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The term "thread" was introduced by A. H. Clifford in [1] to designate a con-
nected topological semigroup in which the topology is that induced by a total order
relation. A thread S is said to be globally idempotent if S2 = S. In [6] the author
has shown that, after reversing the order if necessary, the subset {x | 0 á x} in a
globally idempotent thread with zero is a subthread having a particularly pleasant
structure. This result is the foundation on which the description given in this
paper is based.

An analogous situation existed in the characterization given by Cohen and
Wade [4] of all topological semigroups on a compact real interval which have a
zero and an identity. In such a thread, the identity must be an endpoint, and the
closed interval between the zero and the identity a subthread. Assuming the
identity to be the maximal element, this subthread is then, in the terminology of
[1], a standard thread. Since a characterization of all standard threads on a real
interval had previously been given by Mostert and Shields [5], the problem solved
by Cohen and Wade was also that of utilizing a given structure theorem for
{x | O^x} to formulate a description of the whole thread. Consequently, many of
the ideas developed by Cohen and Wade have again been used here.

Treating the same type of problem, Clifford determined in fl] all possible com-
pact threads having a zero and idempotent endpoints, and again, some of our
results are simple generalizations of those in [1]. Considering the work of Clifford
and of Cohen and Wade, the contribution of the present investigation toward a
description of all globally idempotent threads with zero lies in dropping the
requirement of compactness and in replacing the assumption of idempotent
endpoints or of an identity by the weaker one of global idempotency.

The terminology and notation will be essentially the same as that used in [6].
In particular, a standard thread is a compact thread in which the least element is a
zero and the largest is an identity. We note that the trivial thread consisting of a
zero alone is considered a standard thread. A thread with a zero and an identity
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is a positive thread provided the zero is a least element and provided there is no
largest element. The structure theorem for standard threads can be found in [1],
[4], [5] or [6]; any positive thread is the contact extension (see §1) of a standard
thread by the thread of nonnegative real numbers under ordinary multiplication.
In a thread with a zero, we write x^yif and only if 0^x<y or y<x = 0. Finally,
and this notation is different from that in [6], if S is a thread with zero, we put
L={x | x^O} and G={x | O^x}.

The following two theorems, which will be used without explicit reference, are
the principal results of [6]. If S is a globally idempotent thread having a zero as a
least element, then S is a positive thread, or a standard thread, or the result of removing
the identity of a standard thread [6, Theorem 5.5]. If Sisa globally idempotent thread
with a cutting zero, then either G2 = G or L2=L; consequently, either G or the order
dual ofL is described by the preceding statement ; moreover, the multiplication in S is
monotone with respect to «<, and the zero does not cut L2, G2, LG or GL [6, Theorem
6.7].

1. Extensions. We shall say that a thread 5 is the contact extension of T by Q
if and only if T and Q are threads satisfying the hypotheses of 1.1 and S is iso-
morphic with the thread constructed there. The adjective "contact" was used by
Clifford in [1] for a similar extension, however, 1.1 and its converse, 1.2, more
closely resemble Lemma 6.1 in [4].

1.1 Theorem. Let Qbea globally idempotent thread with a zero, let Tbea compact
globally idempotent thread with zero, say T= [d, e], and define j: Q\{0} -+T by

j(x) = e,       ifO<x,
= d,       if x < 0.

Ifj(xy) =j(x)j(y) whenever x, y and xy all lie in Q\{0}, then the following construction
yields a globally idempotent thread S containing T as an ideal such that S/T= Q.

Let 5=7"u ö\{0} and, thinking of S as obtained by replacing the zero of Q by the
interval [d, e], order S in the obvious way. For x, y in Q\{0} and for s, t in T, define :

x o y = xy, if xy # 0,
= j(x)j(y),       if xy = 0;

x°s =j(x)s;
s°x = sj(x);
s ° t = St.

Proof. The hypothesis on 7 means that j is, in the sense of [3], a ramified homo-
morphism; and thus by Theorem 2 ofthat paper, o is an associative operation on S.
The continuity of o can be proved by the easy but uninteresting method of con-
sidering many cases separately. We note only that the fact that, in Q, zero does
not cut L2, G2, LG or GL is crucial to the proof. The remaining conclusions are
obvious.
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1.2 Theorem. Let S be a globally idempotent thread with zero and let T=[d, e]
be an ideal ofS. IfGL^L in S, ife is a left identity on T, and if either 0 < de or e is a
right identity on T; then S is the contact extension ofTby S/T.

Proof. Putting Q = S/T, it is clear that T and Q are globally idempotent threads
with zero. Moreover, we will consider Q\{0} as a subset of S, so that S= Q\{0} u T.

Let y<d and e<x. Then by monotony e = e2-<.ex, e<.xe, and d=ed-<\ey, while
ex, xe and ey are all in T. If 0<e, then e-Kex and e-Kxe imply that c¿ex and
eSxe. Consequently, whether e is zero or not, ex = xe = e. Since GL^L, d-<ey
implies ey S d, and thus ey = d. We have shown that j(z) = ez, where / is the func-
tion from Q\{0} into T defined in 1.1, and that e = xe when e < x.

Now let xe Q\{0} and let seT. We intend to show that xs=j(x)s and that
sx=sj(x). The first of these is trivial, for xseT implies xs = e(xs) = (ex)s=j(x)s.
If OS s then se = s and sx = (se)x = s(ex) = sj(x). Moreover, if e is an identity on T,
then se=s for each s and we are through.

Assume that s SO and that 0 < de. This means in particular that LG<=G in S.
If e<x, then sx e G n T and sx=(sx)e=s(xe)=se=sj(x). Thus we have left only
the case where both s and x are in L. Since LG u G2^G while 5 is globally idem-
potent, either L2=L or GL=L. In the first case the structure of L is known and
there exists a >> such that ySd and y2 = d. Thus í/=eí/=ey'2 = (e}>)_y = o()> and it
follows that d=(dy)y = dy2 — d2. Now x<íí^í^0 implies íx = j=jí/=í/(jc). On the
other hand, if L = GL then there exist an / in L and an r in G such that rl=x. Since
x is not in T, l<d and e<r. Thus sx = .y(r/) = (.ír)/=(se)/=s(e/) = s¿=s/(x). Hence
xs=_/(x)s and sx=sj(x) whenever seT and x $ T.

If x, y and xy are in Q\{x}, we have y'(xy) = e(xy) = (ex)}' =j(x)y =j(x)j(y) because
j(x) is in Tand y is not. This proves that j is a ramified homomorphism. Finally,
if x and y belong to Q\{0} and if xy = 0 in £? ; then x_y belongs to T in 5, so that
xy = e(xy) =j(x)y =j(x)j(y). This concludes the proof.

Before we introduce the next type of extension, we must consider the homo-
morphisms of a positive thread. In Lemma 8 of [1], Clifford shows that any
homomorphism of one standard thread onto another is continuous and order
preserving. This is not true for positive threads; for example, define <f> from the
positive thread of nonnegative real numbers under ordinary multiplication onto
itself by <p(x) = x~1 for 0<x and 0(0) = 0. However, we do have the following.

1.3 Lemma. Let S be either a standard thread or a positive thread, and let (p be a
continuous homomorphism of S into a standard or positive thread T. Then (f> is order
preserving.

Proof. Let u and e be the identities of S and T respectively. If x S u, then xn -> g
for some idempotent g in S; and since </> is continuous, <j>(x)n -»■ (p(g). It follows
that (f>(x) S e, and thus <f>([0, u]) c [0, e]. If z <y in S, there exists an x in [0, u] such
that z=yx. Then (f>(z)-<p(y)cp(x) and <f>(x)Se imply cf>(z)S<p(y). Hence (p is order
preserving.
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We also have a slight variation of Lemma 9 in [1]. Since the proof is also only a
slight variation of the one in [1], we omit it.

1.4 Lemma. Let S be either a standard thread or a positive thread and let u be its
identity.

(1) If p is a congruence relation with closed convex classes on S, then S/p, ordered
in the obvious way, is either a standard thread or a positive thread and the natural
homomorphism is continuous. Conversely, if p is the congruence relation determined in
S by a continuous homomorphism of S into a thread which is also either standard or
positive, then p has closed and convex classes.

(2) A partition of S into a set of mutually disjoint closed intervals is that of a con-
gruence with closed convex classes if and only if the lower endpoint of each non-
degenerate interval in the partition is an idempotent and any nondegenerate interval
meeting H(u) contains H(u). (H(u) is the maximal subgroup of S containing u.)

Now let Rhe a standard thread or a positive thread, let P be the order dual of
either a standard or a positive thread, and let </> be a continuous homomorphism
of R into P for which </>(0) = 0. Put JT(P, R, <f>)=P u R\{0}, identify the zero of R
with that of P, order Jf(P, R, (/>) so that each element of P is less than each nonzero
element of R, and extend the multiplications given in P and R to jV(P, R, <f>) by
x ° s = s ° x=<p(x)s for x in R and s in P. Then Jf(P, R, <f>) is a right linear extension
ofPbyR.

Again, the case in which R and the dual of P are both standard threads was
given by Clifford. Lemma 10 of [1] states that Jf(P, R, </>) is a globally idempotent
thread with zero in which L and G are isomorphic with P and R respectively, and the
proof extends immediately to the more general situation above.

In the construction of an ¿¥(P, R, </>), </>(R) is certainly a subthread of P. More-
over, by 1.4 the congruence determined in R by </> has closed convex classes, and
(f>(R) is itself the order dual of a standard or positive thread. That is, either P is
the dual of a positive thread and <p(R) = P, or there is an idempotent g in P with
(p(R) = [g, 0]. (We note that <f>(R) need not be an ideal of P, for if P is the dual of a
positive thread, </>(R) might well be the closed interval between the zero and the
identity.) Thus, P can be constructed from R by taking a congruence p with closed
convex classes on R, reversing the order in R/p, and then making a rather simple
extension. The special case in which </> is onto will occur frequently, and we shorten
the notation in that case to ¿V(R, p) where p is the congruence determined by <j>.

Next, let us recall two other constructions which, although they are not ex-
tensions, in a sense parallel the construction of -^(R, p). Given a standard or
positive thread R, let P be its order dual and let x' be the element of P correspond-
ing to x in R. Let S=P u R except that we identify 0' with 0, and give S the ob-
vious order. Then 3$(R) is the thread obtained by defining o on S by :

x ° y = x' o y' = xy,       x' ° y = x ° y' = (xy)'.
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Again, f(R) is the thread obtained by defining ° on S by :

x ° y = x' o y = xy,       x °y' = x' o y' = (xy)'.

It is easy to verify that S$(R) and f(R) are globally idempotent threads with zero.
The construction yielding ¿%(R) was given in §1 of [6], while J(R) is the January
thread associated with R defined in the introduction of [1].

1.5 Lemma. Let S be a globally idempotent thread in which G is a positive thread
and in which GL^L. Let u be the identity of G and let f be the unique element in the
boundary of H(u). Thus H(u) = {s \ f<s}.

(1) If l<0, then either H(u)l=fl, or right multiplication by I is one-one on H(u).
In the latter case, L is unbounded and Gl=L.

(2) IfL2%f, then S is isomorphic with M(G).
(3) IfLG$f then S is isomorphic with f(G).

Proof. Assume that sl=tl with f<s<t. If r = st~1, then r<u so that rn^f.
Thus tl=sl=r(tl) implies that tl=rn(tl)^f(tl)=fl; and H(u)l=(H(u)t)l
= H(u)fl=fl.

If Gl^L or if L is bounded, then there exists an m in I such that m = Gl. For
each t larger than/, m St'1!, and by monotony /w¿rr_1/=«/. By continuity then,
fm^ul^O, and thus ul=f(ul)=fl. From this it is obvious that right multiplication
by / is not one-one on H(u).

Now let f<lm with / and m in L. Then G = G(lm) = (Gl)m^(GL)L^L2 so that
u=pq with/? and q in L. AssumingpSq, q2úpqúp2; and since the square function
is continuous, there exists a z in [p, q] for which z2 = u. Since S is globally idem-
potent while L2 = G2 = G, either GL=L or LG=L. But GL=L3=LG, and it follows
that u is an identity on S. Thus z belongs to H(u), and by 2.3 and 2.2 of [6], S is
isomorphic with 91(G).

To prove (3), let f<ms with m = 0^s. Then G=Gms^Ls^G. Thus s e H(u)
and G = Gs~1=Lss~1=Lu; for otherwise, G=Ls=L(sf) = Gf—a contradiction.
Let / in L be such that u = lu, and define 6: G^L by 6(t) = tl. If 6(s)=6(t), then
s=s(lu) = d(s)u=6(t)u = t(lu) = t. Hence 0 is one-one, and by (1), 0 maps G onto L.
Again, 6(s)0(t) = (sl)(tl) = sl(ut)l=s(lu)tl=stl=6(st), and 6 is an order reversing
isomorphism of G onto L. Since 8(t)s=(tl)(us) = ts and i0(r)=.$(;/) = 0(sr), S is
isomorphic with /(G).

2. Adjunction of endpoints. The first theorem of this section gives sufficient
conditions under which a minimal element can be adjoined to a thread in which L
is unbounded. Of course, a dual result concerning maximal elements can be proved,
and, although we do not state it, we shall occasionally apply it. Theorem 2.2 deals
with the case in which a minimal element cannot be adjoined.

2.1 Theorem. Let S be a globally idempotent thread with a zero in which L is
unbounded while L2 is bounded from above. IfLs=L implies that s is a right identity
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on L, and ifsL=L implies that s is a left identity on L, then the multiplication on S can
be extended to the set T obtained by adjoining a minimal element to S in such a way that
T becomes a thread.

Before we give the proof, let us point out that the extended thread need not be
globally idempotent even though S is. For example, if S is the open interval of real
numbers between -\ and 1 under ordinary multiplication, then S is a thread
satisfying the hypotheses of the theorem. However, the extended thread is the
interval [—\, 1), and — \ is not the product of any two elements in this thread.

Proof. Observe that L cannot be the order dual of a positive thread, for in that
case there would exist an / in L such that Ll=L which is not a right identity on L.
Thus if L = S, then L2=L and zero is a maximal element ofL, so that Lis the order
dual of a standard thread without its identity. Since the extension is trivial in this
case, we assume that zero is a cut point of S.

Suppose that Lx is unbounded from above for some x. Since zero does not cut
Lx, Lx=G and G is unbounded; and since L2 is bounded from above, x is in G.
Thus LG = G and L2x=LG = G. Now if L2^G then L2 is bounded, and it follows
from L2x = G that G is bounded. Thus L2cL, and as we have seen, L is not the
order dual of a positive thread. Hence [6, 5.1 and 3.3], each element of L is In-
compact (i.e., the closure of the set of powers of each element in L is compact).
Choosing y larger than x, Lx=G implies [0, y]cl[0, x] for some / in L. But this
contradicts Theorem 1 in [7] which states that: in any topological semigroup, if
A is compact, if t is T-compact, and if A<^tA, then A = tA. Hence Lx is bounded
from above for each x in S, and similarly each xL is bounded from above.

Now let p be the minimal element of T and, for x and y in S, let

x o y = xy;

p ° x = sup Lx, if Lx c G,
= inf Lx, if Lx c L;

x ° p = sup xL, if xL <= G,
= infxL, if xL <= L;

p o p = sup L2, if L2 <= G,

= inf L2, if L2^L.

Clearly we are allowing p as the infimum of a set in S.
Notice that if x~<y then Ix-Kly for / in L. That is, IxeLy for each / so that

Lx^Ly. Similarly, xL^yL, and it follows easily that ° is monotone on T with
respect to -<. The next step is to show that ° is continuous; unfortunately, the proof
of this fact is long and involved. However, once this is done the associativity of °
follows easily. For ° extends the given multiplication on S which is associative,
and S is a dense subset of T.

Letting S0 = {y | ye S and p °yjip}, we claim that S0 is an open connected
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subset of 5 containing L and that S2 = S0. Since this is trivial if S0 = S, suppose
there exists an x such that p ° x=p. Thus Lx=L, and since L is not the dual of a
positive thread, x cannot be in L. Each such x is a right identity on L, and thus
{y | y e S and p ° y=p} is closed both topologically and algebraically. Moreover,
if p °y=p and if y<z, then/) ° z=p by the monotony of ° on T. Thus there is an
element g larger than zero such that S0 = {s | s<g}. Now je^ implies that I,s is
bounded so that Lst is bounded for any t in S. In particular, S2^S0. Since
{y I 8 = y) is als° closed algebraically, g is an idempotent. Hence S0 = S0g from
which it follows that S0 c S%.

Let x e S0, let / be an open interval in S containing 0 and p ° x, and let x-<w
with w also in S0. Writing w=uv with u in So, let z be the supremum with respect
to «< of {/ | x = «r and t<v}. Now (Lu)*z<= (Luz)* = (Lx)* = {y | 0<y<p°x}<=I,
and since u e S0, (Lu)* is compact. Thus by a familiar result of A. D. Wallace
[8, Lemma 2], there is an open set Z in 5 containing z such that LuZ^I. Let z' in
Z be such that z<.z'-<.v and put x' = uz'. By the definition of z, x-<x'<w, and
since /? o x' is the supremum of Luz' with respect to -<, p ° *' e /*.

If x e S and a^p ° x, then there exist an / in L and an x" in S such that x"<<x
and fl«</x"'. For by the definition of /? o * there is an / such that a<lx, and x" can
then be chosen by continuity.

Now for the actual proof of the continuity of °, let xe S, assume that x is not a
maximal element in S, and let V be an open connected set in T containing pox.
Ifp ° x =p or if p o x is a maximal element for S, let a~Kp ° x with a in V, and choose
/ and x" as above. If m and q are in T, if m<l, and if x"<.q, then a<.lx" = l° x"
<m o (7. Thus « is continuous at (p, x). Secondly, if p o x=0 then x e ,S0, and we
choose w and w' in S such that (w', w) contains both 0 and x. Let / be an open
interval containing 0 such that I*<=V n S. Now there are two cases according as
0 S x or x S 0, and since the two are quite similar, we consider only the first. Then
x<m>, p ° x e I, and x and w are both in S0, so that there exists an x' such that
x-<x'^w and p ° x' e I*. Since p ° 0 e I and O^w', there is likewise an / such that
0<Kw' and p ° lei*. Now (/, x') is an open set in T containing x. If m and q
are in T, if m < 0, and if q e (I, x'), then either q^x' so that m ° q<p ° x', or q<l
and m °q<.p ° /. In either case m °qeI*<=V, and again ° is continuous at (/), x).
Thirdly, if p ° x^O, if /j ° x^/>, and if p ° x is not maximal in 5, then x e S0 and
we can choose w in Sp such that x<w. Let a and è in V n S be such that 0<a
«</> o x-<¿>, and let c be any element in S such that the open interval / between c
and b contains zero. On the one hand there are x" in S and lin L such that a~<lx"
and x"-<x. On the other, there is an x' such that x-^x'-Kw and p ° x' e I*. Now if
w</and if x"^q-^x', then a<,lx" = 1 ° x"-<jn °q-Kp ° x'. Sincep ° x' is in /* and,
with respect to -<, is comparable with a, p ° xX6. Thus, F being connected, m°q
is again in K

Now let q be either p or, in case such exists, the maximal element of S, and let
V be an open connected set in T containing p °q. Letting M represent either L or
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G according as q is minimal or maximal, p o q is the supremum with respect to -<
of LM. If p ° q = 0 then LM = 0 and ° is clearly continuous at the pair (p,q). If
ae V and a<p ° q then there exist lin L and min M such that a^lm. Moreover,
employing the continuity of multiplication in S, we may assume that m^q. Since
o is monotone with respect to -<, it is continuous at (p, q).

We have shown (the hard way) that ° is continuous at each pair (p, z) with z
in T. By symmetry, the same is true at each (z, p), and finally, the continuity at
(x, y) with both x and y in 5 is obvious.

2.2 Theorem. Let S be a globally idempotent thread with zero in which L is not the
order dual of a positive thread. If there exists a z which is not a right identity on L yet
for which Lz = L, then L is unbounded, z e G, and G2 = G. Moreover, if

f = inf {x | x e G and Lx = L},

then
(1) / is the zero of a subthread of G isomorphic with the real interval [0, 1) under

ordinary multiplication,
(2) f< t implies Lt=L,
(3) there exists a p in L, not minimal, such that Lf= [p, 0],
(4) for any s, either sL=L or p = sL, and
(S)púL2.

Proof. If IL=L or if Ll=L, then L2=L and L is the order dual of a standard
thread or of a standard thread without its identity. But in the latter case, no such
/exists, while in the former, the only such /is the identity. In particular, if Lz=L and
if z is not a right identity on L, then z is in G.

We know that either L2 = L or G2 = G. If L2 = L, then, since LG = Las well, either
G2 = G or GL=G. But GL = G implies G = GL = (GL)L = G(LG)L = (GL)2 = G2.
Hence, G2 = G in any case.

If L has a minimal element q, then by monotony, q = qz. But then, each element
of L can be written as qt with t in [0, z] and (qt)z=q(tz)=q(zt) = (qz)t=qt. Thus L
is unbounded, and returning to the argument of the first paragraph, we see that
¡L=L is impossible for'/ in L.

If s <t and Ls=L, then by monotony, Lt=Las well. From this and the definition
of/, (2) follows. If x<f<y then yx^f; for if not, Lx = (Ly)x=L(yx)=L and
f^x. Thus by the continuity and commutativity of multiplication in G,fy=yf^f
whenever f<y. But {y | y e G and Ly=L} is obviously a subthread, so that/is an
idempotent and a zero for {y \f^y}. If (3) is false than Lf=L and/ being an
idempotent, is a right identity on L. This implies that Iz = (lf)z = l(fz) = lf= I for
each /; consequently, (3) is true.

Since {y \ f<y} is the same as {y \ y e G and Ly=L}, it is a subthread of G. If
there were an idempotent in each interval (/ /) with/< t, then each of these idem-
potents would be a right identity on L, and by continuity, so would/. But Lf^L,
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so there is a / larger than/such that (/, /) contains no idempotents. This establishes

Let s be in S and suppose that sL^L. If sL<=G, p = sL is trivial; and if sL^L
then sL<=[l,0] for some /. Since [/, 0] is compact, and since sL=s(Lt)<^[l, 0]t
for each t larger than/ sL<=[l,0]f<=[p,0]. Hence, either sL = L or p-¿sL. In
particular,páIL for each /in L because lL = Lis impossible, and this givesp^L2.

3. Normal threads. With any thread various duals are associated: first there
is the order dual which is obtained simply by reversing the order; secondly, a new
multiplication can be defined by x ° y=yx, while the order is left unchanged, to
produce a product dual; finally, both transformations can be performed, yielding a
combined order and product dual. Since a description of any one of these four
threads can immediately be transferred to the others, we may "normalize" the
threads to be studied by placing on them convenient restrictions which, in effect,
select one from each such set of four threads. Also, as was shown in the preceding
section, endpoints can frequently be adjoined when they are missing in a thread,
and certainly a description of the structure of the extended thread is enough to
describe the original thread. Thus, it is sufficient to study only those threads to
which further endpoints cannot be adjoined. This leads us to say that a thread S
is normal if and only if:

(1) S is globally idempotent;
(2) S has a zero and the zero cuts S;
(3) G is either a standard thread or a positive thread;
(4) GL^L, and GL = 0 implies LG^L;
(5) either L is compact, or there exists an element s such that sL = L, or Ls=L, but

which is not a left, or right, identity on L respectively.
The usefulness of this definition is seen in the following theorem.

3.1 Theorem. If S is a globally idempotent thread with a cutting zero, then S, or
one of its duals, is either a normal thread or the result of removing one or both endpoints
from a normal thread.

Proof. Let S be a globally idempotent thread having a zero which is a cut point.
We show first that, by passing to one of the duals of S if necessary, we can achieve
a thread which satisfies (4) and, of course, (1) and (2), and in which G2 = G.

If G2t^G, then, as indicated in the introduction, L2=L. Moreover, S is globally
idempotent and thus either LG=G or GL = G. Now the order dual or the com-
bined order and product dual of 5 has the desired properties according as LG or
GL is G.

If G2 = G and GL <£G, then S itself is the desired thread. If G2 = G and LG$G,
then evidently the product dual of S will suffice. Finally, the only case left is that
in which G2 = G and LG u C7L<=G, and with this assumption, the order dual of S
again has the desired properties.
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Now suppose that Tis a thread satisfying (1), (2) and (4) in which G2 = G. Then
G, being itself a globally idempotent thread and having a zero as a least element,
must be a positive thread, or a standard thread, or a standard thread without its
identity. In the third case, which is the only one in which Tdoes not already satisfy
(3), if we consider only G it is clear that the missing identity can be replaced. But
we must consider all of T, and thus we apply the dual of 2.1. To see that this is
legitimate, suppose there is an s which is not a right identity for G yet for which
Gs=G. This, using the dual of 2.2, implies that G2^G—a contradiction. Similarly
sG=G implies that j is a left identity, and thus a maximal element can be adjoined
to T. Although it is not included in the conclusion of 2.1, the extended thread is
still globally idempotent because the new element is obviously an identity on G.
Evidently, properties (2) and (4) continue to hold.

Finally, assume that T is a thread satisfying all but the last requirement in the
definition of normality. Thus L is unbounded, sL=L implies that s is a left identity
on L, and Ls=L implies that i is a right identity on L. We must show that L2 is
bounded from above. But if this is not so, then G is unbounded, and is thus a
positive thread, and L2 = G. Then by 1.5, S is isomorphic with @(G) and there
certainly does exist an s in G with Ls=L which is not a right identity on L. Con-
sequently, a minimal element may be adjoined to T by 2.1. Since the extension
clearly satisfies properties (2) through (5), we have only to verify that it is globally
idempotent. If, in T, L2=L, then L is the order dual of a standard thread without
its identity, and the minimal element of the extension has to be an idempotent
because of the continuity of multiplication in the extension. If L2^L in T, then
either LG=L or GL=L. Assuming the former and letting u be the identity of G, u
is a right identity on T and, by continuity, on the extension as well. Similarly, if
GL — L in T, then m is a left identity on the extension of T. Hence, given a globally
idempotent thread S with a cutting zero, we have constructed a normal thread by
adjoining to S, or to one of its duals, at most two endpoints.

We observe that if R is a positive thread or a nonzero standard thread, then
both I%(R) and ß(R) are normal threads. Again, if the dual of P is either a positive
thread or a nonzero standard thread, then ^V(P, R, 8) is a normal thread for any
6. It follows that ^V(R, p). is a normal thread whenever p is a congruence with
closed convex classes on R such that Rjp =¿ 0.

3.2 Lemma. Let T be an ideal in a thread S and let S be the contact extension ofT
by Q. If S is normal and if T cuts S, then Q is normal. Conversely, if Q satisfies re-
quirements (3) and (5) in the definition of normality, if zero cuts T, and if the maximal
element ofTis a left identity on T, then S is normal.

Proof. Let (f> be the natural homomorphism of 5 onto Q, let e be the maximal
element of T, and, in order to avoid confusing the L's and G's, denote those in Q
by L' and G'.

Assuming that S is normal and that T cuts S, Q clearly satisfies conditions (1)
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and (2). If u is the identity of G, then (f>(u) is an identity for G', and G' is standard
or positive according as </>(u) is maximal or not [6, Theorem 3.3].

If L'G'<£L' then there exist an / in L and a g in G such that e<lg. Since
(ul)g = u(lg) = lg, ul is not in T; thus 0^<p(u)<p(l) and </>(u)<p(l)eG'L'. Also,
G'U =<p(G)<p(L)=<p(GL)c:<p(D=L'. This proves condition (4).

If L is compact then L', the image of L under a continuous function, is compact.
If sL=L then (p(s)L'=<p(sL)=L'. Moreover, if (/>(s) is a left identity on L', then
sl=l whenever /< T. Fixing an / less than T, each element inT n L can be written
as rl for some r with r^s. Now r commutes with s; for if they are not both in G,
then they are both in L and sL=L implies L2=L. Thus, s(rl) = rsl=rl so that j is
a left identity on all of L. Hence, if sL=L but i is not a left identity on L, then
(j>(s)L'=L' and <£(i) is not a left identity on L'. Since the alternate case where Ls=L
is, of course, also true, condition (5) is proved.

Turning to the second half of the lemma, zero cuts S because it cuts T. More-
over, O^GL^L follows immediately from the fact that e is a left identity on T.
If (7=0, then G = [0, e] which is a standard thread; otherwise, the unique element
of G which maps onto the identity of G' is itself an identity on G. Thus G is either
a standard thread or a positive thread. If L' is compact, the least element of S
which maps onto the minimal element of Q is a minimal element for S. Finally
suppose that L'(f>(s)=L' and that (f>(s) is not a right identity on L'. Then L'^0,
and if 1<T then <p(l)=<p(m)<p(s) for some m in L. Since (p(ms)=(/>(l)i=0, ms=l.
Thus 0 is in Ls and {/1 /< T}<=Ls, so that Ls=L. If s were a right identity on L,
then <p(s) would clearly be a right identity on L'.

4. Base threads. Let 5 be a compact thread with a zero in which G is a unit
thread or a nil thread (i.e., in which G is isomorphic either with the real interval
[0, 1] under ordinary multiplication or with the Rees quotient of [0, 1] by the ideal
[0, %]). Then S is an Si-base thread if the maximal element is an identity on S and
if 0^L2<=G. If the maximal element is an identity and 0#L2<=L, then S is an
Jf-base thread. If the maximal element is a left identity on 5* and ifO^LG^G, then
S is a /-base thread. To complete the definitions, a trivial thread consisting of zero
alone is also an ^-base, an ^K-base, and a ^-base thread.

The 0t-hase and ^T-base threads were introduced by Cohen and Wade [4];
likewise, the first two parts of the following theorem are simply a restatement of
their Theorem 5.6. Looking back at the definitions, it is obvious that the nonzero
base threads of each of the three types are normal threads. The zero threads are
included for convenience in later results.

Let U he the thread consisting of the real interval [0, 1 ] under the usual multi-
plication, and consider the threads 0£(U), f(V) and Jf(U, t) where t is the
congruence in which each element is congruent only to itself. We may consider
each of these threads as being defined on the interval [ — 1, 1], and in each, [—a, 1]
represents a subthread whenever a is in (0, 1]. Putting K=[-b, c] where c¿ 1 and
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bSa, it is easy to verify that K is an ideal of the subthread [ — a, 1] in 1%(U) if
and only if ab S c and ac S b ; in Jf( U, r) if and only if ac S b ; and in f( U) if and
only if acSbSc. In this statement the juxtaposition of two elements means, of
course, their ordinary real product. Moreover, if K is an ideal, the Rees quotient
by K of [-a, I], considered as a subthread of 8$(U), J^(U, t) or /(U), will be a
nonzero ^-base, ./f-base or ^-base thread provided —a° —ais not in K in the
first two cases and provided - a ° 1 is not in K in the last. The provisions insure
that O^L2 and O^LG respectively.

4.1 Theorem. A thread is a nonzero ¿%-base (Jf-base, or /-base) thread if and
only if it is isomorphic with the Rees quotient of some subthread [ — a, 1] of 2&{U),
(¿V(U, t), or <f(U)) by a closed convex ideal K which does not contain —a o —a
(—a ° —a, or —a ° 1).

Proof. A proof of the first two parts can be found in §5 of [4], moreover, the
"if" parts were proved in the preceding paragraph. Thus assume that 5" is a non-
zero ,/-base thread and let S= [d, e].

Let Uagain be the ordinary real interval [0, 1], and let <f>: U-> [0, e] be either an
isomorphism or a homomorphism with kernel [0, %] according as [0, e] is a unit
thread or a nil thread. Since 0<de, there is an a larger than zero in U such that
</>(a) = de. Let T be the subthread [-a, 1] in f(U), and denote the product of
two elements x and y in T by x ° y. Now define >ft: T~> S by

«A(x) = 0(x), ifO^x,
= <p(-x¡á)d,       if -a S x SO.

This function is clearly a continuous, nondecreasing mapping of T onto S. More-
over, if 0 S x, y S 1 and if 0 S s, tSa, then

<!>(x)<l>(y) = <p(x)<j>(y) = </>(xy) = «/-(xj) = </<x ° y);
ift(x)i/j(—s) = (p(x)(p(s¡a)d = <p(xs/a)d = if>( — (xs)) = t/t(x ° — s);

M-s)m = <p(sla)d<f>(x) - (<p(sla)e)d<p(x)
= (f>(sla)(p(a)cp(x) = (f>(sx) = >p(sx) = i/i( — s°x);

<K-s)K-t) = </>(sla)d<p(tla)d = <f>(sla)<p(a)<f>(tla)d
= <p(st¡a)d = >K-(st)) = >/>(-s° -t).

Hence 0 is a homomorphism, and, putting K=i/j~1(0), K is clearly a closed convex
ideal. In addition, </»(-a ° l) = i/i(a)=(f>(a) = de>0 implies that -a ° 1 is not in K.
Thus T\K is a nonzero ^/-base thread.

To see that i/> induces an isomorphism of T\K onto S, it will suffice to prove that
4¡ is one-one except on K. If i/>(—s) = t/>(x), then i/j( — s) = i/í(x) = </j(0)=0 because i/> is
nondecreasing. If i/j(x) = ip(y) with x+y, then i/j(x) = >p(y) = 0 by the definition of </>.
Finally, suppose that >p(-s) = t/j(-t) with s<t. Then s/r< 1 so that 4>(slt)n -> 0 in
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G. Thus, >l>(-t) = >l>(-s)=<p(sla)d=(p(slt)(p(tla)d=<l>(slt)il>(-t) implies that </<-/)
=#s/tm- o-»e&-o=o.

5. Left trivial threads. Imitating the definition of left trivial clans by Cohen
and Wade, we say that a thread is left trivial if and only if it is normal, L2 = 0, and
LG u GL^L. Our purpose in this section is to characterize all left trivial threads.

Let R be a nonzero standard thread or a positive thread, let P be a nonzero
thread whose order dual is either standard or positive, and let <f> and i/j he continuous
homomorphisms of R into P, each taking zero onto zero, such that the identity of
P is in the image of at least one of the two. Indicate the product of two elements s
and t in P by ii and of two elements in R by their juxtaposition.

Let S=P u R\{0}, identify the two zeros, extend the existing orders in P and R
by declaring each element of P to be less than each element in R\{0}, and define a
multiplication on S by

s ° t = 0, s ° x = s- cp(x),
x o s = 4>(x)-s,       x ° y = xy,

where s and t are in P and x and y in R. Then S is a left trivial thread (we omit the
proof) which we denote by T(P, R, </>, </r).

In case P is the order dual of a positive thread and neither (p nor i/> is onto,
another left trivial thread can be obtained from 5. Let e be the identity of P, let
q be such that H(e) = {s \ s < q), and let a be any element in H(e). Now put zpw in
S if and only if z = w or a^z, w^q. If a^s, tfiq and if r^O then s° r = t ° r = 0.
If 0<x, then either e^<f>(x)^q, in which case s^s-<p(x)^q and trit-<p(x)^q so
that a^í o x, r o x^^, or q^cf>(x) and j ° x=í-<£(x)=</>(x) = í o x. Thus wpy implies
that u o zpy o z, and similarly z o wpz ° y. Thus p is a congruence relation on S
whose classes are clearly closed and convex. The thread S/p is easily seen to be left
trivial, and we shall denote it by Ta(P, R, (/>, i/>).

5.1 Theorem. If S is a left trivial thread, then there exists a thread P, which is the
order dual of a nonzero standard thread or of a positive thread, and there exist homo-
morphisms </> and </r from G into P such that S is isomorphic with 3~(P, G, <f>, i¡¡) or
perhaps with some -Ta(P, G, <p, i/>).

Proof. Define ~ on G by: x~y if and only if lx = ly for each / in L. This evi-
dently defines a congruence on G, and it follows from the monotony and con-
tinuity of multiplication in S that the congruence classes are closed and convex.
Thus, by 1.4, G/~ is either a standard or a positive thread. Defining x on G by:
xxy if and only if x/=j/for each /in L, G/x is also either a standard thread or a
positive thread. We will consider three cases according as: first, L is compact;
second, either G/ ~ or G/ x isa positive thread ; and third, L is not compact and
G/~ and G/x are both standard threads. In the first case, it will develop that P
is the dual of standard thread; in the other two, of a positive thread. In the first
two cases, one of (/> and >/i will be onto ; in the third, neither.
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If L is compact, let m be the least element. Since L2 = 0 while S is normal," either
LG=L or GL=L; and without much loss in generality, we will assume thatLG=L.
Thus the identity, u, of G is a right identity on L, mu = m, and mG=L.

In the second case, we will assume that G/~ is a positive thread. In particular,
G itself must be a positive thread and we may choose/so that H(u) = {x |/<x}.
Now/~w is impossible because Gj~ is a positive thread, and there exists an m in
L such that mf^mu. By part (1) of 1.5, L is unbounded and mG = L. Since, in each
of the first two cases, there exists an m in L such that mG=L, we will combine the
two from this point on.

Let P be the order dual of Gj ~ and let <f> be the natural homomorphism from G
onto P. Although \\> is not yet defined, we may consider the underlying space T of
F(P, G, 4>, </.), and we define;': T->Sby:

j(t) = t, if t e G,
= nvp'^t),       if te P.

Observe that; is well defined ; for if x and y are in <f> ~ 1(t ), then x ~ y so that mx=my.
Since mG=L,j maps Tonto S, and; is clearly nondecreasing.

We claim that; is also one-one. To see this, it is sufficient to consider j(s)=j(t)
for s and t in P. Choosing x in </>_1(s) and y in </>_1(r)> we have mx=my; and
since mG=L, we can write each element in L as mr for some r in G. Now
(mr)x=mxr=myr=(mr)y, and thus x~y and s=t. Since ;'is continuous, one-one
and onto, it is a homeomorphism.

Defining </> : G -> P by <¡¿(x) =j~ x(xm), i/i is continuous and </i(0) = 0. If x and y
are in G, let tp(x)=<f>(z) and >p(y)=(p(w) (this is possible because <f> maps G onto P).
Then xm=j*ji(x)=j<p(z) = mz, and ym = mw so that

j<p(xy) = xym = xmw = mzw = j<j>(zw) = j(cp(z)<p(w))

= M(my)).
Since ;' is one-one, >p(xy) = i>(x)>p(y) and <p is a homomorphism.

Finally, to verify the homomorphic property of;', let x and y be in G, let j and
? be in P, and let t=<f>(z). Then:

./(* ° JO = j(xy) = xy = j(x)j(y);
j(s o t) = j(0) = 0 = j(s)j(t);

j(t o x) = j(t-cp(x)) = j(<p(z)-<p(x)) = jcp(zx)

= m(zx) = (mz)x = j(t)j(x);

j(x°t)=j(il>(x)4(z))=j(tp(x)°z)
= j<P(x)j(z)       (using the previous line)

= (xm)z = x(mz) = j(x)j(t).

Thus S is isomorphic with F(P, G, <f>, </»).
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Now turn to the third case in which L is unbounded while both G/~ and G/x
are standard threads. Notice that this does not preclude the possibility that G is
a positive thread; it implies only that, in that case, all the elements of H(u) lie in
the same congruence class with respect to both ~ and x. In particular, whether
G is positive or not, each element of G is congruent under both relations to some
element of G which is T-compact. Thus /^Oáx implies that /¿/x and l^xl.

Since S is a normal thread and L is unbounded, there is an i such that sL=L
or Ls=L which is not a left or right identity respectively on L. The two cases being
product duals of each other, we will assume that s is not a right identity on L
while Ls=L. Now by 2.2, there is a unit thread [/ g] in G and there is an element p
in L such that Lf=[p, 0] while Lt=L whenever f<t. Moreover, for any y in S,
either p^yL or yL=L. Observe that Lg = L and g2=g imply that g is a right
identity on L.

We prove next that :

, . if I, me L and if f^x, y^g; then lx = ly<p implies x=y,
and lx = mx<p implies l=m.

Suppose that lx<p. Then l-¿lx<p implies lfúpf=p so that lf=p. Now if/áx
<yúg then x=yt for some t in [/ g). Thus lx = ly implies lx = l(yt) = (lx)t = (lx)tn

-^■(lx)f=p, and lx = ly<p is impossible. Likewise, if l<m and lx = mx<p then
lg = l<m<p = lf so that m = lt with í in (fig). Thus lx = mx = (lt)x = (lx)t = (lx)tn
-*■ (lx)f=p—a contradiction.

If/=x<jág, then x~y is impossible. For/<y implies that my<p for some w
inL, and by (*), mx=my is impossible. On the other hand, g is a zero for {x \ g^x}.
Otherwise, G is a positive thread, g = u and (f, g) is contained in a single con-
gruence class. Thus if gáx and /¿0, then lg = l(gx) = (lg)x=lx; that is, g~x
whenever g ax. Consequently, the class containing g is the maximal element of
G/~, and the image of [/ g] under the natural homomorphism is again isomorphic
with the real interval [0, 1] under ordinary multiplication. From this it is clear
that, by defining the multiplication appropriately, we can extend G/~ by adjoining
the real interval (1, oo). The result is a positive thread in which G/~ is the closed
interval between the zero and the identity. Take P to be the order dual of this
positive thread, and let <p be the natural homomorphism of G into P. If e is the
identity of P, and if q is so chosen that H(e) = {s | s < q); then </>(G) = [e, 0], and </>
restricted to [/, g] is an order reversing isomorphism onto [e, q].

We claim next that if m^p, if x and y are in G and if xm = my^p; then xl=ly
for each / in L. If m^l then l=mt for t in G, so that xl=xmt=myt=mty=ly. If
l<m, then m = lt for t in [/ g), and (xl)t = xm = my = lty = (ly)t. If xm<p, then by
(*), xl=ly. On the other hand, ifp<xm then/?<x/as well; for if xlSp then, by
monotony, xm = xlt^pt^pf=p. Similarly y<f, because f^y and m^p imply
xm = my=pf=p. Hence xl=(xl)f= xp=xmf= xm and ly = l(fy) = (lf)y=my. The
claim is established.
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With this we can now define the homomorphism i/j from G into P. Let xeG
and suppose there is an m such that mSp and xmj=p. Since mg = mSxm, there is
an x' in G such that xm = mx'. And this, as we have seen, implies xl=lx' for each /
inL. If there is no such m, then xl=p = ^whenever ISp. Again, p<l implies l=pt
which in turn gives xl=(xp)t =pt = I=If Thus for each x in G there is an x' such
that x/=/x' for all /. Putting </j(x)=<f>(x'), </> is a function from G into P taking zero
onto zero.

If bo/j(x) = (f>(x')<a, choose w in G such that <£(x') < 4>(w) < a and such that
<p(w)^<f>(f). Since lw = If for ISp implies lw=If for all /, there is an m such that
w5¡/7 and mw^p. Clearly w<x' and this xm = mx' Smw. From this it follows that
there exists a y in [0, x] such that ym = mw^p, which means that i/i(y) = <p(w).
Since 0(w)#^(x'), j><x; and since «/< is obviously nondecreasing, y<v<x implies
that >/i(x)S*P(v)S>p(y) = <p(w)<a. If it happens that b<<¡>(G), this proves that </> is
continuous at x. Otherwise there is a z in G such that i/>(z)=<p(z')Sb. As before,
choose j in G so that <p(z')Sb<(p(s)<</>(x') and so that <f>(s)^<f>(f). Again, there is a
t in [0, z] such that 4>(t)=<p(s). It follows that x<t and that b <*/>(t)S>p(v)S<p(x)
whenever x < v < t. Hence <¡> is continuous.

The homomorphic property of ¡/> is easy to verify. For if ifi(x)=<j>(x') and
>P(y)=<p(y'), then xyl—xly' = lx'y' for each /in L. Thus i/>(xy)=<p(x'y')=<p(x')<p(y')
= <f¡(x)4>(y). Hence </> and i/* are continuous homomorphisms of G into P taking
zero onto zero, and T= F(P, G, </>, >/j) can be defined. We notice also that
t/i(G) ccp(G) = [e, 0], that is, neither <j> nor >/> is onto.

Now fix an element m in S'such that m<p. \ff<tSgthtnm eL=Lt; thus there
is an element /in L which, by (*), is unique such that It = m. Let /= a(t). lff< s<tSg
and if a(t)Sa(s), then by monotony, m = a(t)tS^(s)tSa(s)s=m, contrary to (*).
Since mg = m implies a(g) = m, we see that a is a strictly increasing function from
(/, g] into {/1 ISm}. If ISm, then m e [l,p)^l(f, g] implies l=a(t) for some t in
(/, g]. Hence, a is a homeomorphism of (/, g] onto {/1 ¡Sm} such that a(t)t=m.

Define;': T^ S by

j(t) = t, ifteG,

= m(f>-\t), ifeStSO,
= «0-1(r1),       ifr^e,

where t'1 is, of course, the inverse of t in H(e). It is evident that ;' maps {t \ t S e}
homeomorphically onto {/1 iSm}, and that ;' is a nondecreasing mapping of
[e, 0] onto [m, 0]. It follows that; is a continuous nondecreasing function from T
onto S which is one-one except possibly in [e, 0].

Suppose that 0^x<j^/and mx=my. If ISO then lf=mt for some t in [0,/].
Hence, lx=l(fx) = mtx=mxt=myt = mty = lfy = ly, and <f>(x)=(f>(y). IffSx<ySg
and mx = my, then by (*) mx = my=p. Thus, if s and t are in P, if s<t and if
j(s) =j(t), then e<s<tSq andj(s) =j(t)=j(q) =p. In other words, either; is one-one
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and is thus a homeomorphism, or there is an a in H(e) such that,/ is one-one except
on [a, q] and such thaty'([a, q])=j(q)=P-

To verify that j is a homomorphism, we will consider only the nontrivial case
where one element x is in G and the other t is in P. The product of two elements in
P is indicated by s ■ t and of two elements in T by z ° w.

If e ̂  t ■ cf>(x), let (f>(z) = t ■ (f>(x) so that j(t ° x) = mz. Now if e ̂  t and </>(y) = t, then
<p(yx) = t-(p(x) = (p(z) implies that mz = myx=j(t)j(x). And if r = e and <p(y) = t~1,
then (p(yz) = t ~1 • (t ■ </>(x)) = (/>(x) implies mz = a(y)yz = a(y)x =j(t)j(x).

If t-(p(x)-=e, let <j>(z) = (tcp(x)y1 so that j(t ° x)=j(t-</>(x)) = a(z). Now if e^t
and (p(y) = t, then 0(xjz) = e=0(g) implies j(t)j(x)z=myxz=mg=m. And if r = e
and 4>(y) = t~1, then </>(xz)=(p(y) implies j(t)j(x)z = a(y)xz = a(y)y = m. Either way,

j(toX) = a(z)=j(t)j(x).

Thus if x is in G and if / is in P then j(t o x)=j(t)j(x). Letting x' be such that
<p(x)=(f>(x') we have also:

foot) =j(4>(x)t) =j(t-</>(x)) = j(t<p(x'))
= fit ° x') = j(t)j(x') = j(t)x' = xj(t) = j(x)j(t).

Hence, j is a homomorphism of T onto 5. If/ is one-one, then S is isomorphic with
&~(P, G, <f>, </>). If y is not one-one and if a is the element in H(e) which was located
above, then / induces an isomorphism between ^a(P, G, <p, </>) and S.

6. Classification. Finally, we are ready to classify all the normal threads; as
was shown in 3.1, this will essentially describe all globally idempotent threads with
a cutting zero. First, seven classes of threads will be defined, and then it will be
shown that every normal thread falls in one of the seven.

Let R be a standard thread and let 3ft(R) = [d, e]. Since e is an identity on 0l(R)
and d2 = e, the contact extension of 0t(R) by any ^-base thread exists by 1.1. Let
E be any such extension in which R and the 3%-hase thread are not both zero, so
that 0 # L2 <= G in E. Since the maximal element of £ is an identity for E, the contact
extension of E by any left trivial or any standard or positive thread exists, again
by 1.1. Let 1êx consist of all contact extensions of such E by left trivial threads. Let <£2
consist of all contact extensions of such E by standard and positive threads along with
all threads isomorphic with ¡%(P) for some positive thread P. It follows easily from
3.2 that all the threads in ^ or in fé"2 are normal, and it is clear that, in each,
LG<=L and 0^L2<=G. If 5 is in lê-y, then there exists an /, not minimal, such that
m<l implies m2 = l2, while if S is in ^2, there is no such /.

Let ¿V(R, p) = [d, e] where R is a standard thread and pisa congruence relation
on R with closed convex classes. Since e is an identity and since d2 = d, the contact
extension of [d, e] by any ^T-base thread exists by 1.1. Let F be any such extension
for which R/p and the ^T-base thread are not both zero, so that 0^L2(=L in F.
Since the maximal element of F is an identity on F, the contact extension of F by
any left trivial or standard or positive thread exists. Let c€3 consist of all contact
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extensions of such F by left trivial threads. Let ^4 consist of all contact extensions of
such F by standard and positive threads along with all threads isomorphic with linear
extensions ¿V(Q, Z, 9) where Z is a positive thread or a nonzero standard thread,
where the order dual of Q is a positive or a nonzero standard thread, and where 9 is a
continuous homomorphism of Z into Q such that 9(0) = 0. Again by 3.2 and the
discussion preceding 3.2, each thread in <€3 u *íf4 is normal. Moreover it is
clear that each one satisfies LG^L and 0/L2cL. If 5 is in ^3, there is an /, not
minimal, such that m2 = I2 whenever m < I, while if S is in #4, there does not exist
such an /.

If R is a standard thread then, by 1.1, the contact extension of ß(R) by any
^-base thread exists. Let H be any such extension in which R and the ./-base
thread are not both zero, so that 0^LG<=G in H. Since the maximal element of H
is a left identity for H, the contact extension of H by any positive or standard
thread exists. Moreover, if M is a left trivial thread in which LG = 0 (i.e., if
M = 3T(P,T, <p,tl¡) or M=^a(P,T,<j>,i/>) where </> is identically zero), then the
extension of H by M also exists. Let Vs consist of the contact extensions of such H by
all left trivial threads in which LG = 0. Let ^6 consist of all extensions of such H by
positive and standard threads along with all threads isomorphic with ef(P)for some
positive thread P, and all contact extensions of ß(R) by trivial linear extensions
A^(Q, Z, 0) where R is a nonzero standard thread, and where Z and the dual of Q are
standard or positive threads. All the threads in these two classes are again normal
threads, and each satisfies 0#LG^G. If S is in ^5, and if u is the identity of G
in S; then there exists an /, not minimal, such that m< I implies m2 = I2 and mu = lu.
If S is in 1£6 then such an / does not exist.

Let <£1 be the class of left trivial threads. By definition, each left trivial thread is
normal and each satisfies LG^L and L2=0.

The remarks made immediately after each definition prove that these seven
classes are mutually disjoint. Moreover, the following theorems will demonstrate
that these remarks actually characterize the various classes. Thus, since any normal
thread obviously satisfies one of the sets of remarks, the promised description of
all normal threads lies in the construction of these classes.

6.1 Lemma. Let S be a compact normal thread, and let S= [p, e].
(1) If e is a right identity on S, ifOSr<e implies thatpr^p, andifp<lS0 implies

that p2^ I2; then S is one of the threads E occurring in the definitions of,(ëx and^^ or
one of the threads F occurring in those of(€3 and^^, according as 0 <p2 or p2 < 0.

(2) Ife is a left identity on S, and ife is the only idempotent in [pe, e] ; then S is one
of the threads H occurring in the definitions of^5 and^^.

Proof. We claim first that if S satisfies the hypotheses of (1), then e is in fact an
identity on S. For p2 = (pe)p =p(ep), and since S is normal, epSO. By 5.1 in [6]
then, epSp2 so that p2eeS. Hence p2 = ep2 = e(pep) = (ep)2, and by hypothesis,
p = ep. Consequently, S is a pointed clan in the terminology of Cohen and Wade
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and, as such, is commutative. Part (1) now follows from a careful reading of 6.2
and 6.3 in [4](3).

Now let 5 satisfy the hypotheses of part (2). Since e is the only idempotent in
[pe, e], 0 <pe. Moreover, if g is the largest idempotent in [0, pe], then either
g=pe = e, or g<pe<e and [g, e] is a unit or nil thread.

Defining 8: [0, g] -*■ [gp, 0] by 6(x) = xp, 6 is clearly continuous, nonincreasing
and onto. If 0 ̂  x, y 5|g, then 6(x)8(y) = (xp)(yp) = xp(ey)p = x(pe)yp = xyp = 8(xy).
And if 8(x)=8(y), then x = x(pe) = (xp)e = (yp)e=y(pe)=y. Thus 8 is an order
reversing isomorphism of [0, g] onto [gp, 0]. Again, 8(x)y = (xp)(ey) = x(pe)y = xy,
and x8(y)=x(yp) = (xy)p = 8(xy). It follows from the definition before 1.5 that
[gp, g] is isomorphic with f([0, g]).

Since [0, e] is a standard thread and 0<pe, Sg = [0, g] and gS=[gp, g]. Thus
[gp, g] is an ideal of S, and by 1.2, S is the contact extension of [gp, g] by S/[gp, g].
lfg=pe = ethen Sj[gp, g] is the zero ^-base thread and [0, g] is a nonzero standard
thread. If g<pe<e, then S/[gp, g] is a compact thread in which G is a unit or nil
thread, in which the maximal element is a left identity, and in which 0#LG*=G;
that is, S/[gp, g] is a nonzero /'-base thread.

6.2 Theorem. Let S be a normal thread in which LG^L and L2=/=0. Assume that
there exists a q in L, not minimal, such that m<q implies m2 =q2. Then ifL2<= G, S is
in #!, and ifL2(^L, S is in ̂ 3.

Proof. From the hypothesis on q, it is clear that L2^L; therefore, either LG=L
or GL=L. Since the two cases are similar, we will assume LG=L, which implies
that u, the identity of G, is a right identity on S.

Put p = sup{/| /^0 and l2=q2} and e = inf{x | 0¿x and p=px}. If l^m^p,
then by monotony, m2-Kml, lm-Kl2, so that lm = ml=p2. Thus L2 = [p, 0]2, and in
particular, /?2-#0. It is clear that e is an idempotent larger than zero and that p=pe.
If e<p2 then, since p2=p2e, G is a positive thread with u=e; and by 1.5, S is
isomorphic with 3i(G), contrary to the hypothesis concerning q. Similarly, p2 <p
implies, by 5.1 in [6], that L is the dual of a positive thread, and this again contra-
dicts the hypothesis on q. We know that p=pe; and if ep^p, then peeS so that
p = ep. Thus p2, ep, pe and e2 are in [p, e], and [p, e] is, by monotony, a subthread
of S. This subthread clearly satisfies 6.1 and is thus one of the threads E or F
according as L2<^G or L2<=L in S; in particular, [p, e] is commutative.

Now suppose that l<p and le = l. Then p = lt for some t less than e, so that
p2=p(lt) = (pl)t=p2t. It follows that p2 =p2tn -> p2h where h is the largest idem-
potent in [0, t]. Thus p2 = (ph)2 which implies p=ph which in turn implies h = e.
But h^t<e. Hence e is not u, and Se = [p, e]. Similarly, el=l<p impliesp = // for
some t<e, and thus p2 = tp2 =p2t—a contradiction. Consequently, [p, e] = eS=Se,
and by 1.2, S is the contact extension of [p, e] by S/[p, e].

(3) See the referee's comment at the end of the paper.
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Finally, S/[p, e] is a normal thread by 3.2, and it clearly satisfies LG^L and
L2 = 0. That is, S/[p, e] is a left trivial thread and S is in <£x or <€3 according as
L2cG or L2cL.

6.3 Theorem. Let S be a normal thread in which LG^L andL2^0. Assume that,
for each I which is not minimal, there exists an m such that m<l andm2^l2. Then if
L2<=G,S is in <€2, and ifL2^L, S is in Vé.

Proof. Suppose first that L has a minimal element p, and that L2^L. Then
p<lS0 implies p2^l2; for if p2 = l2, then by monotony, m2 = l2 for each m in
[p, I]. Since L2j=L, either LG=L or GL—L; and as usual, we will treat only one
case—say LG=L. This means that pu=p where u is the identity of G, and putting
e = inf {x [ O^x and px=p}, e is evidently a nonzero idempotent and a right
identity on L. Moreover, e is a zero for Z={x | eSx} and Z is either a standard or
a positive thread. This last claim is obvious if G is standard, while if G is a positive
thread with H(u) = {x |/<x}, it follows from part (1) of 1.5 that pf=pu =p. Since
this means that e Sf, Z is a positive thread with e as zero. From these facts it follows
that eS<=[p, e] = Se, that is, [p, e] is an ideal. Since [p, e] clearly satisfies the
hypotheses of part (1) of 6.1, it is an E or an .F according as 0<p2 or p2<0, and in
particular, e is an identity on [p, 0], By 1.2, S is the contact extension of [p, e] by
S/[p, e] which is isomorphic with Z. Thus S is in ^2 or ^4 according as L2<=G
or L2<=L.

Next suppose that L is the order dual either of a standard thread or of a positive
thread. In either case L has an identity e, and we define 9: G-^-L by 0(x) = ex.
Then I SO Sx implies lx = (le)x = l9(x) and x/=e(x/) = 0(x)/. Since 9 is clearly a
continuous homomorphism of G into L taking zero onto zero, S is isomorphic
with Jf(L, G, 9) and so is in ^4.

The only case remaining is that in which L is not compact and L is not the
dual of a positive thread. We claim that if h is an idempotent in G, then hL=L if
and only if Lh=L. For suppose that hL=L while Lh = [m, 0] where mSO.lf l<m
then l2 = l(hl) = (lh)l=ml. Now if ml were less than m then L would be the dual
of a positive thread [6, Lemma 5.1], and thus either mleLh, in which case
l2 = ml=(ml)h = m(lh) = m2, or ml e G so that l2 = h(ml) = (ml)h = m2. Since this
contradicts the hypothesis, hL=L implies Lh=L, and similarly Lh=L implies
hL=L.

Since S is normal and L is not compact, there exists an s such that sL=L and s
is not a left identity or such that Ls = L and s is not a right identity on L, and we
will assume the latter. By 2.2, there is a unit thread [/, g] in G and there is an
element p in L such that Lf= [p, 0] while Lt=L whenever/< t. In addition, pSL2
and, for any x, eitherpSxL or xL=L. Since f<g, Lg—L; and thus gL=L. Again,
Lf+L implies pSfL. Choosing l<p, gl=l<pSfl implies tl=p with t in [f, g).
Consequently, p=pf=tlf=tp = t2p = tnp ̂ -fp. If, by way of contradiction, L2Sf,
then L2<=[p,f]cSf. But then ISp implies l2 = l2f=l(lf) = lp = l(fp) = (lf)p=p2.
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Hence, L2$/ so that L2%t for some t larger than/ This means that L2^G,
L2t=L2 yet L2d: [0, t]. No such / could exist if G were a standard thread, so G is
positive, t e H(u), and by 1.5, S is isomorphic with iM(G). This puts 5 in ^2.

6.4 Theorem. Let S be a normal thread in which 0=/=LGc G, and let u be the iden-
tity of G. If there exists a q in L, not minimal, such that m<q implies m2=q2 and
mu=qu, then S is in ^5.

Proof. Assuming that such a q exists, it is clear that L2=£L; and since LG^G
while S is globally idempotent, GL=L and m is a left identity on S. Letting
p = sup {/1 /^0 and lu=qu}, it is evident that p is not minimal, that lu=pu when-
ever iSp, and that 0i¿lu<pu wheneverp</¿0. Moreover,p«#0 and/>#0 follow
fromLG#0.

If G is a positive thread and ifpw e H(u) then, by 1.5, S is isomorphic with f (G),
which entails L2=L. Thus, whether G is positive or not, pu^u; and taking e to
be the least idempotent in [pu, u], e is a zero for {x | e^x}. If el=l for some /
less than p, then p = tl for some / less than e. Letting h be the largest idempotent
in [0, t], this gives pu=tlu = t(pu) = t2(pu) = tn(pu)-^h(pu), and pu^h<e—
contrary to the choice of e. Thus eS<=[p, e], and e<u. Note also that Se=[0, e].

Now pu^e implies (ep)u = e(pu)=pu, and by the definition of p, ep=p. Thus
[p, e] is eS which is an ideal. Again, pu = (pu)e=p(ue)=pe, so that 0<pe and e is
the only idempotent in [pe, e]. By 6.1 and 1.2, [p, e] is one of the threads H occurring
in the definition of ^5, and 5 is the contact extension of [p, e] by S/[p, e]. By
3.2, S/[p, e] is a normal thread, and sinceLu=[0,pu]<= eS,LS=L(uS)<^eS=[p, e].
Thus, S/[p, e] is a left trivial thread in which LG = 0.

6.5 Theorem. Let S be a normal thread in which 0#LGcG, and let u be the
identity of G. If, for each I in L which is not minimal, there exists an m less than I
such that either m2 # I2 or mu =£ lu, then S is in ^e.

Proof. Suppose that L is not compact and that L is not the order dual of a
positive thread. Since S is normal, there exists an s such that Ls=L, or sL = L,
which is not a right, or left, identity on L. This s must be in G, for L is not the
dual of a positive thread. Further, Ls = L is then impossible because LG^G. Now
by 2.2, or rather its product dual, there exist a unit thread [/ g] in G and an
element p in L such that fL=[p, 0], tL = L for/<?, and p^L2. Evidently, « is a
left identity on L, but if u e Lu then L = wL <= (Lu)L =L(uL)=L2, which is impossible.
Thus, for each / larger than/ Lu = tLu<^t[0, u) = [0, t); consequently, Lu<=[0,f].
Now l<p implies that lu=f(lu) = (fl)u=pu and that l2 = l(ul) = (lu)l=(f(lu)f)l
= (fl)2=p2. This contradicts the hypothesis, and thus L is either compact or the
order dual of a positive thread.

Assuming now that L2=L, L is either the dual of a standard thread or the dual
of a positive thread. In either case L has an identity e. Recall from the definition
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of normality that 0#IGc6 implies O^GL^L. In particular, ue<0<eu, and
from this we obtain :

(eu)2 = e(u(eu)) = e(eu) = eu,

(ue)2 = u(e(ue)) = u(ue) = ue,

(eu)(ue) = e(ue) = ue,

(ue)(eu) = u(eu) = eu.

That is, [0, eu] is a nonzero standard thread and [ue, eu] is a subthread of S iso-
morphic with f([0, eu]).

If eu does not cut euSeu and if ue does not cut ueSue, then Z={x | eu Sx} is a
standard or positive thread and Q = {11 /:£we} is the order dual of a standard or
positive thread. Since GL=GueL = G(eu)(ue)L=[0, eu][ue, 0] = [ue, 0] and since
LG=LeuG=L(ue)(eu)G=[ue, 0][0, <?w] = [0, «/]; [we, eu] is an ideal of S, S is the
contact extension of [ue, eu] by S/[ue, eu], and 5/[we, ew] is a globally idempotent
thread in which LG = GL = 0. It is clear that S/[ue, eu] is isomorphic with the trivial
linear extension ¿V(Q, Z, 0), and thus S is in ^6.

If eu does cut euSeu, then G is a positive thread with eu as identity [6, Theorem
3.3], and S is isomorphic with f(G) by 1.5. Similarly, if ue cuts weSwe then S is
isomorphic with ^f(G) and G is a positive thread. Again, S is in #6.

Finally, assume thatL2#L. Then L must be compact, and we let/? be the minimal
element. Since L2^L and LG<^G, u is a left identity on 5.

Notice that O^LG^G implies 0<pu. If G is a positive thread and pue H(u),
then S is isomorphic with f(G) by 1.5, which means that L2=L. Thus, whether G
is positive or not, pu Su, and taking e to be the least idempotent in [pu, u], e is a
zero for Z = {x | e^x} and Z is either a standard or a positive thread.

Observe that pe =p(ue) = (/>w)e =/>w, that (ep)u = e(/?w) =/?«, and that (ep)2 = e(pe)p
= e(pu)p=pup=p2. It follows that 0<pe, that ep=p, and that e is the only idem-
potent in [pe, e]. Since eS—[p, e] and Se=[0, e], [p, e] is an ideal and S is the
contact extension of [p, e] by S/[p, e]. Moreover, the quotient thread is obviously
isomorphic with Z, and [p, e] is one of the threads H occurring in the definitions
of if5 and 'ife. That is, S is in <£6.

7. Co t lusion. Let T be a globally idemr* tent thread. If T has a zero and if the
zero is an endpoint, then, as is stated in the introduction, the structure of T is
known. The remainder of this paper has described the structure of T in the event
that T has a cutting zero.

If T has no minimal ideal at all, than [6, Theorem 4.1], a zero can be adjoined
to T as an endpoint. Again, the structure of T can be determined.

Now suppose that T does have a minimal ideal K, but that K is not simply a
zero. According to 4.2 of [6], K is then a closed connected set of left zeros, or a
closed connected set of right zeros, or K is isomorphic with the group of positive
real numbers. In this last possibility, K must be all of S, and one could hardly ask
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for a nicer description of S. In case K is a proper ideal of S, then S/K is again a
globally idempotent thread with a zero.

Hence, the only step missing in a description of all globally idempotent threads
is a determination of all possible extensions of a thread of one-sided zeros by a
globally idempotent thread with a two-sided zero. The special case of this problem
in which the threads involved have idempotent endpoints has been solved by
Clifford in [2], Undoubtedly, the general case would be quite similar.

Referee's comments. Theorem 6.2 of Cohen and Wade [4] asserts that if 5 is
a compact thread [p, e] with zero and with identity element e, and if p2 = 0, then
Se^(K, k) where K=[0, e] and k=p2. The class if(K, k) of threads, described
prior to their Theorem 6.2, consists of the following six types.

Sx=3t(K) with K a standard thread.
S2 is the contact extension of some Sx by a nonzero standard thread.
£3 is the contact extension of some Sx by a left trivial thread.
Si is the contact extension of some Sx by an ^-base thread.
55 is the contact extension of some <S4 by a left trivial thread.
56 is the contact extension of some 54 by a nonzero standard thread.
If p2 > 0 then our thread [p, e] satisfies the hypotheses of Theorem 6.2 of [4],

and so must be one of the foregoing types. Types S3 and Ss are excluded by
the hypothesis that p<l=0 implies p2 ̂  I2. Types S2 and Se are excluded by the hy-
pothesis that 0^r<e implies pri=p. This leaves Sx and 54, that is, a thread of type
E occurring in the definition of ^5. Similarly, if p2 < 0, [p, e] satisfies the hypotheses
of Theorem 6.3 of [4], and we see in a similar manner that [p, e] must be a thread
of the type F occurring in the definition of ^6.
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