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We suggest a conjugate gradient (CG) method for solving symmetric systems of nonlinear equations without computing Jacobian
and gradient via the special structure of the underlying function. �is derivative-free feature of the proposed method gives it
advantage to solve relatively large-scale problems (500,000 variables) with lower storage requirement compared to some existing
methods. Under appropriate conditions, the global convergence of our method is reported. Numerical results on some benchmark
test problems show that the proposed method is practically e�ective.

1. Introduction

Let us consider the systems of nonlinear equations:� (�) = 0, (1)

where � : �� → �� is a nonlinear mapping. O�en, the
mapping, �, is assumed to satisfy the following assumptions:

(A1) �ere exists �∗ ∈ �� s.t. �(�∗) = 0.
(A2) � is a continuously di�erentiable mapping in a neigh-

borhood of �∗.
(A3) ��(�∗) is invertible.
(A4) �e Jacobian ��(�) is symmetric.

�e prominent method for �nding the solution of (1) is the
classical Newton’s method which generates a sequence of
iterates {��} from a given initial point �0 via

��+1 = �� − (�� (��))−1 � (��) , (2)

where � = 0, 1, 2, . . ..�e attractive features of thismethod are
rapid convergence and easy implementation. Nevertheless,

Newton’s method requires the computation of the Jacobian
matrix, which require the �rst-order derivative of the systems.
In practice, computations of some functions derivatives are
quite costly and sometime they are not available or could not
be done precisely. In this case Newton’s method cannot be
applied directly.

In this work, we are interested in handling large-scale
problems for which the Jacobian either is not available or
requires a low amount of storage; the best method is CG
approach. It is vital to mention that the conjugate gradient
methods are among the popular used methods for uncon-
strained optimization problems. �ey are particularly e�-
cient for handling large-scale problems due to their conver-
gence properties, simple implementation, and low storage [1].
Notwithstanding, the study of conjugate gradient methods
for large-scale symmetric nonlinear systems of equations is
scanty, and this is what motivated us to have this paper.

In general, CG methods for solving nonlinear systems
of equations generate iterative points {��} from initial given
point �0 using

��+1 = �� + ���, (3)
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where �� > 0 is attained via line search and direction � is
obtained using

� = {{{
−� (��) , if � = 0,−� (��) + ���, if � ≥ 1, (4)

where �� is termed as conjugate gradient parameter.
�ese problems which are under study may arise from

an unconstrained optimization problem, a saddle point prob-
lem, Karush-Kuhn-Tucker (KKT) of equality constrained
optimization problem, the discretized two-point boundary
value problem, the discretized elliptic boundary value prob-
lem, and so forth.

Equation (1) is the �rst-order necessary condition for the
unconstrained optimization problem when � is the gradient
mapping of some function � : �� → �,

min� (�) , � ∈ ��. (5)

For the equality constrained problem,

min � (�) ,
s.t. ℎ (�) = 0, (6)

where ℎ is a vector-valued function, the KKT conditions can
be represented as system (1) with � = (�, V), and� (�, V) = (∇� (�) + ∇ℎ (�) V, ℎ (�)) , (7)

where V is the vector of Lagrange multipliers. Notice that the
Jacobian ∇�(�, V) is symmetric for all (�, V) (see, e.g., [2]).

Problem (1) can be converted to the following global
optimization problem (5) with our function � de�ned by

� (�) = 12 ‖� (�)‖2 . (8)

A large number of e�cient solvers for large-scale symmetric
nonlinear equations have been proposed, analyzed, and
tested in the last decade. Among them, the most classic one
entirely due to Li and Fukushima [3], in which a Gauss-
Newton-based BFGS method is developed, and the global
and superlinear convergence are also established. Subse-
quently, its performance is further improved by Gu et al. [4],
where norm descent BFGSmethods are designed. Since then,
norm descent type BFGS methods especially cooperating
with trust regions strategy are presented in the literature and
showed their moderate e�ectiveness experimentally [5]. Still
the matrix storage and solving of �-linear systems of equa-
tions are required in the BFGS type methods presented in the
literature. �e recent designed nonmonotone spectral gradi-
ent algorithm [6] falls within the framework of matrix free
methods.

�e conjugate gradient methods for symmetric nonlinear
equations have received a good attention and take an appro-
priate progress. However, Li and Wang [7] proposed a mod-
i�ed Fletcher-Reeves conjugate gradient method which is
based on the work of Zhang et al. [8], and the results illustrate
that their proposed conjugate gradient method is promising.

In line with this development, further studies on conjugate
gradient are inspired for solving large-scale symmetric non-
linear equations. Zhou and Shen [9] extended the descent
three-term polak-Ribiere-Polyak of Zhang et al. [10] for solv-
ing (1) by combining with the work of Li and Fukushima [3].
Meanwhile the classic polak-Ribiere-Polyak is successfully
used to solve symmetric equation (1) by Zhou and Shen [1].

Subsequently Xiao et al. [11] proposed a method based on
well-known conjugate gradient of Hager and Zhang [12], and
the proposed method converges globally. Extensive numer-
ical experiments showed that each of the above-mentioned
methods performs quite well. �e combination of conjugate
gradient algorithms and the Newton method, for the �rst
time, was presented by Andrei [13, 14]. Hence, in this paper,
we intended to present a new enhanced CG parameter ��
which is matrix- and derivative-free, respectively. �is is
made possible by combining Birgin and Mart́ınez direction
with classical Newton direction.

We organized the paper as follows. In the next section,
we present the details of the proposed method. Convergence
results are presented in Section 3. Some numerical results
are reported in Section 4. Finally, conclusions are made in
Section 5.

2. Derivation of the Method

In this section we present a new CG parameter ��, as
a result of combining Birgin and Mart́ınez direction with
classical Newton direction. Recalling the Birgin andMart́ınez
direction in [15] is de�ned by

� = {{{
−∇� (��) , if � = 0,−�∇� (��) + ���, if � ≥ 1, (9)

where �� = ����/�����; see Raydan [16] for detail.
In [2] Ortega and Rheinboldt used the term

�� = � (�� + ����) − ���� , (10)

to approximate the gradient ∇�(��), which avoids computing
exact gradient and �� updated via line search method. It is
clear that when ‖��‖ is small, then �� ≈ ∇�(��).

Recall, from Newton’s direction,�+1 = −�−1∇� (��+1) . (11)

Combining (9) and (11), we have−� (��)−1 ∇� (��+1) = −∇� (��+1) �� + ���. (12)

Multiplying both sides of (12) by �(��) leads to− � (��) � (��)−1 ∇� (��+1)= −� (��) ∇� (��+1) �� + � (��) ���. (13)

A�er little linear algebra, (13) transforms to−∇� (��+1) = −��� (��) ∇� (��+1) + ��� (��) �. (14)
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To ensure good approximation, wemultiply both sides of (14)

by ��� to obtain−���∇� (��+1) = −��� ��� (��) ∇� (��+1)+ ������ (��) �. (15)

Equation (15) can be rewritten as−���∇� (��+1) = −����� � (��) ∇� (��+1)+ ����� � (��) �. (16)

From secant condition, we have� (��) �� = ��,�� = � (��)−1 ��, (17)

��� � (��)� = ��� ,��� = ��� �(��)−1�. (18)

It is vital to note that, for this work, we claim that �(��) is
symmetric matrix ∀�. Hence, (18) can also be written as��� � (��) = ��� . (19)

Substituting (19) into (16) yields−���∇� (��+1) = −�����∇� (��+1) + ����� �. (20)

A�er simpli�cation, we obtained our CG parameter (��) as
�� = �����∇� (��+1) − ���∇� (��+1)��� � . (21)

Motivated by [3, 7] and using (10) we derive our CG param-
eter

�� = (���� − ��)���� � ��+1. (22)

Having derived the CG parameter (��) in (22) and by using
(9), we then present our direction as0 = −� (�0) ,
�+1 = −����+1 + (���� − ��)� ��+1��� � �,

� = 1, 2, . . . ,
(23)

where �� = ����/�����.
Finally, we present our scheme as��+1 = �� + ���. (24)

�e direction � given by (23) may not be a descent direction
of (8), and then the standard Wolfe and Armijo line searches

cannot be used to compute the step size directly. Zhang et al.
[8] proved the global convergence of the global PRP method
for general nonconvex optimization using some nondescent
line search. Motivated by this, we use the nonmonotone line
search proposed by Li and Fukushima in [3] to compute our
step size ��. Let  1 > 0,  2 > 0, and ! ∈ (0, 1) be constants
and let {"�} be a given positive sequence such that

∞∑
�=0
"� < ∞. (25)

Let �� = max{1, !�} that satisfy� (�� + ���) − � (��)≤ − 1 &&&&��� (��)&&&&2 −  2 &&&&���&&&&2 + "�� (��) . (26)

Now, we can describe the algorithm for our proposed
method as follows.

Algorithm 1 (derivative-free CG method (DFCG)). Consider
the following steps.

Step 1. Given �0, � > 0, ' ∈ (0, 1), and compute 0 = −�0,
and set � = 0.
Step 2. Compute �� using (10) and test the stopping criterion.
If yes, then stop; otherwise continue with Step 3.

Step 3. Compute �� by the line search (26).

Step 4. Compute ��+1 = �� + ���.
Step 5. Compute the search direction as �+1 = −����+1 +((���� − ��)���+1/��� �)�.
Step 6. Consider � = � + 1 and go to Step 2.

3. Convergence Result

�is section presents global convergence results of the
derivative-free conjugate gradientmethods. To beginwith, let
us de�ne the level setΩ = {� | � (�) ≤ 3�� (�0)} . (27)

In order to analyze the convergence of our method, we will
make the following assumptions on nonlinear systems �.
Assumption 2. Consider the following:

(i) �e level set Ω de�ned by (27) is bounded.

(ii) �ere exists �∗ ∈ Ω such that �(�∗) = 0 and ��(�) is
continuous for all �.

(iii) In some neighborhood 5 of Ω, the Jacobian is
Lipschitz continuous; that is, there exists a positive
constant 6 > 0 such that&&&&&�� (�) − �� (�)&&&&& ≤ 6 &&&&� − �&&&& , (28)

for all �, � ∈ 5.
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Properties (i) and (ii) imply that there exist positive con-
stants71,72, and 61 such that‖� (�)‖ ≤ 71,‖� (�)‖ ≤ 72, ∀� ∈ 5, (29)

&&&&∇� (�) − ∇� (�)&&&& ≤ 61 &&&&� − �&&&& ,‖� (�)‖ ≤ 72, ∀�, � ∈ 5. (30)

Lemma 3 (see [3]). Let the sequence {��} be generated by the
algorithms above.�en the sequence {‖��‖} converges and �� ∈8 for all � ≥ 0.
Lemma 4. Let the properties of (1) above hold. �en one has

lim
�→∞

&&&&���&&&& = lim
�→∞

&&&&��&&&& = 0, (31)

lim
�→∞

&&&&����&&&& = 0. (32)

Proof. By (25) and (26) we have, for all � > 0, 2 &&&&���&&&&2 ≤  1 &&&&��� (��)&&&&2 +  2 &&&&���&&&&2≤ &&&&��&&&&2 − &&&&��+1&&&&2 + "� &&&&��&&&&2 (33)

by summing the above � inequality; then we obtain

 2 �∑
	=0

&&&&���&&&&2 ≤ &&&&��&&&&2 { �∑
	=0
(1 − "	)} − &&&&��+1&&&&2 , (34)

so from (29) and the fact that {"�} satis�es (25) the series∑�	=0 ‖���‖2 is convergent.�is implies (31). By a similar way,
we can prove that (32) holds.

�e following result shows that our derivative-free conju-
gate gradient methods algorithm is globally convergent.

�eorem 5. Let the properties of (1) above hold. �en the
sequence {��} which is generated by derivative-free conjugate
gradient methods algorithm converges globally; that is,

lim inf
�→∞

&&&&∇� (��)&&&& = 0. (35)

Proof. We prove this theorem by contradiction. Suppose that
(35) is not true, and then there exists a positive constant @
such that &&&&∇� (��)&&&& ≥ @, ∀� ≥ 0. (36)

Since ∇�(��) = ����, (36) implies that there exists a positive
constant @1 satisfying&&&&��&&&& ≥ @1, ∀� ≥ 0. (37)

Case (i) is as follows: consider lim sup�→∞�� > 0.�en
by (32), we have lim inf�→∞‖��‖ = 0. �is and Lemma 3
show that lim�→∞‖��‖ = 0, which contradicts with (36).

Case (ii) is as follows: consider lim sup�→∞�� = 0. Since�� ≥ 0, this case implies that

lim
�→∞

�� = 0, (38)

and by de�nition of �� in (10) and the symmetry of the
Jacobian, we have&&&&�� − ∇� (��)&&&& = &&&&&&&&&� (�� + ��−1��) − ����−1 − ��� ��&&&&&&&&&

= &&&&&&&&&∫10 (� (�� + B��−1��) − ��) B��&&&&&&&&&≤ 6721��−1,
(39)

where we use (29) and (30) in the last inequality. Inequalities
(25), (26), and (36) show that there exists a constant @2 > 0
such that &&&&��&&&& ≥ @2, ∀� ≥ 0. (40)

By (10) and (29), we get

&&&&��&&&& = &&&&&&&&&∫10 � (�� + B��−1��) ��B&&&&&&&&& ≤ 7172, ∀� ≥ 0. (41)

From (41) and (30), we obtain&&&&��&&&& = &&&&�� − ��+1&&&&≤ &&&&�� − ∇� (��)&&&& + &&&&��−1 − ∇� (��−1)&&&&+ &&&&∇� (��) − ∇� (��−1)&&&&≤ 6721 (��−1 + ��−2) + 61 &&&&��−1&&&& .
(42)

�is together with (38) and (32) shows that lim�→∞‖��‖ = 0.
Hence from (41), (42), and (40), we have

CCCC��CCCC ≤ &&&&&��� &&&&& &&&&��&&&&&&&&��� &&&& &&&&��&&&& D→ 0 (43)

meaning that there exists a constant E ∈ (0, 1) such that for
su�ciently large � CCCC��CCCC ≤ E. (44)

Again from the de�nition of our �∗� we obtainCCCC�∗� CCCC ≤ &&&&���� − ��&&&& &&&&��+1&&&&&&&&��� &&&& &&&&��&&&& ≤ 7172 &&&&���� − ��&&&&&&&&��� &&&& &&&&��&&&&D→ 0 (45)

which implies that there exists a constant F ∈ (0, 1) such that
for su�ciently large � CCCC�∗� CCCC ≤ F. (46)
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Without loss of generality, we assume that the above inequal-
ities hold for all � ≥ 0. �en we get&&&&�+1&&&& ≤ &&&&����+1&&&& + CCCC��CCCC &&&&�&&&& ≤ E7172 + F &&&&�&&&& (47)

which shows that the sequence {�+1} is bounded. Since
lim�→∞�� = 0, then ��� = ��/! does not satisfy (26); namely,

� (�� + ����) > � (��) −  1 &&&&&���� (��)&&&&&2−  2 &&&&&����&&&&&2 + "�� (��) , (48)

which implies that� (�� + ����) − � (��)���> − 1 &&&&&���� (��)&&&&&2 −  2 &&&&&����&&&&&2 .
(49)

By the mean-value theorem, there exists G� ∈ (0, 1) such that� (�� + ����) − � (��)��� = ∇� (�� + G�����)� �. (50)

Since {��} ⊂ Ω is bounded, without loss of generality, we
assume �� → �∗. By (10) and (23), we have

lim
�→∞

�+1 = − lim
�→∞

��+1��+1 + lim
�→∞

�∗��≤ − lim
�→∞

��+1 + lim
�→∞

�∗�� = −∇� (�∗) , (51)

where we use (45) and (26) and the fact that the sequence{�+1} is bounded.
On the other hand, we have

lim
�→∞

∇� (�� + G�����) = ∇� (�∗) . (52)

Hence, from (49)–(52), we obtain −∇�(�∗)�∇�(�∗) ≥ 0,
which means ‖∇�(�∗)‖ = 0. �is contradicts with (36). �e
proof is then completed.

4. Numerical Results

In this section, we compare the performance of our following
methods for solving nonlinear equation (1) with an inexact
PRP conjugate gradient method for solving symmetric non-
linear equations [1]:

(i) A derivative-free CG method (DFCG): we set  1 = 2 = 10−4, �1 = 0.01, ! = 0.2, and "� = 1/(� + 1)2.
(ii) An inexact PRP (IPRP): we set  1 =  2 = 10−4, �1 =0.01, ! = 0.2, and "� = 1/(� + 1)2.

�e code for the DFCG method was written in Matlab 7.4
R2010a and run on a personal computer 1.8 GHzCPUproces-
sor and 4GB RAM memory. We stopped the iteration if the

total number of iterations exceeds 1000 or ‖��‖ ≤ 10−3. We
tested the two methods on nine test problems with di�erent
initial points and � values. Problems 6–9 are from [9].

Problem 1:�	 (�) = (1 − �2	 ) + �	 (1 + �	��−2��−1��) − 2,I = 1, 2, . . . , �. (53)

Problem 2:�	 (�) = �	 − 0.1�2	+1, I = 1, 2, . . . , � − 1,�� (�) = �� − 0.1�21. (54)

Problem 3:�1 (�) = �21 − 3�1 + 1 + cos (�1 − �2) ,�	 (�) = �2	 − 3�	 + 1 + cos (�	 − �	−1) , I = 1, 2, . . . , �. (55)

Problem 4:�	 (�) = �	 (cos�	 − 1�)
− �� [sin�	 − 1 − (�	 − 1)2 − 1� �∑	=1�	] ,I = 1, 2, . . . , �.

(56)

Problem 5:�	 (�) = �	 − 3�	 ( sin�	3 − 0.66) + 2,
for I = 1, 2, . . . , �. (57)

Problem 6:�1 (�) = �1 (�21 + �22) − 1,�	 (�) = �	 (�2	−1 + 2�2	 + �2	+1) , I = 2, 3, . . . , � − 1,�� (�) = �� (�2�−1 + �2�) .
(58)

Problem 7:�3	−2 (�) = �3	 − 2�3	−1 − �23	 − 1,�3	−1 (�) = �3	−2�3	−1�3	 − �23	−2 + �23	−1 − 2,�3	 (�) = 3−
3�−2 − 3−
3�−1 .
(59)

Problem 8:

� (�) =((
(

2 −1−1 2 −1
d d d

d d −1−1 2
))
)

�
+ (3
1 − 1, . . . , 3
� − 1)� .

(60)
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Table 1: Test results for the two methods, where 3 = ones(�, 1).
Problem (P) �0 � DFCG IPRP

Iter Time (s) ‖��‖ Iter Time (s) ‖��‖
1 0.5e

100 7 0.011199 2.03E − 04 15 0.018191 7.56E − 04

500 7 0.019229 4.54E − 04 16 0.039993 9.77E − 04

1000 7 0.025726 6.42E − 04 17 0.058292 7.43E − 04

2000 7 0.042199 9.08E − 04 18 0.099609 6.03E − 04

5000 8 0.138149 1.69E − 05 18 0.263836 9.53E − 04

2 e

10 5 0.005881 7.53E − 06 7 0.007772 9.53E − 05

500 5 0.009256 5.32E − 05 7 0.016192 6.74E − 04

5000 5 0.073385 1.68E − 04 9 0.097816 2.92E − 06

10000 5 0.16378 2.38E − 04 9 0.172704 4.14E − 06

100000 5 2.308894 7.53E − 04 9 1.923969 1.31E − 05

500000 6 8.43021 3.28E − 07 9 10.123595 2.92E − 05

3 0.5e

100 3 0.006565 2.42E − 05 5 0.005039 1.23E − 06

1000 3 0.014514 7.64E − 05 5 0.023714 3.90E − 06

5000 3 0.068582 1.71E − 04 5 0.08417 8.71E − 06

10000 3 0.132546 2.42E − 04 5 0.16412 1.23E − 05

100000 3 1.49153 7.64E − 04 5 2.297944 3.90E − 05

500000 4 9.227381 7.21E − 07 5 9.234416 8.71E − 05

4 0.01e

100 3 0.006919 9.15E − 05 51 0.090634 8.20E − 04

500 3 0.010871 2.06E − 04 57 0.17519 9.40E − 04

1000 3 0.021833 2.92E − 04 61 0.276824 8.50E − 04

5000 3 0.088476 6.53E − 04 67 1.277072 9.73E − 04

20000 4 0.312725 8.75E − 07 73 4.686063 9.97E − 04

5

e

50 4 0.006221 1.67E − 04 11 0.015403 5.79E − 04

500 4 0.014341 5.28E − 04 14 0.040054 5.73E − 04

5000 5 0.090997 2.69E − 06 15 0.236538 2.79E − 04

50000 5 0.725966 8.52E − 06 15 1.627153 8.82E − 04

0.001e

500 6 0.01594 6.07E − 04 17 0.044403 5.63E − 04

5000 7 0.105773 1.22E − 06 19 0.253817 5.54E − 04

50000 7 0.811278 3.86E − 06 20 2.042188 9.98E − 04

6 0.1

50 35 0.038655 8.04E − 04 54 0.06337 7.59E − 04

500 33 0.060248 5.98E − 04 43 0.086961 9.77E − 04

1000 46 0.109835 8.61E − 04 68 0.198439 9.88E − 04

2000 37 0.13327 8.20E − 04 58 0.245378 9.26E − 04

3000 35 0.217145 8.02E − 04 59 0.395438 9.60E − 04

8000 39 0.53251 9.06E − 04 60 1.015941 7.87E − 04

15000 48 1.237265 8.80E − 04 62 1.938341 9.80E − 04

7 e

10 4 0.00539 4.32E − 05 17 0.029569 8.17E − 04

50 4 0.006503 9.98E − 05 21 0.042007 6.78E − 04

500 4 0.011576 3.21E − 04 25 0.08001 7.86E − 04

5000 5 0.099718 5.91E − 07 29 0.442995 8.96E − 04

50000 5 0.731552 1.87E − 06 35 4.100204 6.12E − 04

8

e

10 34 0.366137 8.54E − 04 31 0.403368 8.94E − 04

50 26 0.29999 4.94E − 04 36 0.495837 3.31E − 04

100 28 0.410634 8.53E − 04 29 0.490114 9.47E − 04

500 224 6.894744 9.19E − 04 317 11.140713 7.85E − 04

1000 140 10.284715 7.87E − 04 226 19.377201 7.54E − 04

2000 134 18.935605 4.21E − 04 149 30.958082 9.70E − 04

0.1

10 18 0.202136 9.48E − 04 28 0.373317 9.96E − 04

100 32 0.460852 4.80E − 04 29 0.484755 5.21E − 04

500 32 0.96522 8.97E − 04 37 1.365365 8.93E − 04

1000 23 1.717939 7.32E − 04 32 3.189859 7.99E − 04

2000 27 5.596633 9.00E − 04 34 9.085955 7.93E − 04

5000 27 25.832759 5.92E − 04 28 33.107487 7.68E − 04
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Table 1: Continued.

Problem (P) �0 � DFCG IPRP

Iter Time (s) ‖��‖ Iter Time (s) ‖��‖
9 e

2000 11 0.027851 7.39E − 06 13 0.030663 6.19E − 04

3000 66 25.412837 8.44E − 04 69 34.946683 9.34E − 04

5000 63 72.39168 8.03E − 04 69 83.7963 9.95E − 04

DFCG

IPRP

�

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1
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1

P
(�
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Figure 1: Comparison of the performance of DFCG and IPRP
methods as the dimension increases (in terms of CPU time).

Problem 9:

� (�) =((
(

2 −10 2 −1
d d d

d d −10 2
))
)

�
+ (sin�1 − 1, . . . , sin�� − 1)� .

(61)

In Table 1, we listed numerical results, where “Iter” and
“Time” stand for the total number of all iterations and the
CPU time in seconds, respectively; ‖��‖ is the norm of the
residual at the stopping point. �e numerical results indicate
that the proposed method DFCG compared to IPRP has
minimum number of iterations and CPU time, respectively.
Figures 1 and 2 are performance pro�le derived by Dolan and
Moré [17] which show that our claim is justi�ed, that is, less
CPU time and number of iterations for each test problem.

Moreover, on average, our ‖�(��)‖ is too small which sig-
ni�es that the solution obtained is true approximation of the
exact solution compared to the IPRP.

5. Conclusions

Many practical problems possessed symmetrical property. In
this paper we present a derivative-free conjugate gradient
(DFCG) method for symmetric nonlinear equations and
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Figure 2: Comparison of the performance of DFCG and IPRP
methods as the dimension increases (in terms of number of
iterations).

compare its performance with that of an inexact PRP con-
jugate gradient method [1] by doing some numerical exper-
iments. We also proved the global convergence of our pro-
posed method by using a backtracking type line search, and
the numerical results show that our method is e�cient.
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