
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2019

A derivative-free VU-algorithm for convex finite-max problems A derivative-free VU-algorithm for convex finite-max problems

Warren L. Hare
University of British Columbia, Okanagan, warren.hare@ubc.ca

Chayne Planiden
University of Wollongong, chayne@uow.edu.au

Claudia Sagastizabal
IMECC - UNICAMP

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation

Hare, Warren L.; Planiden, Chayne; and Sagastizabal, Claudia, "A derivative-free VU-algorithm for convex

finite-max problems" (2019). Faculty of Engineering and Information Sciences - Papers: Part B. 3339.

https://ro.uow.edu.au/eispapers1/3339

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F3339&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F3339&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F3339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/3339?utm_source=ro.uow.edu.au%2Feispapers1%2F3339&utm_medium=PDF&utm_campaign=PDFCoverPages

A derivative-free VU-algorithm for convex finite-max problems A derivative-free VU-algorithm for convex finite-max problems

Abstract Abstract
The VU-algorithm is a superlinearly convergent method for minimizing nonsmooth, convex functions. At
each iteration, the algorithm works with a certain V-space and its orthogonal u-space, such that the
nonsmoothness of the objective function is concentrated on its projection onto the V-space, and on the
U-space the projection is smooth. This structure allows for an alternation between a Newton-like step
where the function is smooth, and a proximal-point step that is used to find iterates with promising
VU-decompositions. We establish a derivative-free variant of the VU-algorithm for convex finite-max
objective functions. We show global convergence and provide numerical results from a proof-of-concept
implementation, which demonstrates the feasibility and practical value of the approach. We also carry out
some tests using nonconvex functions and discuss the results.

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Hare, W., Planiden, C. & Sagastizabal, C. (2019). A derivative-free VU-algorithm for convex finite-max
problems. Optimization Methods and Software, Online First 1-39.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/3339

https://ro.uow.edu.au/eispapers1/3339

A derivative-free VU -algorithm for convex

finite-max problems

Warren Hare∗ Chayne Planiden† Claudia Sagastizábal‡

November 14, 2019

Abstract

The VU -algorithm is a superlinearly convergent method for mini-
mizing nonsmooth, convex functions. At each iteration, the algorithm
works with a certain V-space and its orthogonal U -space, such that the
nonsmoothness of the objective function is concentrated on its projec-
tion onto the V-space, and on the U -space the projection is smooth.
This structure allows for an alternation between a Newton-like step
where the function is smooth, and a proximal-point step that is used
to find iterates with promising VU -decompositions. We establish a
derivative-free variant of the VU -algorithm for convex finite-max ob-
jective functions. We show global convergence and provide numerical
results from a proof-of-concept implementation, which demonstrates
the feasibility and practical value of the approach. We also carry out
some tests using nonconvex functions and discuss the results.

Keywords: convex minimization, derivative-free optimization, finite-
max function, proximal-point mapping, U -gradient, U -Hessian, VU -
algorithm, VU -decomposition

∗Department of Mathematics, University of British Columbia, Okanagan Campus,
Kelowna, B.C. V1V 1V7, Canada. Research partially supported by Natural Sciences
and Engineering Research Council (NSERC) of Canada Discovery Grant 355571-2013.
warren.hare@ubc.ca, ORCID 0000-0002-4240-3903

†School of Mathematics and Applied Statistics, University of Wollongong, Wollongong,
NSW, 2500, Australia. Research supported by UBC UGF and by NSERC of Canada.
chayne@uow.edu.au, ORCID 0000-0002-0412-8445, Tel: +61 (02) 4221 4564

‡Adjunct Researcher IMECC - UNICAMP, 13083-859, Campinas, SP, Brazil. Re-
search partially supported by CNPq Grant 303905/2015-8, CEMEAI, and FAPERJ. sagas-
tiz@unicamp.br, ORCID 0000-0002-9363-9297

1

AMS Subject Classification: Primary 49M30, 90C56 ; Secondary
65K10, 90C20.

1 Introduction

In this paper, we consider the finite-dimensional, unconstrained minimization
problem

min
x∈Rn

f(x) (1)

with f a nonsmooth, proper, convex finite-max function,

f(x) = max
i=1,...,m

fi(x),

where for i ∈ {1, 2, . . . ,m} the subfunctions fi : R
n → R are of class C2+. We

work under the assumption that there is an oracle delivering only function
values. We refer to the oracle as a “grey-box” because, for a given x ∈ R

n

the oracle informs not only f(x), but also the values of each subfunction
fi(x). Our goal is to exploit the grey-box information in a derivative-free
optimization setting, blended with a suitable variant of bundle methods.

We remark that this finite-max grey-box structure is a natural outcome
of any optimization problem where multiple simulations are employed and
then a worst-case outcome must be optimized. For example, see [11], where
multiple simulations were used to analyze structural quality of buildings after
seismic retrofitting was applied. In that case, the goal was to minimize the
worst-case damage.

While we acknowledge that convexity of the objective in a finite-max grey-
box function would be difficult to confirm, we note that many nonsmooth
optimization problems take a convex finite-max structure (e.g., maximum
eigenvalue optimization [13, Ex 3.10]). Regardless, we view this step as a
necessary starting point for research in this direction. If a VU -style algorithm
cannot be designed and proven to converge for convex finite-max grey-box
functions, then designing such algorithm for a more general setting would be
intractable. The convergence theory in this paper is proved for the convex
case only, but our numerical testing includes a set of nonconvex trials as well.
Those results are discussed further in Section 5.

Derivative-free optimization (DFO) studies algorithms that use only func-
tion values to minimize the objective [9, 16]. Due to its broad applicability,

2

particularly for optimizing simulations, DFO has seen many successful ap-
plications in the past decade (see [5, 25] and references therein). DFO al-
gorithms can be split broadly into two categories, direct search methods
and model-based methods. Model-based methods approximate the objective
function with a model function, then use the model to guide the optimization
algorithm [9, Part 4].

While model-based methods were originally designed for optimization of
smooth objective functions (see, for example, [15, 18, 22, 56]), recent research
has moved away from this assumption [23, 24, 40]. In [23, 24], it is assumed
that the true objective function takes the form

f = max{fi : i = 1, 2, . . . ,m},

where each fi is given by a blackbox that provides only function values. In
[40], it is assumed that the objective function takes the form f =

∑m
i=1 |fi|,

where each fi is given by a blackbox that provides only function values.
In each case, it is shown that such information allows for the creation of a
convergent model-based DFO algorithm for nonsmooth optimization.

Bundle methods proceed by collecting information (function values and
subgradient vectors) along iterations, then using that information to build a
model of the objective function and seek a new incumbent solution (called
a serious point in bundle method literature) [12, 54]. Bundle methods have
been widely established as the most robust and effective technique for non-
smooth optimization [3, 12, 27, 34, 38, 52, 55]. They are also well-known
for their ability to work with the structure of a given problem. Specialized
bundle methods have been developed considering eigenvalue optimization
[29, 30], sum functions [14, 19], chance-constrained problems [2], composite
functions [43, 59] and difference-convex functions [20, 32, 53].

Of particular interest to this paper is the VU -algorithm for convex min-
imization [50]. The VU -algorithm alternates between a proximal-point step
and a ‘U -Newton’ step (see Step 4 of the Conceptual VU -algorithm in Sub-
section 2.3) to achieve superlinear convergence in the minimization of nons-
mooth convex functions [50]. The VU -algorithm has proven effective in deal-
ing with the challenges that arise in the minimization of nonsmooth convex
functions [21, 44, 46, 49, 50]. It continues to be a method of interest in the
optimization community, having been expanded to use on convex functions
with primal-dual gradient structure [45, 46, 48] and even some nonconvex
functions [49]. The basic tenet is to separate the space into two orthogonal

3

subspaces, called the V-space and the U -space, such that near the current
iteration point the nonsmoothness of f is captured in the V-space and the
smoothness of f is captured in the U -space. This procedure is known as
VU -decomposition. Once this is accomplished, one takes a proximal-point
step (V-step) parallel to the V-space, in order to find incumbent solutions
with favourable VU -decompositions, then a Newton-like step (U -step) par-
allel to the U -space. This process is repeated iteratively and converges to
a minimizer of f. In fact, the VU -algorithm has been proved superlinearly
convergent under reasonable conditions [50]. Further details on the VU -
algorithm can be found in Section 2 of the present and proof of convergence
(for oracles delivering subgradient information) is given in [50]. Techniques
used in the implementation of the VU -algorithm are also currently being used
in gradient sampling methods [60, 61, 62], see Section 6 for details. To date,
no one has developed a DFO VU -algorithm.

In order to apply the VU -algorithm, at each iteration it is necessary to
do the VU -decomposition, compute the proximal point to apply the V-step,
then compute the U -gradient and U -Hessian to apply the U -step (each of
these computations is formally defined in Section 2). In our grey-box opti-
mization setting, none of these objects is directly available. However, in [21]
it was shown that the VU -decomposition, U -gradient, and U -Hessian can
be approximated numerically with controlled precision for finite-max func-
tions. Moreover, in [26] a derivative-free algorithm for computing proximal
points of convex functions that only requires approximate subgradients was
developed. Finally, in [24] it was shown how to approximate subgradients
for convex finite-max functions using only function values. Combined, these
three papers provide a sufficient foundation to develop a derivative-free VU -
algorithm suitable for our grey-box optimization setting. We show that at
each iteration, one can approximate subgradients of the objective function
as closely as one wishes and use the inexact first-order information to ob-
tain approximations of all the necessary components of the algorithm. We
prove that the results of global convergence in [50] can be extended to the
framework of inexact gradients and Hessians.

The remainder of this paper is organized as follows. We finish the present
section with notation and assumptions on the objective function. Section 2
contains the initial basic definitions and provides a brief primer on the VU -
algorithm. Section 3 presents details on the simplex gradient and Frobenius
norm, which are tools needed for the DFO version of the algorithm, and es-
tablishes the DFO VU -algorithm. Section 3 includes the DFO VU -algorithm

4

pseudo-code and provides some comments comparing our algorithm to other
established DFO methods. In Section 4, we examine the convergence prop-
erties of the algorithm. In Section 5, we showcase numerical results obtained
for some established testing functions and some randomly generated max-of-
quadratic functions. The numerical behaviour of the method on nonconvex
functions is also explored, resulting in insight on its good performance (not
yet backed up by a convergence analysis). Section 6 summarizes this work
and discusses future possibilities of this field of research, in particular regard-
ing recent variants of gradient sampling methods [60, 61, 62].

1.1 Notation

We work in the finite-dimensional space R
n, with inner product x⊤y =

∑n
i=1 xiyi and induced norm ‖x‖ =

√
x⊤x. We use standard notation and

concepts from convex analysis found in [58]. The identity matrix is denoted
by I. We denote by Bδ the open ball of radius δ about the origin. Given a
set S, we denote its interior, closure and relative interior by int(S), cl(S) and
ri(S), respectively. We denote the smallest convex set containing S, i.e. the
convex hull of S, by conv S. The set of all linear combinations of the vectors
in T is denoted by spanT .

As the objective function f is convex and finite-valued, the subdifferential
of f at a point x̄, defined by the set

∂f(x̄) = {g ∈ R
n : f(x) ≥ f(x̄) + g⊤(x− x̄) for all x ∈ R

n},

is well-defined and never empty. An element g ∈ ∂f(x̄) is called a subgradient
of f at x̄. The ε-subdifferential of f at x is denoted ∂εf(x) (with g ∈ ∂εf(x)
called an ε-subgradient) and is defined by

∂εf(x̄) = {g ∈ R
n : f(x) ≥ f(x̄) + g⊤(x− x̄)− ε for all x ∈ R

n}.

Given a finite-max function, the set of active indices provides an alternate
manner of constructing the subdifferential:

∂f(x̄) = conv{∇fi(x̄) : i ∈ A(x̄)}, (2)

where the active set A(x̄) = {i : fi(x̄) = f(x̄)}.

Definition 1.1. A function f : Rn → R
m is a Ck (Ck+) function if all partial

derivatives of f of degree 0 to k exist and are (locally Lipschitz) continuous.

5

Definition 1.2. Given a differentiable function f : Rn → R
m, the Jacobian

of f , written Jf , is the matrix of all partial derivatives of f :

Jf =
[

∂f
∂x1

· · · ∂f
∂xn

]

=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

.

Definition 1.3. Given a point x̄ and a proximal parameter r > 0, the prox-
imal mapping, denoted Proxrf (x̄), is defined by

Proxrf (x̄) = argmin
y

{

f(y) +
r

2
‖y − x̄‖2

}

.

1.2 Assumptions

Throughout this paper, we assume the following for problem (1).

Assumption 1.4. The objective function f : Rn → R is convex and defined
through the maximum of a finite number of subfunctions,

f(x) = max
i=1,...,m

fi(x),

where each fi ∈ C2+. Furthermore, at each given point x̄ the grey-box returns
the individual function values fi(x) and as such also provides indices of active
subfunctions, i.e.,

A(x̄) = {i : fi(x̄) = f(x̄)}.
Assumption 1.5. The objective function f has compact lower level sets,
that is, the set

Sβ = {x : f(x) ≤ β}
is compact for any choice of β ∈ R .

Assumption 1.6. For any fixed x̄ ∈ R
n, the set of active gradients

{∇fi(x̄) : i ∈ A(x̄)}

is affinely independent. That is, the only scalars λi that satisfy
∑

i∈A(x̄)

λi∇fi(x̄) = 0,
∑

i∈A(x̄)

λi = 0

are λi = 0 for all i ∈ A(x̄).

6

2 Background and VU-theory
At any point x ∈ R

n, the space can be split into two orthogonal subspaces
called the U -space and the V-space, such that the nonsmoothness of f is cap-
tured entirely in the V-space, while on the U -space f behaves smoothly. The
VU -method tracks a smooth trajectory of f along which a Newton-like up-
date can be done, even though the function is not differentiable everywhere.
The smooth trajectory is special in the sense that its VU -decomposition has a
V-component that converges faster than its U -component. Along the smooth
trajectory, the rate of convergence is driven by the speed of the U -component,
which is updated using a (fast) Newton step. This explains the superlinear
speed of convergence of conceptual VU -methods under certain assumptions
(such as having perfect knowledge of the full subdifferential of f at a mini-
mizer and of the matrices involved in a second-order expansion of the smooth
trajectory); see Section 2.3.

The algorithmic identification of the smooth trajectories is possible thanks
to two useful relations established in [17] and [47]. Specifically, the first work
shows that a bundle mechanism gives asymptotically the exact value of the
proximal point operator at a given point, for oracles delivering subgradient
information. The second work, see Theorem 2.2, relates proximal points with
the smooth trajectory. A sound combination of these elements gives an im-
plementable form to the conceptual VU -algorithm in Section 2.3. Our contri-
bution extends the relations above to the grey-box oracle in Assumption 1.4,
by suitably coupling those bundle-method results with DFO techniques to
derive the implementable DFO VU -algorithm in Section 3.1.

The main relations and formal definitions of the VU -decomposition, the
U -Lagrangian that yields the smooth trajectories, and the proximal point
mapping are recalled below.

Definition 2.1. Fix x̄ ∈ R
n and let g ∈ ri(∂f(x̄)). The VU -decomposition

of Rn for f at x̄ is the separation of Rn into the following two orthogonal
subspaces:

V(x̄) = span{∂f(x̄)− g} and U(x̄) = [V(x̄)]⊥.

This decomposition is independent of the choice of g ∈ ri ∂f(x̄) [42, Propo-
sition 2.2]. With V ∈ R

n×dimV a basis matrix for the V-space (not neces-
sarily orthonormal) and U ∈ R

n×dimU an orthonormal basis matrix for the

7

U -space, every x ∈ R
n can be decomposed into components xU ∈ R

dimU and
xV ∈ R

dimV [42, Section 2]. Defining

xU = U⊤ x and xV =
(

V⊤ V
)−1

V⊤ x,

we write
x = UxU +V xV .

(rather than the traditional Minkowski sum). Henceforth, the notation R
| U |

and R
| V | represents RdimU and R

dimV , respectively.
Given a subgradient g ∈ ∂f(x̄) with V-component gV , the U-Lagrangian

of f, LU(u; gV) : R
| U | → R is defined [50, Section 2.1] as follows:

LU(u; gV) = min
v∈R| V |

{

f (x̄+Uu+V v)− g⊤ V v
}

.

The associated set of V-space minimizers is

W (u; gV) = argminv∈R| V |

{

f (x̄+Uu+V v)− g⊤ V v
}

= {V v : LU(u; gV) = f(x̄+Uu+V v)− g⊤ V v}.

The U -gradient ∇LU(0; gV) and the U -Hessian ∇2LU(0; gV) are then defined
as the gradient and Hessian, respectively, of the U -Lagrangian. For f convex,
each U -Lagrangian is a convex function that is differentiable at u = 0, with

∇LU(0; gV) = gU = U⊤ g = U⊤ g̃ for all g̃ ∈ ∂f(x) [50, Section 2.1].

If LU(u; gV) has a Hessian at u = 0, then the second-order expansion of LU

also provides a second-order expansion of f in the U -space, which thereby
allows for a so-called U -Newton step. General conditions for existence of
the U -Hessian are found in [50]. However, for the purpose of this paper, we
note that Assumptions 1.4 and 1.6, combined with g ∈ ri ∂f(x), imply the
existence of a U -Hessian at the origin [21, Lemma 2.6, Lemma 3.5]. When x̄
minimizes f, we have 0 ∈ ∂f(x̄) [50, Section 2.1]. This gives

∇LU(0; gV) = 0 for all g ∈ ∂f(x̄),

and LU is minimized at u = 0, which subsequently yields LU(0; 0) = f(x̄).

8

2.1 Relation with the proximal point operator

The second-order expansion of f in the U -space allows the VU -algorithm to
take U -Newton steps, which in turn allows for rapid convergence. However,
in order to be effective, the algorithm must seek out iterates at which the
U -space lines up with the U -space at the minimizer. This is accomplished
through the proximal point operation. When f is convex, the proximal map-
ping Proxrf is a singleton, called the proximal point. When computed close
to a minimizer x̄, the proximal point has a very important relationship with
the smooth trajectory provided by the U -Lagrangian minimizers, called the
primal track in [49, §1].

As shown in [42, Corollary 3.5], for sufficiently small u the trajectories
created from the set of V-space minimizers, that is x̄ + Uu + V v(u), are
smooth and are tangent to U at x̄, because v(u) = O(‖u‖2). When, in
addition, the Hessian of LU(u; 0) exists at u = 0 (see [42, Definition 3.8] and
the preamble), the second-order expansion of LU is possible [50, Section 2.2].
Lemma 3 of [50] shows that in that case, the derivative of the trajectory
provides a C1 U -gradient.

The connection with the proximal point is given by the following very
useful equivalence.

Theorem 2.2. [50, Theorem 4] Let χ(u) be a primal track leading to a
minimizer x̄ ∈ R

n . Suppose that 0 ∈ ∂f(x̄) and that we have a function
r(x) > 0 such that r(x)‖x−x̄‖ → 0 when x → x̄. Define ur(x) = (Proxrf (x)−
x̄)U . Then for all x close enough to x̄ and r = r(x), we have that

Proxrf (x) = χ(ur(x)) = x̄+ ur(x)⊕ v(ur(x)).

Moreover, ur(x) → 0 as x → x̄.

In Theorem 2.2, r(x) plays the role of a prox-parameter that can be dynam-
ically selected within an algorithm (provided r(x)‖x− x̄‖ → 0 when x → x̄).
The conclusion of Theorem 2.2 allows us to concentrate on finding the prox-
imal point instead of being concerned about how to find the primal track,
since close to x̄ they are one and the same. Moreover, note that Theorem 2.2
does not require r(x) to be constant. This provides valuable flexibility that
greatly improves numerical performance in VU -algorithms. Finally, note that
a derivative-free routine for finding the proximal point of a convex function
at a given point already exists [37]. We give a brief summary of the method
next.

9

2.2 Computing proximal points

Given a convex function f and an initial point y0, at iteration j of the bundle
routine we choose any subgradient gj ∈ ∂f(yj) and define the linearization
error :

Ej = E(x, yj) = f(x)− f(yj)− g⊤j (x− yj),

with Ej ≥ 0 by convexity of f . Since f(z) ≥ f(yj)+g⊤j (z−yj) for all z ∈ R
n,

f(z) ≥ f(x) + g⊤j (z − x)− Ej for all z ∈ R
n .

In other words, gj ∈ ∂Ej
f(x). The bundle {(Ej, gj)}j∈B, where B is a set that

indexes information from previous iterations, is used to construct a convex
piecewise-linear function ϕj that approximates and minorizes f. Then the
new iteration point yj+1 = Proxrϕj

(yj) is found and the process repeats. This
method is proved in [17] to converge to Proxrf (y0).

The cutting-plane model ϕj uses subgradient information that is not avail-
able in our case. In the DFO setting, subgradients will be estimated by means
of certain simplex gradients using functional information only; see Section 3.

2.3 The VU-algorithm
When a primal track exists, the VU -algorithm takes a step approximately
following the primal track by way of a predictor step (U-step), which is a
Newton-like step parallel to the U -space, followed by a corrector step (V-
step), which is a bundle subroutine estimate of the proximal point in the
V-space. The V-step outputs a potential primal track point, which is then
checked and either accepted or rejected, depending on whether sufficient
descent is achieved. We now state an abbreviated version of the conceptual
VU -algorithm presented in [50].

Conceptual VU-algorithm
Step 0: Initialize the starting point x0, proximal parameter r > 0, iteration
counter k = 0 and other parameters.

Step 1: Given g ∈ ∂f(xk), compute bases V and U for the VU -decomposition

Step 2: Compute an approximate proximal point xk+1 ≈ Proxrf (x
k). Incre-

ment k 7→ k + 1.

Step 3: If xk does not show sufficient descent, then declare a null step and
repeat Step 2 to higher precision. If xk does show sufficient descent, then
check stopping conditions and either stop or continue to Step 4.

10

Step 4: Compute the U -gradient ∇LU(0; gV) and U -Hessian ∇2LU(0; gV).
Take a U -Newton step by solving

∇2LU(0; gV)∆u = −∇LU(0; gV)

for ∆u and setting xk+1 = xk +U∆u.

Increment k 7→ k + 1, update r, and go to Step 1.

End algorithm.

Notice in the conceptual VU -algorithm that k is incremented both in
Step 2 and Step 4. This is intentional and best understood by thinking of
Steps 1-2 as the ‘inner loop’ of Steps 1-4. Hence, the conceptual algorithm
increments k at the end of each inner loop and the end of the outer loop.

3 Defining inexact subgradients and related

approximations

We now consider how to make implementable the conceptual VU -algorithm
in a derivative-free setting, as provided by Assumptions 1.4 through 1.6. In
order to prove convergence, we make use of the results of [21] and [26]. We use
the techniques in [21] to approximate a subgradient, the VU -decomposition,
the U -gradient and the U -Hessian for the function f at a point x̄.

To define an inexact subgradient for f, we make use of the simplex gra-
dients of each fi. The simplex gradient is defined as the gradient of the
approximation resulting from a linear interpolation of f over a set of n + 1
points in R

n [35].

Definition 3.1. Let Y = [y0, y1, . . . , yn] be a set of affinely independent
points in R

n. Then it is said that Y forms a simplex, with simplex diameter

ε = max
j=1,...n

‖yj − y0‖.

The simplex gradient of a function fi over Y is given by

∇εfi(Y) = M−1δfi(Y),

where

M =

[

y1 − y0 · · · yn − y0

]⊤

, and δfi(Y) =

fi(y1)− fi(y0)
...

fi(yn)− fi(y0)

.

11

The condition number of Y is given by ‖M̂−1‖, where

M̂ =
1

ε
[y1 − y0 y2 − y0 . . . yn − y0]

⊤.

An important aspect of the condition number is that it is always possible to
keep it bounded away from zero while simultaneously making ε arbitrarily
close to zero (see Remark 3.4). The following result provides an error bound
for the distance between the simplex gradient and the exact gradient for a
smooth function. We present a slightly simplified version, as we have not
defined notation for the more general version (fi ∈ C2 can be relaxed to
fi ∈ C1+).

Theorem 3.2. [35, Lemma 6.2.1] Consider fi ∈ C2. Let Y = [y0, y1, . . . , yn]
form a simplex. Then there exists µ constant depending on n and the local
Lipschitz constant of ∇fi such that

‖∇εfi(Y)−∇fi(y0)‖ ≤ εµ‖M̂−1‖.

We set y0 = x̄, and y1 through yn to x̄+ εei, where ei is the i
th canonical

basis vector. If desired, a rotation matrix can be used to prevent the yi
vectors from being oriented in the coordinate directions every time. Now
we define Subroutine 3.3, which we use to find an approximate subgradient
gε, approximations of the subspace bases V and U and the approximate U -
gradient ∇εLU(0; g

ε
V).

Subroutine 3.3 (First-order approximations). .

Step 0: Input x̄ and ε.

Step 1: Set Y = [x̄ x̄+ εe1 x̄+ εe2 · · · x̄+ εen].

Step 2: Find A(x̄) and calculate ∇εfi(Y) for each i ∈ A(x̄).

Step 3: Set

(i) g̃ε = 1
|A(x̄)|

∑

i∈A(x̄)

∇εfi(Y);

(ii) V to be the matrix of column vectors

∇εfi(Y)−∇εfI(Y)

for each i ∈ A(x̄) \ {I}, where I is the first element of A(x̄);

12

(iii) U = null V /| null V |;

(iv) ∇εLU(0; g̃
ε
V) = U⊤ g̃ε.

End subroutine.

Remark 3.4. Using Y from Step 1, we have

M̂ =
1

ε
[x̄+ εe1 − x̄ x̄+ εe2 − x̄ · · · x̄+ εen − x̄] = I,

so that ‖M̂−1‖ = 1 while ε can be arbitrarily small.

Remark 3.5. By fixing Y in Step 1, we have gǫ and ∇εLU(0; g
ε
V) defined

directly using ǫ. This is done primarily to simplify notation. If a more
flexible implementation is desired, the notation gǫ(Y) and ∇εLU(0; g

ε
V)(Y)

could be employed.

The following theorem shows that the outputs gε and ∇εLU(0; g
ε
V) from Sub-

routine 3.3 are good approximations.

Theorem 3.6. Let f : Rn → R satisfy Assumptions 1.4 and 1.6. Fix x̄ ∈
dom f. Then there exist µ constant depending on x̄ and g ∈ ri ∂f(x̄) such
that for ε > 0 sufficiently small, one can obtain

(i) an approximate subgradient gε such that

‖gε − g‖ ≤ εµ, ‖gεU − gU‖ ≤ εµ and ‖gεV − gV‖ ≤ εµ;

(ii) the approximate U-gradient ∇εLU(0; g
ε
V) such that

‖∇εLU(0; g
ε
V)−∇LU(0; gV)‖ ≤ εµ.

Proof. By Theorem 3.2 with ‖M̂−1‖ = 1 as per Remark 3.4, there exists
µ1 > 0 such that ‖∇εfi(Y)−∇fi(x̄)‖ ≤ εµ1. Then by [21, Lemma 2.6], there
exist unique λi ≥ 0 with

∑

i∈A(x̄) λi = 1 such that

g =
∑

i∈A(x̄)

λi∇fi(x̄) ∈ ri ∂f(x̄) and gε =
∑

i∈A(x̄)

λi∇εfi(Y) ∈ ri ∂εf(x̄)

are such that ‖gε − g‖ ≤ εµ1. By [21, Lem 4.3] and [21, Thm 5.3], we have
the existence of µ2, µ3 > 0 such that ‖gεU − gU‖ ≤ εµ2, ‖gεV − gV‖ ≤ εµ2 and
‖∇εLU(0; g

ε
V) − ∇LU(0; gV)‖ ≤ εµ3. Setting µ = max{µ1, µ2, µ3} completes

the proof.

13

Next, we find the approximate U -Hessian ∇2
εLU(0; g

ε
V), as outlined in [21].

To do so, we need the Frobenius norm.

Definition 3.7. The Frobenius norm ‖M‖F of a matrix M ∈ R
p×q with

elements aij is defined by

‖M‖F =

√

√

√

√

p
∑

i=1

q
∑

j=1

a2ij.

We define the matrix Z ∈ R
n×(2n+1) :

Z = [x̄ x̄+ εe1 x̄− εe1 · · · x̄+ εen x̄− εen].

To build an approximate Hessian of fi(x̄) for each i ∈ A(x̄), we solve the
minimum Frobenius norm problem:

{(H∗
i , D

∗
i , C

∗
i)} ∈ argmin

H,D,C

{

‖Hi‖F :
1

2
z⊤j Hizj +D⊤

i zj + Ci = fi(zj) for all zj ∈ Z

}

and set ∇2
εfi(Z) = H∗

i , where zj ∈ Z means zj is the jth column of Z. The
solution is obtained by solving a quadratic program. We then set

H =
1

|A(x̄)|
∑

i∈A(x̄)

∇2
εfi(Z)

and define the approximate U -Hessian of f(x̄) :

∇2
εLU(0; g

ε
V) = U⊤ H U .

The following result provides the error bound for the approximate Hessian.

Theorem 3.8. [21, Theorem 6.1] Let x̄ be fixed. Suppose that Assumption
1.6 holds and that for any ε > 0 there exists µ constant depending on x̄ such
that ‖∇εfi(x̄)−∇f(x̄)‖ < εµ and ‖∇2

εfi(x̄)−∇2f(x̄)‖ < εµ. Then

‖∇2LU (0; gV)−∇2
εLU (0; g

ε
V)‖ ≤ ε

[

2
√
2
√

|A(x̄)| − 1‖V† ‖‖H‖(2µ+ µ2ε) + µ
]

,

where V† represents the Moore-Penrose pseudo-inverse of V. Thus,

lim
εց0

∇2
εLU(0; g

ε
V) = ∇2LU(0; gV).

14

Now we state Subroutine 3.9, which is used to find the approximate U -Hessian
of f at x̄.

Subroutine 3.9 (Second-order approximation). hi

Step 0: Input x̄, ε, A(x̄) and U .

Step 1: Set Z = [x̄ x̄+ εe1 x̄− εe1 · · · x̄+ εen x̄− εen].

Step 2: Calculate ∇2
εfi(Z) for each i ∈ A(x̄).

Step 3: Set ∇2
εLU(0; g

ε
V) = U⊤

(

1
|A(x̄)|

∑

i∈A(x̄)

∇2
εfi(Z)

)

U .

End subroutine.

Remark 3.10. Similar to Subroutine 3.3, by fixing Z in Step 1, there is
no need to put it in the notation for our approximate U-Hessian. If a more
flexible algorithm were desired, then the notation ∇2

εLU(0; g
ε
V)(Z) could be

used.

Theorems 3.6 and 3.8 provide us with the tools needed to perform the
approximate U -step in the derivative-free VU -algorithm. In order to perform
the approximate V-step, we need to be able to approximate a proximal point
in a derivative-free setting. A subroutine that accomplishes this, called the
tilt-correct DFO proximal bundle method, was introduced in [26]. Details are
reproduced in Step 2 of the DFO VU -algorithm below. At iteration j of said
subroutine, a subgradient is approximated by modelling f with a piecewise-
linear function ϕj and then finding the proximal point of ϕj. This method
is proved in [26] to converge to the desired proximal point within a preset
tolerance. Theorem 3.6(i) provides the approximate subgradients required
for this step.

The tilt-correct DFO proximal bundle method involves a possible correc-
tion to the approximate subgradient found at each iteration (Step 1.1 of the
upcoming DFO VU -algorithm), which ensures that the model function value
at the current iterate xk is not greater than the objective function value at xk.
This is not a concern when exact subgradients are available, because then
the model function naturally bounds the (convex) objective function from
below, but when using approximate subgradients it is possible for the model
function to lie partially above the objective function. In that case, tilting

15

the linear piece down until the model and true function values are consis-
tent at xk makes the model no worse [26, Lemma 3.1]. The tilt procedure
is explained in [26, §3.1]. Suffice it to say here that once gε is found, it can
be replaced by the approximate subgradient defined by (3), which complies
with all of our requirements.

3.1 The DFO VU-Algorithm

In the following algorithm, we use k for the outer counter and j for the in-
ner (V-step subroutine) counter. Henceforth, we refer to this algorithm as
DFO-VU.

Step 0: Initialization. Choose a stopping tolerance δ ≥ 0, an accuracy
tolerance εmin ≥ 0 for the subgradient errors, a descent-check parameter m ∈
(0, 1) and a proximal parameter r > 0. Choose an initial point x0 ∈ dom f
and an initial subgradient accuracy ε0 ≥ 0. Set k = 0.

Step 1: V-step.

Step 1.0: Initialization. Set j = 0, z0 = xk and B0 = {0}.

Step 1.1: Linearization. Call Subroutine 3.3 with input (zj, εk) to find
g̃εkj . Compute Ej = f(zj) + g̃εk⊤j (z0 − zj)− f(z0) and set

gεkj = g̃εkj +max(0, Ej)
z0 − zj

‖z0 − zj‖2
. (3)

Step 1.2: Model. Define

ϕεk
j (z) = max

i∈Bj

{

f(zi) + gεk⊤i (z − zi)
}

.

Step 1.3: Proximal Point. Calculate zj+1 = Proxr
ϕ
εk
j

(z0).

Step 1.4: Stopping Test. If f(zj+1) − ϕεk
j (zj+1) ≤ ε2k/r, set xk+1 =

zj+1, calculate the aggregate subgradient of the model function: sk+1 =
r(z0 − zj+1), and go to Step 2.

16

Step 1.5: Update and Loop. Create the aggregate bundle element

(zj+1, ϕ
εk
j , r(z0 − zj+1)).

Create Bj+1 such that {−1, 0, j + 1} ⊆ Bj+1 ⊆ {−1, 0, 1, 2, · · · , j + 1}.
Increment j 7→ j + 1 and go to Step 1.1.

Step 2: Stopping Test. If ‖sk+1‖2 ≤ δ and εk ≤ εmin, output xk+1 and stop.

Step 3: Update and Loop.

Case 3.1: If f(xk)−f(xk+1) ≥ m
2r
‖sk+1‖2 and ‖sk+1‖2 ≤ δ and εk > εmin,

declare SERIOUS STEP and set εk+1 = εk/2.

Case 3.2: If f(xk) − f(xk+1) ≥ m
2r
‖sk+1‖2 and ‖sk+1‖2 > δ, declare

SERIOUS STEP and set εk+1 = εk.

Case 3.3: If f(xk)− f(xk+1) <
m
2r
‖sk+1‖2, declare NULL STEP and set

εk+1 = εk/2.

Increment k 7→ k + 1. If SERIOUS STEP, go to Step 4. If NULL STEP, go
to Step 1.

Step 4: U-step. Call Subroutine 3.3 with input (xk, εk) to find A(xk), g
εk
k ,

Uk and ∇εLU(0; (g
εk
k)V). Call Subroutine 3.9 with input (xk, εk, A(xk),Uk)

to find ∇2
εLU(0; (g

εk
k)V). Compute an approximate U -quasi-Newton step by

solving the linear system

∇2
εLU(0; (g

εk
k)V)∆uk = −∇εLU(0; (g

εk
k)V) (4)

for ∆uk. Set xk+1 = xk + Uk ∆uk and εk+1 = εk. Increment k 7→ k + 1 and
go to Step 1.

End algorithm.

Remark 3.11. In Step 0, the stopping tolerance δ and accuracy tolerance
εmin can be set to 0. Doing so effectively makes the algorithm run without
stopping conditions. This allows for theoretical analysis of the algorithm, but,
of course, these values should never be used in practice.

Remark 3.12. In Step 1.1, the call to Subroutine 3.3 yields the active set,
approximate U-basis and approximate U-gradient in addition to g̃εkj . However,
g̃εkj is the only information we use from Subroutine 3.3 in the V-step, so we
do not mention the other outputs in the statement of the algorithm.

17

Remark 3.13. The εk and the iteration counter k are updated in Step 3 and
again in Step 4 (if applicable). This is explained by the fact that Step 4 is
not called at every iteration. An alternate formatting of the algorithm might
have at the start of each iteration a decision on whether to do a V-step or
a U-step. V-step iterations are frequent and can occur multiple times in a
row. This is captured in Step 3. U-step iterations only occur after successful
V-steps and only in batches of one (i.e., a U-step is never followed by another
U-step). This is captured in Step 4.

3.2 Theoretical comparison to other DFO methods

Relative to other DFO methods, the DFO VU-algorithm falls under the
category of a model-based method [9, Part 4]. In this case, it uses function
calls to construct a model of the objective function and then applies a VU -
style method to the model function.

Most other DFO methods for nonsmooth optimization fall under the
catergory of direct search methods [9, Part 3]. Direct search methods work
by setting an incumbent solution and then polling around it to seek a point
that provides a better function value. If improvement is found, then the in-
cumbent solution is updated. Otherwise, the algorithm reduces the polling
radius and repeats. If polling is done carefully, then convergence to a critical
point can be proved, even for nonsmooth functions [9, Chpt 7]. These ideas
are the core of the Mesh Adaptive Direct Search (MADS) algorithm devel-
oped in [1, 6, 8] (among other papers). We mention the MADS algorithm,
as we use it as one basis of comparison in Section 5.

A few derivative-free model-based methods for nonsmooth optimization
have arisen in the last decade. The first such approach appeared in 2008,
in the work of Bagirov, Karasösen and Sezer [10]. The method proceeds
by constructing a large number of approximate gradients at points near the
incumbent solution and using them to build an approximation of the subdif-
ferential. The approximate subdifferential is then used to drive a conjugate
subgradient style algorithm. This method was implemented and tested un-
der the name DGM. The authors show the method can achieve four digits of
accuracy, but do not include information on the number of function evalua-
tions used, nor provide software. As such, direct comparison to this method
is not possible.

A similar idea was proposed by Kiwiel [39]. In Kiwiel’s approach, a
large number of approximate gradients is used to construct an approximate

18

subdifferential, which in turn is used in a gradient sampling style algorithm.
Only a theoretical development of this algorithm was presented.

In relation to [10] and [39], the algorithm herein also generates a collection
of gradient approximations and uses them to construct nonsmooth first-order
objects. However, the algorithm herein uses the grey-box structure of the
problem to control the construction of these approximation gradients. In
particular, the number of approximate gradients constructed at an incumbent
solution is guided by the number of active indices at that point. Furthermore,
the algorithm herein uses the approximate gradients to approximate both
subdifferentials and VU -structure in the problem. This sets our algorithm
distinctly apart from these previous works.

Between direct-search methods and model-based methods lies the im-
plicit filtering approach of Kelley [36]. The implicit filtering approach can
be thought of as beginning with a direct-search poll step, but if success oc-
curs, then instead of simply accepting the new point, the poll information is
used to construct approximate gradients and a line search is applied to seek
improvement. Convergence of the implicit filtering algorithm is based on a
(locally) smooth objective function.

4 Convergence

In this section, we examine the convergence of the DFO VU -algorithm, start-
ing with the V-step. By [26, Corollary 4.6], if the V-step never terminates,
then

lim
j→∞

‖zj+1 − zj‖ = 0.

Then [26, Theorem 4.9] states that if f is locally K-Lipschitz (which a finite-
max function is), then

‖zj+1 − zj‖ ≤ ε2k
r(K + 2εk)

⇒ f(zj+1)− ϕεk
j (zj+1) ≤

ε2k
r

(5)

and the routine terminates. The properties of ϕεk
j established in [26, Lemma

4.1] show that if the V-step with input z0 stops at iteration j and outputs
zj+1, then

dist(Proxrf (z0), zj+1) ≤
(µ+ 1)εk

r
,

19

where µ is the constant of Theorem 3.6. Now in order to prove the conver-
gence of the main algorithm, we show that either the algorithm terminates in
a finite number of steps or, in the case where no stopping occurs, εk → 0 and
lim inf ‖sk‖ → 0. In either case, we arrive at a good approximation of the
minimizer of f. To accomplish that goal, we need the following definitions.

Definition 4.1. Let ε ≥ 0. The ε-directional derivative of f at x in direction
d is defined

f ′
ε(x; d) = inf

t>0

f(x+ td)− f(x) + ε

t
= max

s∈∂εf(x)
{s⊤d}.

Definition 4.2. Let ε, η ≥ 0. A vector v is an (ε, η)-subgradient of f at x̄,
denoted v ∈ ∂η

ε f(x̄), if for all x,

f(x) ≥ f(x̄) + v⊤(x− x̄)− η‖x− x̄‖ − ε.

Notice that by setting η = 0 we recover the definition of the ε-subgradient
and by setting ε = η = 0 we have the convex analysis subgradient. The next
lemma provides enlightenment on the (ε, η)-subgradient in the general case.

Lemma 4.3. Let ε, η ≥ 0 and f be convex with x̄ ∈ dom f . Then

g ∈ ∂η
ε f(x̄) ⇔ g ∈ ∂εf(x̄) + Bη. (6)

Proof. (⇒) Suppose g ∈ ∂η
ε f(x̄). Since ∂εf is closed and convex [31, Theorem

1.1.4], we define
ḡ = Proj∂εf(x̄)(g)

and we have ḡ ∈ ∂εf(x̄). Set v = g − ḡ, so that g = ḡ + v, and for t > 0 we
use x = x̄+ tv in the definition of the (ε, η)-subgradient:

f(x̄+ tv) ≥ f(x̄) + (ḡ + v)⊤tv − η‖tv‖ − ε,

f(x̄+ tv)− f(x̄) + ε

t
− v⊤ḡ ≥ ‖v‖2 − η‖v‖,

inf
t>0

f(x̄+ tv)− f(x̄) + ε

t
− v⊤ḡ ≥ ‖v‖2 − η‖v‖,

f ′
ε1
(x̄; v)− v⊤ḡ ≥ ‖v‖2 − η‖v‖. (7)

By the Projection Theorem, we have

p = Proj∂εf(x̄) y ⇔ (y − p)⊤(z − p) ≤ 0 for all z ∈ ∂εf(x̄).

20

So for all g̃ ∈ ∂εf(x̄) we have

(g − ḡ)⊤(g̃ − ḡ) ≤ 0,

v⊤g̃ ≤ v⊤ḡ.

Hence,
v⊤ḡ = sup

g̃∈∂εf(x̄)

{v⊤g̃}.

Using this together with Definition 4.1, (7) becomes

‖v‖2 − η‖v‖ ≤ 0,

‖v‖ ≤ η.

Therefore, v ∈ Bη, and we have g = ḡ + v ∈ ∂εf(x̄) + Bη.
(⇐) Suppose that g ∈ ∂εf(x̄) + Bη. Set g = ḡ + v where ḡ ∈ ∂εf(x̄) and
v ∈ Bη. Then, by the definition of ε-subgradient and the Cauchy-Schwarz
inequality, we have

f(x)− f(x̄)− g⊤(x− x̄) = f(x)− f(x̄)− ḡ⊤(x− x̄)− v⊤(x− x̄),

≥ −ε− v⊤(x− x̄),

≥ −ε− ‖v‖‖x− x̄‖,
≥ −ε− η‖x− x̄‖.

Therefore, g ∈ ∂η
ε f(x̄).

Now we are ready to show that the inexact aggregate subgradient at any step
is a good approximation of a true subgradient.

Lemma 4.4. Let f satisfy Assumptions 1.4 and 1.6. Let K be the Lipschitz
constant of f . If DFO-VU at iteration k gives output (xk+1, sk+1), then

sk+1 ∈ ∂εkK
ε2
k
r

f(xk+1).

Proof. In [26, (4.3)], it is shown that

f(x) + εkK‖M̂−1‖‖x− xk+1‖ ≥ ϕεk
j (xk+1) + s⊤k+1(x− xk+1).

21

Remark 3.4 shows that ‖M̂−1‖ = 1. Since iteration k has completed, the
stopping test in Step 1.4 has passed1, thus

ϕεk
j (xk+1)− f(xk+1) ≥ −ε2k

r
.

This implies

f(x) ≥ ϕεk
j (xk+1)− f(xk+1) + f(xk+1) + s⊤k+1(x− xk+1)− εkK‖x− xk+1‖

≥ −ε2k
r
+ f(xk+1) + s⊤k+1(x− xk+1)− εkK‖x− xk+1‖.

Thus, sk+1 ∈ ∂εkK
ε2
k
r

f(xk+1) by Definition 4.2.

There are two special cases of Lemma 4.4 that are of interest; we consider
what happens when the aggregate subgradient is zero and when the maximum
subgradient error is zero.

Corollary 4.5. Let f satisfy Assumptions 1.4 and 1.6. Let K be the Lip-
schitz constant of f . If at iteration k DFO-VU gives output (xk+1, sk+1),
then the following hold.

(i) If sk+1 = 0, then 0 ∈ ∂ ε2
k
r

f(xk+1) + BKεk , and by Lemma 4.4 we have

that for all x ∈ R
n,

f(x) ≥ f(xk+1)− εkK‖x− xk+1‖ −
ε2k
r
.

(ii) If εk = sk+1 = 0, then 0 ∈ ∂f(xk+1) and xk+1 is a minimizer of f.

Remark 4.6. Since εk = 0 can only occur if ε0 = 0, item (ii) could alter-
nately be stated using “If ε0 = sk+1 = 0”.

Now we need to consider the possibility that the algorithm does not terminate
and what the effect would be. We begin with the scenario where an infinite
number of serious steps is taken.

1Recall that [26, Corollary 4.6] and [26, Theorem 4.9] ensure this happens in finite
time.

22

Theorem 4.7. Let f satisfy Assumptions 1.4, 1.5, and 1.6. Suppose DFO-

VU is run without stopping conditions (i.e., δ = εmin = 0). If there is an
infinite number of serious steps taken in Step 3, then εk → 0 and

lim inf
k→∞

‖sk‖ = 0.

Proof. Note that f is bounded below, due to Assumption 1.5. Suppose that
out of the infinite number of serious steps, ‖sk+1‖2 is bounded away from
0. That is, suppose there exists δ̂ > 0 such that ‖sk+1‖2 > δ̂ whenever
f(xk) − f(xk+1) ≥ m

2r
‖sk+1‖2, and f(xk) − f(xk+1) ≥ m

2r
‖sk+1‖2 occurs an

infinite number of times. Then we have

f(xk)− f(xk+1) ≥
m

2r
‖sk+1‖2 >

mδ̂

2r

an infinite number of times. Since mδ̂
2r

is constant, we have

lim
k→∞

[f(x0)− f(xk)] = ∞,

which contradicts the fact that f is bounded below. Hence, eventually
‖sk+1‖2 ≤ δ̂, so lim infk→∞ ‖sk‖ = 0.

Since we are supposing that the algorithm does not stop, we must have
εk > εmin = 0 and we set εk+1 = εk/2. This happens an infinite number of
times, which gives εk → 0.

Next comes the scenario where a finite number of serious steps is taken, yet
the algorithm does not terminate.

Lemma 4.8. Let f satisfy Assumptions 1.4, 1.5, and 1.6. Suppose DFO-

VU is run without stopping conditions (i.e., δ = εmin = 0). If there is a finite
number of serious steps taken in Step 3, then for all k sufficiently large,

εk >
(

1− m

2

)1/2

‖sk+1‖. (8)

Proof. Let k̄ be the final iteration where a serious step occurs, so that a null
step occurs at every k > k̄. Since sk+1 = r(xk − xk+1) is the aggregate sub-
gradient of the model function ϕεk

j at zj+1 = xk+1, we have sk+1 ∈ ∂ϕεk
j (xk+1)

[26, Lemma 4.1(c)]. Thus,

ϕεk
j (x) ≥ ϕεk

j (xk+1) + s⊤k+1(x− xk+1) for all x.

23

By the tilt-correction (Ej in Step 1.1), we have that at xk,

f(xk) ≥ ϕεk
j (xk+1) + s⊤k+1(xk − xk+1) [26, Lemma 4.1(b)],

= ϕεk
j (xk+1) +

1

r
s⊤k+1[r(xk − xk+1)],

= ϕεk
j (xk+1) +

1

r
‖sk+1‖2,

= ϕεk
j (xk+1)− f(xk+1) + f(xk+1) +

1

r
‖sk+1‖2,

f(xk)− f(xk+1) ≥ ϕεk
j (xk+1)− f(xk+1) +

1

r
‖sk+1‖2. (9)

By the stopping test in Step 1.4, we have

ϕεk
j (xk+1)− f(xk+1) ≥ −ε2k

r
. (10)

Combining (9) and (10) yields

f(xk)− f(xk+1) ≥
1

r
‖sk+1‖2 −

ε2k
r
. (11)

Then for all k > k̄, by Step 3(iii) and (11) we have

m

2r
‖sk+1‖2 > f(xk)− f(xk+1),

m

2r
‖sk+1‖2 >

1

r
‖sk+1‖2 −

ε2k
r
,

ε2k >
(

1− m

2

)

‖sk+1‖2,

and (8) is proved.

Corollary 4.9. Let f satisfy Assumptions 1.4, 1.5, and 1.6. Suppose DFO-

VU is run without stopping conditions. If there is a finite number of serious
steps taken in Step 3, then εk → 0 and ‖sk‖ → 0.

Proof. Since there is a finite number of successes and the algorithm does not
terminate, there is an infinite number of failures. By Step 3(iii), εk → 0. By
(8), ‖sk‖ → 0.

24

Notice, if δ = εmin = 0, then by Step 2 of the algorithm we see that the only
way it will terminate is if sk+1 = 0 and εk = 0. Since εk > 0, this cannot
occur. (If it could occur, then Corollary 4.5 would imply xk+1 is a minimizer
of f .)
Theorem 4.10 below unites the convergence results of this section.

Theorem 4.10. Let f satisfy Assumptions 1.4, 1.5, and 1.6. Suppose DFO-

VU is run on f and generates the sequence {xk}. Then either the algo-
rithm terminates at some iteration k̄ with ‖sk̄+1‖ ≤

√
δ and εk̄ ≤ εmin, or

lim infk→∞ ‖sk‖ = 0 and εk → 0. In the latter case, any cluster point x̄ of a
subsequence {xkj} such that skj → 0 satisfies 0 ∈ ∂f(x̄).

Proof. If the algorithm terminates at iteration k̄, by Step 2 we have ‖sk̄+1‖ ≤√
δ and εk̄ ≤ εmin. Suppose the algorithm does not terminate. If there is

an infinite number of serious steps taken, then lim infk→∞ ‖sk‖ = 0 and
εk → 0 by Theorem 4.7. If there is a finite number of serious steps taken,
then sk → 0 and εk → 0 by Corollary 4.9. In either case, consider any
subsequence {xkj} with cluster point x̄ such that skj → 0. Since εk → 0, we
have εkj → 0. By [4, Proposition 5], we have that the (ε2kj/r)-subdifferential

of f is continuous jointly as a function of (x, εkj) on (ri dom f)×(0,∞). Since
BKεkj

is continuous as well, by [51, Proposition 3.2.7-3] and (6) we have that

∂
εkjK

ε2
kj

/r
is continuous. Therefore, since skj+1 ∈ ∂

εkjK

ε2
kj

/r
f(xkj+1) by Lemma 4.4,

skj+1 → 0, εkj → 0 and xkj+1 → x̄, we have 0 ∈ ∂f(x̄).

5 Numerical Results

We now present several tests run on a 3.2 GHz Intel Core i5 processor with
a 64-bit operating system, using MATLAB version 9.3.0.713579 (R2017b).
Our testing includes the following algorithms.

1. DFO-VU using the default of n + 1 function calls per U -gradient ap-
proximation and 2n+ 1 function calls per U -Hessian approximation;

2. InexBun, an inexact bundle method along the lines of [54], with access
to the grey-box available to DFO-VU: the value function is exact and
the subgradient is approximated by means of the DFO approach in
Subroutine 3.3;

25

3. ExBun, a classical bundle method in proximal form [12, Part II];

4. CompBun, the Composite Bundle method from [59];

5. Nomad version 3.9.1, a well-established DFO method from [41].

6. RAGS, the DFO method from [24].

Algorithms DFO-VU, InexBun, ExBun, and CompBun are bundle al-
gorithms, while Nomad and RAGS are DFO solvers. Algorithms ExBun

and CompBun use exact subgradient information. As such, we expect those
solvers to outperform both DFO-VU and InexBun. These inexact vari-
ants are on equal ground and we expect to see a positive impact of the
VU -decomposition in terms of accuracy.

We use different groups of test problems, refered below as the MQ and
NK families. The MQ-family used in the bundle and DF benchmarks is
formed by convex, maximum-of-quadratics, functions satisfying all the As-
sumptions 1.4-1.6; see (12). The NK-functions, extracted from the collection
in [33] and used in Section 5.3, may not satisfy Assumption 1.6. A last group
with nonconvex MQ-functions is employed in Section 5.5. Testing with the
latter set was done solely for prospective illustrative purposes, since the con-
vergence of DFO-VU for nonconvex functions is beyond the scope of this
work. As such, for the nonconvex problems we only examine the behaviour
of DFO-VU.

5.1 Convex test functions and benchmark rules for the

bundle solvers

In this test, for the purpose of comparing DFO-VU with ExBun, In-

exBun and CompBun, we considered 301 max-of-quadratics functions. The
first one is the classical maxquad function in nonsmooth optimization [12,
Part II], for which the dimension is n = 10, the optimal value is f̄ =
−0.84140833459641814, and dimV at a solution is equal to 3. The remaining
300 problems were generated randomly in dimensions n ∈ {10, 20, 30, 40, 50}.
Each problem is generated such that the minimizer is x̄ = 0 ∈ R

n with
f̄ = 0. The problems are designed with various final V-dimensions dimV ∈
{⌊0.25n⌋, 0.5n, ⌊0.75n⌋}. The functions were generated as follows; given m ≥

26

|A(x̄)| = dimV + 1,

f(x) = max
j∈{1,2,...,m}

{

1

2
x⊤Hjx+ b⊤j x

}

, (12)

for random Hj ∈ Sn
+ and bj ∈ R

n. The symmetric, positive semidefinite
matrices Hj have condition number equal to (rankH)2 = (dimV)2, and
the set of vectors {b2 − b1, . . . , bdimV+1 − b1} is linearly independent. The
above setting guarantees that all the assumptions in Section 1.2 hold for the
considered instances.

We must acknowledge and accept that some of the inner workings of each
solver make it difficult to compare the results fairly. First, CompBun and
ExBunmake blackbox-calls (bb-calls) that yield exact values for the function
and a subgradient, while InexBun and DFO-VU call a grey-box that yields
exact function values and approximate subgradients. Second, to avoid ma-
chine error due to a near-singular matrix in the second-order approximation
created in Subroutine 3.9, DFO-VU stops when in Step 4 the parameter
εk becomes smaller than 10−5. Third, InexBun stops when there are more
than 18 consecutive noise-attenuation steps; we refer the reader to [54] for
details. Barring the above, the parameters for CompBun, ExBun, and In-

exBun are those chosen for the Composite Bundle solver in [59]. In an effort
to make the comparisons as fair as possible, we adopted the following rules.

1. All solvers use the same quadratic programming built-in MATLAB
solver, quadprog.

2. For all solvers, the stopping tolerance was set to 10−2, which for DFO-

VU means that in Step 2, δ = εmin = 10−2.

3. The maximum number of bb-calls was set to maxS= 800min(n, 20).
This corresponds to function and subgradient evaluations for the exact
variants and to function evaluations for the inexact variants.

4. For all solvers, a run was declared a failure when maxS was reached or
when there was an error in the QP solver.

5. The methods use the same starting points, with components randomly
drawn in [−1, 1]. We ran all the instances with two starting points, for
a total of 602 runs.

27

For those readers interested in implementing DFO-VU, we mention the fol-
lowing additional numerical tweaks that had a positive impact in the algo-
rithm’s performance.

1. In the U -step, finding the active index set A(xk) in Subroutine 3.3 is
tricky. We note that using an absolute criterion (fi(xk) = f(xk)) was
worse than the following soft-thresholding test:

i ∈ A(xk) when |f(xk)− fi(xk)| ≤ 0.001|f(xk)| . (13)

2. In Step 1.3, it is often preferable to calculate the proximal point zj+1

by solving the dual of the quadratic programming problem defining
Proxr

ϕ
εk
j

(z0).

3. The tilting of gradients in (3) is done only when Ej is larger than 10−8.
Otherwise, we set gεkj = g̃εkj .

4. As long as the proximal parameter remains uniformly bounded, it can
vary along iterations without impairing the convergence results. We
have found the following rule to be effective and use it in our testing,

tk =

{

0.5|g(xk)|
2

1+|f(xk)|
, if |f(xk)| > 10−10,

2, otherwise,

and let

rk = max

{

1,min

{

1

tk
, 100rk−1, 10

6

}}

.

5. In Step 2.5, the new bundle Bj+1 keeps almost active indices. As can
be seen from (13), we accept as active the subfunctions that are close
to active at each iteration point, so as not to dismiss those that are
active but do not quite appear to be so because of numerical error.

5.2 Benchmark of bundle solvers

We first describe the indicators defined to compare the solvers. The number
of iterations is not a meaningful measure for comparison, because each solver
makes a very different computational effort per iteration. This depends not
only on the solver, but also on how many evaluations are done per iteration.

28

Moreover, since the exact variants do not spend calls to make the DFO
subgradient approximation, neither the total solving time nor the number
of bb-calls are meaningful measures. As the optimal values f̄ are known for
the considered instances, we compare the accuracy reached by each solver.
Denoting the best function value of the analyzed case by f found,

RA = max
(

0,min

(

16,− log

(

f best − f̄

f(x0)− f̄

))

)

, (14)

is the number of digits of accuracy achieved by the solver. We also analyze
the ability of each solver in capturing the (known) exact V-dimension, by
looking at the cardinality of A(xfound) as in (13), for xfound the final point
found by each solver, and computing vfound = |A(xfound)| − 1.

Since maxquad is a well-known test function for bundle methods, in
Table 1 we report separately the measures obtained for this function, running
the four solvers with two starting points.

Table 1: Results for maxquad test function, dimV(x̄) = 3.
CompBun ExBun InexBun DFO-VU

First x0
RA
vfound

5
3

2
1

1
1

3
3

Second x0
RA
vfound

5
3

2
0

1
1

3
2

DFO-VU performs very well, both in terms of accuracy and V-dimension,
which is underestimated in the second run. Such underestimation means that
DFO-VU is taking U -steps in a larger subspace. Of course, the price to be
paid (especially with our rudimentary implementation) is computing time,
which passes from a few seconds with CompBun-InexBun, to 2 minutes
with DFO-VU.

The solver performance for the remaining 600 runs was similar. For each
problem and the two random starting points, we organized the output into
five groups, corresponding to increasing percentages of the V-dimension at
x̄ with respect to n. Each row in Table 2 reports for each solver the mean
value of the digits of accuracy, averaged for each group. The bottom line in
Table 2 contains the total number of instances considered for the test and
the total average values for RA.

29

Table 2: Average RA for 602 (maxquad and 300 random problems, each
with 2 starting points) runs.

dimV(x̄) # of runs CompBun ExBun InexBun DFO-VU

∈ (0%, 15%)n 96 3.99 0.78 0.58 1.44
∈ [15%, 30%)n 182 4.79 1.12 0.89 1.63
∈ [30%, 45%)n 134 3.93 0.91 0.61 1.05
∈ [45%, 60%)n 106 4.21 0.96 0.62 1.16
∈ [60%, 100%)n 84 5.75 1.36 1.07 2.15
∈ (0%, 100%)n 602 4.50 1.02 0.76 1.46

As conjectured, in terms of accuracy on the optimal value, CompBun is
far superior to all the other variants. The inexact bundle method InexBun

performs reasonably well, but is systematically outperformed by DFO-VU.
An interesting feature is that, in spite of using only approximate subgradient
information, DFO-VU achieves better function accuracy than the exact clas-
sical bundle method, ExBun. This fact confirms the interest of exploiting
available structure in the bundle method, even if the information is inexact.

Table 3 below gives another indication of the performance of DFO-VU

and InexBun in predicting the dimension of the V-space. Out of the 602
runs, we list the number of times that each algorithm returned the exact V-
dimension, the number of times vfound was within 1, 2 or 5, and the number
of times it was more than 5 away from the correct V-dimension.

Table 3: The V-dimension prediction comparison between the inexact solvers.

Exact # ±1 # ±2 # ±5 # > 5
InexBun 161 (27%) 351 (58%) 441 (73%) 528 (88%) 74 (12%)
DFO-VU 408 (68%) 486 (81%) 513 (85%) 551 (92%) 51 (8%)

In almost 70% of the runs, DFO-VU correctly predicted the V-dimension,
more than double what InexBun was able to do. This is a strong indicator
that DFO-VU is able to do what it is meant to do in that respect; InexBun

is not meant to make this prediction, so we expect to see the results that we
have.

30

θ

1 2 3 4 5 6 7 8 9

φ
(θ

)

0

0.2

0.4

0.6

0.8

1

CompBun
ExBun
InexBun
DFOVU

θ

2 4 6 8 10 12 14 16

φ
(θ

)

0

0.2

0.4

0.6

0.8

1

InexBun
DFOVU

Figure 1: Accuracy Profile: reciprocal of accuracy, all solvers (left) and
solvers InexBun and DFO-VU(right).

In order to interpret the output graphically, we created profiles for the
accuracy over the full set of 602 instances, see Figure 1. In the graph, each
curve represents the cumulative probability distribution φs(θ) of the resource
“f -accuracy”, measured in terms of the reciprocal of RA. The use of 1/RA
as an indicator stems from the fact that usually smaller values of the abscissa
θ mean better performance of the resource. As in our case higher accuracy
is preferred, we invert the relation to plot the profile. In this manner, in the
two profiles that follow, the solvers with the highest curves are the best ones
for the given indicator of performance. For the left endpoint θ = θmin in the
graph, the probability φs(θmin) of a particular solver is the probability that
the solver will provide the highest accuracy among all algorithms. Looking
at the highest value for the left endpoint in the left plot in Figure 1, we
conclude that the most precise solver is CompBun in all of the runs, as
expected. The DFO-VU solver is the second-best, followed by ExBun.

In general, for a particular solver s, the ordinate φs(θ) gives information
on the percentage of problems that the considered method will solve if given
θ times the resource employed by the best one. Looking at the value of θ = 3,
we see that DFO-VU solves about 85% of the 602 problems (φ(3) > 0.8)
with a third (=1/θ) of the accuracy obtained by CompBun, while InexBun

solves less than 70% (φ(3) < 0.7).
Considering that the comparison with exact variants is not entirely fair,

we repeat the profile, this time comparing only InexBun and DFO-VU.
The values of θ = 1 in the right plot in Figure 1 show that InexBun was

31

more accurate than DFO-VU in fewer than 20% of the runs (φ(1) < 0.2).
We now comment on CPU time, function evaluations and failures of bun-

dle solvers. Naturally, the gain in accuracy of DFO-VU comes at the price
of CPU time. As expected, the fastest solver in all of the runs is CompBun,
followed by ExBun, InexBun, and DFO-VU. The average CPU time in
seconds was 0.47 for CompBun, 0.28 for ExBun, 0.40 for InexBun, and 61
for DFO-VU. The time increase for DFO-VU is better understood when
examining the respective average number of calls to the oracle, equal to 8
for CompBun, 26 for ExBun, 504 for InexBun, and 52330 for DFO-VU.
There is a factor of close to 20 when passing from ExBun to InexBun, whose
only difference is in the use of the inexact (simplex) gradients. The factor
of 100 between the oracle calls required by InexBun and those required by
DFO-VU is explained by the fact that DFO-VU approximates not only the
gradient, but also the U -Hessian. Such an increase is not a surprise, as our
implementation of DFO-VU is not optimized and the computational burden
required by DFO-VU is much higher than that required by InexBun. We
comment on possible numerical enhancements in this regard in Section 6.

Regarding failures, there was none forCompBun, ExBun and InexBun,
whose respective stopping tests were triggered in all 602 runs. DFO-VU

failed 104 times having reached the maximum number of allowed evaluations
(maxS), and twice when the parameter εk became unduly small. This figure
represents 17.5% of all the runs. Most of the failures of DFO-VU by maxS
remained even after increasing maxS by a factor of 10. It is our understand-
ing that the method reached its limit of accuracy in those instances, which
likely had worse conditioning and were too difficult to solve with our inexact
method. By constrast, a close observation of failures of DFO-VU in previ-
ous runs that were due to a small εk gave us some hints for improvement of
the algorithm’s performance. We noticed that when εk becomes too small,
the stopping test in Step 1.4 becomes hard to attain and the V-step becomes
dismayingly slow. It is important to tune the manner in which εk decreases,
so that the reduction is not done too fast. For our experiments, we update
εk in Steps 3.1 and 3.3 of DFO-VU by εk+1 = 0.9εk. This appeared a rea-
sonable setting for the considered 602 instances. These precautions help to
ensure that the solution to (4) does not become near-singular.

We finish by noting that ExBun, the classical bundle method, is ex-
tremely reliable, but neither as accurate nor as fast as CompBun, which
fully exploits structure of composite functions and uses exact gradient infor-
mation. Of the four solvers, if the gradient evaluations can be done exactly,

32

CompBun is to be preferred. Otherwise, DFO-VU seems a good option for
cases when accuracy of the solution is a more important concern than solving
time.

5.3 DFO solvers

Having analyzed the qualities and weaknesses of DFO-VU with respect to
other bundle methods, we now examine the behaviour of DFO-VU when
compared to established DFO solvers Nomad [41] and RAGS [24]. No-

mad is a program that uses as its basis the MADS (Mesh Adaptive Direct
Search) algorithm [7]. In the MADS algorithm, trial points on a mesh are
evaluated and the mesh size for the next iteration is adjusted according to
the findings of the current one. We refer the reader to [7, 41] for details on
the implementation of Nomad and the structure of the MADS algorithm.
RAGS is a DFO solver built specifically for finite-max problems (convex and
nonconvex). It is an approximate gradient descent method that generates an
approximate subdifferential and a search direction at every iteration, followed
by a line search. We refer the reader to [24] for details on implementation of
the RAGS method.

Comparisons are done on the MQ and NK test-functions. The MQ family
is the same as the one used in the previous section, comparing bundle solvers.
There are 614 runs, corresponding to two random starting points for each of
301 functions and 5-10 starting points for a couple of the smaller-dimension
functions.

The NK family includes those unconstrained convex problems in [33]
whose objective function that can be written as a finite-max function:

1. Generalization of MAXQ

f(x) = max
{

x2
i : i = 1, . . . , n

}

.

2. Generalization of MXHILB

f(x) = max

{∣

∣

∣

∣

∣

n
∑

j=1

xj

i+ j − 1

∣

∣

∣

∣

∣

: j = 1, . . . , n

}

.

3. Short Chained LQ, converting the original Chained LQ in [33]

f(x) =
n−1
∑

i=1

max
{

−xi − xi+1,−xi − xi+1 + x2
i + x2

i+1 − 1
}

.

33

to a new version without the outside max-operation:

f(x) = max
{

−xi − xi+1,−xi − xi+1 + x2i + x2i+1 − 1 : i = 1, . . . , n− 1
}

.

4. Long Chained LQ, adjusting the original function to a finite-max for-
mat with 2n−1 terms, as follows. Any function of the form

f(x) =
n−1
∑

i=1

max{fi,1, fi,2},

which can be rewritten as a purely finite-max function by creating

f(x) = max{f1,1, f1,2}+max{f2,1, f2,2}+ ...+max{fn−1,1, fn−1,2}
= max{f1,1 + f2,1 + fn−1,1, f1,2 + f2,1 + fn−1,1,

f1,1 + f2,2 + fn−1,1, f1,2 + f2,2 + fn−1,1, ...
f1,2 + f2,2 + fn−1,n}.

The long Chained LQ has 2n−1 sub-functions inside of the max-term:

f(x) = max{f1,1, f1,2, f2,1, f2,2, ..., fn−1,2}.

5. Short Chained CB3 I, converting the original Chained CB3 I in [33]

f(x) =
n−1
∑

i=1

max
{

x4
i + x2

i+1, (2− xi)
2 + (2− xi+1)

2, 2e−xi+xi+1
}

.

to a version without the outside sum, as in short Chained LQ.

6. Long Chained CB3 I, adjusted to a finite-max format, this time creating
3n−1 sub-functions inside of the max-term.

7. Chained CB3 II

f(x) = max

{

n−1
∑

i=1

x4i + x2i+1,

n−1
∑

i=1

(2− xi)
2 + (2− xi+1)

2,

n−1
∑

i=1

2e−xi+xi+1

}

.

These seven functions have variable dimension and known optimal value,
reported in Table 4. There is a total of 117 runs, corresponding to 2-5
random starting points for each of 40 test functions (the seven functions in
different dimensions, n ∈ {10, 20, 30, 40, 50, 100}.

34

Table 4: Optimal values for the NK-family
NK-1 NK-2 NK-3 NK-4 NK-5 NK-6 NK-7

0 0 -
√
2 2 2(n− 1) -

√
2 2

5.4 Benckmark of DFO solvers

The benchmark includes runs with different time budgets, allowing the solvers
to spend 1, 10, and 60 seconds per test function. In most analyses the results
for 10 and 60 second time budgets were very similar. As such, results for 60
second time budgets are only presented when they are notably different than
the 10 second time budget.

5.4.1 Solvers’ accuracy

Since all the optimal values are known, the performance indicator in the
profile is the absolute error, that is, the difference between the final function
value of the solver and the optimal value. Figure 2 reports the profiles,
gathering all 731 runs. In this first comparison, DFO-VU seems to perform

Figure 2: Absolute Error performance profile, MQ and NK functions, 1 sec-
ond (left) and 10 seconds (right).

better than Nomad, but is outperformed by RAGS.
In order to understand if the solvers behave differently on the two families

of test functions, for each solver, time budget and family of test functions we
plotted the relative accuracy, given by the value RA in (14).

Figure 3 reports the results for the MQ-family, for the three time budgets.
Notice the similarity of the middle and right graphs (10 and 60 seconds,
respectively).

35

Figure 3: Accuracy, MQ functions, 1 (left), 10 (middle) and 60 (right) sec-
onds. In the bottom line, a △, ▽ or © indicates when the stopping test
of the corresponding solver was triggered (respectively, DFO-VU, Nomad,
RAGS).

Unless the stopping test is triggered, the solvers should achieve more
accuracy when allowed to run longer. For the MQ family, the comparison
of the triangles (blue) and circles (grey), when moving from the left to the
right graph in Figure 3 shows much improvement for DFO-VU and RAGS

(for Nomad, in red, the improvement is less significant).
Additional information is given in the bottom line of each graph in Fig-

ure 3, reporting the instances at which that solver’s stopping test was trig-
gered, with tolerance 10−4. We observe that mostly with DFO-VU and
RAGS and with the 10 and 60 second budget, in many instances the solvers
stopped. From the figures given in Table 5 below, we see that with the time
limit of 1 second, only RAGS’ stopping test was triggered, 13 out of 614
times. When given a 10 second budget, DFO-VU, Nomad, and RAGS

stopped in 120, 28, and 294 runs, respectively, while when running up to
60 seconds, the respective figures are 432, 139, and 565, amounting to 70%,
23%, and 92% of the total instances.

Table 5 reports the main indicators for the MQ family, discriminating
by problem dimension. The first indicator refers to accuracy, averaged to
whole numbers. The graphical illustration provided by Figure 3 is confirmed:
DFO-VU systematically outperforms Nomad in terms of accuracy.

In terms of accuracy for the tested MQ instances, given the time limits
of 1 and 10 seconds, the best solver is RAGS, while DFO-VU came out on
top with the 60-second time budget. Additionally, with the time budgets of 1
and 10 seconds, as the problem dimensions (the leftmost columns and bottom
lines in the table) increase, DFO-VU and RAGS reach a similar number
of digits of accuracy. Of course, for both solvers the gain with respect to

36

Table 5: MQ Accuracy for all time budgets
DFO-VU

1sec
Nomad

1sec
RAGS

1sec
MQ-10 RA 4.00 1.00 5.00

MQ-20 RA 3.00 1.00 3.00
MQ-30 RA 2.00 1.00 3.00
MQ-40 RA 2.00 1.00 3.00

MQ-50 RA 2.00 1.00 2.00

Mean RA 2.60 1.00 3.20

Stop. Test 0/614 0/614 13/614

DFO-VU

10sec
Nomad

10sec
RAGS

10sec
6.00 2.00 6.00

4.00 2.00 4.00
4.00 1.00 4.00
3.00 1.00 4.00

3.00 2.00 3.00

4.00 1.60 4.20

120/614 28/614 294/614

DFO-VU

60sec
Nomad

60sec
RAGS

60sec
6.00 3.00 6.00

6.00 2.00 4.00
5.00 2.00 4.00
4.00 2.00 4.00

4.00 2.00 4.00

5.00 2.20 4.40

432/614 139/614 565/614

Nomad is only obtained at the expense of more function evaluations; see
Table 5.

Regarding the NK family, the graphs in Figure 4 seem to indicate that
achieving high accuracy is easier than with the MQ functions. The improve-
ment in Nomad’s accuracy is noticeable when passing from the 1-second
graph to the 10-second graph, as red triangles are higher in the latter. As
with the MQ family, when given more time, the stopping test was triggered
for some solvers (see the final line in Table 6).

Figure 4: Accuracy, NK functions, 1 (left) and 10 (right) seconds. In the bot-
tom line, a △, ▽ or © indicates when the stopping test of the corresponding
solver was triggered (respectively, DFO-VU,Nomad,RAGS).

Similarly to the MQ family, RAGS’ performance on the NK family is
better than DFO-VU’s, which in turn is better than Nomad’s. However,
differently from the MQ functions, the number of digits computed by DFO-

VU always remained below those obtained with RAGS, for all the runs and
time budgets. For each solver, the achieved accuracy, averaging over each
NK-subfunction, is given in Table 8, as well as the number of times the
stopping test was triggered.

The improvement on Nomad’s accuracy is noticeable with the longer
time limit, the average number of digits went up from 1.57 with 10 seconds

37

Table 6: NK Accuracy for all time budgets
DFO-VU

1sec
Nomad

1sec
RAGS

1sec
NH-1 RA 5.00 1.00 6.00

NH-2 RA 2.00 0.00 3.00
NH-3 RA 3.00 1.00 5.00
NH-4 RA 2.00 0.00 3.00

NH-5 RA 2.00 0.00 3.00
NH-6 RA 3.00 1.00 5.00

NH-7 RA 2.00 1.00 6.00

Mean RA 2.71 0.57 4.43

Stop.Test 7/117 0/117 17/117

DFO-VU

10sec
Nomad

10sec
RAGS

10sec
6.00 3.00 6.00
3.00 1.00 5.00
3.00 2.00 7.00

3.00 1.00 5.00
3.00 1.00 4.00
4.00 2.00 6.00

4.00 1.00 6.00
3.71 1.57 5.57

68/117 5/117 49/117

DFO-VU

60sec
Nomad

60sec
RAGS

60sec
6.00 7.00 7.00
4.00 3.00 7.00
4.00 5.00 7.00

4.00 4.00 6.00
4.00 3.00 6.00
4.00 3.00 7.00

4.00 3.00 7.00
4.29 4.00 6.71

82/117 23/117 74/117

to 4.00 with 60 seconds.

5.4.2 Tables with CPU time and calls to the black box

Regarding CPU times, it is important to notice that the total running time is
not equal to the time budget: the limit given by the latter is checked inside
each solver, in some place suitable for the considered method. To give a
complete picture of the solvers’ performances, in Tables 7 and 8 we report
the total number of bb-calls and CPU time, for both families.

Table 7: MQ bb-calls and total running time (sec) for all time budgets
DFO-VU

1sec
Nomad

1sec
RAGS

1sec

MQ-10 S̄

T̄

3382
1

227
0

3983
1

MQ-20 S̄

T̄

4103
2

75
1

3804
2

MQ-30 S̄

T̄

3838
2

60
1

3293
2

MQ-40 S̄

T̄

3261
2

49
1

2762
2

MQ-50 S̄

T̄

2624
2

139
0

2211
2

Mean
S̄

T̄

3442
2.00

110
1.00

3211
2.00

DFO-VU

10sec
Nomad

10sec
RAGS

10sec
22160
15

5704
9

10586
2

34101
18

1345
10

25641
10

34576
23

687
10

32359
20

31829
22

613
10

27783
23

25948
20

1835
10

22398
21

29723
20.00

2037
10.00

23753
15.00

On average, DFO-VU and RAGS use between 15 and 20 times the
number of bb-calls employed by Nomad. DFO-VU is implemented in a
Newtonian version that, to estimate the U-Hessian at every xk providing
sufficient descent, uses the bb-calls to approximate second-order behaviour
for each subfunction that is active at xk. A quasi-Newton variant should
reduce significantly those figures, likely without negatively impacting the
accuracy.

38

Table 8: NK bb-calls and total running time (sec) for all time budgets
DFO-VU

1sec
Nomad

1sec
RAGS

1sec

NH-1 S̄

T̄

5189
2

150
1

3052
1

NH-2
S̄

T̄

3928
2

113
1

3152
2

NH-3 S̄

T̄

4503
2

105
1

3517
2

NH-4
S̄

T̄

3737
2

89
1

2733
2

NH-5 S̄

T̄

3588
2

127
1

2391
2

NH-6
S̄

T̄

5375
1

160
1

3956
1

NH-7 S̄

T̄

5683
2

123
0

4185
2

Mean
S̄

T̄

4572
2.00

124
1.00

3284
2.00

DFO-VU

10sec
Nomad

10sec
RAGS

10sec
15450

6
1523
10

23720
9

24172
12

863
10

22889
13

23433
11

1043
10

21174
11

26362
13

950
10

17666
13

20216
12

1348
10

14429
14

14804
4

2034
8

23028
8

27202
8

1435
10

28266
11

21663
9.00

1314
10.00

21596
11.00

5.4.3 Comparing DFO-VUand RAGS

In order to see if in some situations the behaviour of DFO-VU compares
to the best solver, RAGS, we run an additional bench test with 400 MQ
functions in the higher dimensions (ranging between 55 and 100), referred as
“HardMQ” below.

The accuracy achieved by each solver is plotted in the graphs in Figure 5,
for the two considered time budgets. The fact that the HardMQ instances
are harder than the MQ functions in Section 5.4 is clear from these graphs.
The stopping test was never triggered for either solver and the digits obtained
are all below 6 (compare with the graphs in Figure 3).

Figure 5: Accuracy, HardMQ functions, 1 (left) and 10 (right) seconds.

Table 9 reports the average accuracy, while Table 10 contains the number

39

of bb-calls and CPU time, discriminating by problem dimension.
It is interesting to compare the number of bb-calls reported for DFO-

VU and RAGS in Table 7 with those in Table 10. Roughly speaking, the
respective factors are about 4 to 1: the 1-second mean values drop from more
than 3000 to about 700; for the 10-second set, instead of more than 20000,
the solvers could only make about 4500 evaluations. A similar comparison
between Tables 5 and 9 shows that the accuracy diminished by less than a
factor of 2 (in fact, for DFO-VU with one second, the accuracy is the same
with both families).

Table 9: HardMQ Accuracy for all time budgets
DFO-VU

1sec
RAGS

1sec
MQ-55 RA 3.00 2.00

MQ-60 RA 2.00 2.00
MQ-65 RA 3.00 2.00
MQ-70 RA 2.00 2.00

MQ-75 RA 3.00 1.00
MQ-80 RA 3.00 2.00
MQ-85 RA 3.00 1.00

MQ-90 RA 2.00 1.00
MQ-95 RA 3.00 1.00
MQ-100 RA 3.00 2.00

Mean RA 2.70 1.60

Stop. Test 0/400 0/400

DFO-VU

0sec
RAGS

0sec
2.00 3.00
2.00 2.00
2.00 2.00

2.00 2.00
3.00 3.00
2.00 2.00

3.00 2.00
3.00 3.00
3.00 3.00
3.00 2.00

2.50 2.40

0/400 0/400

For this harder family of functions,DFO-VU slightly outperformsRAGS

in terms of accuracy (particularly for the 1-second time budget), having con-
sumed a comparable number of function evaluations and CPU time.

The final profiles in Figure 6 confirm that for the harder instances, both
solvers DFO-VU and RAGS have practically the same performance. Figure
6 contains the data that used the 10-second time out only; the 1-second
data profiles were essentially indistinguishable due to the low scale of ratios.
Notice that the abscissa scale is much reduced this time, compared to the
scale of order 10,000 in the MQ and NK data profiles, with the function call
to problem dimension ratio between 30 and 120.

Figure 6: Data profiles for HardMQ functions, accuracy 2 (left) and 3 (right)
digits.

40

Table 10: HardMQ bb-calls and total running time (sec) for all time budgets
DFO-VU

1sec
RAGS

1sec

MQ-55
S̄

T̄

934
1

1222
2

MQ-60
S̄

T̄

961
2

1062
2

MQ-65 S̄

T̄

898
2

931
2

MQ-70
S̄

T̄

851
2

811
2

MQ-75 S̄

T̄

771
2

668
2

MQ-80 S̄

T̄

703
2

557
2

MQ-85
S̄

T̄

619
2

505
2

MQ-90 S̄

T̄

532
2

410
2

MQ-95
S̄

T̄

455
2

361
2

MQ-100
S̄

T̄

383
2

270
2

Mean
S̄

T̄

711
2.00

680
2.00

DFO-VU

0sec
RAGS

0sec
5361
13

6518
14

6095
13

6295
14

4983
16

5982
18

5452
16

5296
18

4948
16

4780
17

4539
16

4230
16

4144
16

3810
16

3720
16

3318
15

3263
18

2851
18

2962
18

2422
18

4547
16.00

4550
16.00

5.5 Behaviour of DFO-VU on nonconvex problems

Even though our convergence analysis was developed for convex problems
only, we also ran DFO-VU on a battery of nonconvex functions, to check
numerically how the method behaves in this case. The test functions are of
the form (12), again randomly generated with a known functional value at a
critical point, satisfying 0 ∈ ∂f(x̄) for Clarke’s subdifferential. Nonconvex-
ity is induced by taking, among all the matrices Hj defining the quadratic
subfunctions in (12), at least one that is negative definite. However, since
we are dealing with unconstrained problems, to have a local solution that is
finite-valued, one of the m random matrices is forced to be positive definite.

We note that only DFO-VU was tested on these problems. Algorithms
InexBun, ExBun, and CompBun are specifically designed for convex func-
tions and no longer work when subgradients from nonconvex functions are
used. We did not attempt to use RAGS on this set and were unable to make
Nomad perform in a reasonable manner on these problems.

This test set consists of 1000 test functions, 200 problems with 5 start-
ing points each, with n ∈ {10, 20, 30, 40, 50}. The results are encouraging.
In fact, without making any changes in the implementation, the DFO-VU

41

stopping test was triggered in 958 cases. For these successful runs, Table 11
reports the number of oracle calls, CPU time and digits of accuracy, again
shown in average separately for each one of the five groups of test functions.

Table 11: Average output for DFO-VU on 958 successful nonconvex runs
Problem set grey-box calls time RA
n = 10 (189 successful runs) 2067 0.87 1.08
n = 20 (200 successful runs) 3135 0.96 0.75
n = 30 (191 successful runs) 1440 0.80 0.44
n = 40 (190 successful runs) 2659 1.67 0.35
n = 50 (188 successful runs) 2690 2.00 0.16

Clearly, the accuracy levels are not as good as for the convex case. How-
ever, the time and grey-box calls were improved over the convex case. This
suggests that the stopping condition is somehow easier to trigger in the non-
convex setting. In general, the output is consistent, with worse indicators for
problems in higher dimensions. The group with n = 30 is an exception, since
it required fewer function evaluations (1440) than the easier instances, with
n = 10 or 20. The fact that the solver ends up with false positive output is
not unexpected, considering the stopping test is designed on the basis of the
convergence analysis, which holds for convex problems only.

Among the 42 runs in which DFO-VU failed, the parameter εk became
too small for the problems in higher dimensions (n ≥ 30). This is not sur-
prising, as the method had already shown high sensitivity to that parameter
in the convex instances. In lower dimensions (n ≤ 20), sometimes DFO-VU

failed in building a suitable matrix M̂ . In view of Remark 3.4, this suggests
the need to fine-tune the parameter εk, to adapt its iterative definition to
the nonconvex setting.

Overall, the results indicate that it might be worthwhile to extend both
the theory and the implementation of DFO-VU to tackle nonconvex func-
tions.

6 Conclusion

We have presented a complete and fully-functional DFO VU -algorithm for
convex finite-max objective functions on R

n under reasonable assumptions.

42

This extends the original algorithm of [50] into the derivative-free setting,
where exact function values are available but approximations of subgradients
are sufficient for convergence. Numerical testing suggests that, at the expense
of increased CPU time and number of function calls, the DFO VU -algorithm
provides an improvement on final function value accuracy when compared to
other inexact methods, and even compared to the ExBun method that uses
exact first-order information. Convergence rate analysis was not performed
in this paper; we leave that for a future project.

When compared to other DFO methods, on the tested instances, DFO-

VU presents a good performance with respect to Nomad in terms of ac-
curacy, and behaves slightly less well than RAGS. The gain in accuracy
is associated with a large increase in the number of functional evaluations.
In the numerical implementation of DFO-VU there is much room for im-
provement of its performance. We did hand-tune the parameters to get good
performance, but other tweaks in the code that were not done would help as
well. The replacement of the U-Hessian by a quasi-Newton version is a possi-
bility. Also, a hard reset happens at every iteration, which means that nearby
function values already calculated are not reused in the construction of the
next model function. Retaining a cache of function calls and referencing it
before making new evaluations would reduce the total number of grey-box
calls. In addition, in the construction of the simplex gradient we used the
coordinate directions. A method such as Householder transformation [57]
could be used to rotate the coordinates so that the first canonical vector
points in the previous descent direction. These adjustments can reduce the
number of function calls by a factor between n and n2, so it is encouraging
to know that future work on this project should result in quite a significant
enhancement of the algorithm.

As mentioned in the introduction, one limitation of this algorithm is that
convergence applies the assumption that the objective function is convex. It
is unclear how neccesary this assumption is for finite-max grey-box functions,
however it would obviously be beneficial if the assumption could be relaxed.
One starting point might be the research on proximal bundle methods for
nonconvex functions [3, 28] and VU -structures for nonconvex functions [49].
However, as was pointed out in [28], the difficulty in working with noncon-
vex functions lies in the fact that the cutting-plane models are no longer
guaranteed to lie below the function. Since the DF-simplex gradient is an
approximation of some true subgradient, this adds one layer of inexactness
to the linearizations defining the cutting-place model. There are errors from

43

the approximate gradients and errors from nonconvexity. Without a clear
manner to distinguish one error from another, the whole mechanism breaks
down. Of course, as demonstrated in the numerical tests, the algorithm is
still well-defined for nonconvex functions.

Another interesting approach may come from the line of recent work by
Salomão, Santos, and Simões [60, 61, 62]. In [62], the authors present a
gradient sampling method that has improved convergence speed, thanks to
VU -decomposition. They stress the point that gradient sampling is conve-
nient when the objective function is nonconvex, avoiding the complications
that arise when bundle methods such as the VU -algorithm are applied to
nonconvex functions. The algorithm therein retains some components of the
VU -algorithm in order to speed up convergence; it uses quasi-Newton tech-
niques in the U -space and cutting-plane techniques in the V-space. It is our
belief that the derivative-free methods presented in this paper will be appli-
cable in the algorithm of [62] and other similar algorithms. Exact first-order
data are employed currently, but since we have seen that such gradients (at
least for finite-max problems, which the authors of [62] cite as motivation for
their method) can be approximated to any desired degree of accuracy, there
is good reason to conjecture that the same approach would work there. It is
a natural direction for the continuation of this line of research.

References

[1] M. Abramson, C. Audet, J. Dennis, Jr., and S. Le Digabel. OrthoMADS:
a deterministic MADS instance with orthogonal directions. SIAM J.
Optim., 20(2):948–966, 2009.

[2] W. van Ackooij and W. de Oliveira. Level bundle methods for con-
strained convex optimization with various oracles. Comput. Optim.
Appl., 57(3):555–597, 2014.

[3] P. Apkarian, D. Noll, and L. Ravanbod. Nonsmooth bundle trust-region
algorithm with applications to robust stability. Set-Valued Var. Anal.,
24(1):115–148, 2016.

[4] E. Asplund and R. Rockafellar. Gradients of convex functions. Trans.
Amer. Math. Soc., 139:443–467, 1969.

44

[5] C. Audet. A Survey on Direct Search Methods for Blackbox Optimization
and their Applications, pages 31–56. Springer, New York, 2014.

[6] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood search.
J. Global Optim., 41(2):299–318, 2008.

[7] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood search.
Journal of Global Optimization, 41(2):299–318, 2008.

[8] C. Audet and J. Dennis, Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM J. Optim., 17(1):188–217, 2006.

[9] C. Audet and W. Hare. Derivative-free and Blackbox Optimization.
Springer International Publishing AG, Switzerland, 2017. (Final edits
submitted Aug., 2017. Published online Dec. 2017. Hardcopy available
Jan. 2018.).

[10] A. Bagirov, B. Karasözen, and M. Sezer. Discrete gradient method:
derivative-free method for nonsmooth optimization. J. Optim. Theory
Appl., 137(2):317–334, 2008.

[11] K. Bigdeli, W. Hare, J. Nutini, and S. Tesfamariam. Optimizing
damper connectors for adjacent buildings. Optimization and Engineer-
ing, 17(1):47–75, 2016.

[12] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical
Optimization. Theoretical and Practical Aspects. Universitext. Springer-
Verlag, Berlin, 2006. Second edition, pp. xiv+490.

[13] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

[14] P. Combettes and J. Pesquet. Proximal splitting methods in signal
processing. In Fixed-point algorithms for inverse problems in science
and engineering, volume 49 of Springer Optim. Appl., pages 185–212.
Springer, New York, 2011.

[15] A. Conn, K. Scheinberg, and P. Toint. On the convergence of derivative-
free methods for unconstrained optimization. In Approximation theory

45

and optimization (Cambridge, 1996), pages 83–108. Cambridge Univ.
Press, Cambridge, 1997.

[16] A. Conn, K. Scheinberg, and L. Vicente. Introduction to derivative-free
optimization, volume 8 of MPS/SIAM Series on Optimization. Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA;
Mathematical Programming Society (MPS), Philadelphia, PA, 2009.

[17] R. Correa and C. Lemaréchal. Convergence of some algorithms for con-
vex minimization. Math. Program., 62(2, Ser. B):261–275, 1993.

[18] A. Custódio and L. Vicente. Using sampling and simplex derivatives in
pattern search methods. SIAM J. Optim., 18(2):537–555, 2007.

[19] A. Frangioni and E. Gorgone. Bundle methods for sum-functions with
“easy” components: applications to multicommodity network design.
Math. Program., 145(1-2, Ser. A):133–161, 2014.

[20] A. Fuduli, M. Gaudioso, and G. Giallombardo. A DC piecewise affine
model and a bundling technique in nonconvex nonsmooth minimization.
Optim. Methods Softw., 19(1):89–102, 2004.

[21] W. Hare. Numerical analysis of V U -decomposition, U -gradient, and
U -hessian approximations. SIAM J. Optim., 24(4):1890–1913, 2014.

[22] W. Hare and Y. Lucet. Derivative-free optimization via proximal point
methods. J. Optim. Theory Appl., 160(1):204–220, 2014.

[23] W. Hare and M. Macklem. Derivative-free optimization methods for
finite minimax problems. Optim. Methods Softw., 28(2):300–312, 2013.

[24] W. Hare and J. Nutini. A derivative-free approximate gradient sampling
algorithm for finite minimax problems. Comput. Optim. Appl., 56(1):1–
38, 2013.

[25] W. Hare, J. Nutini, and S. Tesfamariam. A survey of non-gradient
optimization methods in structural engineering. Adv. Eng. Soft., 59:19–
28, 2013.

[26] W. Hare and C. Planiden. Computing proximal points of convex func-
tions with inexact subgradients. (to appear) Set-Valued Var. Anal.,
pages 1–24, .

46

[27] W. Hare, C. Sagastizábal, and M. Solodov. A proximal bundle method
for nonsmooth nonconvex functions with inexact information. Comput.
Optim. Appl., 63(1):1–28, 2016.

[28] W. Hare, C. Sagastizábal, and M. Solodov. A proximal bundle method
for nonsmooth nonconvex functions with inexact information. Comput.
Optim. Appl., 63(1):1–28, 2016.

[29] C. Helmberg, M. Overton, and F. Rendl. The spectral bundle method
with second-order information. Optim. Methods Softw., 29(4):855–876,
2014.

[30] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite
programming. SIAM J. Optim., 10(3):673–696, 2000.

[31] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and min-
imization algorithms. II, volume 306 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, 1993. Advanced theory and bundle
methods.

[32] K. Joki, A. Bagirov, N. Karmitsa, and M. Mäkelä. A proximal bun-
dle method for nonsmooth DC optimization utilizing nonconvex cutting
planes. J. Global Optim., 68(3):501–535, 2017.

[33] N. Karmitsa. Test problems for large-scale nonsmooth minimization. Re-
ports of the Department of Mathematical Information Technology. Series
B, Scientific computing, 4, 2007.

[34] N. Karmitsa, A. Bagirov, and S. Taheri. New diagonal bundle method
for clustering problems in large data sets. European J. Oper. Res.,
263(2):367–379, 2017.

[35] C. Kelley. Iterative methods for optimization, volume 18 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1999.

[36] C. Kelley. Implicit filtering, volume 23 of Software, Environments,
and Tools. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2011.

47

[37] K. Kiwiel. Proximity control in bundle methods for convex nondifferen-
tiable minimization. Math. Program., 46(1, (Ser. A)):105–122, 1990.

[38] K. Kiwiel. A proximal bundle method with approximate subgradient
linearizations. SIAM J. Optim., 16(4):1007–1023, 2006.

[39] K. Kiwiel. A nonderivative version of the gradient sampling algorithm
for nonsmooth nonconvex optimization. SIAM J. Optim., 20(4):1983–
1994, 2010.

[40] J. Larson, M. Menickelly, and S. Wild. Manifold sampling for ℓ1 non-
convex optimization. SIAM J. Optim., 26(4):2540–2563, 2016.

[41] S. Le Digabel. Nomad: Nonlinear optimization with the mads algorithm.
Rapport technique G-2009-39, Les cahiers du GERAD, 2009.

[42] C. Lemaréchal, F. Oustry, and C. Sagastizábal. The U -Lagrangian of a
convex function. Trans. Amer. Math. Soc., 352(2):711–729, 2000.

[43] A. Lewis and S. Wright. A proximal method for composite minimization.
Math. Program., 158(1-2, Ser. A):501–546, 2016.

[44] R. Mifflin and C. Sagastizábal. V U -decomposition derivatives for con-
vex max-functions. In Ill-posed variational problems and regularization
techniques (Trier, 1998), volume 477 of Lecture Notes in Econom. and
Math. Systems, pages 167–186. Springer, Berlin, 1999.

[45] R. Mifflin and C. Sagastizábal. Functions with primal-dual gradient
structure and U -Hessians. In Nonlinear optimization and related topics
(Erice, 1998), volume 36 of Appl. Optim., pages 219–233. Kluwer Acad.
Publ., Dordrecht, 2000.

[46] R. Mifflin and C. Sagastizábal. On V U -theory for functions with primal-
dual gradient structure. SIAM J. Optim., 11(2):547–571, 2000.

[47] R. Mifflin and C. Sagastizábal. Proximal points are on the fast track.
J. Convex Anal., 9(2):563–579, 2002.

[48] R. Mifflin and C. Sagastizábal. Primal-dual gradient structured func-
tions: second-order results; links to epi-derivatives and partly smooth
functions. SIAM J. Optim., 13(4):1174–1194, 2003.

48

[49] R. Mifflin and C. Sagastizábal. V U -smoothness and proximal point
results for some nonconvex functions. Optim. Methods Softw., 19(5):463–
478, 2004.

[50] R. Mifflin and C. Sagastizábal. A V U -algorithm for convex minimiza-
tion. Math. Program., 104(2-3, Ser. B):583–608, 2005.

[51] L. Nel. Continuity Theory. Springer, first edition, 2016.

[52] D. Noll, O. Prot, and A. Rondepierre. A proximity control algorithm
to minimize nonsmooth and nonconvex functions. Pac. J. Optim.,
4(3):571–604, 2008.

[53] W. de Oliveira. Proximal bundle methods for nonsmooth DC program-
ming. preprint, 2017. http://www.oliveira.mat.br/publications.

[54] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal. Convex proximal
bundle methods in depth: a unified analysis for inexact oracles. Math.
Program., 148(1-2, Ser. B):241–277, 2014.

[55] W. de Oliveira and M. Solodov. A doubly stabilized bundle method for
nonsmooth convex optimization. Math. Program., 156(1-2, Ser. A):125–
159, 2016.

[56] M. Powell. Developments of NEWUOA for minimization without deriva-
tives. IMA J. Numer. Anal., 28(4):649–664, 2008.

[57] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press,
Cambridge, third edition, 2007.

[58] R. Rockafellar and J.-B. Wets. Variational analysis. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, 1998.

[59] C. Sagastizábal. Composite proximal bundle method. Math. Program.,
140(1):189–233, 2013.

[60] E. Salomão, S. Santos, and L. Simões. On the differentiability check
in gradient sampling methods. Optim. Methods Softw., 31(5):983–1007,
2016.

49

[61] E. Salomão, S. Santos, and L. Simões. On the local convergence analysis
of the gradient sampling method. preprint, Optimization Online, 2016.

[62] E. Salomão, S. Santos, and L. Simões. A second-order information-
based gradient and function sampling method for nonconvex nonsmooth
optimization. preprint, Optimization Online, 2017.

50

	A derivative-free VU-algorithm for convex finite-max problems
	Recommended Citation

	A derivative-free VU-algorithm for convex finite-max problems
	Abstract
	Disciplines
	Publication Details

	tmp.1573700575.pdf.pXLeT

