG E– New(X , n) ⊃ Has(X , n)

REC E– Receive(X , x) ⊃ Has(X , x)

TUP Has(X , x) ∧ Has(X , y) ⊃ Has(X , (x, y))

ENC Has(X , x) ∧ Has(X , K) ⊃ Has(X , {|x|}K)

PROJ Has(X , (x, y)) ⊃ Has(X , x) ∧ Has(X , y)

DEC Has(X , {|x|}K) ∧ Has(X , K) ⊃ Has(X , x)

Encryption and Signature:

SEC Honest(X̂) ∧ E– Decrypt(Y , {|n|}X) ⊃ (Ŷ = X̂)

VER Honest(X̂) ∧ E– Verify(Y , {|n|}
X

) ∧ X̂ �= Ŷ ⊃

∃X.∃m.(E– Send(X , m) ∧ Contains(m, {|n|}
X

))

Uniqueness of Nonces:

N1 E– New(X , n) ∧ E– New(Y , n) ⊃ (X = Y)

N2 After(New(X , n1), New(X , n2)) ⊃ (n1 �= n2)

F1 E– Fresh(X , t) ∧ E– Fresh(Y , t) ⊃ (X = Y)

Subterm Relation:

CON Contains((x, y), x) ∧ Contains((x, y), y)

encryption and signature. VER refers to the unforgeability of signatures while SEC
stipulates the need to possess the private key in order to decrypt a message encrypted
with the corresponding public key. The additional condition requiring principal X̂
to be honest guarantees that the intruder is not in possession of the private keys. An
important axiom is N1 which states that if a thread X has generated a value n, then
that value is distinct from all other values generated in all other roles. N2 states that
freshly generated values within the same thread are distinct from each other (here
After(a, b) is a shorthand for E– (b∧�E– a)). F1 states that fresh values generated in
different threads are distinct. N1, N2, and F1 together capture the intuition that fresh
nonces and Diffie–Hellman exponentials are unique. Finally, CON states that a term
contains its subterms.

4.3.3. Modal axioms and rules
Table 4 collects the inference rules and some additional axioms. The generic infer-

ence rules follow naturally from the semantics. G2 is exactly of the same form as the

A. Datta et al. / A derivation system and compositional logic for security protocols 445

Table 4

Modal axioms and rules

Generic Rules:

θ[P]Xφ θ[P]Xψ

θ[P]Xφ ∧ ψ
G1

θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′

θ′[P]Xφ′ G2
φ

θ[P]Xφ
G3

Sequencing rule:

φ1[P]Aφ2 φ2[P ′]Aφ3

φ1[PP ′]Aφ3
S1

Preservation Axioms: (For Persist ∈ {Has, E– φ})

P1 Persist(X , t)[a]XPersist(X , t)

P2 Fresh(X , t)[a]XFresh(X , t), where t �⊆ a or a �= 〈m〉
P3 HasAlone(X , n)[a]XHasAlone(X , n), where n �⊆v a or a �= 〈m〉

HasAlone(X , t) ≡ Has(X , t) ∧ (Has(Y , t) ⊃ X = Y)

Freshness Loss Axiom:

F θ[〈m〉]X¬Fresh(X , t), where (t ⊆ m)

rule of consequence in Hoare Logic. It is clear that most predicates are preserved by
additional actions. For example, if in some state Has(X , n) holds, then it continues
to hold, when X executes additional actions. Intuitively, if a thread possesses some
information at a point in a run, then she remembers it for the rest of the run. Note,
however, that the Fresh predicate is preserved only if the fresh term t is not sent out
in a message (see P2). Sequencing rule S1 gives us a way of sequentially composing
two cords P and P ′ when post-condition of P , matches the pre-condition or P ′.

4.3.4. Axioms and rules for temporal ordering
In order to prove mutual authentication, we need to reason about the temporal

ordering of actions carried out by different threads. For this purpose, we use a frag-
ment of the proof system for Propositional Linear Temporal Logic, PLTL (Table 5).
See [56] for a complete axiomatization of PLTL. The axioms and rules specific to the
temporal ordering of actions are presented in Table 5. We use a1, . . . , an, to denote
action formulas corresponding to actions a1, . . . , an. Similarly, b1 and b2 stand for
any action predicates. The rules are fairly straightforward. AF0 simply states that
before a thread X executes any action, it is true that X did not execute any actions
in the past. AF1 orders the actions within a role. This is consistent with the way
we view a role as an ordered sequence of actions. AF2 uses the freshness of terms
to reason about the ordering of actions carried out by different threads. Intuitively,
AF2 states that if a thread X has a fresh value t at some point in the run and than

446 A. Datta et al. / A derivation system and compositional logic for security protocols

Table 5

Axioms and rules for temporal ordering

PLTL Axioms:

T1 E– (φ ∧ ψ) ⊃ (E– φ ∧ E– ψ)

T2 E– (φ ∨ ψ) ⊃ (E– φ ∨ E– ψ)

T3 �¬φ ↔ ¬ � φ

Temporal Generalization Rule:

φ

¬E– ¬φ
TGEN

Temporal Ordering of actions:

After(a, b) ≡ E– (b ∧ �E– a)

ActionsInOrder(a1, . . . , an) ≡ After(a1, a2) ∧ · · · ∧ After(an−1, an)

AF0 Start(X)[]X ¬E– a(X, t)

AF1 θ[a1 . . . an]X After(a1, a2) ∧ · · · ∧ After(an−1, an)

AF2 (E– (b1(X , t1) ∧ �Fresh(X , t)) ∧ E– b2(Y , t2)) ⊃

After(b1(X , t1), b2(Y , t2)), where t ⊆ t2 and X �= Y

executes action b1(X , t1), then any action b2(Y , t2) carried out by any other thread
which involves t (e.g., if Y receives a message containing t inside a signature), hap-
pens after the action b1.

4.3.5. The honesty rule
The honesty rule is an invariance rule for proving properties about the actions of

principals that execute roles of a protocol, similar in spirit to the basic invariance
rule of LTL [36] and invariance rules in other logics of programs. The honesty rule
is often used to combine facts about one role with inferred actions of other roles. For
example, suppose Alice receives a signed response from a message sent to Bob. Alice
may use facts about Bob’s role to infer that Bob must have performed certain actions
before sending his reply. This form of reasoning may be sound if Bob is honest,
since honest, by definition in our framework, means “follows one or more roles of
the protocol”. The assumption that Bob is honest is essential because the intruder
may perform arbitrary actions with any key that has been compromised. Since we
have added preconditions to the protocol logic presented in [23,24], we reformulate
the rule here is a more convenient form using preconditions and postconditions.

A. Datta et al. / A derivation system and compositional logic for security protocols 447

To a first approximation, the honesty rule says that if a property holds before
each role starts, and the property is preserved by any sequence of actions that an
honest principal may perform, then the property holds for every honest principal. An
example property that can be proved by this method is that if a principal sends a
signed message of a certain form, the principal must have received a request for this
response. The proof of a property like this depends on the protocol, of course. For this
reason, the antecedent of the honesty rule includes a set of formulas constructed from
the set of roles of the protocol in a systematic way. A subtle issue is that the honesty
rule only involves certain points in a protocol execution. This is not a fundamental
limitation in the nature of invariants, but the result of a design tradeoff that was made
in formulating the rule. More specifically, it is natural to assume that once a thread
receives a message, the thread may continue to send messages and perform internal
actions until the thread needs to pause to wait for additional input. Another way to
regard this assumption is that we do not give the attacker control over the scheduling
of internal actions or the point at which messages are sent. The attacker only has
control over the network, not local computing. We therefore formulate our honesty
rule to prove properties that hold in every pausing state of every honest rule. By
considering fewer states, we consider more invariants true. By analogy with database
transactions, for example, we consider a property an invariant if it holds after every
“transaction” is completed, allowing roles to temporarily violate invariants as long
as they preserve them before pausing. A similar convention is normally associated
with loop invariants: a property is a loop invariant if it holds every time the top of the
loop is reached; it is not necessary that the invariant hold at every point in the body
of the loop.

Recall that a protocol Q = {ρ1, ρ2, . . . , ρk} is a set of roles, each executed by
zero or more honest principals in any run of Q. A sequence P of actions is a basic
sequence of role ρ, written P ∈ BS(ρ), if P is a contiguous subsequence of ρ such
that either (i) P starts at the beginning of ρ and ends with the last action before the
first receive, or (ii) P starts with a receive action and continues up to the last action
before the next receive, or (iii) P starts with the last receive action of the role and
continues through the end of the role. Using ρ ∈ Q to indicate that ρ is a role of Q,
and the notation for basic sequences just introduced, the honesty rule for protocol Q
is written as follows.

Start(X)[]X φ ∀ρ∈Q.∀P∈BS(ρ). φ [P]X φ

Honest(X̂)⊃φ
HONQ

no free variable in φ
except X bound in
[P]X

In words, if φ holds at the beginning of every role of Q and is preserved by all
its basic sequences, then every honest principal executing protocol Q must satisfy φ.
The side condition prevents free variables in the conclusion Honest(X̂) ⊃ φ from
becoming bound in any hypothesis. As explained in [23,24], this is a finitary rule, ex-
pressed in a slightly unusual way. For each protocol Q, the corresponding instance of
the honesty rule has a finite number of formulas in the antecedent, the exact number
and form of each depending on the roles of Q and their basic sequences.

448 A. Datta et al. / A derivation system and compositional logic for security protocols

4.3.6. Soundness theorem
The soundness theorem for this proof system is proved, by induction on the length

of proofs, in Appendix C. We write Γ � γ if γ is provable from the formulas in Γ and
any axiom or inference rule of the proof system except the honesty rule (HONQ for
any protocol Q). We write Γ �Q γ if γ is provable from the formulas in Γ, the basic
axioms and inference rules of the proof system and the honesty rule for protocol Q
(i.e., HONQ but not HONQ′ for any Q′ 	= Q). Here γ is either a modal formula or a
basic formula (i.e., of the syntactic form Ψ or φ in Table 1).

Theorem 4.1. If Γ �Q γ, then Γ |=Q γ. Furthermore, if Γ � γ, then Γ |= γ.

4.4. Formalizing protocol composition

In this section, we define sequential and parallel composition of protocols as syn-
tactic operations on cords and present associated methods for proving protocol prop-
erties compositionally. Recall that a protocol is defined as a finite set of cords, one for
each role of the protocol. For example, as explained in Section 4.1, the STS protocol
is defined by two cords, one each for the initiator and responder role of the protocol.

Definition 4.2 (Parallel Composition). The parallel composition Q1 ⊗Q2 of proto-
cols Q1 and Q2 is the union of the sets of cords Q1 and Q2.

For example, consider the protocol obtained by parallel composition of SSL 2.0
and SSL 3.0. The definition above allows an honest principal to simultaneously en-
gage in sessions of the two protocols. Clearly, a property proved about either protocol
individually might no longer hold when the two are run in parallel, since an adver-
sary might use information acquired by executing one protocol to attack the other.
Formally, some step in the logical proof of the protocol property is no longer correct.
Since all the axioms and inference rules in Section 4.3 hold for all protocols, the only
formulas used in the proof which might no longer be valid are those proved using
the honesty rule, i.e., the protocol invariants. In order to guarantee that the security
properties of the individual protocols are preserved under parallel composition, it is
therefore sufficient to verify that each protocol respects the invariants of the other.
This observation suggests the following four-step methodology for proving proper-
ties of the parallel composition of two protocols.1

1. Prove separately the security properties of protocols Q1 and Q2.

�Q1 Ψ1 and �Q2 Ψ2

1A preliminary version of this result was presented in [16,18].

A. Datta et al. / A derivation system and compositional logic for security protocols 449

2. Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas
included in these sets will typically be the formulas in the two proofs, which
were proved using the honesty rule. The proofs from the previous step can
be decomposed into two parts – the first part proves the protocol invariants
using the honesty rule for the protocol, while the second proves the protocol
property using the invariants as hypotheses, but without using the honesty rule.
Formally,

�Q1
Γ1 and Γ1 � Ψ1 and �Q2

Γ2 and Γ2 � Ψ2

3. Notice that it is possible to weaken the hypotheses to Γ1 ∪Γ2. The proof of the
protocol properties is clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 � Ψ1 and Γ1 ∪ Γ2 � Ψ2

4. Prove that the invariants, Γ1 ∪ Γ2, hold for both the protocols. This step uses
the transitivity of entailment in the logic: if �Q Γ and Γ � γ, then �Q γ. Since
�Q1 Γ1 was already proved in Step 1, in this step, it is sufficient to show that
�Q1 Γ2 and similarly that �Q2 Γ1. By Lemma 4.3 below, we therefore have
�Q1⊗Q2 Γ1 ∪ Γ2. From this and the formulas from Step 3, we can conclude
that the security properties of Q1 and Q2 are preserved under their parallel
composition.

�Q1⊗Q2 Ψ1 and �Q1⊗Q2 Ψ2

Lemma 4.3. If �Q1 φ and �Q2 φ, then �Q1⊗Q2 φ, where the last step in the proof
of φ in both Q1 and Q2 uses the honesty rule and no previous step uses the honesty
rule.

Theorem 4.4. If �Q1 Γ and Γ � Ψ and �Q2 Γ, then �Q1⊗Q2 Ψ.

Definition 4.5 (Sequential Composition). A protocol Q is the sequential composi-
tion of two protocols Q1 and Q2, if each role of Q is obtained by the sequential
composition of a cord of Q1 with a cord of Q2.

Definition 4.6 (Sequential Composition of Cords). Given closed cords r = (x0 . . .
x�−1)[R]X〈u0 . . . um−1〉, s = (y0 . . . ym−1)[S]Y 〈t0 . . . tn−1〉, their sequential
composition is defined by

r; s = (x0 . . . x�−1)[RS′]X〈t′0 . . . t′n−1〉,

where S′ and t′i are the substitution instances of S and ti respectively, such that each
variable yk is replaced by the term uk. Furthermore, under this substitution, Y is

450 A. Datta et al. / A derivation system and compositional logic for security protocols

mapped to X . Variables are renamed so that free variables of S, tj and uk do not
become bound in r; s. RS′ is the strand obtained by concatenating the actions in R
with those in S′.

It is clear that the sequential composition of protocols does not yield an unique
result. Typically, when we sequentially compose protocols we have a specific com-
position of roles in mind. For example, if we compose two two-party protocols, we
might compose the corresponding initiator and responder roles. Further explanation
of the sequential composition of two cords is given in Appendix A. We now illus-
trate the idea with an example. We consider two protocols: DH0, the initial part of
the Diffie–Hellman key exchange protocol, and CR, a signature-based Challenge-
Response protocol. The protocols are written out as cords below.

DH0 = { (X Y)[(νx)]X〈X Y gx〉 }
CR = { (X Y x)[〈X̂ , Ŷ , x〉(Ŷ , X̂ , y, z)(z/{|x, y, X̂ |}

Y
)〈X̂ , Ŷ , {|x, y, Ŷ |}

X
〉X〈 〉,

(X Y y)[(Ŷ , X̂ , x)〈X̂ , Ŷ , {|x, y, Ŷ |}
X
〉(Ŷ , X̂ , z)(z/{|x, y, X̂ |}

Y
)]X〈 〉 }

The ISO-9798-3 protocol is a sequential composition of these two protocols. The
cords of ISO-9798-3 are obtained by sequential composition of the cord of DH0 with
the two cords of CR. When sequentially composing cords, we substitute the output
parameters of the first cord for the input parameters of the second and α-rename
bound variables to avoid variable capture.

ISO-9798-3 = { (X Y)[(νx)〈X̂ , Ŷ , gx〉(Ŷ , X̂ , y,z)(z/{|gx, y, X̂ |}
Y

)
〈X̂ , Ŷ , {|gx, y, Ŷ |}

X
〉]X〈 〉,

(X Y)[(νy)(Ŷ , X̂ , x)〈X̂ , Ŷ , {|x, gy , Ŷ |}
X
〉

(Ŷ , X̂ , z)(z/{|x, gy , X̂ |}
Y

)]X〈 〉 }

The sequencing rule, S1 (see Table 4), is the main rule used to construct a modu-
lar correctness proof of a protocol that is a sequential composition of several smaller
subprotocols. It gives us a way of sequentially composing two roles P and P ′ when
the logical formula guaranteed by the execution of P , i.e., the post-condition of P ,
matches the pre-condition required in order to ensure that P ′ achieves some prop-
erty. In addition, just like in parallel composition, it is essential that the composed
protocols respect each other’s invariants. Our methodology for proving properties of
the sequential composition of two protocols involves the following steps.

1. Prove separately the security properties of protocols Q1 and Q2.

�Q1 Ψ1 and �Q2 Ψ2

2. Identify the set of invariants used in the two proofs, Γ1 and Γ2. The formulas
included in these sets will typically be the formulas in the two proofs, which

A. Datta et al. / A derivation system and compositional logic for security protocols 451

were proved using the honesty rule. The proofs from the previous step can
be decomposed into two parts – the first part proves the protocol invariants
using the honesty rule for the protocol, while the second proves the protocol
property using the invariants as hypotheses, but without using the honesty rule.
Formally,

�Q1
Γ1, Γ1 � Ψ1 and �Q2

Γ2, Γ2 � Ψ2

3. Weaken the hypotheses to Γ1 ∪ Γ2. The proof of the protocol properties is
clearly preserved under a larger set of assumptions.

Γ1 ∪ Γ2 � Ψ1 and Γ1 ∪ Γ2 � Ψ2

4. If the post-condition of the modal formula Ψ1 matches the pre-condition of Ψ′
2,

then the two can be sequentially composed by applying the sequencing rule S1.
Here Ψ′

2 is obtained from Ψ2 by a substitution of the free variables determined
by the sequential composition of the corresponding cords. This preserves the
formulas proved in the previous steps since those formulas are true under all
substitutions of the free variables. Assuming that Ψ1 and Ψ′

2 are respectively
θ[P1]φ and φ[P2]ψ, we have:

Γ1 ∪ Γ′
2 � θ[P1P2]ψ

5. Prove that the invariants used in proving the properties of the protocols, Γ1 ∪
Γ′

2, hold for both the protocols. Since �Q1 Γ1 was already proved in Step 1,
in this step, it is sufficient to show that �Q1 Γ′

2 and similarly that �Q2 Γ1.
By Lemma 4.7, we therefore have �Q3 Γ1 ∪ Γ′

2, where Q3 is their sequential
composition. From this and the formulas from Steps 3 and 4, we can conclude
that the security properties of Q1 and Q2 are preserved under their sequential
composition and furthermore the following formula is provable.

�Q3 θ[P1P2]ψ

Lemma 4.7. If �Q1 φ and �Q2 φ, then �Q3 φ, where Q3 is a sequential composition
of Q1 and Q2, and the last step in the proof of φ in both Q1 and Q2 uses the honesty
rule and no previous step uses the honesty rule.

Theorem 4.8. If �Q1 Γ1, Γ1 � θ[P1]φ; �Q2 Γ2, Γ2 � φ[P2]ψ; and �Q1 Γ2, �Q2 Γ1,
then �Q3 θ[P1P2]ψ, where Q3 is a sequential composition of Q1 and Q2.

452 A. Datta et al. / A derivation system and compositional logic for security protocols

4.5. An example of protocol composition

In this section, we use the protocol logic to formally prove properties of the
ISO-9798-3 protocol from properties of its parts – the signature-based Challenge-
Response protocol (CR) and the protocol based on Diffie–Hellman key ex-
change (DH0), presented in the previous section. The logical proof follows the
derivation step in Fig. 3, where P16 is derived from C1 and P4 by applying a com-
position operation (note that P16 is ISO-9798-3 and C1 and P4 are DH0 and CR
respectively). We sketch the outline of the compositional proof in Section 4.5.1 and
present the complete formal proofs in Section 4.5.2.

4.5.1. Compositional proof sketch
As illustrated in Section 4.4, the ISO-9798-3 protocol is constructed by a se-

quential composition of DH0 and CR. Here, we describe the key secrecy property
of DH0 and the mutual authentication property of CR. We then prove that the ISO-
9798-3 protocol can be used to establish an authenticated shared secret by composing
the correctness proofs of these two protocols. In doing so, we follow the method for
proving sequential composition results presented in the previous section.

Challenge-Response protocol, CR. Our formulation of authentication is based on
the concept of matching conversations [6] and is similar to the idea of proving au-
thentication using correspondence assertions [64]. The same basic idea is also pre-
sented in [21] where it is referred to as matching records of runs. Simply put, it
requires that whenever Â and B̂ accept each other’s identities at the end of a run,
their records of the run match, i.e., each message that Â sent was received by B̂ and
vice versa, each send event happened before the corresponding receive event, and
moreover the messages sent by each principal (Â or B̂) appear in the same order in
both the records.

A complete proof of the mutual authentication property guaranteed by executing
the CR protocol is presented in Table 7 in Section 4.5.2. We also discuss there the
structure of the proof and identify a method for proving authentication results in the
logic. The final property proved about the initiator role is of the form: precondition
[actions] postcondition, where:

precondition = Fresh(X , x)
actions = [〈X̂ , Ŷ , x〉(Ŷ , X̂ , y,z)(z/{|x, y, X̂ |}

Y
)〈X̂ , Ŷ , {|x, y, Ŷ |}

X
〉]X

postcondition = Honest(Ŷ) ⊃ ∃Y . ActionsInOrder(
Send(X , {X̂ , Ŷ , x}),
Receive(Y , {X̂ , Ŷ , x}),
Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂ |}

Y
}}),

Receive(X , {Ŷ , X̂ , {y, {|x, y, X̂ |}
Y

}}))

The actions in the formula are the actions of the initiator cord of CR, given in Sec-
tion 4.4. There is an implicit universal quantification over the free variables in the

A. Datta et al. / A derivation system and compositional logic for security protocols 453

formula (X , Y , and x), which correspond to the input parameters of the initiator
cord. The precondition imposes constraints on the free variables. In this example,
the requirement is that x is a fresh term generated in thread X . The postcondition
captures the security property that is guaranteed by executing the actions starting
from a state where the precondition holds. In this specific example, the postcondi-
tion (referred as φauth henceforth) is a formula capturing the notion of matching
conversations. Intuitively, this formula means that after executing the actions in the
initiator role purportedly with Ŷ , X̂ is guaranteed that her record of the run matches
that of Ŷ , provided that Ŷ is honest (meaning that she always faithfully executes
some role of the CR protocol and does not, for example, send out her private keys).

The set of invariants used in this proof, Γ2, contains only one formula (line (7) of
Table 7).

Γ2 = { Honest(Ŷ) ⊃ (
(E– Send(Y , x0) ∧ Contains(x0, {|x, y, X̂ |}

Y
)

∧¬E– Fresh(Y , x)) ⊃ (
x0 = {Ŷ , X̂ , {y, {|x, y, X̂ |}

Y
}}∧

E– (Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂ |}
Y

}}) ∧ �Fresh(Y , y))∧
After(Receive(Y , {X̂ , Ŷ , x}),
Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂ |}

Y
}}))

)) }

Intuitively, this invariant states that whenever honest Ŷ signs a term which is a triple
with the third component X̂ , and the first component was not freshly generated by Ŷ ,
then it is the case that this signature was sent as part of the second message of the
CR protocol and Ŷ must have previously received the first message of the protocol
from X̂ . (Note that each message sent and received has the protocol-id in it. We omit
these to improve readability.)

Base Diffie–Hellman protocol, DH0. The DH0 protocol involves generating a
fresh random number and computing its Diffie–Hellman exponential. It is therefore
the initial part of the standard Diffie–Hellman key exchange protocol. In order to
reason about the security property of this protocol, the term language and the proto-
col logic have to be enriched to allow reasoning about Diffie–Hellman computation.
The terms g(a) and h(a, b), respectively representing the Diffie–Hellman exponential
ga mod p and the Diffie–Hellman secret gab mod p, are added to the term language.
To improve readability, we will use ga and gab instead of g(a) and h(a, b). Table 6
presents the rules specific to the way that Diffie–Hellman secrets are computed. The
predicate Computes() is used as a shorthand to denote the fact that the only way
to compute a Diffie–Hellman secret is to possess one exponent and the other ex-
ponential. DH1 states that if X can compute the Diffie–Hellman secret, then she
also possesses it. DH2 captures the intuition that the only way to possess a Diffie–
Hellman secret is to either compute it directly or obtain it from a received message

454 A. Datta et al. / A derivation system and compositional logic for security protocols

Table 6

Diffie–Hellman axioms

DH1 Computes(X , gab) ⊃ Has(X , gab)

DH2 Has(X , gab) ⊃

(Computes(X , gab) ∨ ∃m.(E– Receive(X , m) ∧ Contains(m, gab)))

DH3 (E– Receive(X , m) ∧ Contains(m, gab)) ⊃

∃Y , m′.(Computes(Y , gab) ∧ E– Send(Y , m′) ∧ Contains(m′, gab))

DH4 Fresh(X , a) ⊃ Fresh(X , ga)

Computes(X , gab) ≡ ((Has(X , a) ∧ Has(X , gb)) ∨ (Has(X , b) ∧ Has(X , ga)))

containing it. DH3 states that if a principal receives a message containing a Diffie–
Hellman secret, someone who has computed the secret must have previously sent
a (possibly different) message containing it. DH4 captures the intuition that if a is
fresh at some point of a run, then ga is also fresh at that point. The property of the
initiator role of the DH0 protocol is given by the formula below. It is of the modal
form [actions] postcondition.

[(νx)]XHasAlone(X , x) ∧ Fresh(X , gx)

This formula follows easily from the axioms and rules of the logic. It states that
after carrying out the initiator role of DH0, X possesses a fresh Diffie–Hellman
exponential gx and is the only one who possesses the exponent x. This property will
be useful in proving the secrecy condition of the ISO-9798-3 protocol. The set of
invariants used in this proof, Γ1, is empty.

Composing the protocols. We now prove the security properties of the ISO-9798-3
protocol by composing the correctness proofs of DH0 and CR. In doing so, we
follow the methodology for proving sequential composition results outlined in Sec-
tion 4.4. Let us go back and look at the form of the logical formulas characterizing the
initiator roles of DH0 and CR. Denoting the initiator role actions of DH0 and CR
by InitDH0 and InitCR respectively, we have:

Γ1 � Start(X)
[
InitDH0

]
XFresh(X , gx) (1)

Γ2 � Fresh(X , x)
[
InitCR

]
X

φauth (2)

At this point, Step 1 and Step 2 of the proof method are complete. For Step 3, we
note that since Γ1 is empty, Γ2 ∪ Γ1 is simply Γ2.

Γ2 � Start(X)
[
InitDH0

]
XFresh(X , gx) (3)

Γ2 � Fresh(X , x)
[
InitCR

]
Xφauth (4)

A. Datta et al. / A derivation system and compositional logic for security protocols 455

We are ready to move on to Step 4. We first substitute the output parameters of the
initiator cord for DH0 for the input parameters of the initiator cord of CR. This
involves substituting gx for x. We refer to the modified protocol as CR′. Since the
validity of formulas is preserved under substitution, the following formula is valid.

Γ2
[
gx/x

]
� Fresh

(
X , gx)[

InitCR′
]
Xφauth

[
gx/x

]
(5)

Note that the post-condition of (1) matches the pre-condition of (5). We can therefore
compose the two formulas by applying the sequencing rule S1. The resulting formula
is:

Γ2
[
gx/x

]
� Start(X)

[
InitDH0 ; InitCR′

]
Xφauth

[
gx/x

]
(6)

The result of composing the two roles is that the freshly generated Diffie–Hellman
exponential is substituted for the nonce in the challenge-response cord. The resulting
role is precisely the initiator role of the ISO-9798-3 protocol. The formula above
states that the mutual authentication property of CR is preserved by the composition
process assuming that the invariants in Γ2 are still satisfied. Finally, using the honesty
rule, it is easily proved that DH0 respects the environmental invariants in Γ2 (Step 5).
Therefore, from Lemma 4.7, we conclude that the sequential composition of DH0
and CR, which is ISO-9798-3 , respects the invariants in Γ2. This completes the
compositional proof for the mutual authentication property.

The other main step involves proving that the secrecy property of DH0 is pre-
served under sequential composition with CR, since CR′ does not reveal the Diffie–
Hellman exponents. The following two formulas are easily provable.

� Start(X)
[
InitDH0

]
X

HasAlone(X , x) (7)

� HasAlone(X , x)
[
InitCR′

]
XHasAlone(X , x) (8)

Therefore, by applying the sequencing rule S1 again, we have the secrecy condition
for the ISO-9798-3 protocol:

� Start(X)
[
InitDH0 ; InitCR′

]
X

HasAlone(X , x) (9)

Since the set of invariants is empty, Step 2, Step 3 and Step 5 follow trivially. The
rest of the proof uses properties of the Diffie–Hellman method of secret computation
to prove the following logical formula:

Start(X)
[
InitDH0 ; InitCR′

]
X

Honest(Ŷ) ⊃ ∃Y . ∃y. (Has
(
X , gxy)

∧
(
Has

(
Z, gxy)

⊃ (Z = X ∨ Z = Y))
)

Intuitively, the property proved is that if Ŷ is honest, then X̂ and Ŷ are the only
people who know the Diffie–Hellman secret gxy . In other words, the ISO-9798-3

456 A. Datta et al. / A derivation system and compositional logic for security protocols

protocol can be used to compute an authenticated shared secret. The complete proof
is presented in Table 8 in Section 4.5.2.

4.5.2. Formal correctness proofs of protocols
The proof of the shared secret property of ISO-9798-3 is given in Table 8. This

proof uses composition ideas and the structure of the proof has been discussed in the
previous section. A complete proof of the authentication property for the initiator
role of the Challenge-Response protocol (InitCR) is given in Table 7. We discuss
below the structure of this proof and provide some insight on the proof technique
used in proving authentication properties in this logic.

Proof structure of Challenge-Response protocol. The formal proof in Table 7 nat-
urally breaks down into three parts:

Table 7

Deductions of X̂ executing Init role of Challenge-Response protocol

AA2, P1 Fresh(X , x)[〈X̂ , Ŷ , x〉(Ŷ , X̂ , y, z)(z/{|x, y, X̂|}
Y

)〈X̂ , Ŷ , {|x, y, Ŷ |}
X
〉]X

E– (Send(X , {X̂ , Ŷ , x}) ∧ �Fresh(X , x)) (1)

AA1, P1 Fresh(X , x)[〈X̂ , Ŷ , x〉(Ŷ , X̂ , y, z)(z/{|x, y, X̂|}
Y

)〈X̂ , Ŷ , {|x, y, Ŷ |}
X
〉]X

E– Verify(X , {|x, y, X̂|}
Y

) (2)

AF1, ARP Fresh(X , x)[〈X̂ , Ŷ , x〉(Ŷ , X̂ , y, z)(z/{|x, y, X̂|}
Y

)〈X̂ , Ŷ , {|x, y, Ŷ |}
X
〉]X

ActionsInOrder(

Send(X , {X̂ , Ŷ , x}),

Receive(X , {Ŷ , X̂ , y, {|x, y, X̂|}
Y

}),

Send(X , {X̂ , Ŷ , {|x, y, Ŷ |}
X

})) (3)

(3), F1, P1, G2 Fresh(X , x)[InitCR]X¬E– Fresh(Y , x) (4)

VER Honest(Ŷ) ∧ E– Verify(X , {|x, y, X̂|}) ⊃

∃Y.∃x′.(E– Send(Y , x′) ∧ Contains(x′, {|x, y, X̂|}
Y

)) (5)

(2), (5), P1, G1 − 3 Fresh(X , x)[InitCR]XHonest(Ŷ) ⊃

∃Y.∃x′.(E– Send(Y , x′) ∧ Contains(x′, {|x, y, X̂|}
Y

)) (6)

HON Honest(Ŷ) ⊃ (((E– Send(Y , x0) ∧

Contains(x0, {|x, y, X̂|}
Y

) ∧ ¬E– Fresh(Y , x)) ⊃

(x0 = {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}} ∧

E– (Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}) ∧ �Fresh(Y , y))∧

A. Datta et al. / A derivation system and compositional logic for security protocols 457

Table 7

(Continued)

ActionsInOrder(Receive(Y , {X̂ , Ŷ , x}),

Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}))))) (7)

(4), (6), (7), G1 − 3 Fresh(X , x)[InitCR]XHonest(Ŷ) ⊃

∃Y . E– (Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}) ∧ �Fresh(Y , y)) ∧

After(Receive(Y , {X̂ , Ŷ , x}), Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}})) (8)

(1), AF2 Fresh(X , x)[InitCR]XE– Receive(Y , {X̂ , Ŷ , x})) ⊃

After(Send(X , {X̂ , Ŷ , x}), Receive(Y , {X̂ , Ŷ , x})) (9)

(3), AF2 Fresh(X , x)[InitCR]XSend(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}) ∧ �Fresh(Y , y) ⊃

After(Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}),

Receive(X , {Ŷ , X̂ , y, {|x, y, X̂|}}) (10)

(8), (9), (10), AF2 Fresh(X , x)[InitCR]XHonest(Ŷ) ⊃

∃Y . ActionsInOrder(Send(X , {X̂ , Ŷ , x}), Receive(Y , {X̂ , Ŷ , x}),

Send(Y , {Ŷ , X̂ , {y, {|x, y, X̂|}
Y

}}),

Receive(X , {Ŷ , X̂ , y, {|x, y, X̂|}})) (11)

• Lines (1)–(3) assert what actions were executed by Alice in the initiator role
as well as the order in which those actions occurred. Specifically, in this
part of the proof, the order in which Alice executed her send-receive actions
is proved. Denoting the i-th message of the protocol by msgi, we prove:
ActionsInOrder(Send(A,msg1), Receive(A,msg2)). (As an expositional con-
venience, we refer to X̂ and Ŷ as Alice and Bob.)

• In lines (4)–(8), we first use the fact that the signatures of honest parties are
unforgeable (axiom VER), to conclude that Bob must have sent out some mes-
sage containing his signature since Alice received Bob’s signature in msg2.
The honesty rule is then used to infer that whenever Bob generates a signa-
ture of this form, he always sends it to Alice as part of msg2 of the protocol
and must have previously received msg1 from Alice. Thus, the order in which
Bob executed his actions are proved, i.e., ActionsInOrder(Receive(B,msg1),
Send(B,msg2)).

• Finally, in lines (9)–(11), the temporal ordering rules are used to order the send-
receive actions of Alice and Bob. Line (11) concludes that Bob must have re-
ceived msg1 after Alice sent it since msg1 contains a fresh nonce. Line (12)
uses the same argument for msg2 sent by Bob. Finally, line (13) combines these
two assertions to conclude that the following formula is true:
ActionsInOrder(Send(A,msg1), Receive(B,msg1), Send(B,msg2),

458 A. Datta et al. / A derivation system and compositional logic for security protocols

Table 8

Deductions of X̂ executing Init role of CR′ protocol

P3 HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]X HasAlone(X , x) (1)

CR HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y.ActionsInOrder(

Send(X , {X̂ , Ŷ , gx}),

Receive(Y , {X̂ , Ŷ , gx}),

Send(Y , {Ŷ , X̂ , {n, {|gx, n, X̂|}
Y

}}),

Receive(X , {Ŷ , X̂ , n, {|gx, n, X̂|}
Y

})) (2)

HON Honest(Ŷ) ∧ E– Send(Y , {Ŷ , X̂ , {n, {|gx, n, X̂|}
Y

}}) ⊃ (3)

∃y′.(n = gy′ ∧ HasAlone(Y , y′))

(2), (3) HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y. ∃y.(n = gy ∧ HasAlone(Y , y)) (4)

AA1, REC, PROJ, P1 HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHas(X , n) (5)

(1), (4), (5), Computes HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y.∃y.(n = gy ∧ Computes(X , gxy)) (6)

(1), (4), Computes HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y.∃y.(n = gy ∧ (Computes(Z, gxy) ⊃ (Z = X ∨ Z = Y)))) (7)

(6), (7) HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y.∃y.(n = gy ∧ Computes(X , gxy) ∧ (Computes(Z, gxy) ⊃

(Z = X ∨ Z = Y)))) (8)

DH2, DH3 Has(X , gxy) ⊃ (Computes(X , gxy) ∨ ∃Y , m′.

(Computes(Y , gxy) ∧ E– Send(Y , m′) ∧ Contains(m′, gxy)) (9)

HON Honest(Ŷ) ⊃ (Computes(Y , gxy) ⊃

¬∃m′.(E– Send(Y , m′) ∧ Contains(m′, gxy))) (10)

(8), (9), (10), DH1 HasAlone(X , x) ∧ Fresh(X , gx)[InitCR′]XHonest(Ŷ) ⊃

∃Y.∃y.(Has(X , gxy) ∧ (Has(Z, gxy) ⊃ (Z = X ∨ Z = Y))) (11)

Receive(A,msg2)). This formula means that Alice and Bob have matching
conversations.

This proof is an instance of a general method for proving authentication results
in the protocol logic. In proving that Alice, after executing the initiator role of a

A. Datta et al. / A derivation system and compositional logic for security protocols 459

protocol purportedly with Bob, is indeed assured that she communicated with Bob,
we usually follow these 3 steps:

1. Prove the order in which Alice executed her send-receive actions. This is done
by examining the actions in Alice’s role.

2. Assuming Bob is honest, infer the order in which Bob carried out his send-
receive actions. This is done in two steps. First, use properties of cryptographic
primitives (like signing and encryption) to conclude that only Bob could have
executed a certain action (e.g., generate his signature). Then use the honesty
rule to establish a causal relationship between that identifying action and other
actions that Bob always does whenever he executes that action (e.g., send msg2
to Alice after having received msg1 from her).

3. Finally, use the temporal ordering rules to establish an ordering between the
send-receive actions of Alice and Bob. The causal ordering between messages
sent by the peers is typically established by exploiting the fact that messages
contain fresh data.

Proofs in the logic are therefore quite insightful. The proof structure often follows
a natural language argument, similar to one that a protocol designer might use to
convince herself of the correctness of a protocol.

5. Related work

There has been some work on systematizing the practice of constructing secu-
rity protocols, starting from simple components and extending them by features and
functions. In [8], Bird and co-authors describe the systematic design of a family of
authentication protocols. A similar approach is taken by Diffie, Van Oorschot and
Wiener in their presentation of the STS protocol in [21]. More recently, Bellare,
Canetti and Krawczyk [5] have studied two interesting protocol transformations,
which they call authenticators, which generically add authentication to a given pro-
tocol scheme.

In [57], Perrig and Song present a method for automatic generation of protocols.
Their approach involves searching the entire space of protocols for one that satisfies
the security requirements and is minimal with respect to some metric (e.g., number of
public key operations). A protocol is defined as a sequence of messages sent between
two parties and the message space is specified by a grammar. Whether a particular
protocol satisfies the security requirements is decided by running it through the auto-
matic protocol analysis tool, Athena [60]. Independently, Clark and Jacob developed
a similar approach for protocol synthesis [14]. They use genetic algorithms to search
the space of protocols expressible in BAN logic [9]. Other works on using formal
logic for protocol design include [3,10].

An important sub-problem in modular construction and analysis of security proto-
cols is composition. Early work on the protocol composition problem concentrated

460 A. Datta et al. / A derivation system and compositional logic for security protocols

on designing protocols that would be guaranteed to compose with any other proto-
col. This led to rather stringent constraints on protocols: in essence, they required
the fail-stop property [25] or something very similar to it [28]. Since real-world pro-
tocols are not designed in this manner, these approaches did not have much practical
application. More recent work has therefore focussed on reducing the amount of
work that is required to show that protocols are composable. Meadows, in her analy-
sis of the IKE protocol suite using the NRL Protocol Analyzer [45], proved that the
different sub-protocols did not interact insecurely with each other by restricting at-
tention to only those parts of the sub-protocols, which had a chance of subverting
each other’s security goals. Independently, Thayer, Herzog and Guttman used a sim-
ilar insight to develop a technique for proving composition results using their strand
space model [63]. Their technique consisted in showing that a set of terms generated
by one protocol can never be accepted by principals executing the other protocol.
The techniques used for choosing the set of terms, however, is specific to the proto-
cols in [62]. A somewhat different approach is used by Lynch [35] to prove that the
composition of a simple shared key communication protocol and the Diffie–Hellman
key distribution protocol is secure. Her model uses I/O automata and the protocols
are shown to compose if adversaries are only passive eavesdroppers.

In a recent paper [12], Canetti, Meadows and Syverson, revisit the protocol com-
position problem. They show how the interaction between a protocol and its environ-
ment can have a major effect on the security properties of the protocol. In particular,
they demonstrate a number of attacks on published and widely used protocols that
are not feasible against the protocol running in isolation but become feasible when
they are run in parallel with certain other protocols. This study further reinforces
the importance of methods for reasoning about the composability of protocols. We
believe that the results presented in this paper represent significant progress in this
direction. The methods presented in Section 4.4 provide a way to implicitly char-
acterize, using invariants, a class of protocols with which a specific protocol can be
safely composed. In particular, our formalism justifies some of the design princi-
ples discussed by the authors. One recommendation is that the environment should
not use keys or other secrets in unaltered form. Specifically, the protocol under con-
sideration should not encrypt messages with a key used to encrypt messages by any
protocol in its environment. The reason this makes sense is that if two protocols use a
particular form of encrypted message as a test to authenticate a peer, then the attacker
might be able to make a principal running the first protocol accept a message which
actually originated in a run of the second protocol. If this is indeed the case, then in
our formalism, the invariant for the protocol under consideration would fail to hold
in such an environment, and the composition proof would therefore not go through.
However, this seems like an overly conservative design approach since not every two
protocols which use the same encryption keys interfere with each other’s security.
The invariant-preservation method can help identify protocols which can run safely
in parallel even if they share keys. We note that the above principle has been followed
in the design of real-world protocols like IKE [27]. Also, Guttman and Fábrega have

A. Datta et al. / A derivation system and compositional logic for security protocols 461

proved a theoretical result to the same effect in their strand space model [26]. An-
other rule of thumb (also recommended by Kelsey, Schneier and Wagner in [30]), is
the use of unique protocol identifiers to prevent a message intended for use in one
protocol to be mistaken for use in another protocol. This idea is also founded on
similar intuition. To give an example, in our logic, an invariant in proving an au-
thentication property could be: “if Bob generated a signature of a particular form, he
sent it in response to a particular message of a protocol”; adding the unique protocol
identifier inside the signature will ensure that this invariant is trivially satisfied for all
other protocols, thereby allowing composability. However, many existing protocols
do not follow this principle.

It is well known that many natural security properties (e.g., noninterference) are
not preserved either under composition or under refinement. This has been exten-
sively explored using trace-based modelling techniques [37,39–42], using properties
that are not first-order predicates over traces, but second-order predicates over sets of
traces that may not have closure properties corresponding to composition and refine-
ment. In contrast, our security properties are safety properties over sets of traces that
satisfy safety invariants, thus avoiding these negative results about composability.

There are several differences between the work described in this paper and some
other protocol analysis efforts. To begin with, our basic model of protocol execu-
tion and possible attacker actions is the traditional “Dolev–Yao model” [22,53] that
has been used in many other efforts [31,43,51,54]. While it is an important research
direction to relate our model to computational models such as [11,52,58,59], we cur-
rently believe that “computational soundness” of symbolic methods is a separable
goal that will lead to greater use of the kind of logical methods considered in this pa-
per. At a more detailed level, there are some important differences between the way
that we reason about incremental protocol construction and alternative approaches
such as “universal composability” [11]. In universal composability, properties of a
protocol are stated in a strong form so that the property will be preserved under a
wide class of composition operations. In contrast, our protocol proofs proceed from
various assumptions, including invariants that are assumed to hold in any environ-
ment in which the protocol operates. The ability to reason about protocol parts under
assumptions about the way they will be used offers greater flexibility and appears
essential for developing modular proofs about certain classes of protocols.

6. Conclusions and future work

We have presented a method for systematically deriving security protocols from
basic components using a set of protocol composition, refinement and transforma-
tion steps. The goal has been to formalize the well-established practice of presenting
protocols incrementally, starting from simple components and refining them by fea-
tures and functions. As a case study, we examined the structure of the STS family
of key exchange protocols in this system. The complete derivation graph is shown

462 A. Datta et al. / A derivation system and compositional logic for security protocols

in Figure 3. It shows how the various security properties – secrecy, authentication,
DoS protection etc. – accumulate as the derivation proceeds. The study of the se-
curity properties of the STS family seems to be relevant since it includes protocols
like IKE which are actually deployed on the internet and JFKi and JFKr which are
currently being considered by IETF as replacements for IKE.

As an initial step towards associating formal proofs with protocol derivations, we
have extended a previous protocol logic with preconditions and temporal assertions
and proved the logic sound over the symbolic “Dolev–Yao” model of protocol ex-
ecution and attack. The protocol composition operation of the derivation system is
formalized within the proof system using three inference rules. The ISO-9798-3 pro-
tocol is then formally derived from the standard challenge response protocol and a
protocol that forms the essence of the Diffie–Hellman key exchange protocol. The
logical derivation corresponds to the step in Fig. 3, where P9 is derived from C1
and P4. It shows how the secrecy and authentication properties of Diffie–Hellman
and challenge-response are preserved by the composition process.

There are several different directions in which this work could be extended. One
direction is to develop derivation graphs for other sets of related protocols. An-
other family of protocols that might be interesting to look at is the Needham–
Schroeder protocol family. This family will include well-known protocols like Ker-
beros, Otway–Rees, etc. The connecting point between these protocols is that they
all use encryption for achieving authenticated key exchange. Such derivation graphs
can be used to develop a taxonomy of security protocols. Another direction worth
exploring is protocol synthesis. Once a set of generic components and composition,
refinement and transformation operations are identified, it might be possible to auto-
matically synthesize protocols that satisfy complex security specifications using the
basic ideas of the derivation system. Finally, our initial results suggest that formal
analysis of security protocols may be easier when proofs of correctness of complex
protocols can be built from the proofs of their constituent sub-protocols. It should be
an interesting challenge to extend the logical system to allow formal reasoning about
all the protocol refinement and transformation steps that have been presented in this
paper.

Acknowledgments

Partially supported by NSF CCR-0121403, Computational Logic Tools for Re-
search and Education, the Don University Research Initiative (URL) program ad-
ministered by the Office of Naval Research (ONR) under Grant N00014-01-1-0795,
NSF CCR-0209004 and CCR-0345397, and by ONR N00014-03-C-0237. This jour-
nal paper is a revised and extended version of two earlier conference papers [15,18].

We thank Iliano Cervesato, Nancy Durgin, Ralf Küsters, Catherine Meadows, and
the anonymous reviewers for many helpful comments.

A. Datta et al. / A derivation system and compositional logic for security protocols 463

Appendix A. Cord calculus

Cord calculus is the basic action structure [48,49,55] that we use to represent pro-
tocols. It was introduced in [23,24]. Here we provide a brief summary. Cord calculus
was inspired by the strand space formalism [62], which conveniently formalizes the
practice of describing protocols by “arrows-and-messages”, and displays the distrib-
uted traces of interacting processes. However, while strand spaces provide a global
and static view of the information flow, we needed to analyze dynamics of distributed
reasoning and computation. In order to formally capture the ways in which princi-
pals’ actions (e.g., what they receive) may determine and change their later action
(e.g., what they will send), we extended strand spaces by an operational semantics
in the style of chemical abstract machine [7]. To represent the stores where the mes-
sages are received, we added variables, and a substitution mechanism expressed by
simple reaction rules, corresponding to the basic communication and computation
operations. The result is a simple process calculus, combining strand spaces and
chemical abstract machine. This is our protocol execution model.

Its formal components are as follows.

A.1. Terms, actions, strands and cords

A basic algebra of terms t is assumed to be given. As usually, they are built from
constants c and variables x, by a given set of constructors p, which in this case in-
cludes at least the tupling, the public key encryption {|t|}K , and the signature {|t|}

K
.

The decryption and the signature verification subsume under pattern matching. The
dedicated operations could be readily added. We assume enough typing to distin-
guish the keys K from the agents A, the nonces n and so on. Each type is given with
enough variables. As usually, the computation is modelled as term evaluation. The
closed terms, that can be completely evaluated, can be sent as messages. The terms
containing free variables cannot be sent until the variables are bound to some values,
received or generated.

The language of actions, built upon the language of terms, describes communi-
cation and computation. The actions here include sending a term 〈t〉, receiving into
a variable (x), matching a term against a pattern (t/q(x)), and creating a new value
(νx). As appropriate, further actions can be added to the calculus. For instance, to
model Kerberos we add the action “read time”.

A list of actions is called strand.2 The idea is that a strand represents a sequence
of actions of an agent. For example, the strand (νx)〈x〉A tells that the agent A gen-
erates a fresh value into the variable x and then sends it out as a message. In a
strand, each of the actions (x), (t/p(x)) and (νx) all binds the free occurrences of x

2This is slightly more general than the original strands from [62], because the term calculus, underlying
actions, contains variables and substitution.

464 A. Datta et al. / A derivation system and compositional logic for security protocols

that appear on the right.3 As usually, the bound variables are taken up to renaming,
i.e., α-conversion. Operational semantics of the binding operations is given below,
in terms of the substitution: e.g., a value is received in (x) is propagated through the
occurrences of x bound to that operator.

A cord is an equivalence class of semantically indistinguishable strands, annotated
by the name of the agent executing it. For some processes, the order of actions may
be irrelevant, even unobservable: e.g., some constant streams c and d may be sent in
arbitrary order, or in parallel, while the same process is independently receiving into
a variable y. So the strands like 〈c〉〈d〉(y), 〈d〉(y)〈c〉 etc. may be viewed as equivalent.
When needed, the order of actions can be imposed using the tupling of variables. By
identifying equivalent strands, we get cords. The equivalence class containing the
strand S of agent A is written as [S]A. We often elide the agent name, when it is
irrelevant, or obvious. The inaction is denoted by the empty cord []. We assume that
[] = []X holds for all agents X . (There is just one silence.)

Since the semantic equivalence of strands does not play a role in the present pa-
per, cords are here just lists of actions with variables, annotated by the agent names
whenever nonempty. Table 9 summarizes the formal definition of cords.

A.2. Cord spaces, agents and processes

The idea of a cord space is that it represents a system of agents ready to engage in
communication and distributed computation. Formally, a cord space is a nonempty
multiset (bag) of cords, usually in the form C = {[S1]A1 , [S2]A2 , . . . [Sk]Ak

}, where
each Si is a nonempty strand. The only cord space which is not in this form is {[]}.
We abuse notation, and write it as []. Cord spaces can thus be viewed as the ele-
ments of the free commutative monoid (C,⊗, []) generated by cords. The monoid
operation ⊗ is the union of multisets, except that C ⊗ [] = [] ⊗ C = C holds by
definition.

Table 10 gives an operational semantics of cord spaces. In all rules, we assume
that the name clashes are avoided by renaming the bound variables. The respective
side conditions, required for each of the reactions, are shown in the same table. The
substitution (t/x) acts on the strand to the left. Reaction (12) is a send and receive
interaction, showing the simultaneous sending of term t by the first cord, with the re-
ceiving of t into variable x by the second cord. We call this an external action because
it involves an interaction between two cords. The other reactions all take place within
a single cord. We call these internal actions. Reaction (13) represents basic pattern
matching, where the cord matches the term p(t) with the expected pattern p(x), and
substitutes t for x. Reaction (14) generates a fresh value m, and substitutes it for x in
the cord to the right. The condition FV (t) = ∅, imposed on the first two reactions,
means that a term cannot be sent, or tested, until all of its free variables have been in-
stantiated, so that it can be evaluated. The condition m /∈ FV (S)∪FV (S′)∪FV (C)

3The tradition of denoting the operators binding x by the round brackets around it goes back to Milner
[49,48].

A. Datta et al. / A derivation system and compositional logic for security protocols 465

Table 9

Syntax of terms, actions and strands

(names) N ::= X̂ variable name

Â constant name

(agents) P ::= X variable agent

A constant agent

(basic keys) K0 ::= k constant key

y variable key

N name

(keys) K ::= K0 basic key

K0 inverse key

(terms) t ::= x variable term

c constant term

N name

P agent

K key

t, t tuple of terms

{|t|}K term encrypted with key K

{|t|}
K

term signed with key K

(actions) a ::= ε the null action

〈t〉 send a term t

(x) receive term into variable x

(νx) generate new term x

(t/t) match a term to a pattern

(strands) S ::= aS | a

on the last rule means that the value m, created by (νx), must be globally fresh. This
is modeled by treating it as a variable which does not occur anywhere in the process.

Cord category
Category theory (see, e.g., [4]) is a general mathematical framework that is used

in various ways in the study of algebra, semantics of computation, and logical foun-
dations. Without going into all of the steps in detail, we describe a category of cords
that highlights the main constructions that are used in this paper. This cord category
involves both sequential and parallel composition of cords and cord spaces.

By definition, a process is a cord space, together with an explicit input interface
consisting of a sequence of distinct variables and an explicit output interface consist-
ing of a sequence of terms. A process s may be written in the form

s = (y0 . . . ym−1)S〈t0 . . . tn−1〉

where (y0 . . . ym−1) is an input interface, S is a cord space, and 〈t0 . . . tn−1〉 is
an output interface. If S is a single cord and all free variables of S are bound by the

466 A. Datta et al. / A derivation system and compositional logic for security protocols

Table 10

Basic reaction steps

[S(x)S′] ⊗ [T 〈t〉T ′] ⊗ C �� [SS′(t/x)] ⊗ [TT ′] ⊗ C (12)

[S(p(t)/p(x))S′] ⊗ C �� [SS′(t/x)] ⊗ C (13)

[S(νx)S′] ⊗ C �� [SS′(m/x)] ⊗ C (14)

Where the following conditions must be satisfied:

(12) FV (t) = ∅
(13) FV (t) = ∅
(14) m /∈ FV (S) ∪ FV (S′) ∪ FV (C)

input interface, then we call this process a closed cord. Intuitively, the input variables
y0, . . . ym−1 represent the entry ports and the output terms t0, . . . tn−1 are offered at
the exit ports. While the input interface variables must be distinct, the output values
need not be mutually different. The input interface binds the variables y0, . . . ym−1
and α-equivalents define the same process. In other words, renaming y0, . . . ym−1
throughout S and t0 . . . tn−1 yields another, equivalent representative of the same
process.

The morphisms of the cord category C are processes given by α-equivalence
classes of process expressions such as s above. The objects of the cord category C
are the arities of such processes. An arity is a list of variables, such as (y0 . . . ym−1),
modulo renaming. Ignoring the types of variables as before, an arity thus boils down
to a number, in this case m = {0, 1, . . . m − 1}. If the objects of the category C
are identified with the natural numbers, then the process s written above becomes a
morphism s : m −→ n. More intuitively, and in the tradition of functorial semantics,
one might prefer to write the arity of m variables as the exponent Am of some ab-
stract ground type A (which itself corresponds to the generator 1 of the arities, since
A = A1). The process s thus becomes s : Am −→ An. The formal justification for
this will become clearer after we spell out the categorical structure of C.

Given the morphisms

r = (x0 . . . x�−1)R〈u0 . . . um−1〉 : A� −→ Am

s = (y0 . . . ym−1)S〈t0 . . . tn−1〉 : Am −→ An

their sequential composition is defined

(r; s) = (x0 . . . x�−1)RS′〈t′0 . . . t′n−1〉 : A� −→ An

where S′ and t′i are the substitution instances of S and ti, respectively, with each
variable yk replaced by the term uk. In performing these substitutions, the variables
must be chosen (or renamed) so that the free variables of S, tj and uk do not become

A. Datta et al. / A derivation system and compositional logic for security protocols 467

bound in r; s. Intuitively, the cord space RS′ corresponds to running in sequence, for
each agent X , the actions of X in R followed by the actions of X in S′. This leads
to the definition

RS′ = {[UV]X | [U]X ∈ R, [V]X ∈ S′}

A less syntactic and possibly more elegant view is that if the cord spaces R and S′

are regarded as partially-ordered multisets (pomsets) of actions, then RS′ is their
concatenation in the usual sense for partial orders, putting R before S′. If R and S′

have no common agents, then RS′ is inactive. On the other hand, since [] = []X for
all X , the process

idm = (y0 . . . ym)[]〈y0 . . . ym〉 : Am −→ Am

is the identity.
We may also define parallel composition on processes. Given, furthermore, a mor-

phism p : Ak −→ A�, in the form

p = (z0 . . . zk−1)P 〈v0 . . . v�−1〉

the parallel composition p ⊗ s : Ak+m −→ A�+n may be defined

p ⊗ s = (
z
y)P ⊗ S〈
v
t 〉

with bound variables of p and s renamed so that the concatenation
z
y of variables
in their input interfaces produces a sequence of distinct variables. The parallel com-
position operator ⊗ forms a tensor on objects and morphisms, with the tensor unit I
the arity A0.

With this structure, C turns out to be the free monoidal category generated by the
object A = A1, and the morphisms ()[(νx)]Y 〈x〉 : I −→ I , ()[(x)]Y 〈x〉 : I −→ I
and ()[〈x〉]Y 〈x〉 : I −→ A, corresponding to the basic actions, together with the
variable morphisms ()[]〈x〉 : I −→ A, and the generic abstraction operators, bind-
ing the variables to the entry ports. Formally, this follows from the results of [55].
Intuitively, the universal property of C can perhaps be understood by noticing, first
of all, that a process in the form (y0, . . . ym−1)[]〈v0, . . . vn−1〉 : m −→ n, where
{v0, . . . vn−1} ⊆ {y0, . . . ym−1} represents a function from n to m (backwards!).
This is a trivial process, assigning to each exit port a unique entry port, from which
it simply copies the values. The subcategory of C spanned by such processes is thus
isomorphic with the opposite of the category of finite sets and functions. This sub-
category of C is thus the free cartesian category over one generating object A = A1

representing the arity 1. In particular, the morphisms (xy)[]〈x〉 and (xy)[]〈y〉 are the
projections, and (x)[]〈xx〉 is the diagonal for the cartesian products, whereas (x)[]〈〉
is the unique map to the unit type I = A0. However, when we add the morphisms

468 A. Datta et al. / A derivation system and compositional logic for security protocols

where agents send and receive messages, and generate fresh values, and close all that
under the categorical operations, variables and abstraction, we get the cord category,
which is still monoidal, but not cartesian (because the projections and the diagonals
are not natural, polymorphic operations with respect to the morphisms with nontriv-
ial actions).

For simplicity, we have so far systematically ignored the typing of the terms and
variables in cord calculus. In fact, any type structure of the term language of cords
may be directly reflected on the generated cord category. If we distinguish a type
K of keys, for example, the cord category will be generated not by one, but by two
generators, say A and K; if we also distinguish nonces, there will be three generators.
Less trivially, if the type of keys is taken to be indexed over the type of agents, as the
family K(X), where X : Agents, then the arities will not be just lists of independent
variables, as above, but will be the contexts of dependent types. Since a key variable
x : K(X) can be assigned only after the variable X : Agent on which it depends
has been assigned, the interfaces will need to display typing and dependencies. The
precise syntax for such arities can be found on the early pages of [38], for example.
The objects of the resulting cord category are then the closed type expressions, not
just in the form Ak =

∏
k A, but also e.g.,

∏
X :A K(X).

The combination of reaction rules and the categorical structure of cord spaces con-
stitutes our process model. While the dynamic binding of variables, defined by the
reaction rules, captures the communication and the computation in cord spaces, the
static binding, defined by the categorical operations, allows composition of agents
from operations, or from various component processes; and it also allows sharing
ports and resources between different agents statically, i.e., without sending any mes-
sages. Composition of processes allows composition of protocols. Sharing resources
allows modeling principals and attackers, which can play several roles in one or more
protocol sessions, and be subdivided into agents in various ways.

A.3. Protocols

A protocol Q is defined by a finite set of roles, such as initiator, responder and
server, each specified by a closed cord describing actions to be executed in a single
instance of a role. A principal is a set of agents sharing all static data, such as keys,
but directly, and not by messages. This is formalized using static binding, described
above. We will denote principals by Â, B̂, etc. An agent executing a single instance
of a particular role will be called thread. As a notational convenience, we will use X
to denote a thread of a principal X̂ .

A private key is a key of form X , which represents the decryption key in a public
key cryptosystem. Private key X is only allowed to occur in the threads of princi-
pal X̂ . Moreover, it is only allowed to occur in the decryption pattern (corresponding
to a participant decrypting a message encrypted by its public key) and in the signature
construction (corresponding to a participant signing a message). These restrictions
prevent private keys from being sent in a message. While some useful protocols

A. Datta et al. / A derivation system and compositional logic for security protocols 469

might send private keys, we prevent roles from sending their private keys (in this
paper) since this allows us to take secrecy of private keys as an axiom, shortening
proofs of protocol properties.

A.3.1. Intruder roles
An attack is usually a process obtained by composing a protocol with another

process, in such a way that the resulting runs, projected to the protocol roles, do
not satisfy the protocol requirements. An attacker, or intruder, is a set of threads
sharing all data in an attack, and playing roles in one or more protocol sessions. The
actions available for building the intruder roles usually include receiving and sending
messages, decomposing them into parts, decrypting them by known keys, storing
data, and even generating new data. This is the standard “Dolev–Yao model”, which
appears to have developed from positions taken by Needham and Schroeder [53] and
a model presented by Dolev and Yao [22].

A.3.2. Buffer cord
Cords reactions, as we defined them, can only model synchronous communication

– a message send action cannot happen in one cord unless a message receive ac-
tion happens simultaneously. Since real communication networks are asynchronous,
we need to introduce a buffer where sent messages can be stored until someone is
ready to receive them. In order to model this with cords we introduce a buffer cord
[(x)〈x〉], it models a message being received and than eventually send. We will re-
quire that all send and receive actions by principals and the intruder are performed
via buffer cords and assume that in every protocol there are enough instances of the
buffer cord to guarantee delivery of every message. Buffer cords are a part of the
infrastructure rather than a part of the protocol, we assume that they are executed by
special nameless agents. Unless otherwise specified, when we refer to a thread, we
mean a non-buffer thread, similarly, when we refer to an action, we mean an action
performed by a non-buffer thread.

A.3.3. Configurations and runs
Initial configuration of a protocol Q is determinded by: (1) A set of principals,

some of which are designated as honest. (2) A cordspace constructed by assign-
ing roles of Q to threads of honest principals. (3) An intruder cord, which may use
keys of dishonest principals. (4) A finite number of buffer cords, enough to accom-
modate every send action by honest threads and the intruder threads. A run R is a
sequence of reaction steps from the initial configuration, subject to constraint that
every send/receive reaction step happens between some buffer cord and some (non-
buffer) thread. A particular initial configuration may give rise to many possible runs.

A.3.4. Events and traces
Since the protocol logic we introduce reasons about protocol runs, we need to in-

troduce some additional notation for them. An event is a ground substitution instance
of an action, i.e., an action in which all variables have been replaced by terms con-
taining only constants. An event represents the result of a reaction step, viewed from

470 A. Datta et al. / A derivation system and compositional logic for security protocols

the perspective of a single cord that participated in it. For example, if the thread A
sends message m (into a receiving buffer cord), then the event 〈m〉 is a send event
of A. Alternatively, we can a look at a run as a linear sequence of events starting
from an initial configuration.

We use the following notation to describe a reaction step of cord calculus:

EVENT(R, X , P ,
n,
x) ≡ (([SPS′]X ⊗ C � � [SS′(
n/
x)]X ⊗ C ′) ∈ R)

In words, EVENT(R, X , P ,
n,
x) means that in run R, thread X executes ac-
tions P , receiving data
n into variables
x, where
n and
x are the same length.
We use the notation LAST(R, X , P ,
n,
x) to denote that the last event of run R is
EVENT(R, X , P ,
n,
x).

A trace is a list of events by some thread in a run. We use R|X to denote the
events that occurred for thread X in run R. For a sequence of actions P , protocol Q,
run R and thread X , we say “P matches R|X” if R|X is precisely σP , where σ is a
substitution of values for variables. If P matches R|X using substitution σ, then σ is
called the matching substitution.

A.3.5. Protocol properties
In this section we collect some properties of the protocols that will be useful in

the rest of the paper.

Lemma A.1 (No Telepathy). Let Q be a protocol, R be an arbitrary run, and X be
a thread. Let m be any message sent by X as part of role ρi. Then every symbol in
the term m is either generated in ρi, received in ρi, or was in the static interface
of ρi.

Proof. This follows from the definition of the cords we use to represent roles. Each
role is a closed process, where each variable is bound either statically, to some entry
port, or dynamically, to some receive action, or fresh value generation, or to a pattern
match. �

Lemma A.2 (Asynchronous communication). In every run, any thread that wished
to send a message can always eventually send it. Also, there is a strict linear order
between all external actions.

Proof. By definition, there are enough buffer cords in the initial configuration to pro-
vide a receive for every send action by a non-buffer thread. Since “external action”
refers to a send or a receive by a non-buffer thread, it follows from the definition of
a run that no two external actions can happen in the same step of the run. �

Lemma A.3. For every receive action there is a corresponding send action. More
formally, EVENT(R, X , (x), m, x) ⊃ ∃Y.EVENT(R, Y , 〈m〉, ∅, ∅).

A. Datta et al. / A derivation system and compositional logic for security protocols 471

Proof. This follows from the definition of the basic cord calculus reaction steps. �

Lemma A.4. For any initial configuration C of protocol Q, and any run R, if agent
X̂ ∈ HONEST(C), then for any thread X performed by principal X̂ , R|X is a trace
of a single role of Q executed by X .

Proof. This follows from the definition of initial configuration, which is constructed
by assigning roles to threads of honest principals. �

Appendix B. Semantics of protocol logic

The formulas of the logic are interpreted over runs, which are finite sequences
of reaction steps from an initial configuration. An equivalent view, consistent with
the execution model used in defining Linear Temporal Logic (LTL) semantics, is to
think of a run as a linear sequence of states. Transition from one state to the next is
effected by an action carried out by some principal in some role. A formula is true in
a run if it is true in the last state of that run.

The main semantic relation, Q, R |= φ, may be read, “formula φ holds for run R
of protocol Q”. If Q is a protocol, then let Q̄ be the set of all initial configurations
of protocol Q, each including a possible intruder cord. Let Runs(Q̄) be the set of
all runs of protocol Q with intruder, each a sequence of reaction steps within a cord
space. If φ has free variables, then Q, R |= φ if we have Q, R |= σφ for all substi-
tutions σ that eliminate all the free variables in φ. For a set of formulas Γ, we say
that Γ |= φ if Q, R |= Γ implies Q, R |= φ. We write Q |= φ if Q, R |= φ for all
R ∈ Runs(Q̄).

Action formulas.

• Q, R |= Send(A, m) if LAST(R, A, 〈m〉, ∅, ∅).
• Q, R |= Receive(A, m) if LAST(R, A, (x), m, x).
• Q, R |= New(A, m) if LAST(R, A, (νx), m, x).
• Q, R |= Decrypt(A, {|m|}K) if LAST(R, A, ({|m|}K/{|x|}

K
), m, x)

Note: Decrypt(A, n) is false if n 	= {|m|}K for some m and K.
• Q, R |= Verify(A, {|m|}

K
) if LAST(R, A, ({|m|}

K
/{|m|}K), ∅, ∅)

Note: Verify(A, n) is false if n 	= {|m|}
K

for some m and K.

Other formulas.

• Q, R |= Has(A, m) if there exists an i such that Hasi(A, m) where Hasi is
inductively as follows:

(Has0(A, m) if ((m ∈ FV (R|A))
∨ EVENT(R, A, (νx), m, x)
∨ EVENT(R, A, (x), m, x)

and Hasi+1(A, m) if Hasi(A, m)∨ (Hasi(A, m′)

472 A. Datta et al. / A derivation system and compositional logic for security protocols

∨ (Hasi(A, m′) ∧ Hasi(A, m′′)
∧ ((m = m′, m′′) ∨ (m = m′′, m′)))

∨(Hasi(A, m′) ∧ Hasi(A, K)
∧ m = {|m′|}K)

∨(Hasi(A, a) ∧ Hasi(A, gb)
∧ m = gab)

∨(Hasi(A, gab) ∧ m = gba)
Intuitively, Has0 holds for terms that are known directly, either as a free variable
of the role, or as the direct result of receiving or generating the term. Hasi+1
holds for terms that are known by applying i operations (decomposing via pat-
tern matching, composing via encryption or tupling, or by computing a Diffie–
Hellman secret) to terms known directly.

• Q, R |= Fresh(A, m) if Q, R |= (E– New(A, m) ∨ (E– New(A, n) ∧ m =
g(n))) ∧ ¬(E– Send(A, m′) ∧ m ⊆ m′).

• Q, R |= Honest(Â) if Â ∈ HONEST(C) in initial configuration C for R and all
threads of Â are in a “pausing” state in R. More precisely, R|

Â
is an interleaving

of basing sequences of roles in Q.
• Q, R |= Contains(t1, t2) if t2 ⊆ t1.
• Q, R |= (φ1 ∧ φ2) if Q, R |= φ1 and Q, R |= φ2.
• Q, R |= ¬φ if Q, R 	|= φ.
• Q, R |= ∃x.φ if Q, R |= (d/x)φ, for some d, where (d/x)φ denotes the formula

obtained by substituting d for x in φ.
• Q, R |= E– φ if Q, R′ |= φ, where R′ is a (not necessarily proper) prefix of R.

Intuitively, this formula means that in some state in the past, formula φ is true.
• Q, R |= �φ if Q, R′ |= φ, where R = R′e, for some event e. Intuitively, this

formula means that �φ is true in a state if φ is true in the previous state.
• Q, R |= Start(X) if R|X is empty. Intuitively this formula means that X didn’t

execute any actions in the past.

Modal formulas.

• Q, R |= φ1 [P]A φ2 if R = R0R1R2, for some R0, R1 and R2, and either P
does not match R1|A or P matches R1|A and Q, R0 |= σφ1 implies Q, R0R1 |=
σφ2, where σ is the substitution matching P to R1|A.

Appendix C. Soundness of axioms and proof rules

In this section we prove the soundness of the axioms and proof rules used in the
proof system, hence proving Theorem 4.1. Since the logic and the proof system are
an extension of the earlier work [23,24], here we only give brief and informal proofs
for those axioms that are same or similar to axioms in [24]. We omit proofs for
standard axioms and rules of temporal logic. Also, we show that the composition
methodology is sound by proving Lemmas 4.3 and 4.7.

A. Datta et al. / A derivation system and compositional logic for security protocols 473

C.1. Axioms for protocol actions

AA1
φ[a]X E– a
Informally, this axiom says that if a is an action, and a a corresponding action for-
mula, when thread X executes a, in the resulting state E– a holds. Let Q be a proto-
col, and let R = R0R1R2 be a run such that R1|X matches a under substitution σ
and Q, R0 |= σφ, we need to prove that Q, R0R1 |= E– σa. Since R1|X matches a
under substitution σ, R1 has to contain action σa, and therefore, by the semantics
of the temporal operator “E– ”, it has to be that Q, R0R1 |= E– σa. Now, by the
definition of modal formulas we have Q |= φ [a]XE– a.

AA2
Fresh(X , t)[a]X E– (a ∧ �Fresh(X , t))
Informally, this axiom says that if a term t is fresh in some state, then it remains fresh
at least until the corresponding thread executes an action. Let Q be a protocol, and let
R = R0R1R2 be a run such that R1|X matches a under substitution σ and Q, R0 |=
σFresh(X , t), we need to prove that Q, R0R1 |= σE– (a ∧ �Fresh(X , t)). Since
R1|X matches a under substitution σ, R1 has to contain action σa. Let R′

1 be a prefix
of R1 containing all actions preceding action σa. It holds trivially Q, R0R

′
1σa |=

σa. On the other hand, Q, R0 |= σFresh(X , t). Clearly, R1 does not contain any
actions by thread X , and it follows from semantics of the predicate “Fresh” that the
validity of the formula Fresh(X , t) depends only on actions done by X in the past.
Therefore, Q, R0R1 |= σFresh(X , t), and hence Q, R0R1σa |= �σFresh(X , t), by
the semantics of the temporal operator “�”. Finally, by the semantics of the temporal
operator “E– ”, it has to be that Q, R0R1 |= σE– (a ∧ �Fresh(X , t)).

AN2
φ[(νn)]X Has(Y , n) ⊃ (Y = X)
Informally, this axiom says that fresh nonces are secret. If a process X generates a
new value m and takes no further actions, then X is the only thread who knows m.
The soundness of this axiom follows from the definition of the execution model and
the semantics of the predicate “Has”. For a detailed proof see [24].

AN3
φ[(νn)]X Fresh(X , n)
Informally, this axiom states that the newly created value is fresh exactly after cre-
ation. The soundness of this axiom follows directly from the semantics of the predi-
cate “Fresh”.

ARP
E– Receive(X , p(x))[(q(x)/q(t))]X E– Receive(X , p(t))
Let Q be a protocol, and let R = R0R1R2 be a run such that R1|X matches
(q(x)/q(t)) under substitution σ and Q, R0 |= σE– Receive(X , p(x)), we need to

474 A. Datta et al. / A derivation system and compositional logic for security protocols

prove that Q, R0R1 |= σE– Receive(X , p(t)). Since R1|X matches (q(x)/q(t)) un-
der substitution σ, and events of R1 only contain ground terms, it has to be that
σx is same as σt, and therefore Q, R0 |= E– Receive(X , p(t)). Clearly, formu-
las of the form E– a remain valid as new actions are executed, hence Q, R0R1 |=
σE– Receive(X , p(t)).

C.2. Possession axioms

PROJ
Has(X , (x, y)) ⊃ Has(X , x) ∧ Has(X , y)

TUP
Has(X , x) ∧ Has(X , y) ⊃ Has(X , (x, y))

ENC
Has(X , x) ∧ Has(X , K) ⊃ Has(X , {|x|}K)

DEC
Has(X , {|x|}K) ∧ Has(X , K) ⊃ Has(X , x)
This set of axioms describes ways in which a thread can accumulate knowledge.
Informally, these axioms say that if a thread has all the necessary parts to build
some term then he has the term itself. Also, a thread can decompose tuples and
decrypt messages encrypted with a known key. Soundness of these axioms follows
directly from the semantics of the predicate “Has”. Here, we prove the soundness of
axiom ENC, proofs for other axioms are similar.

When Q, R 	|= Has(X , x) ∧ Has(X , K) then Q, R |= ENC holds trivially. Oth-
erwise, by the semantics of “∧”, Q, R |= Has(X , x) and Q, R |= Has(X , K) both
hold. That means, that Hasi(X , x) and Hasj(X , K) for some i and j. Assuming
i � j, we have Hasi(X , K) and therefore Hasi+1(X , {|x|}K).

ORIG
E– New(X , n) ⊃ Has(X , n)

REC
E– Receive(X , x) ⊃ Has(X , x)
Informally, these axioms make connection between knowledge of a thread and the
actions executed by that thread in the past. A thread has all terms it creates or re-
ceives. Soundness of these axioms follows directly from the semantics of the predi-
cate “Has” and temporal operator “E– ”.

C.3. Encryption and signature

SEC
Honest(X̂) ∧ E– Decrypt(Y , {|n|}X) ⊃ (Ŷ = X̂)

A. Datta et al. / A derivation system and compositional logic for security protocols 475

Informally, SEC says that if an agent X̂ is honest, and some thread Y executed by
principal Ŷ has decrypted a message {|n|}X (i.e., a message encrypted with X̂’s pub-
lic key), then Ŷ must be X̂ . In other words, if X̂ is honest, then only threads executed
by X̂ can decrypt messages encrypted X̂’s private key. For a detailed soundness
proof of this axiom see [24].

VER
Honest(X̂) ∧ E– Verify(Y , {|n|}

X
) ∧ X̂ 	= Ŷ ⊃ ∃X.∃m.(E– Send(X , m) ∧

Contains(m, {|n|}
X

))

Informally, VER says that if an agent X̂ is honest, and some thread Y executed by
principal Ŷ has verified a signature {|n|}X (i.e., a message signed with X̂’s private
key), then X̂ must have send the signature out in some thread X , as a part of some
message. In other words, when X̂ is honest, he is the only one who can sign messages
with his public key. Therefore, every message signed by X̂ must have originated
from some thread X performed by principal X̂ .

Let Q be a protocol, and C be an initial configuration of Q such that X̂ ∈
HONEST(C). Suppose that R is a run of Q starting from C, such that Q, R |=
E– Verify(Y , {|n|}

X
). By the definition of the execution model, when X̂ ∈

HONEST(C), only threads of X̂ can construct signatures with X̂’s private key.
Since, X̂ 	= Ŷ , it has to be that the thread Y received term {|n|}

X
as a part of

some message m′, i.e., there exists a term m′ such that EVENT(R, Y , (x), m′, x) and
{|n|}

X
⊆ m′. By Lemma A.3 there is a corresponding send action for every receive,

hence there exists a thread Z such that EVENT(R, Z, 〈m〉, ∅, ∅) is true. Therefore,
there exists at least one action in the run R where {|n|}

X
is sent as a part of some

message. Let R′ be a shortest prefix of R such that, for some thread Z and for some
term m such that {|n|}

X
⊆ m, it is true that EVENT(R′, Z, 〈m〉, ∅, ∅). By Lemma A.1

{|n|}
X

has to be either received or generated by Z, since R′ is the shortest run in
which {|n|}

X
is sent out as a part of some message it has to be that the thread Z gen-

erated {|n|}
X

. By the definition of the execution model, and honesty of X̂ it follows

that Z is a thread of X̂ . Now, Q, R |= E– Send(Z, m) ∧Contains(m, {|n|}
Z

)) holds
by the semantics of temporal operators and Lemma A.2.

C.4. Uniqueness of nonces

N1
E– New(X , n) ∧ E– New(Y , n) ⊃ (X = Y)
Informally, this axiom says that nonces are unique across different threads. If two
threads X and Y have generated the same nonce n in the past, then it must be the
case that X = Y . The soundness of this axiom follows directly from the definition
of the execution model and the semantics of the predicate “New”.

476 A. Datta et al. / A derivation system and compositional logic for security protocols

N2
After(New(X , n1), New(X , n2)) ⊃ (n1 	= n2)
Informally, this axiom says that nonces are unique within the same thread. If some
thread X generated two nonces n1 and n2 by two distinct actions, then n1 and n2
must be different. The soundness of this axiom follows directly from the definition
of the execution model and the semantics of the predicate “New”.

F1
E– Fresh(X , n) ∧ E– Fresh(Y , n) ⊃ (X = Y)
Informally, this axiom says that the freshness is local. If some nonce n is fresh in
two different threads X and Y then it must be that X = Y . The soundness of this
axiom follows directly from the definition of the execution model and the semantics
of the predicate “Fresh”.

C.5. Subterm relationship

CON
Contains((x, y), x) ∧ Contains((x, y), y)
Informally, this axiom states that a tuple contains its parts. Informally, this axiom
states that a tuple contains its parts. The soundness of this axiom follows directly
from the semantics of the predicate “Contains”.

C.6. Modal axioms

P1
Persist(X , t)[a]XPersist(X , t) where Persist ∈ {E– φ, Has}
Informally this axiom says that the for some formulas stay valid when an agent does
additional actions. Since the semantics of the predicate “Has” is based on the exis-
tence of a certain event in a run, adding additional events to the run cannot make this
predicates false. Also, the fact that some formula was true in the past remains valid
when add additional actions to the run.

P3
HasAlone(X , n)[a]XHasAlone(X , n), where n 	⊆v a or a 	= 〈m〉
Informally this axiom says that a nonce n remains secret as long as it is not send
out as a part of some message m. The soundness of this axiom follows from the
semantics of the predicate “Has” and Lemmas A.1 and A.3.

F
φ[〈m〉]X¬Fresh(X , t), where (t ⊆ m)
Informally, this axiom talks about loss of freshness. A value is not fresh anymore
after it is send out as a part of some message. The soundness of this axiom follows
directly from the semantics of the predicate “Fresh”.

A. Datta et al. / A derivation system and compositional logic for security protocols 477

C.7. Temporal ordering of actions

AF0
Start(X)[]X ¬E– a(X, t)
Informally, this axiom says that before a thread X executes any action, it is true
that X did not execute any actions in the past. The soundness of this axiom follows
directly from the semantics of the predicate “Start”, semantics of modal formulas,
and the temporal operator “E– ”.

AF1
θ[a1 . . . an]X After(a1, a2) ∧ . . . ∧ After(an−1, an)
Informally, this axiom says that after an agent does some actions a1, . . . , an in that
order, it is true that After(ai, ai+1) for all i = 1, . . . , n − 1. The soundness of this
axiom follows directly from the definition of “After” and semantics of temporal op-
erators.

AF2
(E– b1(X , t1) ∧ �Fresh(X , t)) ∧ E– b2(Y , t2) ⊃ After(b1(X , t1), b2(Y , t2)),
where t ⊆ t2 and X 	= Y
Informally, this axiom says that the all actions a involving the term t which was
fresh at some point, must have happened after the first time that t was send out.
The soundness of this axioms follows from the semantics of the predicate “Fresh”,
semantics of temporal operators and Lemmas A.1 and A.3.

C.8. Axioms for Diffie–Hellman key exchange

Computes(X , gab) ≡ ((Has(X , a) ∧ Has(X , gb)) ∨ (Has(X , b)

∧ Has(X , ga)))

DH1
Computes(X , gab) ⊃ Has(X , gab)
Informally, this axiom says that if some thread has all necessary information to com-
pute the Diffie–Hellman secret, then he also has the Diffie–Hellman secret itself. The
soundness of this axiom follows directly from the semantics of the predicate “Has”.

DH2
Has(X , gab) ⊃ (Computes(X , gab) ∨ ∃m.(E– Receive(X , m) ∧ Contains
(m, gab)))
Informally, this axiom says that the only way to have a Diffie–Hellman secret is to
compute it from one exponent and one exponential or receive it as a part of some
message. To prove the axiom we have to check all the cases in the semantics of the
predicate “Has”.

478 A. Datta et al. / A derivation system and compositional logic for security protocols

DH3
(E– Receive(X , m) ∧ Contains(m, gab)) ⊃
∃Y , m′.(Computes(Y , gab) ∧ E– Send(Y , m′) ∧ Contains(m′, gab))

Informally, this axiom says that if someone receives a Diffie–Hellman shared secret
then there must be some thread that send it and computed it himself. Let R be a run
in which X receives a message m containing gab at some point. By Lemma A.3, that
means that in the run R there exists someone who send a message m containing gab.
Let R′ be a shortest prefix of R in which some agent Y sends some message m′

containing gab at some point. Since R′ is a shortest such prefix, that means that Y
could not receive a message m′′ containing gab. By axiom DH2 that means that Y
must have computed gab himself.

DH4
Fresh(X , a) ⊃ Fresh(X , ga)
Informally, this axiom states that a Diffie–Hellman exponential is fresh as long as the
exponent is fresh. The soundness of this axiom follows directly from the semantics
of the predicate “Fresh”.

C.9. Generic rules

θ[P]Xφ θ[P]Xψ

θ[P]Xφ ∧ ψ
G1

θ[P]Xφ θ′ ⊃ θ φ ⊃ φ′

θ′[P]Xφ′ G2
φ

θ[P]Xφ
G3

G1 follows from the semantics of “∧” and “θ[P]Xφ”. Let R = R0R1R2. If R1 does
not match P |X or Q, R0 	|= θ then trivially Q, R |= θ[P]Xφ ∧ ψ. Otherwise, it has
to be that Q, R0R1 |= φ and Q, R0R1 |= ψ, and Q, R |= θ[P]Xφ ∧ ψ follows from
the semantics of “∧”. Validity of axiom G2 can be verified similarly. Axiom G3 is
trivially valid because if φ is true after any run, then φ is true after a specific run that
contains actions P .

C.10. Sequencing rule

φ1[P]Aφ2 φ2[P ′]Aφ3

φ1[PP ′]Aφ3
S1

Sequencing rule S1 gives us a way of sequentially composing two cords P and P ′

when post-condition of P , matches the pre-condition or P ′. Assume that Q is a
protocol and R is a run of Q such that Q, R |= φ1[P]Aφ2 and Q, R |= φ2[P ′]Aφ3.
We need to prove that Q, R |= φ1[PP ′]Aφ3. Let R = R0R1R2, assume that R1|A
matches PP ′ under substitution σ, and Q, R0 |= σφ1. Run R can be written as
R = R0R

′
1R

′′
1 R2 where R′

1|A matches P under σ and R′′
1 |A matches P ′ under σ. It

follows that Q, R0R
′
1 |= σφ2 and therefore Q, R0R

′
1R

′′
1 |= σφ3.

A. Datta et al. / A derivation system and compositional logic for security protocols 479

C.11. The Honesty rule

Start(X)[]X φ ∀ρ ∈ Q.∀PεBS(ρ). φ [P]X φ

Honest(X̂) ⊃ φ
HON

no free variable in φ
except X bound in
[P]X

Assume that Q is a protocol and R is a run of Q such that Q, R |= Start(X)[]Xφ
and Q, R |= φ [P]X φ for all roles ρ ∈ Q and for all basic sequences P ∈ BS(ρ).
We must show that Q, R |= Honest(X̂) ⊃ φ. Assume Q, R |= Honest(X̂). Then
by the semantics of predicate “Honest” and Lemma A.4, it has to be that R|X is a
trace of a role of Q carried out by X and, moreover, thread X has to be in a pausing
state at the end of R. Therefore a R|X is a concatenation of basic sequences of Q.
Now, Q, R |= φ follows from the soundness of sequencing rule S1.

C.12. Composition theorems

Proof of Lemma 4.3
Suppose that the formula Honest(X̂) ⊃ φ can proved in both Q1 and Q2 using the

honesty rule. By the definition of the honesty rule, it has to be that � Start(X)[]Xφ
and ∀ρ ∈ Q1 ∪ Q2.∀PεBS(ρ). � φ [P]X φ. Every basic sequence P of a role in
Q1 ⊗ Q2 is a basic sequence of a role in Q1, or a basic sequence of a role in Q2.
It follows that � φ [P]X φ and, therefore, by the application of the honesty rule,
�Q1⊗Q2 Honest(X̂) ⊃ φ.

Proof of Lemma 4.7
Suppose that the formula Honest(X̂) ⊃ φ can proved in both Q1 and Q2 using the

honesty rule. By the definition of the honesty rule, it has to be that Start(X) � []Xφ
and ∀ρ ∈ Q1 ∪ Q2.∀PεBS(ρ). � φ [P]X φ. Let Q be a protocol obtained by
the sequential composition of Q1 and Q2. Every basic sequence P of a role in Q
has to be a basic sequence of a role in Q1, or a basic sequence of a role in Q2, or
a concatenation of a basic sequence of a role in Q1 and a basic sequence of a role
in Q2. In the first two cases, � φ [P]X φ holds trivially, in the third case � φ [P]X φ
follows by one application of the sequencing rule S1. Therefore, by the application
of the honesty rule, �Q Honest(X̂) ⊃ φ.

References

[1] M. Abadi and A. Gordon, A calculus for cryptographic protocols: the spi calculus, Information
and Computation, 148(1) (1999), 1–70. Expanded version available as SRC Research Report 149
(January 1998).

[2] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. Keromytis and O. Reingold, Just fast
keying (JFK), 2002. Internet draft.

[3] J. Alves-Foss and T. Soule, A weakest precondition calculus for analysis of cryptographic protocols,
in: DIMACS Workshop on Design and Formal Verification of Crypto Protocols, 1997.

480 A. Datta et al. / A derivation system and compositional logic for security protocols

[4] M. Barr and C. Wells, Category Theory for Computing Science. New York.

[5] M. Bellare, R. Canetti and H. Krawczyk, A modular approach to the design and analysis of authen-
tication and key exchange protocols, in: Proceedings of 30th Annual Symposium on the Theory of
Computing, ACM, 1998.

[6] M. Bellare and P. Rogaway, Entity authentication and key distribution, in: Advances in Cryprtology
– Crypto’93 Proceedings, Springer-Verlag, 1994.

[7] G. Berry and G. Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1992),
217–248.

[8] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung, Systematic design of a
family of attack resistant authentication protocols, IEEE Journal on Selected Areas in Communica-
tions 1(5) (1993).

[9] M. Burrows, M. Abadi and R. Needham, A logic of authentication, ACM Transactions on Computer
Systems.

[10] L. Buttyan, S. Staamann and U. Wilhelm, A simple logic for authentication protocol design, in:
Proceedings of 11th IEEE Computer Security Foundations Workshop, IEEE, 1999, pp. 153–162.

[11] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in: Proc.
42nd IEEE Symp. on the Foundations of Computer Science, IEEE, 2001. Full version available at
http://eprint.iacr.org/2000/067/.

[12] R. Canetti, C. Meadows and P. Syverson, Environmental requirements for authentication protocols,
in: Proceedings of Software Security – Theories and Systems, Mext-NSF-JSPS International Sympo-
sium, ISSS, LNCS 2609, Springer-Verlag, 2003, pp. 339–355.

[13] J.A. Clark and J.L. Jacob, A survey of authentication protocol literature, Web Draft Version 1.0
available from www.cs.york.ac.uk/j̃ac/, 1997.

[14] J.A. Clark and J.L. Jacob, Searching for a solution: Engineering tradeoffs and the evolution of prov-
ably secure protocols, in: Proceedings IEEE Symposium on Research in Security and Privacy, IEEE,
2000, pp. 82–95.

[15] A. Datta, A. Derek, J.C. Mitchell and D. Pavlovic, A derivation system for security protocols and
its logical formalization, in: Proceedings of 16th IEEE Computer Security Foundations Workshop,
IEEE, 2003, pp. 109–125.

[16] A. Datta, A. Derek, J.C. Mitchell and D. Pavlovic, Secure protocol composition (Extended abstract),
in: Proceedings of ACM Workshop on Formal Methods in Security Engineering, 2003, pp. 11–23.

[17] A. Datta, A. Derek, J.C. Mitchell and D. Pavlovic, Abstraction and refinement in protocol derivation,
in: Proceedings of 17th IEEE Computer Security Foundations Workshop, IEEE, 2004, pp. 30–45.

[18] A. Datta, A. Derek, J.C. Mitchell and D. Pavlovic, Secure protocol composition, in: Proceedings of
19th Annual Conference on Mathematical Foundations of Programming Semantics, Volume 83 of
Electronic Notes in Theoretical Computer Science, 2004.

[19] A. Datta, J.C. Mitchell and D. Pavlovic, Derivation of the JFK protocol, Technical Report
KES.U.02.03, Kestrel Institute, 2002.

[20] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Transactions on Information
Theory IT-22(6) (1976), 644–654.

[21] W. Diffie, P.C. van Oorschot and M.J. Wiener, Authentication and authenticated key exchanges,
Designs, Codes and Cryptography 2 (1992), 107–125.

[22] D. Dolev and A. Yao, On the security of public-key protocols, IEEE Transactions on Information
Theory 2(29) (1983).

[23] N. Durgin, J.C. Mitchell and D. Pavlovic, A compositional logic for protocol correctness, in: Pro-
ceedings of 14th IEEE Computer Security Foundations Workshop, IEEE, 2001, pp. 241–255.

[24] N. Durgin, J.C. Mitchell and D. Pavlovic, A compositional logic for proving security properties of
protocols, Journal of Computer Security 11 (2003), 677–721.

A. Datta et al. / A derivation system and compositional logic for security protocols 481

[25] L. Gong and P. Syverson, Fail-stop protocols: An approach to designing secure protocols, Depend-
able Computing for Critical Applications 5 (1998), 79–100.

[26] J.D. Guttman and F.J.T. Fábrega, Protocol independence through disjoint encryption, in: Proceedings
of 13th IEEE Computer Security Foundations Workshop, IEEE, 2000, pp. 24–34.

[27] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), RFC 2409, 1998.

[28] N. Heintze and J.D. Tygar, A model for secure protocols and their composition, IEEE Transactions
on Software Engineering 22(1) (1996), 16–30.

[29] IEEE, Entity authentication mechanisms – part 3: Entity authentication using asymmetric tech-
niques, Technical report ISO/IEC IS 9798-3, ISO/IEC, 1993.

[30] J. Kelsey, B. Schneier and D. Wagner, Protocol interactions and the chosen protocol attack, in:
Proceedings of the International Workshop on Security Protocols, 1997.

[31] R. Kemmerer, C. Meadows and J. Millen, Three systems for cryptographic protocol analysis,
J. Cryptology 7(2) (1994), 79–130.

[32] H. Krawczyk, The IKE-SIGMA protocol, Internet draft, 2002.

[33] G. Lowe, An attack on the Needham–Schroeder public-key protocol, Info. Proc. Letters 56 (1995),
131–133.

[34] G. Lowe, Some new attacks upon security protocols, in: Proceedings of 9th IEEE Computer Security
Foundations Workshop, IEEE, 1996, pp. 162–169.

[35] N. Lynch, I/O automata models and proofs for shared-key communication systems, in: Proceedings
of 12th IEEE Computer Security Foundations Workshop, IEEE, 1999, pp. 14–29.

[36] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety, Springer-Verlag, 1995.

[37] H. Mantel, On the composition of secure systems, in: Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, USA, IEEE Computer Society, 2002, pp. 88–101.

[38] P. Martin-Lof, Intuitionistic Type Theory, Bibliopolis, 1984.

[39] D. McCullough, Noninterference and the composability of security properties, in: Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA, USA, IEEE Computer Society, 1988,
pp. 177–186.

[40] D. McCullough, A hookup theorem for multilevel security, IEEE Transactions on Software Engi-
neering 16(6) (1990), 563–568.

[41] J. McLean, Security models and information flow, in: Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, USA, IEEE Computer Society, 1990.

[42] J. McLean, A general theory of composition for a class of “possibilistic” properties, IEEE Transac-
tions on Software Engineering 22(1) (1996), 53–67.

[43] C. Meadows, A model of computation for the NRL protocol analyzer, in: Proceedings of 7th IEEE
Computer Security Foundations Workshop, IEEE, 1994, pp. 84–89.

[44] C. Meadows, The NRL protocol analyzer: An overview, Journal of Logic Programming 26(2)
(1996), 113–131.

[45] C. Meadows, Analysis of the Internet Key Exchange protocol using the NRL protocol analyzer, in:
Proceedings of the IEEE Symposium on Security and Privacy, IEEE, 1998.

[46] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1996.

[47] R. Milner, Action structures, LFCS report ECS-LFCS-92-249, Department of Computer Science,
University of Edinburgh, JCMB, The Kings Buildings, Mayfield Road, Edinburgh, December 1992.

[48] R. Milner, Action calculi and the pi-calculus, in: NATO Summer School on Logic and Computation,
Marktoberdorf, 1993.

[49] R. Milner, Action calculi, or syntactic action structures, in: Proceedings of MFCS’93,
A.M. Borzyszkowski and S. Sokolowski, eds, Volume 711 of Lecture Notes in Computer Science,
Springer-Verlag, 1993, pp. 105–121.

482 A. Datta et al. / A derivation system and compositional logic for security protocols

[50] R. Milner, Communicating and Mobile Systems: The π-Calculus, Cambridge University Press, Cam-
bridge, UK, 1999.

[51] J.C. Mitchell, M. Mitchell and U. Stern, Automated analysis of cryptographic protocols using Murϕ,
in: Proc. IEEE Symp. Security and Privacy, 1997, pp. 141–151.

[52] J.C. Mitchell, A. Ramanathan, A. Scedrov and V. Teague, A probabilistic polynomial-time calcu-
lus for the analysis of cryptographic protocols (preliminary report), in: 17th Annual Conference on
the Mathematical Foundations of Programming Semantics, Arhus, Denmark, 2001, S. Brookes and
M. Mislove, eds, Volume 45, Electronic notes in Theoretical Computer Science, 2001.

[53] R. Needham and M. Schroeder, Using encryption for authentication in large networks of computers,
Communications of the ACM 21(12) (1978), 993–999.

[54] L. Paulson, Proving properties of security protocols by induction, in: 10th IEEE Computer Security
Foundations Workshop, 1997, pp. 70–83.

[55] D. Pavlovic, Categorical logic of names and abstraction in action calculi, Mathematical Structures
in Computer Science 7(6) (1997), 619–637.

[56] D. Peled, Software Reliability Methods, Springer-Verlag, 2001.

[57] A. Perrig and D. Song, A first step towards the automatic generation of security protocols, in: Pro-
ceedings of ISOC Network and Distributed Systems Security Symposium, 2000.

[58] B. Pfitzmann and M. Waidner, A model for asynchronous reactive systems and its application to
secure message transmission, in: IEEE Symposium on Security and Privacy, Washington, 2001,
pp. 184–200.

[59] A. Ramanathan, J.C. Mitchell, A. Scedrov and V. Teague, Probabilistic bisimulation and equivalence
for security analysis of network protocols, in: FOSSACS 2004 – Foundations of Software Science and
Computation Structures, 2004.

[60] D. Song, Athena: a new efficient automatic checker for security protocol analysis, in: Proceedings
of 12th IEEE Computer Security Foundations Workshop, IEEE, 1999, pp. 192–202.

[61] P. Syverson and C. Meadows, A formal language for cryptographic protocol requirements, Designs,
Codes and Cryptography 7(1-2) (1996), 27–59.

[62] F.J. Thayer-Fábrega, J.C. Herzog and J.D. Guttman, Strand spaces: Why is a security protocol cor-
rect? in: Proceedings of the 1998 IEEE Symposium on Security and Privacy, Oakland, CA, IEEE
Computer Society Press, 1998, pp. 160–171.

[63] F.J. Thayer-Fábrega, J.C. Herzog and J.D. Guttman, Mixed strand spaces, in: Proceedings of
12th IEEE Computer Security Foundations Workshop, IEEE, 1999.

[64] T.Y.C. Woo and S.C. Lam, A semantic model for authentication protocols, in: Proceedings IEEE
Symposium on Research in Security and Privacy, 1993.

View publication statsView publication stats

https://www.researchgate.net/publication/220065386

