
A Description Logic with Concrete Domains and a

Role-forming Predicate Operator∗

Volker Haarslev
University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
http://kogs-www.informatik.uni-hamburg.de/~haarslev/

Carsten Lutz
RWTH Aachen, LuFG Theoretical Computer Science

Ahornstr. 55, 52074 Aachen, Germany
lutz@cantor.informatik.rwth-aachen.de

Ralf Möller
University of Hamburg, Computer Science Department

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
http://kogs-www.informatik.uni-hamburg.de/~moeller/

March 25, 1999

Abstract

This article presents the description logic ALCRP(D) with concrete domains and a role-
forming predicate operator as its prominent aspects. We demonstrate the feasibility of
ALCRP(D) for reasoning about spatial objects and their qualitative spatial relationships
and provide an appropriate concrete domain for spatial objects. The general significance of
ALCRP(D) is demonstrated by adding temporal reasoning to spatial and terminological rea-
soning using a combined concrete domain. The theory is motivated as a basis for knowledge
representation and query processing in the domain of geographic information systems. In
contrast to existing work in this domain, which mainly focuses either on conceptual reason-
ing or on reasoning about qualitative spatial relations, we integrate reasoning about spatial
information with terminological reasoning.

Keywords: description logic, spatial reasoning, spatiotemporal reasoning, theoretical foun-

dations for GIS.

∗To appear in: Journal of Logic and Computation, Vol. 9 No. 3, 1999

1

1 Introduction

We have developed a new description logic called ALCRP(D) in order to provide a
foundation for integrating reasoning about qualitative relations with terminological
reasoning using description logics [26, 18]. Our research is strongly motivated by
spatial domains such as geographic information systems (GIS). In this context, in-
ferences about qualitative relations should not be considered in isolation but should
be integrated with inferences about descriptions of domain objects (e.g. automatic
consistency checking and classification). The main idea of our approach is to deal
with knowledge about abstract domain objects using description logic theory and to
deal with spatial objects and their qualitative topological relations using predicates
defined over these objects. In our previous work on spatial and terminological rea-
soning [20] as well as in other related work [16, 21, 17] we used topological relations
only as primitives in the sense of logic. Although some inferences about spatial ob-
jects are integrated into ABox reasoning, not all implicit information is exploited for
terminological reasoning.

With the help of ALCRP(D) we can extend the treatment of qualitative relations
–and topological relations in particular– especially with respect to TBox reasoning.
Thus, the theory presented in this article allows one to detect both inconsistencies and
implicit information in formal conceptual models for spatial domain objects. Only
the combination of terminological and topological reasoning ensures that this can be
achieved according to the intended semantics of the spatial domain objects. The
combination of formal conceptual and qualitative reasoning can serve as a theoretical
basis for knowledge representation in the domains mentioned above and can be used
to solve important application problems [19].

ALCRP(D) is based on the description logic ALC(D) which is defined in [4].
ALC(D) divides the set of logical objects into two disjoint sets, the abstract and the
concrete objects, e.g. real numbers. Abstract objects can be related to concrete objects
via features (functional roles). Relationships between concrete objects are described
with a set of domain-specific predicates. Referring to these predicates, properties of
abstract objects can also be expressed using a concept-forming predicate operator.
In ALC(D), the pair consisting of a set of concrete objects and a set of predicates
defined over these objects is called a concrete domain. ALCRP(D) extends ALC(D)
by introducing defined roles that are based on a role-forming predicate operator.

In [18] we have shown that the inference problem of checking the satisfiability of
ALCRP(D) concept terms is undecidable in general. One of the main contribution of
this article is the development of a restrictedness criterion such that the termination
of the calculus can be guaranteed. We prove that testing the satisfiability of so-called
restricted ALCRP(D) concept terms is decidable. Furthermore, this article formally
defines a concrete domain for representing spatial objects and for dealing with their
(qualitative) topological relationships. Considering an application context such as a
GIS we base spatial relations on a set of topological relations in accordance to RCC-8
[32] (also similar to [13]). The article contains a proof for the admissibility of the
spatial concrete domain. In addition, we sketch the definition of a temporal concrete
domain based on Allen’s Interval Algebra [1] and discuss the combination of concrete
domains. We develop an extended combination operator for concrete domains and
show that with a role-forming predicate operator and the combination of concrete

2

domains additional expressive power is gained in comparison to ALC(D). Although,
due to the restrictedness criteria, modeling with ALCRP(D) can be hard, the ex-
amples presented in this article indicate that many interesting spatioterminological
phenomena can now be represented and reasoned about.

The remainder of this article is organized as follows. The next section introduces
the syntax and semantics of ALCRP(D) and the syntactic restrictions for concept
terms. An algorithm for deciding the consistency problem for ALCRP(D)-Aboxes
is devised and its soundness and completeness proven. Section 3 demonstrates that
ALCRP(D) is an appropriate formalism for spatial reasoning by presenting our GIS
example domain with the help of a concrete domain for two-dimensional spatial ob-
jects. We conclude this article with a short discussion of related work and point out
topics for future research.

2 The Description Logic ALCRP(D)

In this section, the description logic ALCRP(D) is introduced by giving a formal
syntax and semantics. Afterwards, a syntactically restricted version of the logic is
formulated for which a calculus for deciding the ABox consistency problem is given.
Soundness and completeness of this calculus are proved.

2.1 The Formalism

The concept language ALCRP(D) is a descendant of ALC(D) (see [4]) and thus
incorporates concrete domains. For the sake of completeness, the formal definition of
concrete domains is given first.

Definition 1 [4] A concrete domain D is a pair (∆D , ΦD), where ∆D is a set called
the domain, and ΦD is a set of predicate names. Each predicate name P from ΦD

is associated with an arity n, and an n-ary predicate PD ⊆ ∆n
D. A concrete domain

D is called admissible iff (1) the set of its predicate names is closed under negation
and contains a name for ∆D, (2) the satisfiability problem for finite conjunctions of
predicates is decidable.

For any predicate name P ∈ ΦD , P denotes the negation of P for which we have

P
D

:= (∆D)n \PD, where n is the arity associated with P . Specific concrete domains
will be investigated more thoroughly in Section 3. Now the role terms of ALCRP(D)
can be defined.

Definition 2 Let R and F be disjoint sets of role and feature names, respectively.
Any element of R ∪ F is an atomic role term. A composition of features (written
f 1f 2 · · · f k) is called a feature chain. A simple feature can be viewed as a feature
chain of length 1. If P ∈ ΦD is a predicate name with arity n + m and u1, . . . ,un as
well as v1, . . . ,vm are feature chains, then the expression ∃(u1, . . . , un)(v1, . . . , vm).P
(role-forming predicate operator) is a complex role term. Let S be a role name and let
T be a role term. Then S

.
= T is a terminological axiom. This type of terminological

axiom is also called role definition.

3

Next, the set of ALCRP(D) concept terms is defined. It will be discussed later
that, in order to obtain a formalism for which reasoning is decidable, some combina-
tions of operators have to be prohibited.

Definition 3 Let C be a set of concept names which is disjoint from R and F. Any
element of C is a concept term (atomic concept term). If C and D are concept terms,
R is a role term1, P ∈ ΦD is a predicate name with arity n, and u1, . . . ,un are feature
chains, then the following expressions are also concept terms:

• ¬C , C ⊓ D , C ⊔ D , ∀R.C , ∃R.C ,

• ∃u1, . . . , un.P .

For all kinds of exists and value restrictions, the role term or list of feature chains
may be written in parentheses. Let A be a concept name and let D be a concept
term. Then A

.
= D and A ⊑ D are terminological axioms as well. Axioms of these

types are also called concept definitions. A finite set of terminological axioms T is
called a terminology or TBox if the left-hand sides of all terminological axioms in T
are unique and, furthermore, all concept definitions are acyclic.

Please refer e.g. to [30] for an investigation of terminological cycles. Now, a mean-
ing can be assigned to ALCRP(D) concept terms by giving a set-theoretic semantics
as usual.

Definition 4 An interpretation I = (∆I , ·I) consists of a set ∆I (the abstract do-
main) and an interpretation function ·I . The sets ∆D and ∆I must be disjoint. The
interpretation function maps each concept name C to a subset C I of ∆I , each role
name R to a subset RI of ∆I ×∆I , and each feature name f to a partial function f I

from ∆I to ∆D ∪∆I , where f I(a) = x will be written as (a, x) ∈ f I . If u = f 1 · · · f n

is a feature chain, then uI denotes the composition f I
1 ◦ . . .◦f In of the partial functions

f I1 , . . . , f In. Let the symbols C , D , R, P , u1, . . . ,um, and v1, . . . ,vm be defined as
in Definition 2 and 3, respectively. Then the interpretation function can be extended
to arbitrary concept and role terms as follows:

1Please note that features are also role terms.

4

(C ⊓ D)I := C I ∩ DI

(C ⊔ D)I := C I ∪ DI

(¬C)I := ∆I \ C I

(∃R.C)I := {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ C I}

(∀R.C)I := {a ∈ ∆I | ∀b : (a, b) ∈ RI → b ∈ C I}

(∃u1, . . . , un.P)I := {a ∈ ∆I | ∃x 1, . . . , xn ∈ ∆D :

(a, x1) ∈ uI
1 ∧ · · · ∧ (a, xn) ∈ uI

n ∧ (x 1, . . . , xn) ∈ PD}

(∃(u1, . . . , un)(v1, . . . , vm).P)I :=

{(a, b) ∈ ∆I × ∆I | ∃x 1, . . . , xn, y1, . . . , ym ∈ ∆D :

(a, x1) ∈ uI
1 ∧ · · · ∧ (a, xn) ∈ uI

n ∧

(b, y1) ∈ vI
1 ∧ · · · ∧ (b, ym) ∈ vI

m ∧

(x1, . . . , xn, y1, . . . , ym) ∈ PD}

An interpretation I is a model of a TBox T iff it satisfies AI = DI for all
terminological axioms A

.
= D and AI ⊆ DI for all A ⊑ D in T . A concept term

C subsumes a concept term D w.r.t. a TBox T (written D �T C), iff DI ⊆ C I for
all models I of T . A concept term C is satisfiable w.r.t. a TBox T iff there exists a
model I of T such that C I 6= ∅. An object b is called a role filler of an object a in
an interpretation I if (a, b) ∈ RI for some role R.

Note that a universally quantifying concept-forming operator based on predicates
∀f 1, . . . , f m.P can be expressed as ∃f 1, . . . , f m.P ⊔ ∀f 1.⊥ ⊔ . . . ⊔ ∀f m.⊥,
where ⊥I = ∅.2 A universally quantifying, role-forming predicate-based operator
∀(u1, . . . , un)(v1, . . . , vm).P cannot be expressed in the given logic. To obtain the
semantics of this operator, change the existential quantification in the semantics of
the role-forming operator of ALCRP(D) to a universal quantification, and, further-
more, change the last conjunction symbol to an implication symbol. The fact that
the described operator is missing does not seem to be a serious lack since it is very
hard to think of any cases in which such an operator could be useful. The only differ-
ence to its existentially quantifying counterpart is that its extension does also include
those pairs of abstract objects (a, b) where either a does not have concrete fillers for
all feature chains u1, . . . , un or where b does not have concrete fillers for all feature
chains v1, . . . , vm.

One of the basic reasoning services for a description logic formalism is computing
the subsumption relationship. This inference is needed in the TBox to build a hier-
archy of concepts w.r.t. specificity. Satisfiability and subsumption can be mutually
reduced to each other since C �T D iff C ⊓ ¬D is not satisfiable w.r.t. T and C is
unsatisfiable w.r.t. T iff C �T ⊥.

The following definition introduces the assertional language of ALCRP(D), which
can be used to represent knowledge about individual worlds.

2
⊥ can be expressed as A ⊓ ¬A.

5

Definition 5 Let OD and OA be two disjoint sets of object names. If C is a concept
term, R a role term, f a feature name, P a predicate name with arity n, a and b
are elements of OA and x , and x 1, . . . ,xn are elements of OD, then the following
expressions are assertional axioms:

a : C , (a, b) : R, (a, x) : f , (x 1, . . . , xn) : P

A finite set of assertional axioms is called an ABox. An interpretation for the
concept language can be extended to the assertional language by additionally mapping
every object name from OA to a single element of ∆I and every object name from
OD to a single element from ∆D. The unique name assumption is not imposed, that
is aI = bI may hold even if a 6= b. An interpretation satisfies an assertional axiom

a : C iff aI ∈ C I , (a, b) : R iff (aI , bI) ∈ RI ,

(a, x) : f iff f I(aI) = xI ,

(x 1, . . . , xn) : P iff (xI
1 , . . . , xI

n) ∈ PD

An interpretation is a model of an ABox A w.r.t. a TBox T , iff it is a model of T
and furthermore satisfies all assertional axioms in A. An ABox is consistent w.r.t. a
TBox T iff it has a model w.r.t. T .

The ABox consistency problem is to decide whether a given ABox A is consistent
w.r.t. a TBox T . Satisfiability of concept terms can be reduced to ABox consistency
as follows: A concept term C is satisfiable iff the ABox {a : C } is consistent. In [27], it
was proved that reasoning with ALCRP(D) will be undecidable if the full expressive
power is used. Therefore, in Section 2.3 syntactic restrictions on the concept language
are introduced. But first, a remark about concrete domains is appropriate.

2.2 A Note on Concrete Domains

In [5], it is shown that any two admissible concrete domains D1 and D2, where ∆D1

and ∆D2
are disjoint, can be combined into a concrete domain D1 ⊕ D2 which is

also admissible. Thus, the fact that ALC(D) can be parameterized only by a single
concrete domain is not a limitation. In case of ALCRP(D), the combination technique
proposed by Baader and Hanschke can also be used. Nevertheless, it can be sensibly
extended to include additional predicates to be used inside the role-forming predicate
operator.

Baader and Hanschke combine two concrete domains D1 and D2 which have dis-
joint domain sets ∆D1

and ∆D2
into a new concrete domain D1 ⊕ D2 as follows:

(1) The domain ∆D1⊕D2
is the union of ∆D1

and ∆D2
and (2) the set of predicates

ΦD1⊕D2
is set to ΦD1

∪ ΦD2
plus additional negation predicates. Please recall that

a concrete domain is required to be closed under negation to be admissible. This
requires the additional negation predicates to be defined since in D1⊕D2 the comple-
ments of predicates have to be defined with respect to ∆D1

∪ ∆D2
and not just with

respect to ∆D1
or ∆D2

alone.

6

Let D1 and D2 be concrete domains. Using ALCRP(D1⊕D2), it is possible to de-
scribe the set of abstract objects that fulfill both of the two concepts ∃u1, . . . , un.P1

and ∃u ′
1, . . . , u

′
m.P2, where P1 ∈ ΦD1

and P2 ∈ ΦD2
, by simply using the con-

junction ∃u1, . . . , un.P1 ⊓ ∃u ′
1, . . . , u

′
m.P2. On the other hand, it is not possible

to describe the set of pairs of abstract objects that are in the extension of both
∃(u1, . . . , un)(v1, . . . , vm).P3 and ∃(u ′

1, . . . , u
′
k)(v ′

1, . . . , v
′
l).P4, where P3 ∈ ΦD1

and
P4 ∈ ΦD2

. In Section 3.3, it is demonstrated that this kind of expressivity is very
useful in the context of spatiotemporal terminological reasoning. One solution would
of course be to add a role conjunction operator to the logic. In the following, it will
be shown that this is not necessary since it is possible to add more predicates to
ΦD1⊕D2

(without losing admissibility) which allows one to specify exactly the kind of
relationship described above.

Definition 6 Let D1 and D2 be two concrete domains with ΦD1
∩ ΦD2

= ∅. The
extended combination of D1 and D2 (denoted by D1 ⊕′ D2) is defined as follows. The
domain ∆D1⊕′D2

is the union of ∆D1
and ∆D2

. The set ΦD1⊕′D2
consists of the

following predicates:

• For any predicate name P from ΦD1
or ΦD2

associated with an arity n, there

are two predicate names Q and Q̂ in ΦD1⊕′D2
, which are also both associated

with arity n. Let D(P) denote the concrete domain that the predicate P stems
from. The corresponding predicates are defined as follows:

(x1, . . . , xn) ∈ QD1⊕
′
D2 iff (x1, . . . , xn) ∈ PD(P),

(x1, . . . , xn) ∈ Q̂D1⊕
′
D2 iff (x1, . . . , xn) ∈ P

D(P)

∨ x1 6∈ ∆D(P) ∨ · · · ∨ xn 6∈ ∆D(P).

• For any pair of predicate names P and Q associated with an arity of at least 2,
where P is from ΦD1

and Q is from ΦD2
or vice versa, a number of combined

predicates is in ΦD1⊕
′D2

. Let n be the arity associated with P and let m be the
arity associated with Q . Then for all i = 1, . . . , n−1 and for all j = 1, . . . , m−1,

new predicates P-Qi,j and P̂-Qi,j are defined:

(x1, . . . , xn+m) ∈ P-Qi,j
D1⊕

′
D2 iff (x1, . . . , xi, xi+j+1, . . . , xn+j) ∈ PD(P)

∧ (xi+1, . . . , xi+j , xn+j+1, . . . , xn+m) ∈ QD(Q),

(x1, . . . , xn+m) ∈ P̂-Qi,j

D1⊕
′
D2

iff (x1, . . . , xi, xi+j+1, . . . , xn+j) ∈ P
D(P)

∨ (xi+1, . . . , xi+j , xn+j+1, . . . , xn+m) ∈ Q
D(Q)

∨ x1 ∈ ∆D(Q) ∨ · · · ∨ xn ∈ ∆D(Q)

∨ xn+1 ∈ ∆D(P) ∨ · · · ∨ xn+m ∈ ∆D(P).

When both predicates P and Q are binary or i and j are derivable from the
context, the index i, j may be omitted.

7

It can be shown that the extended combination of two admissible concrete domains
is again an admissible concrete domain.

Lemma 7 If D1 and D2 are admissible concrete domains then D1 ⊕′ D2 is also an
admissible concrete domain.

Proof. Since it is easy to verify that ΦD1⊕
′D2

is closed under negation and contains
a name for ∆D1⊕′D2

, it remains to be shown that the satisfiability of any finite con-
junction of predicates from D1 ⊕′ D2 is decidable. The proof is identical to the one
used for the non-extended combination as given in [5] and will not be repeated in
detail here. The idea is to replace combined predicates and negated predicates by
conjunctions and disjunctions corresponding to their definitions given in Definition 6
and to convert the resulting formula to disjunctive normal form. Then, each disjunct
can be treated separately. If a variable occurs both inside a predicate from ΦD1

and
inside a predicate from ΦD2

, then the disjunct is not satisfiable. Otherwise, the con-
junction can be split into two parts: one part contains only predicates from ΦD1

and
the other contains only predicates from ΦD2

. Using the satisfiability tests for D1 and
D2, the two parts can be separately tested for satisfiability.

As already noted, the usefulness of extended combinations of concrete domains
will be demonstrated in Section 3.3.

2.3 Restricting ALCRP(D)

In [18], we show that the satisfiability problem for ALCRP(D) concept terms is
undecidable by using a reduction from Post’s Correspondence Problem. From this
it directly follows that the subsumption and ABox consistency problems are also
undecidable. In fact, even for a logic comprised only of conjunction, value restriction,
the top concept, and the role-forming predicate operator, the standard reasoning
problems are undecidable (see [27]).

A more thorough analysis (see [27, 25]) reveals that ALCRP(D) does have nei-
ther the finite model property nor the tree model property if instantiated with an
appropriate concrete domain.3 This does not imply, but is a strong indication for
the undecidability of the formalism. And in fact, for the PCP-reduction a concept is
employed that is only satisfied by infinite models.

There are at least two options to overcome the deficiency of undecidability. First,
restrictions could be posed on the structure of the concrete domain predicates. This
is not very promising since all interesting applications, e.g. those involving topological
relations, require fairly complex predicate definitions that are very likely to cause un-
decidability. Second, the ability to combine some critical operators could be restricted.
We will pursue the second approach. Before the structurally restricted terminologies
can be introduced, some technical definitions have to be made.

A concept term C is said to be unfolded w.r.t. a TBox T iff none of the concept and
role names used in the concept term occur on the left side of a terminological axiom
in T . Any concept term can be transformed into an unfolded form by iteratively

3A logic has the finite model property if any satisfiable concept is satisfied by a finite model. A
logic has the tree model property if any satisfiable concept is satisfied by a model which has the form
of a tree, where the nodes correspond to domain objects and the edges to role filler relationships.

8

replacing concept and role names by their defining terms. This algorithm terminates
since the terminology is required to be acyclic. Any unfolded concept term can then
be transformed to an equivalent one in negation normal form (NNF). An unfolded
concept term is said to be in NNF iff negation occurs only in front of concept names.
The transformation to NNF can be done by iteratively applying transformation rules
that propagate the negations “down” to the atomic concepts. For example, ¬(C ⊓D)
has to be transformed to ¬C ⊔¬D . Details are omitted since the transformation rules
are the same as for ALC(D) [4]. Now, the notion of a restricted terminology can be
defined.

Definition 8 A concept term X is called restricted w.r.t. a TBox T iff its equivalent
X’ —that is unfolded w.r.t. T and in NNF— fulfills the following conditions:4

1. For any subconcept term C of X’ that is of the form ∀R1.D where R1 is a
complex role term, D does not contain any terms of the form ∃R2.E where R2

is also a complex role term.

2. For any subconcept term C of X’ that is of the form ∃R1.D where R1 is a
complex role term, D does not contain any terms of the form ∀R2.E where R2

is also a complex role term.

3. For any subconcept term C of X’ that is of the form ∀R.D or ∃R.D where
R is a complex role term, D contains only predicate exists restrictions that (i)
quantify over feature chains of length 1 and (ii) are not contained inside any
value and exists restrictions that are also contained in D .

A terminology is called restricted iff all concept terms occurring on the right-hand
side of terminological axioms in T are restricted w.r.t. T . An ABox A is called
restricted w.r.t. a TBox T iff T is restricted and all concept terms used in A are
restricted w.r.t. the terminology T .

For a specification of restricted concept terms using EBNF notation see [26]. For
demonstration purposes, the following six very simple terminologies are given. The
terminologies with even numbers are restricted while the ones with odd numbers are
not restricted because they violate one of the above conditions. Let C and D be
concept names, Ra be an atomic role term, Rc be a complex role term, f be a feature,
and u be a feature chain with a length greater than 1.

T 1 : {C
.
= ∀Rc.∃Rc.D},

T 3 : {C
.
= ∃Rc.∃u.P},

T 5 : {C
.
= ∀Rc.∀Ra.∃f .P},

T 2 : {C
.
= ∀Ra.∃Rc.D},

T 4 : {C
.
= ∃Rc.∃f .P},

T 6 : {C
.
= ∀Ra.∀Rc.∃f .P}

The syntactical restrictions ensure that the finite model property holds in the
restricted formalism.5 This means that “dangerous” concepts such as the one needed
for the PCP-reduction can no longer be constructed. In fact, when only considering
restricted concept terms, the standard reasoning problems are decidable.

4For technical reasons, it is assumed that each concept term is a subconcept term of itself.
5However, the tree model property still does not hold.

9

Theorem 1 The ABox consistency problem for restricted ALCRP(D) ABoxes is
decidable.

In the next section, a sound and complete algorithm is given which decides the
consistency problem for restricted ALCRP(D) ABoxes. The existence of such an
algorithm proves the above theorem. It is important that this result also implies the
decidability of the subsumption and satisfiability problems.

Corollary 9 The subsumption problem and the satisfiability problem forALCRP(D)
concept terms are decidable w.r.t. terminologies for which the considered concept
terms are restricted.

Proof. This follows from Theorem 1 together with the reduction of subsumption
to satisfiability and, in turn, of satisfiability to ABox consistency (see Section 2.1).
Please note that if the concept terms C and D are restricted w.r.t. a terminology T ,
then the concept term C ⊓ ¬D is also restricted w.r.t. T since (1) the conjunction
of two restricted concept terms again yields a restricted concept term and (2) the set
of restricted concept terms is closed under negation. To see the second point it is
important to note that the restrictions in Definition 8 are symmetric with respect to
the duality of operators.

2.4 The Calculus

The algorithm is a standard tableau-based one as it is used for first order or modal
logics as well as other description logics. To decide the satisfiability of an ABox A0

w.r.t. a TBox T , every concept term in A0 has to be both unfolded w.r.t. T and
converted to negation normal form. It was already noted in Section 2.3 that this is
always possible.6 The algorithm works as follows.

The assertional axioms are viewed as constraints on individual objects. Starting
with the initial ABox A0, the algorithm iteratively applies completion rules to trans-
form a given ABox into one or more descendent ABoxes. The descendent ABoxes are
constructed by adding at least one additional axiom to the original ABox. The new
axioms explicitly represent knowledge which was only “contained” implicitly in the
ABox before the application of the rule. Sometimes there is more than one possible
way to extend the original ABox. In this case, more than one descendent ABox is
created by the application of a single rule. By iteratively applying rules, the algorithm
thus produces a tree of ABoxes Υ. Iterative rule application can be understood as an
attempt to build a model for the initial ABox A0. The iteration continues until either
an ABox is produced that is complete, i.e. to which no more rules are applicable,
or all leaf ABoxes in the tree Υ are contradictory. In the former case, the complete
ABox defines a model for the initial ABox A0, in the latter case, no model for A0

exists.
Before the completion rules can be defined, some technical terms are introduced.

Let A be an ABox, R be a role term, a and b be object names from OA, γ be a
symbol that is not element of OD, u be a feature chain f 1 · · · f k, and let u1, . . . ,un

and v1, . . . ,vm (possibly with index) be arbitrary feature chains. For convenience
three functions are defined as follows:

6In general, however, unfolding has exponential complexity (see [29]).

10

fillerA(a, u) :=

x where x ∈ OD such that
∃b1, . . . , bk−1 ∈ OA :
((a , b1) : f 1 ∈ A, . . . , (bk−1, x) : f k ∈ A)

γ if no such x exists.

chainA(a, x , u) := {(a, c1) : f 1, . . . , (ck−1, x) : f k}
where c1, . . . , ck−1 ∈ OA are not used in A.

filler?A(a, b,R) :=

true if (a, b) : R ∈ A
true if R is of the form ∃(u1, . . . , un)(v1, . . . , vm).P ,

and ∃x1, . . . , xn, y1, . . . , ym ∈ OD such that
fillerA(a, u1) = x 1, . . . ,fillerA(a , un) = xn,

fillerA(b, v1) = y1, . . . ,fillerA(b, vm) = ym,

(x 1, . . . , xn, y1, . . . , ym) : P ∈ A
false otherwise

An ABox A is said to contain a fork (for a feature f) if it contains the two axioms
(a, b) : f and (a, c) : f , where a and b are either both from OA or OD. A fork can be
eliminated by replacing all occurrences of c in A with b. Before any rules are applied
to the initial ABox A0, fork elimination takes place. Forks may be introduced if
completion rules generate new objects. In this case, fork elimination is immediately
applied with the proviso that each occurrence of the newly generated object is replaced
by the older one and not vice versa. The completion rules can now be defined.

Definition 10 The following completion rules will replace an ABox A by an ABox
A′ or by two ABoxes A′ and A′′ (descendants of A). In the following C and D denote
concept terms, R denotes a role term, and P denotes a predicate name from ΦD. Let
f 1, . . . ,f n as well as g1, . . . ,gn denote feature names, and u1, . . . ,um denote feature
chains. a and b denote object names from OA.

R⊓ The conjunction rule.
Premise: a : C ⊓ D ∈ A, a : C 6∈ A ∨ a : D 6∈ A
Consequence: A′ = A ∪ {a : C , a : D}

R⊔ The disjunction rule.
Premise: a : C ⊔ D ∈ A, a : C 6∈ A ∧ a : D 6∈ A
Consequence: A′ = A ∪ {a : C}, A′′ = A ∪ {a : D}

R∃C The exists restriction rule.
Premise: a : ∃R.C ∈ A, ¬∃b ∈ OA : (filler?A(a, b,R) ∧ b : C ∈ A)
Consequence: A′ = A ∪ {(a, b) : R , b : C } where b ∈ OA is not used in A.
This rule may create a fork if R is a feature.

R∀C The value restriction rule.
Premise: a : ∀R.C ∈ A, ∃b ∈ OA : (filler?A(a, b,R) ∧ b : C 6∈ A)
Consequence: A′ = A ∪ {b : C}

R∃P The predicate exists restriction rule.

11

Premise: a : ∃u1, . . . , un.P ∈ A,¬∃x 1, . . . , xn ∈ OD :
(fillerA(a , u1) = x1 ∧ . . . ∧ fillerA(a, un) = xn ∧
(x 1, . . . , xn) : P ∈ A)

Consequence: C0 := A ∪ {(x1, . . . , xn) : P}
where the x i ∈ OD are not used in A.
C1 := chainC0

(a, x 1, u1), . . . , Cn := chainCn−1
(a, xn, un)

A′ =
⋃

i=0..n Cn

This rule may create forks.

Rr∃P The complex role rule.
Premise: (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P ∈ A,

¬∃x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a , u1) = x1 ∧ . . . ∧ fillerA(a, un) = xn ∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A)

Consequence: C0 := D0 := A∪ {(x1, . . . , xn, y1, . . . , ym) : P}
where the x i ∈ OD and yi ∈ OD are not used in A.
C1 := chainC0

(a, x 1, u1), . . . , Cn := chainCn−1
(a, xn, un),

D1 := chainD0
(b, y1, v1), . . . ,Dm := chainDm−1

(b, ym, vm)
A′ =

⋃
i=0..n Cn ∪

⋃
i=1..n Dm

This rule may create forks.

RChoose The choose rule.
Premise: a : ∀(∃(u1, . . . , un)(v1, . . . , vm).P).C ∈ A,

∃b ∈ OA, x1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a , u1) = x1 ∧ . . . ∧ fillerA(a, un) = xn ∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A)

Consequence: A′ = A ∪ {(x1, . . . , xn, y1, . . . , ym) : P},
A′′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P}

The notion of a complete and a contradictory ABox still needs to be formally
defined.

Definition 11 Let the same naming conventions be given as in Definition 10. Addi-
tionally, let f be a feature. An ABox A is called contradictory if any of the following
clash triggers are applicable:

• Primitive Clash: a : C ∈ A, a : ¬C ∈ A

• Feature Domain Clash: (a, x) : f ∈ A, (a, b) : f ∈ A

• All Domain Clash: (a, x) : f ∈ A, a : ∀f .C ∈ A

• Concrete Domain Clash:
(x

(1)
1 , . . . , x

(1)
n1

) : P1 ∈ A, . . . , (x
(k)
1 , . . . , x

(k)
nk

) : Pk ∈ A and the corresponding

conjunction
∧k

i=1 P i(x
(i)) is not satisfiable in D. This can be decided because

D is required to be admissible.

12

An ABox A is called complete if A is not contradictory and if, furthermore, none
of the completion rules given in Definition 10 is applicable to A.

The clash rules are identical to those used for ALC(D) (see [5]). Most of the
completion rules also appear in the algorithm for deciding the consistency of ALC(D)
ABoxes. The new rules are Rr∃P and RChoose. The use of the filler? function in
the R∃C and R∀C rules is also new and was necessary because the new role-forming
operator is introduced. In the following a detailed explanation of all novelties as
compared to the completion rules needed for ALC(D) is given. First consider the rules
R∃C and R∀C. The employment of the filler? function can be understood as follows.
In ALCRP(D), there are two kinds of role filler relationships. On the one hand, there
are the usual explicit relationships expressed by axioms of the form (a , b) : R. On the
other hand, there are implicit relationships which are not explicitly represented by
axioms. For instance, let a complex role R be defined as ∃(f 1)(f 2).P . Furthermore,
let there be an ABox A that contains only the axioms {(a, x) : f 1; (b, y) : f 2; (x , y) :
P}. Then the object b is an R-role filler of the object a in A, although A does not
contain the axiom (a , b) : R. The filler? function captures both kinds of role filler
relationships.

The meaning of the rule Rr∃P is straightforward. If it is known that two objects
are related via a complex role, concrete objects can immediately be created as fillers
of those feature chains being used inside the complex role operator. It is then also
known that the predicate used in the definition of the role holds over the newly created
concrete objects and thus appropriate axioms can be added. This is what Rr∃P does.

The meaning of RChoose can be understood as follows. If a set of feature chains
is used in the definition of a complex role R and (loosely spoken) there are the
appropriate concrete fillers for two objects a and b for all the feature chains in this
set, then b might be an R role filler of a. But unless there is an explicit axiom which
states that the predicate P used in the definition of the role R holds (or does not
hold), it is not known if this is really the case. So, if there is no such axiom, both
alternatives have to be tried. This is done by creating two successor ABoxes A′ and
A′′. In A′, it is asserted that P holds and in A′′ it is asserted that P holds. If any of
these two alternatives is the wrong one, a concrete domain clash will be encountered
in the corresponding branch of the ABox tree Υ. Like R⊔, an application of RChoose
creates a branch in Υ. The presence of branching rules like R⊔ and RChoose has
been identified as a major source of complexity (see [12]).

It remains to give a formal description of rule application.

Definition 12 The following procedure takes an ABox A0 as input and returns con-
sistent if A0 has a model and inconsistent if A0 has no model.

define procedure ALCRP(D)-ABox-cons(A0)
eliminate forks in A0

S := {A0}
while a completion rule is applicable to an ABox A ∈ S which

is not contradictory do

S := (S \ {A}) ∪ apply-a-completion-rule(A)
if there is an ABox Ac ∈ S that is not contradictory

then return consistent
else return inconsistent

13

Please note that if an ABox Ac is found as described above, then this ABox is
complete since it is not contradictory and no completion rule is applicable. The tree
Υ is defined as follows: The nodes in the tree are all ABoxes ever generated by
ALCRP(D)-ABox-cons plus A0. The node A is the parent node of a node A′ in Υ iff
A′ has been obtained from A by the application of exactly one completion rule. By
definition of the completion rules it is clear that Υ is a tree.

2.5 Termination

Before soundness and completeness of the algorithm given in Definition 12 are shown,
termination is proven. First, the motivation for the definition of the restricted termi-
nologies is explained because the restrictions are reflected in the termination proof.

As already noted, in full ALCRP(D) neither the finite model property nor the
tree model property holds. Thus, by using an appropriate concrete domain, concepts
can be defined that are fulfilled by infinite models only. This property makes proving
termination of decision algorithms extremely difficult or, in case of undecidability, im-
possible. In fact, the tableau algorithm given in Definition 12 is, in principle, sound
and complete for full ALCRP(D), but termination cannot be guaranteed. By re-
stricting the syntactic structure of concept terms, the finite model property is gained.
The drawback of this approach is limited expressivity, i.e. modeling becomes harder.

As a simple example for the mechanism that leads to non-termination in full
ALCRP(D) consider the following initial ABox: {o0 : ∀Rc.∃R.D , (o0, o1) : Rc}.
Using the value restriction over the complex role Rc with the rule R∀C, the concept
term ∃R.D is “propagated” to the object o1. Then, the application of the R∃C rule
creates an object o2 along with the axiom (o1, o2) : R. Now assume that the concept
term D has the form ∃u1, . . . , un.P . This means that concrete objects are generated
as fillers of some features of o2 which may lead to the inference of a new, implicit
role filler relationship between o0 and the newly created object o2. Again, the value
restriction can be used to propagate the exists restriction along the role filler rela-
tionship just inferred to the object o2. Thus, a cycle is obtained. To eliminate this
possibility, one has to prevent the generation of concrete fillers for the features of o2.
Concrete objects are only created by the rules R∃P and Rr∃P. The rule R∃P can only
be applied if there is a concept-forming predicate operator (∃u1, . . . , un.P) inside the
concept term D . The rule Rr∃P can only be applied if the concept term C contains an
exists restriction quantifying over a complex role (∃(∃(u1, . . . , un)(v1, . . . , vm).P).X).
Summarizing, concept-forming predicate operators inside of value restrictions quanti-
fying over complex roles and also nestings of value and exists restrictions which both
quantify over complex roles have to be prohibited. The following termination proof
depends on these restrictions.

Proposition 13 The ALCRP(D)-ABox-cons algorithm terminates on any input
that is restricted.

Consider the tree of ABoxes Υ. Since any completion rule is generating only
finitely many successors, the tree is branching finitely. If it can additionally be
shown that any branch of Υ has finite length, then the termination follows by König’s
Lemma.

14

Lemma 14 The tree of ABoxes Υ computed by the ALCRP(D)-ABox-cons algo-
rithm has no infinite branch.

The rest of Section 2.5 contains the proof of Lemma 14. It will be shown that
there can be no infinite sequence of ABoxes A0,A1, . . . where Ak+1 is obtained from
Ak by the application of a completion rule. Such a sequence corresponds to a branch
in Υ that begins at the root of the tree. Before the proof starts, some definitions are
needed.

An axiom that is already present in the initial ABox A0 is called old. All other
axioms are called new. We need some upper bounds for the number of concept terms
and other entities that can appear during the computation. Let CA0

be the set of
subconcept terms of all concepts appearing in A0 and let NC be the cardinality of the
set CA0

. Let NF be the number of distinct features and NP (n) be twice the number
of n-ary distinct predicates occurring in A0. Twice because the negations may also
be used during the computation. Let NR be NF plus the number of distinct atomic
roles occurring in A0 plus the number of distinct role-forming operators in the initial
ABox.

The rules R∃C, R∃P, and Rr∃P are called generating rules. All other rules are
called non-generating. The application of any of the generating rules may create forks.
It may even be the case that fork elimination identifies all new objects (abstract
or concrete) with existing ones. In this case the above rules will, without loss of
generality, be considered as non-generating ones.

For every ABox A, a graph GA = (VA, EA) is defined as follows. For each abstract
or concrete object o in A, the graph contains a vertex ν(o). The graph contains an
edge for each new axiom ax that is of the form (a, b) : R. Please note that edges in the
graph correspond to axioms of the above form where R may be atomic or complex. In
the following the term edge will be used to refer to such an axiom. There is a sequence
of graphs GA0

, GA1
, . . . corresponding to the sequence of ABoxes A0,A1, The

graph GA0
for the ABox A0 does not contain any edges because there are no new

axioms at all in this ABox.
It can be shown that the graphs GAi

in the sequence have the form of a forest (i.e.
a collection of unconnected trees). These trees must not be confused with the tree of
ABoxes Υ. The application of a generating rule creates a new object with exactly one
incoming edge.7 No rule creates incoming edges for objects already existing. From
these two observations it follows that the graphs GA0

, GA1
, . . . are forests and that,

furthermore, all forests contain the same number of trees. Each object in the initial
ABox A0 is the root of one of the trees.

Lemma 15 If the sequence of ABoxes A1,A2, . . . is infinite, then at least one of the
trees in the corresponding sequence of forests GA0

, GA1
, . . . grows infinitely.

Proof. An application of one of the generating rules R∃C and R∃P leads to the
growth of exactly one tree. An application of the generating rule Rr∃P leads to the
growth of one or two trees (the latter is the case if the rule is applied to an old axiom).
Thus, the application of a generating rule leads to the growth of at least one tree.
Because the number of trees is the same in all forests GAi

, infinitely many applications
of generating rules lead to the infinite growth of at least one of the trees. Hence, an

7An incoming edge of an object o is an axiom of the form (a , o) : R.

15

infinite sequence of ABoxes that corresponds to a sequence of graphs in which no tree
grows infinitely can only exist if it is possible to apply the non-generating rules an
infinite number of times without applying a generating rule. Assume that this is the
case for a given computation. Note that none of the non-generating rules generates
objects (neither abstract nor concrete). Furthermore, every rule application adds an
axiom to the ABox which was not already present. On the other hand, only finitely
many distinct axioms can be asserted for a given, finite number of objects: For any
single abstract object, no more than NC distinct axioms can be asserted. For each
pair of abstract objects, no more than NR distinct axioms can be asserted. For
any pair of an abstract and a concrete object, no more than NF distinct axioms
can be asserted. And last, for any n concrete objects, no more than NP (n) distinct
axioms can be asserted. This shows that there can be only finitely many applications
of non-generating rules without adding new objects. That is a contradiction to the
assumption and thus completes the proof of Lemma 15.

In the following it will be shown that none of the trees in the forest sequence
GA0

, GA1
, . . . can grow infinitely. From this and Lemma 15 it follows that the algo-

rithm terminates on any restricted input.

Proposition 16 In the sequence of forests GA0
, GA1

, . . . , none of the trees grows
infinitely.

Proof. It will be shown that for each of the trees there are upper bounds for the
branching factor and the depth. Therefore, the trees have an upper bound for the
number of nodes and thus cannot grow infinitely. In the following, concrete objects
can be safely ignored since an examination of the completion rules reveals that the
nodes corresponding to these objects cannot have any successors.

Lemma 17 There is an upper bound for the branching factor of each of the trees in
each of the graphs GAi

.

Proof. It has to be shown that each of the generating rules can only be applied
finitely many times to a single object. First consider the R∃C rule. Let NE be the
number of terms in CA0

(the set of subconcept terms of all concepts appearing in
A0, see above) that are of the form ∃R.C (with R atomic or complex). For each of
these terms the R∃C rule may be applied at most once to a single object because its
premise is not fulfilled afterwards. Thus, there can exist at most NE successors of
each node generated by the R∃C rule.

Now consider the rules R∃P and Rr∃P. Both rules create feature chains that consist
of zero or more abstract objects and one concrete object which is the filler of the last
feature. However, features may have at most one filler. If there is more than one filler,
fork elimination immediately occurs and the R∃P or Rr∃P rule is considered as non-
generating for this particular application. Since the number of features is limited by
NF , for each abstract object at most NF successors may be created by applications
of the R∃P or Rr∃P rule.

Summing up, any node in the tree has at most NE + NF successors.

Lemma 18 There is an upper bound for the depth of each of the trees in each of the
graphs GAi

.

16

Proof. First, some definitions are needed. There exists a phantom edge between
two abstract objects in an ABox A iff there exists a complex role R in the initial
ABox A0 such that (a, b) : R is not in A but nevertheless filler?A(a, b,R) holds (see
Section 2.4). Thus, the notion phantom edge resembles the informal notion of an
implicit role filler relationship. An application of the R∀C rule to an axiom ∀R.C
together with a phantom edge is called phantom application. The level of an object o
is denoted by λ(o) and defined as the distance between the root of the tree containing
ν(o) and the node ν(o) itself.8 Let RD be the maximum role depth of any concept
term in A0, where for each concept term C , the role depth rd(C) is the maximum
nesting depth of exists and value restrictions in C . Let CL be the maximum length
of a feature chain present in A0.

Using induction over the number of phantom applications of R∀C, it is proved that
the maximum level of any object created by rule application is 2 ∗RD + CL− 2, and
that, furthermore, the maximum level of abstract objects that have concrete objects
attached via feature chains is RD + CL − 1. From this, Lemma 18 immediately
follows. For the induction start, assume that no phantom applications of R∀C take
place. By definition, all objects in the initial ABoxA0 are on level 0. A case distinction
according to the rule introducing the new object is made.

R∃C It can be shown that for any axiom of the form o : C , which is introduced
by rule application, we have λ(o) + rd(C) ≤ RD. The proof is by induction
over the number of rule applications and makes a case analysis according to the
rule applied. From this it directly follows that the maximum level of objects
introduced by R∃C is RD.

Rr∃P The Rr∃P rule is applied to axioms (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P , which
are introduced by the R∃C rule, only. Because of the upper bound established
for the level of objects introduced by R∃C, we have λ(a) ≤ RD and λ(b) ≤ RD.
By application of the Rr∃P rule, feature chains attached to the objects a and b

may be generated. Their maximum length is, however, CL.

R∃P The R∃P rule is applied to axioms of the form a : ∃u1, . . . , un.P . Just as for
the Rr∃P rule, we can safely assume λ(a) ≤ RD. By rule application, feature
chains with a maximum length of CL attached to the object a may be created.

From these considerations it follows that the maximum level of any abstract object
is RD + CL if no phantom edges are involved. The maximum level of any abstract
object having concrete objects attached via feature chains is RD + CL − 1.

For the induction step, assume that an ABox is given for which the induction
hypothesis holds. This means that a phantom edge may exist between any two objects
o0 and o1 with λ(o0) < λ(o1) ≤ RD + CL− 1.9 This is the case because such objects
may have concrete objects attached via feature chains. Consider a single phantom
application of the R∀C rule to an axiom o0 : ∀R.C . This leads to the generation of
an axiom o1 : C . We examine the application of generating rules after the application
of the R∀C rule.

8Please note that phantom edges are not part of any tree and hence do not contribute to the
level.

9For phantom edges between two objects on the same level, the arguments from the last paragraph
remain valid.

17

R∃C From λ(o1) ≤ RD +CL−1 and rd(C) ≤ (RD−λ(o0))−1 ≤ RD−1, it follows
that λ(o1) + rd(C) ≤ 2 ∗ RD + CL − 2. Generalizing the induction argument
from the previous paragraph, it can be shown that if all axioms o : D in an
ABox A fulfill the equation λ(o)+rd(D) ≤ RD+n, then all axioms of the same
form that are generated by rule application do also fulfill this equation. This
means that the maximum level of objects newly generated by applications of
R∃C is RD+n. In the given case, n = RD+CL−2. Hence, the maximum level
of any object introduced by the application of the R∃C rule is 2 ∗RD+CL− 2.
No concrete objects are generated.

R∃P The concept term C may have subconcept terms ∃u1, . . . , un.P . Since ∀R.C
has to be in restricted form, the predicate operators in C are not in the scope of
any exists or value restrictions. From this fact together with the considerations
from the last paragraph, it follows that if there is an axiom that has the form o :
∃u1, . . . , un.P , then the maximum level of o is max (RD, λ(o1)) ≤ RD+CL−1.
For the case λ(o1) ≤ RD, see the argument for the induction start. The case
RD < λ(o1) ≤ RD + CL − 1 remains to be treated. From the restrictedness
of ∀R.C , it follows that in this case all feature chains in the predicate operator
have length 1. Hence, no abstract objects are created and the maximum level
of all concrete objects created is RD + CL.

Rr∃P The presence of phantom edges does not lead to additional applications of the
Rr∃P rule, since, because of the restrictedness of ∀R.C , the concept term C may
not contain any subconcept terms of the form ∃(∃(u1, . . . , un)(v1, . . . , vm).P).X .

It follows that all ABoxes obtained by rule applications after a single phantom
application of the R∀C rule also fulfill the induction hypothesis.

We have just proved that the maximum level of all objects generated by rule
application is 2 ∗ RD + CL − 2. This number is hence also the upper bound of the
depth of any of the trees in the graph sequence GA0

, GA1
,

This completes the proof of Proposition 13. This result will be needed in the next
section to prove soundness and completeness.

2.6 Soundness and Completeness

The proofs of soundness and completeness given in this section are extensions of those
given for ALC(D) in [5].

Proposition 19 The algorithm presented in Definition 12 is sound and complete.

The purpose of our algorithm is to find inconsistencies in a given ABox A. In
order to prove soundness, it has to be shown that an ABox which contains a clash
cannot have a model. To prove completeness, it has to be shown that if the algorithm
terminates because a complete ABox was computed, then A has a model. First, local
correctness of the rules is established.

Lemma 20 (Local Correctness)

18

1. If an ABox A′ is obtained from an ABox A by a rule generating only a single
descendent ABox, then A has a model iff A′ has a model.

2. If two ABoxes A′ and A′′ are obtained from an ABox A by a rule which generates
two descendent ABoxes, then A has a model iff at least one of A′ and A′′ has
a model.

Proof. This lemma has to be proven for each completion rule separately. The proof
will only be given in detail for the RChoose rule. All other rules can be treated
similarly.10 The two directions are proved separately.

(⇐) Let A′ and A′′ be obtained from A by application of the RChoose rule. Let
I be a model for either A′ or A′′. Then I is also a model of A since we have A ⊆ A′

and A ⊆ A′′.
(⇒) Let A′ and A′′ be obtained from A by application of the RChoose rule to an

axiom ax = a : ∀(∃(u1, . . . , un)(v1, . . . , vm).P).C . A′ differs from A in having the ad-
ditional axiom (x 1, . . . , xn, y1, . . . , ym) : P . A′′ differs from A in having the additional
axiom (x 1, . . . , xn, y1, . . . , ym) : P . Let I be a model of A. Since RChoose was ap-
plicable to ax in A, I maps each of the objects x1, . . . , xn, y1, . . . , ym into ∆D. By defi-
nition of concrete domain predicates, we must have either x1, . . . , xn, y1, . . . , ym ∈ PD

or x1, . . . , xn, y1, . . . , ym ∈ P
D

. Hence, I is either a model for A′ or A′′.

Now, the soundness and completeness of the tableau calculus can be proved.

Proposition 21 (Soundness) If the algorithm ALCRP(D)-ABox-cons terminates
because every leaf in the tree of ABoxes Υ contains a clash, then the initial ABox A0

does not have a model.

Proof. It has to be shown that the initial A-Box A0 does not have a model if all
leaves in the tree Υ contain a clash. There are two possible cases. First, A0 itself
could contain a clash which means that no descendent ABoxes have been computed.
In this case, a look at the definition of the clash triggers reveals that A0 cannot have
a model. In the second case, A0 does not contain a clash itself but all the leaf ABoxes
in Υ do. Like A0 in the first case, none of the leaf ABoxes can have a model. In this
case, using Lemma 20 it can easily be proven by induction that A0 cannot have a
model as well.

Proposition 22 (Completeness) If the algorithm ALCRP(D)-ABox-cons does not
terminate with the reason that every leaf in Υ contains a clash, then it terminates
because a complete ABox Ac has been derived. In this case the initial ABox A0 has
a model.

Proof. It has already been proven that the algorithm terminates on any input. It
remains to be shown that A0 has a model if a complete ABox Ac was computed. For
this purpose, the ABox Ac is used to define an interpretation I = (∆I , ·I) that is
also a model:

10In fact, for all rules except R∀C, Rr∃P and RChoose, the local correctness follows from the
soundness and completeness proofs given in [5].

19

1. ∆I consists of all the objects of OA which occur in Ac.

2. If C is a concept name then a ∈ C I iff a : C ∈ Ac.

3. If R is a role or feature name then (a, b) ∈ RI iff (a, b) : R ∈ Ac.

4. Because there is no concrete domain clash in Ac, there is a variable assignment
α that satisfies the conjunction of all occurring axioms (x1, . . . , xn) : P . So we
set xI = α(x) iff x ∈ OD.

Since I is obviously an interpretation function, it can be extended to arbitrary
concept and role terms as defined in Definition 4. It has to be shown that I is a
model of the ABox Ac, i.e. it satisfies all assertional axioms in Ac in the sense of
Definition 5. It is then an immediate consequence of Lemma 20 that I is also a model
for A0.

First consider axioms ax of the form (a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P . Since
Ac is complete, the rule Rr∃P has been applied to ax. Hence, the various axioms of
the form (x, y) : f generated by Rr∃P are in Ac, and, by definition of I, this means
that we have uI

i (a) = xI
i as well as vI

j (b) = yI
j for i = 1, . . . , n and j = 1, . . . , m.

Furthermore, the axiom (x 1, . . . , xn) : P is in Ac, and, by definition of α, it is satisfied
by I. From this it follows that I satisfies ax.

All remaining axioms from Ac that I needs to satisfy are of the form a : C . The
rest of the proof can be done by induction on the size of these axioms in Ac, where the
size of a concept term X is simply the number of atomic concepts and operators used
in X . A case analysis according to the topmost operator in C has to be made. Most
cases are already treated in [5]. The only case that is different is that the considered
axiom ax is of the form ∀R.C .

Let ax be of the form a : ∀R.C . First assume that R is an atomic or complex role
and (a, b) : R is in Ac. Then b is in OA because there is no all domain clash in Ac.
Then, for ax together with (a, b) : R the rule R∀C has been applied. By induction, I
satisfies b : C for all these b and hence ax is satisfied. Now assume R is of the form
∃(u1, . . . , un)(v1, . . . , vm).P and (a, b) : R is not in Ac but there exist objects x1,
. . . ,xn, y1, . . . ,ym in OD such that uI

i (a) = xI
i and vI

j (b) = yI
j holds for i = 1, . . . , n

and j = 1, . . . , m, respectively (i.e. possibly there exists a phantom edge between a
and b). Then b is in OA because there are axioms of the form (b, x) : f . Further-
more, there has to be exactly one of the two axioms (x1, . . . , xn, y1, . . . , ym) : P and
(x 1, . . . , xn, y1, . . . , ym) : P in Ac, since the rule RChoose is not applicable and there
is no concrete domain clash in Ac. If the first of these two axioms is in Ac, the rule
R∀C has been applied. Like above, the axiom ax is satisfied by I. In the other case,
b is not a filler of the role R for a.

This finishes the completeness proof of the ALCRP(D)-ABox-cons algorithm. In
order to use ALCRP(D) for knowledge representation in general and for spatial and
temporal reasoning in particular, an admissible concrete domain must be defined.
This will be discussed in the next section.

20

3 Spatial and Temporal Reasoning

In this section we demonstrate that ALCRP(D) is an appropriate formalism for
spatial and spatiotemporal reasoning when instantiated with an appropriate concrete
domain. First, such a concrete domain is defined and its admissibility is proved. Then,
the combined formalism is motivated as a sound basis for knowledge representation
and spatial query processing in GIS. We conclude this section with a proposal for
additionally representing spatiotemporal phenomena.

3.1 Representing Spatial Information

This section introduces the concrete domain S2 which can be used for the represen-
tation of two-dimensional spatial objects. S2 provides predicates that allow one to
describe qualitative spatial relationships between spatial objects. We prove that the
concrete domain S2 is admissible and hence can be used for integrated spatial and
conceptual reasoning in connection with the description logic ALCRP(D).

3.1.1 The Concrete Domain S2

Before the concrete domain S2 can be formally defined, some notions from point set
topology and qualitative spatial reasoning need to be introduced. First, we define the
basic notion “topology” (see, e.g., [39]).

Definition 23 Let U be a set. A topology on U is a family T of subsets of U , with

1. if O1, O2 ∈ T , then O1 ∩ O2 ∈ T ,

2. if Oi ∈ T for i ∈ I, then
⋃

Oi ∈ T ,

3. ∅,U ∈ T .

The pair 〈U , T 〉 is called a topological space. The elements of T are called open
subsets of U .

Some more definitions from point set topology are needed, although we will only
consider a particular topology on R2 for the definition of S2.

Definition 24 Let 〈U , T 〉 be a topological space, let M be a subset of U , and let x

be a point in U .

• M is closed if U \ M is open.

• A set N ⊂ U is called neighborhood of x if there is an open subset O ⊂ U such
that x ∈ O ⊂ N .

• x is called an interior point of M if there is a neighborhood N of x contained in
M . The set of all interior points of M is called the interior of M and is denoted
by i(M).

• x is called an exterior point of M if there is a neighborhood N of x that contains
no point in M . The set of all exterior points of M is called the exterior of M

and is denoted by e(M).

21

• x is called a boundary point of M if every neighborhood N of x contains at least
one point in M and one point not in M . The set of all boundary points of M

is called the boundary of M and is denoted by b(M).

• The closure of M is the smallest closed set which contains M (i.e., M ∪ b(M)),

and is denoted by M̂ .

• M is regular closed if î(M) is equal to M .

The RCC theory is an axiomatic theory for qualitative spatial reasoning [32].
As part of RCC theory, a set of 8 “topological” relations called RCC-8 has been
defined.11 These relations describe all possible relationships that may hold between
any two subsets of a topological space. In the following, the RCC-8 relations are
introduced w.r.t. topological spaces.

Definition 25 Let 〈U , T 〉 be a topological space. A spatial relation R is a subset of
U × U . Let M1 and M2 be subsets of U . RCC-8 is a set of 8 spatial relations defined
as follows:

(M1, M2) ∈ DC iff M̂1 ∩ M̂2 = ∅

(M1, M2) ∈ EC iff i(M1) ∩ i(M2) = ∅ ∧ M̂1 ∩ M̂2 6= ∅

(M1, M2) ∈ PO iff i(M1) ∩ i(M2) 6= ∅ ∧ M̂1 \ M̂2 6= ∅ ∧ M̂2 \ M̂1 6= ∅

(M1, M2) ∈ EQ iff M̂1 = M̂2

(M1, M2) ∈ TPP iff M̂1 ∩ M̂2 = M̂1 ∧ M̂1 6= M̂2 ∧ b(M1) ∩ b(M2) 6= ∅

(M1, M2) ∈ NTPP iff M̂1 ∩ M̂2 = M̂1 ∧ M̂1 6= M̂2 ∧ b(M1) ∩ b(M2) = ∅

(M1, M2) ∈ TPPI iff (M2, M1) ∈ TPP

(M1, M2) ∈ NTPPI iff (M2, M1) ∈ NTPP

An RCC-8 formula is an expression of the form XRY where R is one of the RCC-8
relations or a disjunction of RCC-8 relations. A set of RCC-8 formulas N is called
RCC-8 network. The set of variables used in an RCC-8 network N is denoted by
Var(N). An RCC-8 network N is satisfiable iff there exists a topological space 〈U , T 〉
and a mapping δ from Var(N) to the set of all non-empty, regular closed subsets of
U such that for all RCC-8 formulas XRY in N , we have (δ(X), δ(Y)) ∈ R.

Figure 1 gives examples of the RCC-8 relations in the plane. Based on the notions
just introduced, the concrete domain S2 can be defined.

Definition 26 Consider the topological space 〈R2, 2R
2

〉, i.e. the topology is the set of
all subsets of R2. The concrete domain S2 is defined w.r.t. this topological space. The
domain ∆S2

contains all non-empty, regular closed subsets of R2. The elements of
∆S2

are called regions. The set ΦS2
contains predicates which are defined as follows:

11Egenhofer defines relations with exactly the same properties [13] in a more limited framework.

22

A B A B A B B

A

B

A

DC EC PO TPP NTPP

Figure 1: Elementary relations between two regions A and B. The inverses of TPP
and NTPP as well as the relation EQ have been omitted.

• A unary predicate is-region with is-regionS2 = ∆S2
and its negation is-no-region

with is-no-regionS2 = ∅.

• A binary predicate inconsistent-relation with inconsistent-relationS2 = ∅.

• The 8 basic predicates dc, ec, po, tpp, ntpp, tppi, ntppi and eq correspond to
the RCC-8 relations and are defined as follows. Let r1 and r2 be two regions.
We have (r1, r2) ∈ dcS2 iff (r1, r2) ∈ DC , (r1, r2) ∈ ecS2 iff (r1, r2) ∈ EC , . . . ,
(r1, r2) ∈ ntppiS2 iff (r1, r2) ∈ NTPPI ,

• For each distinct set {p1, . . . , pn} of basic predicates, where n ≥ 2, an additional
predicate of arity 2 is defined. The predicate has the name p1- · · · -pn and we
have (r1, r2) ∈ p1- · · · -pn

S2 iff (r1, r2) ∈ p1
S2 or . . . or (r1, r2) ∈ pn

S2 is true. In
total, there are 28 − 9 of these combined predicates. We impose the following
canonical order on the basic predicate names (i.e. dc, ec, po, tpp, ntpp, tppi,
ntppi, eq) that is applied to form unique predicate names for these combined
binary predicates.

Please note that the elements of ∆S2
are regions that are not necessarily internally

connected, i.e. for any region r ∈ ∆S2
, there may exist two regions s1 and s2 such

that r = s1 ∪ s2 and s1 ∩ s2 = ∅. As an example for a combined predicate consider
tppi-ntppi-eq. For two regions r1 and r2, we have (r1, r2) ∈ tppi-ntppi-eqS2 if and only
if (r1, r2) ∈ tppiS2 , or (r1, r2) ∈ ntppiS2 , or (r1, r2) ∈ eqS2 .

3.1.2 Admissibility of S2

In this section, we prove the admissibility of S2. It needs to be shown that the set of
predicates ΦS2

is closed under negation and that the satisfiability of finite predicate
conjunctions is decidable.

Lemma 27 The satisfiability of finite conjunctions of predicates from ΦS2
is decid-

able.

Proof. Checking the satisfiability of finite conjunctions of predicates can be re-
duced to checking the consistency of RCC-8 networks. Let a finite conjunction
C = p1(x

1
1, . . . , x

1
n1

) ∧ · · · ∧ pk(xk
1 , . . . , xk

nk
) of predicates from ΦS2

be given. Its
satisfiability can be decided as follows.

• If for any i = 1..k, pi is either is-no-region or pi = inconsistent-relation, then
return unsatisfiable.

23

• Remove any conjunct with pi = is-region. All predicates in the remaining con-
junction have arity 2.

• Translate the remaining conjunction C′ into an RCC-8 network N as follows:
The variables Var(N) are exactly the variables occurring in C′. Consider each
conjunct pi(x

i
1, x

i
2) from C′ separately. The predicate pi has the form p1- · · · -pn

with n ≥ 1. Let R = R1 ∨ · · · ∨ Rn be the corresponding disjunction of RCC-8
relations. Make a case distinction as follows: (i) if there is no RCC-8 formula
xi

1Sxi
2 in N , then add xi

1Rxi
2; (ii) let there be a RCC-8 formula xi

1Sxi
2 in N ,

where S is a disjunction of RCC-8 relations. Let (R∩S) denote the disjunction
of those relations that appear in both R and S. If there is no such relation,
return inconsistent . Otherwise, remove the formula xi

1Sxi
2 from N and add the

new formula xi
1(R ∩ S)xi

2.

• For all pairs (r1, r2) ∈ Var(N), for which there is no formula r1Rr2 in N , add
the formula r1 sr r2, where sr (“spatially related”) is the disjunction of all
RCC-8 relations.

• Check the satisfiability of the set N and return the result.

In [34], it is proved that deciding the consistency of RCC-8 networks is an NP-
complete problem. Efficient methods for this task are described in [35]. It still needs
to be shown that C is satisfiable if and only if N is satisfiable. The only if direction is
trivial by the definition of satisfiability of RCC-8 networks together with the definition
of the predicates in ΦS2

. The if direction follows directly from a theorem given by
Renz:

Every consistent set of spatial formula12 can be realized in any dimension
d ≥ 1 where regions are (sets of) d-dimensional polytopes [33, Theorem
5.5].

Please note that two-dimensional polytopes are polygons and that ∆S2
is a super-

set of all regions that are describable by a finite set of polygons.

Using this lemma, the main result of this section can be established.

Proposition 28 The concrete domain S2 is admissible.

Proof. It will be shown that ΦS2
is closed under negation. Together with Lemma 27,

this implies the proposition. It is well-known that the RCC-8 relations are mutually
exclusive and exhaustive [32]. Given this, it is easy to verify that ΦS2

is closed under
negation: Let P be the set of basic predicates. For any set of predicates {p1, . . . , pn} ⊆
P with 1 ≤ n < 8, we have that p1- · · · -pn = s1- · · · -sk, where {s1, . . . , sk} is defined as
P \ {p1, . . . , pn}. The predicate s1- · · · -sk is obviously in ΦS2

. Note that the negation
of the disjunctive combination of all 8 basic predicates is inconsistent-relation and vice
versa.

24

Region-1

Region-2

tpp

has-area has-area
Abstract Domain

Spatial Domain

Individual-1 Individual-2

Figure 2: References from the abstract domain into the concrete domain S2.

3.2 Spatial and Terminological Reasoning

How can predicates over the concrete domain S2 be used to support spatioterminolog-
ical inferences with the description logic ALCRP(S2)? First of all, as an ontological
commitment, we assume that each abstract domain object is associated with its spa-
tial representation via a feature has-area (see Figure 2). We define the roles ntppi and
dc for relating individuals in the abstract domain based on the corresponding pred-
icates in ΦS2

. Then, we give terminological axioms for two different kinds of cities:
city-1 and city-2.

ntppi
.
= ∃ (has-area)(has-area) . ntppi

dc
.
= ∃ (has-area)(has-area) . dc

city-1
.
= city ⊓ (∃ ntppi . center) ⊓ (∃ dc . suburb)

city-2
.
= city ⊓ ∃ ntppi . (center ⊓ ∃ dc . suburb)

Both kinds of cities contain a center (topological relation ntppi). In addition, in
the former concept definition there exists a suburb which is disconnected (topological
relation dc) from the city. In the second definition the existing suburb is disconnected
only from the center (but not to the city as a whole). In Figure 3, models for the two
concepts are given using a graph notation. Edges drawn with full lines correspond to
existential quantification over roles in the concept definitions. Dashed lines between
abstract objects represent predicates holding between the associated has-area features
of the objects. If we require the suburb to be disconnected from the city, it is certainly
disconnected from a region inside the city (in this case the center region). However,
if a concept requires the existence of a suburb which is only disconnected from the
center, then the suburb can be in any of the indicated relations to the city as a
whole (see the lower parts in Figure 3). This set of possible topological relations in
the example city-2 can easily be verified using an RCC-8 relation composition table
(see e.g. [10]). By considering Figure 3, we see that the concept city-2 subsumes
the concept city-1 because the predicate dc-ec-po-tppi-ntppi represents a disjunction

12“Spatial formula” is another notion for RCC-8 formula.

25

ntppi dc

dc
center suburb

city

city-1

i1

i2 i3

dc-ec-po-tppi-ntppi

dc
center suburb

city

city-2

i4

i5 i6

ntppi ntppi dc

dc
center suburb

city

city-3

i1

i2 i3

Figure 3: Models for concepts city-1 and city-2 with inferred role filler relationships
(see text). In the lower part, examples for the spatial regions of the corresponding
objects in the upper part are given. The regions are assumed to be associated with
the corresponding abstract object with the feature has-area.

of spatial relations including dc. As desired, the tableau algorithm for ALCRP(S2)
applied to the concept city-1 ∧ ¬city-2 returns “inconsistent.”

The next example demonstrates the use of value restrictions over defined roles. We
define another city concept as a specialization of city-2 with the additional restriction
that all individuals which are connected are no suburbs.

connected
.
= ∃ (has-area)(has-area) . ec-po-tpp-ntpp-tppi-ntppi-eq

city-3
.
= city-2 ⊓ ∀ connected .¬suburb

We define a role connected using a predicate which models the disjunction of all
topological base relations except dc (disconnected). The concept city-3 is defined as a
city-2 with an additional value restriction for the role connected. Applying the tableau
calculus reveals that the concept city-3 is also more specific than city-1. Due to the
value restriction for the role connected (see the concept definition of city-3) we can
infer that only dc can hold between the city and the suburb. This and the additional
restriction for the city (see Figure 3) are the reasons that city-3 is more specific than
city-1.

With defined roles —and value restrictions over defined roles in particular—
ALCRP(D) is more expressive than ALC(D). The additional expressiveness is re-
quired for adequately modeling terminological and spatial knowledge using concept
terms. The importance of capturing aspects of space with concept terms was demon-
strated by considering the non-obvious subsumption relationships which are detected
by TBox inference algorithms based on a sound and complete concept consistency
test.

3.3 Representing Spatiotemporal Phenomena

Considering the general mechanism for integrating concrete domains, it becomes clear
that another instance of ALCRP(D) can deal with qualitative temporal relations be-
tween time intervals according to [1]. The idea is to define a concrete domain TIA

26

Dredging area from 4/1 to 7/1Bird sanctuary from 3/1 to 6/1

Jan Feb Mar Apr May Jun Jul

Polygon p6

Polygon p7

ti1
ti2ti3

Figure 4: A clip from a city map (see text).

for representing time intervals with two-place predicates representing Allen’s Interval
Algebra (before, after, meets, met-by, overlaps, overlapped-by, during, contains, starts,
started-by, finishes, finished-by, equal and disjunctions of these basic predicates). Con-
straint satisfaction algorithms known from the literature (see e.g. [15] for an overview)
can then be employed to check the satisfiability of conjunctions of predicates. Further-
more, in Section 2.2 it is shown that, from a technical perspective, any two disjoint
admissible concrete domains can be combined to form a single admissible concrete
domain. The combination S2 ⊕

′ TIA (see Definition 6) also defines predicates as con-
junctions of predicates from the component concrete domains, i.e. the spatial and the
temporal concrete domain.

The use of the temporal domain will be illustrated with an example from the GIS
application introduced in Figure 4. We assume that, in the GIS database, a certain
area is defined to be a bird sanctuary from the beginning of March to the end of

27

May (see the dark-gray bar in Figure 4). Now, as part of a planning scenario, let
us assume a hypothetical dredging operation is to be scheduled from April to June
inclusive (middle-gray bar). In Figure 4 the affected area of the creek “Schleemer
Bach” is indicated by hatching. In addition, we assume that dredging a creek involves
handling trucks and dredging machinery. Thus, we assume the existence of a so-
called “support area” touching the real dredging area in the creek (the topological
relation is ec). Furthermore, background knowledge should indicate that the “support
process” starts earlier and lasts longer than the real dredging operation because the
dredging machinery has to be installed and deinstalled (see the light-gray bar in
Figure 4 which is used as an example here). Obviously, as the reader might expect,
the spatiotemporal constraints, the conceptual knowledge and the knowledge about
individuals in this example suggest that dredging in an “active” bird sanctuary should
not be sanctioned by the planning module of the GIS. The question is: How can
this planning problem using GIS facilities be solved by knowledge representation
techniques and logical inferences? In the following we describe a solution with the
description logic ALCRP(S2 ⊕′ TIA).

Both domain objects, the bird sanctuary and the dredging operation, are repre-
sented as ABox objects. The idea is to show that the corresponding ABox can be
proven to be inconsistent given the constraints modeling the knowledge informally
introduced in the previous section.

As an ontological decision, let us assume that temporal intervals are associated
with individuals via the feature has-duration. We can define a spatiotemporal-process

as a process for which an interval and a region are existing as fillers for the corre-
sponding features. The predicate is-interval is assumed to check membership in the
corresponding concrete domain TIA (see the admissibility criterion in Definition 1).

spatiotemporal-process
.
= process ⊓ ∃ has-duration . is-interval ⊓ ∃ has-area . is-region

noisy-process ⊑ process

dredging-support-process ⊑ spatiotemporal-process ⊓ noisy-process

In addition, several auxiliary concepts are introduced to capture the noisiness of
a dredging support process. These concepts are only partially defined with inclusion
axioms. The concept spatiotemporal-process is used in subsequent terminological in-
clusion axioms for more specific spatiotemporal processes. The interaction of space
and time in the example can be represented by introducing two roles ec-during and
ntppi-overlaps which relate fillers of corresponding has-area and has-duration features.

ec-during
.
= ∃ (has-area, has-duration)(has-area, has-duration) . ec-during

ntppi-overlaps
.
= ∃ (has-area, has-duration)(has-area, has-duration) . ntppi-overlaps

connected-ends-during-overlaps
.
=

∃ (has-area, has-duration)(has-area, has-duration) . connected-ends-during-overlaps

The predicate ec-during ensures that (i) the constraint ec is imposed on the fillers
of the has-area features and (ii) the constraint during describes a relation between
the fillers of the has-duration features. With ntppi-overlaps the corresponding con-
straints are established between the has-area and has-duration features, respectively

28

ec

i2 : dredging-process i3 : dredging-support-processi1 : bird-sanctuary

has-
area

has-
area

has-
area

q1 q2 q3

ntppi

po-tppi-ntppi

ec-during

q4 q5 q6

ends-during-overlaps

has-
duration

has-
duration

has-
duration

duringoverlaps

Spatial constraints Temporal constraints

ntppi-overlaps

Figure 5: ABox for testing the satisfiability of the dredging process query with implicit
spatial and temporal information shown in two constraint nets (see text).

(see Section 2.2). In a similar way, we also define a role connected-ends-during-overlaps

combining spatial connectedness and generalized temporal overlapping. Thus, the
predicates from both domains simultaneously hold for a pair of abstract individuals.
Now, we can (partially) define two concepts dredging-process and bird-sanctuary.

dredging-process ⊑ spatiotemporal-process ⊓ ∃ ec-during . dredging-support-process

bird-sanctuary ⊑
spatiotemporal-process ⊓ ¬noisy-process ⊓

∀ connected-ends-during-overlaps . ∀ connected .¬noisy-process

The spatiotemporal role ec-during is used to relate the dredging-support-process in
the appropriate way. A bird sanctuary is modeled as a non-noisy spatiotemporal-process

with all fillers of the spatiotemporal role connected-ends-during-overlaps being objects
which, in turn, are connected to non-noisy processes. The idea behind this definition
is that temporally overlapping connected objects must not be spatially connected to
noisy processes because this would cause an inconsistency. The ALCRP(D) restrict-
edness criterion is fulfilled for this terminology.

In order to represent GIS information concerning the bird sanctuary we simply
add the following ABox axiom for an individual i1 which is assumed here to represent
the available information about a particular bird sanctuary stored in the GIS. As a
hypothesis for the dredging process, additional ABox axioms for the individual i2 and
its spatiotemporal relationship with i1 (see also Figure 4) are used.13

A0 :=
{
i1 : bird-sanctuary, i2 : dredging-process, (i1, i2) : ntppi-overlaps

}

The ABox A0 is checked for consistency. In Figure 5 a graphical representation
of the ABox A0 is shown. Due to the constraints given in ABox A0, an individual i3

is generated. For this individual, the constraint dredging-support-process is asserted.

13Due to space constraints, we neglect the technical details about the GIS implementation and its
relation to the ABox of the DL system.

29

Furthermore, additional constraints resulting from the given spatiotemporal relation-
ship between i1 and i2 are derived (see the role ec-during and the spatial and temporal
constraints in Figure 4). The filler of i1 for connected-ends-during-overlaps is i2 in this
ABox (see Figure 4 and 5). Due to the value restriction for this role in the concept
bird-sanctuary, new constraints are added to i2. The value restriction over connected

is asserted. The fillers of the connected role with respect to i2 are i1, i3 and i2 itself.14

We consider i3. The constraint ¬noisy-process is added to i3. However, this causes
a clash because i3 is a dredging-support-process which is a noisy-process by definition.
Thus, due to the spatiotemporal constraints, there is no way to find a consistent
tableau and, therefore, ABox A0 is inconsistent. The reader can easily verify that
the existence of i3 (the dredging-support-process) is indeed required to make the ABox
inconsistent because, in our example, the dredging process itself is not assumed to be
a noisy process. If this were the case, there would be another inconsistency concerning
i2, of course.

The example shows that the interaction between spatiotemporal and conceptual
knowledge is very important for GIS systems. The inconsistency of the ABox A0

can be interpreted by the application system in such a way that the dredging op-
eration should better be planned in another period of the year.15 Note that ABox
reasoning cannot easily be replaced by model-checking because the implicit processes
(see the exists constraint in the definition of dredging-process) are not given as part
of the input to the GIS system. For the application system, the knowledge about
a necessary dredging-support-process need not be directly available. Furthermore, in
ALCRP(D) we have seen that with defined roles, the interaction between different
concrete domains provides a powerful modeling technique which is not available in
ALC(D).

In the example ABox A0 we have explicitly added the spatiotemporal constraint
ntppi-overlaps between i1, the bird-sanctuary, and the dredging-process i2. This is re-
quired because the corresponding ABox assertion cannot be inferred. In principle,
we have to add similar constraints for every pair of spatiotemporal processes. So,
could we find a way to avoid this? In Figure 4 “explicit” regions and time intervals
are indicated. We could use the concept-forming predicate operator together with
additional predicates from an extended concrete domain in order to represent quanti-
tative knowledge about regions and time intervals with explicit coordinates and time
points, respectively. As we will see in the next section, the satisfiability algorithm
for conjunctions of predicates from this kind of concrete domain must be extended as
well.

3.4 An Extension of S2

In this section, an extension to the concrete domain S2 is developed which allows
for the integration of qualitative and quantitative spatial reasoning. Polygons may
be used to describe actual regions in the plane. Additional predicates are defined
that allow one to integrate polygons into the description of spatial situations. First,
polylines need to be defined.

14The predicate of the role connected subsumes the predicates ntppi, ec and po-tppi-ntppi.
15It would be attractive to compute alternatives for the has-duration intervals but this is beyond

the scope of this article.

30

p3 p4

p3

p4

p3 p4

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

0

l(,)

p Induced

p

p

1

2

Straight line
induced by (,)

polygon p(L)

Angle

Orientation

Figure 6: A polygon described by a polyline L = p0, . . . , p4.

Definition 29 A pair (p1, p2) of two points p1, p2 ∈ R2 is called an edge. An edge
e = (p1, p2) uniquely describes a straight line in R2. Let l(e) be the set of all points
that are on the straight line induced by e, and, furthermore, are located between p1

and p2. The set l(e) does also include the points p1 and p2 themselves.
Two edges e1 and e2 are crossing iff l(e1) ∩ l(e2) 6= ∅. For two edges e1 and e2,

ϕ(e1, e2) denotes the (counterclockwise) angle between the two straight lines described
by e1 and e2.

A sequence of points S = p1, . . . , pn corresponds to an edge sequence e1, . . . , en as
follows: e1 := (p1, p2), . . . , en−1 := (pn−1, pn), en := (pn, p1). S is called a polyline if
no two edges ei and ej with 2 ≤ |i − j| < n − 1 from this sequence are crossing.

Each polyline uniquely describes a polygon. This is defined next.

Definition 30 Let L = p1, . . . , pn be a polyline with the corresponding edge sequence
e1, . . . , en.

• We set en+1 := e1. L is called convex iff for all pairs of edges (ei, ei+1) with
1 ≤ i ≤ n, the angle α(e1, e2) is strictly smaller than 180 degrees.16

• Each of the edges ei = (p1, p2) is thought to be oriented from p1 to p2. For
each edge ei, let h(ei) denote the half plane that is located left of ei w.r.t.
its orientation, such that h(ei) includes the straight line described by ei itself.
L uniquely describes a subset p(L) of R2 called polygon as follows: p(L) :=⋂

i=1..n h(ei).

Figure 6 shows an example polygon and illustrates the notions just introduced.
Polygons play a central rôle in the extension of the concrete domain S2.

16This definition of convex is more restrictive than the usual definition since we demand the angle
to be strictly smaller than 180 degrees.

31

Definition 31 The concrete domain S2P is defined as S2 augmented by a set of
additional predicates. Let P be the set of all polygons. For each P ∈ P , and each
distinct set of RCC-8 relations {R1, . . . , Rn}, ΦS2P contains an additional unary pred-
icate r1- · · · -rn-P defined as follows: For all r ∈ ∆S2P , r ∈ r1- · · · -rn-PS2P iff (r, P) ∈
R1 ∨ · · · ∨ Rn.

There are strong indications that the concrete domain S2P is admissible. A formal
proof and a decision algorithm will be part of future work. As things are now, it is
important to note that S2P is a useful and natural extension of S2.

The following ABox A1 uses facilities provided by S2P . The fillers of has-area are
restricted by predicates referring to quantitative values (see Figure 4 for the exact
location of the polygons p6 and p7).

A1 :=

{
i1 : bird-sanctuary ⊓ ∃ has-area . eq-p6,

i2 : dredging-process ⊓ ∃ has-area . eq-p7

}

The algorithm for testing the satisfiability of conjunctions of concrete domain
predicates has to be extended in such a way that all implicit topological relationships
between regions given as polygons are computed. However, the relationship between
qualitative and quantitative constraints is complex. First results in this area have
been published for temporal reasoning [24, 28]. Thus, in a similar way as for S2P we
can define a temporal concrete domain with metric constraints for time intervals. In
ABox A2 this extended temporal concrete domain is used to represent spatiotemporal
knowledge about the bird sanctuary and the dredging process (see Figure 4 for the
relation of the time intervals ti1 and ti2).

A2 :=

{
i1 : bird-sanctuary ⊓ ∃ has-area . eq-p6 ⊓ ∃ has-duration . equal-ti1,

i2 : dredging-process ⊓ ∃ has-area . eq-p7 ⊓ ∃ has-duration . equal-ti2

}

Using the extended concrete domain we can derive a combined spatiotemporal
concrete domain (see Section 2.2) with metric (i.e. quantitative) and qualitative pred-
icates which can be used to infer qualitative spatiotemporal constraints between
processes. In this case there is no need to use external processes to explicitly add
ABox assertions such as (i1, i2) : ntppi-overlaps as in ABox A0. However, the details
about the admissibility proofs and the decision algorithms have to be explored in
future work.

4 Related Work

ALCRP(D) is a generic description logic which incorporates concrete domains. Two
of its major application areas are spatial and temporal reasoning, as was demonstrated
in the previous sections of this article. Accordingly, related work from all of these three
research areas is presented in this section. We start by examining the relationship
of ALCRP(D) to other description logics, especially those that offer reasoning with
concrete domains.

The basic description logic for reasoning with concrete domains as introduced in
[5] is the logic ALC(D). In Section 3.2, the connection of ALC(D) and ALCRP(D)

32

has already been briefly analyzed. The most obvious difference is that ALC(D) does
only allow the definition of concepts based on concrete domain predicates whereas
ALCRP(D) is equipped with an additional role-forming concrete domain predicate
operator. With its concept-forming operator, ALC(D) provides a limited means for
the existential specification of relations between abstract objects using concrete do-
main predicates (see [26] for modelling examples exploiting this fact). ALC(D) is,
however, truly less expressive than ALCRP(D). Especially for the universal quan-
tification over defined roles, which can be expressed in ALCRP(D), no equivalent or
similarly expressive means exists in ALC(D).

In the literature, several other extensions of ALC(D) can be found. None of these
extensions allows the definition of roles based on predicates. In [23], a generalization
of the concept-forming predicate operator of ALC(D) is proposed and the decid-
ability of the resulting language is proved. A recent extension of ALC(D) intended
for data aggregation in the context of extended entity relationship diagrams extends
ALC(D) by defined features based on aggregation predicates [6]. In order to obtain a
decidable formalism, syntactic restrictions are posed on the concept language. Inter-
estingly, similar to the case of ALCRP(D), the use of the value restriction operator
and negation need to be constrained.

Qualitative spatial reasoning is one of the most important applications of the
description logic ALCRP(D). For reasoning about spatial structures many specific
approaches have been published, see e.g. [9] or [40] for an overview. Spatial reasoning
with ALCRP(D) as proposed in this article is most closely related to approaches
which are based on the RCC theory or use the RCC-8 relations. Research on the
RCC theory is summarized in [10]. The RCC theory itself [32] is an axiomatic theory
based on a many-sorted first-order logic which provides a high expressive power.
Unfortunately, the theory (like many other spatial theories, e.g. [31], as discussed in
[9]) was shown to be undecidable.

Recently, the RCC-8 relations have been defined in terms of intuitionistic logic
and propositional modal logic [7, 34]. These logics are decidable and can be used for
reasoning about RCC-8 networks as introduced in Definition 25. However, the logics
are designed to support reasoning about spatial regions, only. Integrated spatial and
conceptual reasoning is not supported. In Bennett’s formalism, the RCC-8 relations
are encoded using a modal operator that can be understood to represent “connect-
edness” of spatial regions. The RCC-8 relations themselves are not represented by
modal operators (in contrast to the defined roles of ALCRP(D))17 and, hence, univer-
sal and existential quantification over spatial relations is not possible. The approach
of using ALCRP(D) as basis for qualitative spatial reasoning seems to be unique in
that the integration of spatial and conceptual reasoning in a decidable formalism is
considered.

Finally, we present related work from temporal reasoning. In this article, we
have examined the applicability of ALCRP(D) to integrated spatial and temporal
reasoning. In [26], ALCRP(D) has been considered as a tool for temporal reasoning,
only. As opposed to spatial reasoning, which has rarely been considered in the context
of description logics, there exist a number of description logics for temporal reasoning
(see e.g. [38], [37] and [8]). An overview can be found in [3]. As a representative, we

17Many description logics can be seen as a notational variant of modal logics [36]. If this view is
taken, roles correspond to modal operators.

33

discuss the temporal description logic T L-ALCF as proposed in [2].
The logic T L-ALCF is closely related to temporal logics. T L-ALCF has a “tem-

poral semantics”, i.e., the structure of time is an integral part of the semantics. With
ALCRP(D) the structure of time has to be modeled in the formalism itself. This
has been called an internal representation of time whereas T L-ALCF provides an
external representation of time [14]. Furthermore, there is a fundamental ontological
difference between the two logics: The logic T L-ALCF is designed to represent eter-
nal objects that have properties which are changing over time. In contrast, temporal
objects in ALCRP(D) have static properties but a unique temporal extension. In
ALCRP(D), it is rather straightforward to specify temporal relations between two
distinct logical objects. T L-ALCF allows only very restricted specifications of tem-
poral relations between different objects but instead focuses on temporal relations
between different states of the same logical object. The two logics T L-ALCF and
ALCRP(D) cover different aspects of temporal reasoning and are in many aspects
orthogonal formalisms. A combination that provides the advantages of both logics
would be a very powerful tool.

Just as ALC(D), T L-ALCF does allow existential but not universal quantification
over Allen’s relations. The only formalism we know of that supports both existential
and universal quantification is (besides ALCRP(D)) an interval modal logic intro-
duced in [22]. The logic has a strong correspondence to the unrestricted version of
ALCRP(D) instantiated with a temporal concrete domain as proposed in [26]. In the
mentioned paper, Halpern and Shoham were able to prove the undecidability of their
logic.

5 Conclusion

Based on the description logic language ALCRP(D), we have shown how spatial and
terminological reasoning can be combined in the TBox and ABox. Thus, the fruitful
research on description logics has been extended to cope with qualitative spatial
relations between spatial objects. One of the main ideas is to introduce constructors
for roles whose definitions are based on properties of concrete objects. The abstract
domain is used to represent terminological knowledge about spatial (and temporal)
domains on an abstract logical level. The concrete domain (space domain or temporal
domain) extends the abstract domain and provides access to spatial reasoning services.
We have shown that the concrete domain S2 with ∆S2

being all non-empty, regular
closed subsets of R2 and the set of predicates ΦS2

representing RCC-8 formulas is
admissible. Our approach for testing satisfiability of finite conjunctions relies on
current work in qualitative spatial reasoning theory (see e.g. [34]). We have provided
several application examples demonstrating the necessity of terminological and spatial
reasoning (even in the TBox) in order to avoid unintended models.

In a similar way, a temporal domain can be defined with predicates based on in-
terval relations. A decision procedure for conjunctions of these predicates has been
sketched. An application example (bird sanctuary) demonstrates the use of this do-
main in combination with the spatial domain to represent spatiotemporal phenomena.
In comparison with ALC(D), the combination of two concrete domains in ALCRP(D)
really extends the expressiveness of the language.

34

We admit that the ALCRP(D) restrictedness criterion for terminologies does im-
pose tight constraints on modeling spatiotemporal terminological structures. How-
ever, in a specific application, many interesting concepts can be represented in a TBox
with the additional advantage of having a decidable satisfiability algorithm. The dis-
cussion of related work reveals that other approaches introduce similar (if not even
more severe) syntactical restrictions on the concept terms that can be handled.

The ALCRP(D) approach presented in this article demonstrates how constraint
reasoning and description logics complement each other. The examples presented in
this article indicate that conceptual knowledge formalized with a description logic and
spatial knowledge concerning topological relations provides solutions for important
problems, for instance in GIS applications. An important application of description
logic theory in this context is, for instance, schema reasoning for data integration in
GIS systems. Defined relations provide a bridge from spatial to conceptual knowledge
and support more extensive reasoning services to be exploited for solving practical
problems.

References

[1] J. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

[2] A. Artale and E. Franconi. A computational account for a description logic of
time and actions. In J. Doyle, E. Sandewall, and P. Torasso, editors, Fourth In-
ternational Conference on Principles of Knowledge Representation, Bonn, Ger-
many, May 24-27, 1994, pages 1–14, May 1994.

[3] Alessandro Artale and Enrico Franconi. Temporal description logics. In L. Vila,
P. van Beek, M. Boddy, M. Fisher, D.M. Gabbay, A. Galton, and R. Morris,
editors, Handbook of Time and Temporal Reasoning in Artificial Intelligence.
MIT Press, To appear.

[4] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Twelfth International Conference on Artificial Intelligence,
Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452–457, August
1991.

[5] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. Technical Report DFKI-RR-91-10, German Center for AI
(DFKI), 1991.

[6] F. Baader and U. Sattler. Description logics with aggregates and concrete do-
mains, Part II. Technical Report 98-02, LuFG Theoretical Computer Science,
RWTH Aachen, 1998.

[7] B. Bennett. Modal logics for qualitative spatial reasoning. Bull. of the IGPL,
3:1–22, 1995.

[8] C. Bettini. A family of temporal terminological logics. In P. Torasso, editor,
Advances in Artificial Intelligence, Third Congress of the Italian Association for

35

Artificial Intelligence, AI*IA ’93, volume 728 of LNAI, pages 120–131, Torino,
Italy, October 26–28, 1993. Springer-Verlag 1993.

[9] A.G. Cohn. Qualitative spatial representation and reasoning techniques. In
G. Brewka, C. Habel, and B. Nebel, editors, Proceedings, KI-97: Advances in
Artificial Intelligence, 21st Annual German Conference on Artificial Intelligence,
Freiburg, Germany, volume 1303 of Lecture Notes in Artificial Intelligence, pages
1–30. Springer Verlag, Berlin, September 1997.

[10] A.G. Cohn, B. Bennett, J.M. Gooday, and N.M. Gotts. Representing and rea-
soning with qualitative spatial relations. In Stock [40], pages 97–134.

[11] T. Cohn, L. Schubert, and S. Shapiro, editors. Proceedings of Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98),
Trento, Italy, June 2-5, 1998, June 1998.

[12] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1–58, 10 April 1997.

[13] M.J. Egenhofer. Reasoning about binary topological relations. In O. Günther
and H.-J. Schek, editors, Advances in Spatial Databases, Second Symposium,
SSD’91, Zurich, Aug. 28-30, 1991, volume 525 of Lecture Notes in Computer
Science, pages 143–160. Springer Verlag, Berlin, August 1991.

[14] M. Finger and D. M. Gabbay. Adding a temporal dimension to a logic system.
Journal of Logic Language and Information, 1:203–233, 1992.

[15] A. Gerevini. Reasoning about time and actions in artificial intelligence: Major
issues. In Stock [40], pages 43–70.

[16] V. Haarslev. Formal semantics of visual languages using spatial reasoning. In
1995 IEEE Symposium on Visual Languages, Darmstadt, Germany, Sep. 5-9,
pages 156–163. IEEE Computer Society Press, Los Alamitos, September 1995.

[17] V. Haarslev. A fully formalized theory for describing visual notations. In K. Mar-
riott and B. Meyer, editors, Visual Language Theory, pages 261–292. Springer
Verlag, Berlin, 1998.

[18] V. Haarslev, C. Lutz, and R. Möller. Foundations of spatioterminological rea-
soning with description logics. In Cohn et al. [11], pages 112–123.

[19] V. Haarslev and R. Möller. SBox: A qualitative spatial reasoner—progress re-
port. In L. Ironi, editor, 11th International Workshop on Qualitative Reasoning,
Cortona, Tuscany, Italy, June 3-6, 1997, Pubblicazioni N. 1036, Istituto di Anal-
isi Numerica C.N.R. Pavia (Italy), pages 105–113, June 1997.

[20] V. Haarslev, R. Möller, and C. Schröder. Combining spatial and terminologi-
cal reasoning. In B. Nebel and L. Dreschler-Fischer, editors, KI-94: Advances
in Artificial Intelligence – Proc. 18th German Annual Conference on Artificial
Intelligence, Saarbrücken, Sept. 18–23, 1994, volume 861 of Lecture Notes in
Artificial Intelligence, pages 142–153. Springer Verlag, Berlin, September 1994.

36

[21] V. Haarslev and M. Wessel. GenEd—an editor with generic semantics for formal
reasoning about visual notations. In 1996 IEEE Symposium on Visual Languages,
Boulder, Colorado, USA, Sep. 3-6, pages 204–211. IEEE Computer Society Press,
Los Alamitos, September 1996.

[22] J.Y. Halpern and Y. Shoham. A propositional model logic of time intervals.
Journal of the Association of Computing Machinery, 38(4):935–962, 1991.

[23] P. Hanschke. Specifying role interaction in concept languages. In B. Nebel,
C. Rich, and W. Swartout, editors, Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92). Morgan Kaufmann, 1992.

[24] H. A. Kautz and P. B. Ladkin. Integrating metric and qualitative temporal
reasoning. In Proc. of AAAI-91, pages 241–246, Anaheim, CA, 1991.

[25] C. Lutz. Representation of Topological Information in Description Logics (in Ger-
man). Master’s thesis, University of Hamburg, Computer Science Department,
February 1998.

[26] C. Lutz, V. Haarslev, and R. Möller. A concept language with role-forming pred-
icate restrictions. Technical Report FBI-HH-M-276/97, University of Hamburg,
Computer Science Department, 1997.

[27] C. Lutz and R. Möller. Defined topological relations in description logics. In
M.-C. Rousset et al., editor, Proceedings of the International Workshop on De-
scription Logics, DL’97, Sep. 27-29, 1997, Gif sur Yvette, France, pages 15–19.
Universite Paris-Sud, Paris, September 1997.

[28] I. Meiri. Combining qualitative and quantitative constraints in temporal reason-
ing. Artificial Intelligence, 87 (1-2):343–385, 1996.

[29] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelli-
gence, 43:235–249, 1990.

[30] B. Nebel. Terminological cycles: Semantics and computational properties. In
J.F. Sowa, editor, Principles of Semantic Networks: Explorations in the Rep-
resentation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo, 1991.

[31] I. Pratt and D. Schoop. A complete axiom system for polygonal mereotopology
of the real plane. Technical Report UMCS-97-2-2, University of Manchester,
Department of Computer Science, 1997.

[32] D.A. Randell, Z. Cui, and A.G. Cohn. A spatial logic based on regions and
connections. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of
Knowledge Representation and Reasoning, Cambridge, Mass., Oct. 25-29, 1992,
pages 165–176, October 1992.

[33] J. Renz. A canonical model of the region connection calculus. In Cohn et al.
[11], pages 330–341.

37

[34] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A
maximal tractable fragment of the region connection calculus. In Proceedings
of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97),
pages 522–527, August 1997.

[35] J. Renz and B. Nebel. Efficient methods for qualitative spatial reasoning. In
H. Prade, editor, Proceedings of the 13th European Conference on Artificial In-
telligence (ECAI’98), Aug. 23-28, Brighton, UK, pages 562–571, August 1998.

[36] K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Twelfth International Conference on Artificial Intelligence, Darling Harbour,
Sydney, Australia, Aug. 24-30, 1991, pages 466–471, August 1991.

[37] K. Schild. Combining terminological logics with tense logic. In M. Filgueiras and
L. Damas, editors, Progress in Artificial Intelligence, 6th Portuguese Conference
on AI, EPIA ’93, volume 727 of LNAI, pages 105–120, Porto, Portugal, October
6–8, 1993. Springer-Verlag 1993.

[38] A. Schmiedel. A temporal terminological logic. In Proceedings of the Tenth
National Conference on Artificial Intelligence AAAI-90, volume 2, pages 640–
645, Boston, Mass., July 29 – August 3, 1990. AAAI Press 1990.

[39] E. Spanier. Algebraic Topology. McGraw-Hill Book Company, New York, 1966.

[40] O. Stock, editor. Spatial and Temporal Reasoning. Kluwer Academic Publishers,
Dordrecht, 1997.

38

