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Abstract

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics 

datasets from the mass spectrometric interrogation of tumor samples previously analyzed by The 

Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is 

enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and 

non-reference markers of cancer. The CPTAC labs have focused on colon, breast, and ovarian 

tissues in the first round of analyses; spectra from these datasets were produced from 2D LC-

MS/MS analyses and represent deep coverage. To reduce the variability introduced by disparate 

data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), 

the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both 

peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass 

spectrometry data according to the following: (1) Peak-picking and quantitative data extraction, 

(2) database searching, (3) gene-based protein parsimony, and (4) false discovery rate (FDR)-

based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment 

studies using the PhosphoRS program. Quantitative information for each of the datasets is specific 

to the sample processing, with PSM and protein reports containing the spectrum-level or gene-

level (“rolled-up”) precursor peak areas and spectral counts for label-free or reporter ion log-ratios 

for 4plex iTRAQ™. The reports are available in simple tab-delimited formats and, for the PSM-

reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the 

*Corresponding Author. Dr. Paul A. Rudnick, paul.rudnick@spectragen-informatics.com, 175 Parfitt Wy SW Ste N110, Bainbridge 
Island, WA, 98110, (206) 842-4980. 

DISCLAIMER

Certain commercial instruments are identified in this document. Such identification does not imply recommendation or endorsement 

by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available 

for the purpose.

SUPPORTING INFORMATION

1. Percolator Analysis

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:

J Proteome Res. 2016 March 4; 15(3): 1023–1032. doi:10.1021/acs.jproteome.5b01091.N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



CPTAC data, enabling comparisons between different samples and cancer types as well as across 

the major ‘omics fields.
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Introduction

The National Cancer Institute formed a Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) in 2011 to facilitate the discovery of cancer-specific protein biomarkers. The 

current program is a follow-on to the original CPTAC program (2006–2010), which focused 

on reproducibility. The current consortium has eight institutions as lead centers, with 

approximately thirty collaborating groups. NCI sought to leverage the results of their patient 

tumor sequencing program (The Cancer Genome Atlas (TCGA)) to inform the proteomics. 

Discovery proteomics provides evidence of protein sequence and abundance, including the 

identification and quantitation of post-translational modifications (PTMs) that may be 

critical to cell signaling pathways and networks. The proteins from 105 breast tumors were 

analyzed at the Broad Institute (MIT); from 95 colorectal tumor samples at Vanderbilt 

University1; and from 115 ovarian cancer tumors split between the Johns Hopkins School of 

Medicine (72); and the Pacific Northwest National Laboratory (75), with 32 samples in 

common between the two sites. The consortium members selected complementary methods 

of trypsin-digested, bottom-up, peptide analysis with state-of-the-art 2D LC-MS/MS 

methods using Orbitrap™ mass analyzers. The resulting 5,860 LC/MS/MS tumor runs 

required ~10,160 hours of instrument time and produced >91 million MS/MS spectra, 

occupying 3 terabytes of storage for the raw data files. Additionally, each laboratory used 

their same analytical procedures for human-in-mouse xenograft reference standard (“system 

suitability” or CompRef) tumor samples, run before and after 10 human tumor samples. 

These repeat analyses required 790 LC-MS/MS analytical runs requiring 1,122 hours of 

instrument time, and producing >14M tandem mass spectra. Together, this analytical data 

represents an important public resource for research in human cancer proteomics, which are 

accessible through an online portal: the CPTAC Data Portal2 managed by the CPTAC Data 

Coordinating Center (DCC) https://cptac-data-portal.georgetown.edu/cptacPublic/.

Following data acquisition, each laboratory used its preferred software tools to analyze its 

own data to extract maximum information relevant to tumor analysis and cancer biology for 

publication. In order to remove the multiple sources of variability that would otherwise 

result when comparing peptides and proteins inferred by each group using different 

software, the consortium agreed upon the need for a Common Data Analysis Pipeline 

(CDAP) to produce uniform report files for public release. Because all of the datasets are of 

interest to cancer researchers both inside and outside of the proteomics field, the uniformity 

of processing also eliminates differences due to the use of various reference proteome 

databases or varying software parameters, two well-known sources of variation in 

comparative proteomic analyses. This paper documents the Common Data Analysis 
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Pipeline, an integral component of this multi-institutional research program in cancer 

proteomics.

Experimental Section

Selection of the component programs in the data analysis pipeline was based on the diversity 

of sample processing and instruments used in the studies. Since both label-free and iTRAQ™ 

4plex strategies were used during early “system suitability” (xenograft analysis) evaluation 

studies, the pipeline was designed to handle both data types as well as data from 

phosphopeptide and glycopeptide enrichment studies. All laboratories used Thermo Fisher 

Orbitrap™-based high-resolution mass spectrometers for TCGA samples. In general, the 

design of the pipeline was based on group consensus by a steering committee of 

collaborators as well as the availability of tools for the NIST hardware and operating system 

infrastructure. Details of the pipeline are given below. Importantly, the database file and 

software versions were not changed throughout the processing of the “system suitability” 

and TCGA tumor analysis data files. (See Table 1 for a detailed list of software and 

parameters used.)

Data File Staging

To quality control the files received from the proteome characterization centers, Thermo raw 

data files (*.RAW) were downloaded from a private staging area (maintained by the DCC) to 

NIST servers for analysis. MD5 checksums were used to verify file integrity. If RAW files 

passed file quality control, they were entered into the processing queue and associated with a 

minimal set of metadata, including the following: site, labeling, enrichment status, and 

instrument make and model. All samples were digested with trypsin. More information on 

each of the sample processing conditions (e.g., alkylation, labeling, etc.) can be found in the 

metadata available with each dataset at the DCC or in the primary publications.

Raw Data Conversions

Raw files were processed by the NIST converter ReAdW4Mascot2.exe, a heavily modified 

version of the original ReAdW.exe (by Patrick Pedrioli) developed at The Institute for 

Systems Biology (ISB) for use in early versions of the Trans-Proteomic Pipeline (TPP)3,4. 

This converter produces peak lists of very similar content to those produced by msconvert5 

(data not shown.) ReAdW4Mascot2.exe produces several output files for each raw file, 

including metadata (*.metadata) files with values such as date, instrument serial number, 

method and tune file names and parameters. File and instrument specific metadata were 

extracted directly from the raw files at conversion time. Most importantly, mzXML (not 

mzML) and MGF (Mascot generic file) files were produced by this converter. The software 

uses OCX calls directly to the XCalibur libraries, if available, or to those provided from an 

installation of MSFileReader (https://thermo.flexnetoperations.com). mzXML files are 

produced for legacy reasons and are used as input for MS1 intensity-based quantitation 

performed by NIST-ProMS in the next step of processing. MGF files follow the Matrix 

Science™ standard but provide substantial, additional information embedded in the TITLE 

lines. However, the major purpose of the MGF files is to provide MS2 peak lists for 
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identification by the sequence search engine, MS-GF+ (described in a following section). 

MGF files are not distributed for public consumption but could be provided by request.

ReAdW4Mascot2.exe parameters can be found in Table 1. One important note regarding 

RAW file conversion is the setting “-FixPepMass.” This option forces the program to re-

assess the accuracy of the monoisotopic precursor m/z by looking at both the previous and 

next MS1 scans to discern the accuracy of the monoisotopic peak assignment. If the 

assignment is inaccurate, the software will either change a precursor m/z, precursor charge 

or will attempt to assign a charge if one is missing. The frequency of these changes is 

heavily affected by instrument settings. “Exclusion of unassigned charge states” was not 

selected by one lab (PNNL) in the instrument method resulting in approximately 17% of all 

precursor or charge state values being modified at conversion-time, in comparison to 

approximately 3% for other contributing labs (data not shown). A second reason for 

choosing this option was to reduce false identifications of deamidations which are 

characterized by a precursor m/z difference of +1 (roughly equivalent to the mass of a single 

neutron) but lack fragment ion evidence. It is not uncommon for incorrect monoisotopic 

precursor m/z assignments to be incorrectly identified as deamidations6. To ensure accurate 

reporting of these conversion-time changes, the XCalibur-assigned precursor m/z and charge 

as well as the corrected values are given in the final PSM-level output files (*.psm and 

*.mzIdentML) for reference. One other note on precursor assignment: if 

ReAdW4Mascot2.exe was unable to assign either a precursor m/z or charge, the spectra 

were excluded from further processing. For at least PNNL, these spectra were included for 

lab-prepared data analysis for publication(s). Comparison indicated that a small but 

significant percentage of these spectra are identifiable (data not shown), representing one 

more area of possible variability.

iTRAQ Peak Processing and Reporting

Extraction of iTRAQ reporter ion peaks was added to ReAdW4Mascot2.exe for iTRAQ 

4plex files. Along with the intensity values for the reporter ions (m/z’s 114, 115, 116, 117), a 

quality score is also computed. A value for variability of each iTRAQ channel is the dMZ/

HWHM where dMZ = (measured peak m/z) − (exact m/z of iTRAQ reporter ion). A value 

>1 for dMZ/HWHM typically indicates reporter ion contamination. These values can be 

used to impose penalties on identified spectra with abundant impurities. ‘AbFract’ is also 

calculated; this is the fraction of the MS2 TIC (total ion current) accounted for by the 

reporter ions. All iTRAQ values are included in the PSM-level reports.

Along with the intensity of each channel and its quality, a column in the PSM-level reports 

called ‘iTRAQFlags’ is also created. For this field, ‘I’ is added if the geometric mean of the 

two ‘PrecursorPurity’ (isolation window purity calculations, also computed by 

ReAdW4Mascot2.exe) values is <90% (percentage of intensity in the isolation window 

(typically 2 m/z) attributable to the assigned precursor and its isotopes). Empirical evidence 

suggests that values >80% are usually reliable (i.e., lack significant fragmentation impurities 

(i.e., co-fragmentation) giving rise to so-called ratio compression7). It is also worth noting 

that filtering using ‘I’ as a flag would be strict for typical analyses since these flags are 

present on all spectra with purities <90%. Instead, it may be worthwhile for end users to 
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include spectra with values <80%. This value will be used in the next release of the PSM 

files. A flag of ‘M’ is added if one or more iTRAQ channel intensities is a zero or a missing 

value, and ‘D’ is added if the quality score for one or more iTRAQ channels is > 1.

Search Engine

After a preliminary performance comparison of the major open-source or freeware search 

engines available to the community, MS-GF+8 was chosen for the CDAP. This search engine 

is under active develop at PNNL, which enabled rapid and effective communication between 

CDAP engineers and the developer (Dr. Sangtae Kim.) Search engine settings for MS-GF+ 

are given in Table 1. MS-GF+ uses a machine learning (i.e., training step) to improve its 

accuracy. Consequently, settings are based on a given instrument’s make and model. For 

example, a fragment ion tolerance setting is not necessary. Also, and somewhat atypical for 

MS/MS-search engines, MS-GF+ does not include a maximum setting for missed enzyme 

cleavages. Semi-specific tryptic in silico digestion was used for searching all data. This adds 

considerable overhead to the search space and may diminish some sensitivity but was an 

important parameter because some breast tumor samples contained semi-tryptic peptides at 

rates as high as 25%. This value is about 10× higher than what is typical for tryptic 

digestions, but plausibly reflective of post-mortem collection interval (ischemic time) and 

sample history.

The confidence of MS/MS assignments was determined by MS-GF+’s automatic target-

decoy routines (search setting ‘-tda 1’). The engine calculates its own ‘SpecEvalues’ (as well 

as Evalues) from which QValues (q-values) are derived. Additionally, the setting ‘-ti 0,0’ 

requires that the monoisotopic precursor m/z value of a query spectrum match the database 

exactly (i.e., no “isotope wobble”). This setting was chosen because an attempt to fix 

incorrect monisotope selection is made at conversion-time. Prior to reporting, a q-value 

threshold of 0.01 (1% FDR on the PSM-level) was applied to all data files, and only Rank 1 

hits were kept. Additionally, the decoy hits were removed unless scores tied with a target 

match. An in depth discussion of q-values on the PSM-, peptide- and gene-level, as well the 

consequences of removing the decoys, is given in the Results section below.

Sequence Database

The protein FASTA file used for system suitability analysis was concatenated RefSeq H. 

sapiens (build 37), M. musculus (build 37), and the sequence for S. scrofa (porcine) 

trypsinogen. The FASTA file used for analysis of the TCGA human samples lacks the M. 

musculus sequences. Decoy sequences were appended automatically by MS-GF+ by using 

the option ‘-tda 1’ as mentioned above.

Peptide Spectral Libraries

Peptide tandem mass spectral libraries were built from all CPTAC data at NIST. These were 

either used to build new libraries or add to existing public libraries and are suitable for 

MS/MS searching by MSPepSearch (NIST library search algorithm for batch identification 

of peptides http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch) or 
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SpectraST9 (library search algorithm integrated into the TPP). Importantly, these data have 

now contributed to the construction of very large iTRAQ libraries for human and mouse 

accessible to the public at http://chemdata.nist.gov/dokuwiki/doku.php?

id=peptidew:cdownload. Libraries (human and mouse xenografts) were constructed from the 

MS-GF+ results and were separately compiled for ion trap (CID), beam-type collision cell 

(HCD), iTRAQ and label-free. HCD libraries are composed of best-replicate spectra at 

specific collision energies and ion trap entries are consensus spectra. Since different labs 

using HCD analysis operated instruments at different ‘NCE’ (normalized collision energy) 

values, best replicate spectra for small CE bins were used to represent each peptide ion. 

Consequently, each peptide ion may be represented by more than one spectrum in a given 

HCD library. A summary of the additional content can be found in Table 2.

MS1 Data Analysis

MS1 data analysis was performed by the NIST-developed program, NIST-ProMS. This 

program was originally developed as part of the NISTMSQC metrics for calculating 

precursor areas from extracted ion chromatograms10. While this software provides many 

functions, it was used in the CDAP exclusively for calculating the intensity of precursor 

ions, applicable mainly to label-free analyses (i.e., not iTRAQ data, for which a precursor is 

the mixture of the isobaric, labeled forms). NIST-ProMS works by finding and then 

calculating the area of isotope groups. The program reads the output from MS-GF+ to 

annotate peak areas with peptide sequences when an MS/MS spectrum has been used to 

make a confident assignment. NIST-ProMS data can be found in the columns 

‘PrecursorArea’ and ‘PrecursorRelAb’ in the PSM and mzIdentML files. ‘PrecursorArea’ is 

the total area for the precursor ion and ‘PrecursorRelAb’ is the ‘PrecursorArea’ normalized 

by the precursor area of the largest identified peptide ion in that file (i.e., fraction.)

QC Metrics

A subset of the NISTMSQC metrics was calculated on all of the RAW data files10. These 

reports were used to detect outliers and troubleshoot analytical problems within the program. 

QC reports are not publicly accessible but were used during internal communications 

between NIST, the DCC, and the collaborating labs. Briefly, QC calculations were designed 

to cover the full proteomics pipeline and highlight batch effects or other analytical problems. 

The QC metrics cover the following areas: chromatography, ESI, MS1, MS2, and data 

analysis.

Phosphosite localization

The software PhosphoRS11 was added to the pipeline for assignment of phosphosites after a 

preliminary performance comparison using a set of commonly used tools (not shown). Its 

purpose is to calculate site assignment probabilities which can be used to gauge the quality 

of a phosphosite assignment. This type of post-search analysis is needed as search engines 

often do not make explicit use of site-determining fragment ions when assigning a 

phosphosite in peptides containing n+1 potential phosphorylation sites, where n is the 

number of S, T or Y residues. This program was run according to the ReadMe.html file 
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present with the download. Briefly, spectra in MGF format, for which non-trivial phospho 

identifications were identified below a QValue threshold of 0.01, were converted to the XML 

format described by the authors. Next the XML files were processed in batch by the 

software and the scores in the results were parsed into the report files. PhosphoRS scores are 

reported in the column ‘PhosphoRSPeptide’ in the PSM and mzIdentML files. Additionally, 

‘nPhospho’ reports the number of phosphosites assigned by MS-GF+ and ‘FullyLocalized’ 

is set to Y (yes) if all phosphosites score >99.0 (a strict filter), otherwise this value is set to 

N (no).

Peptide-spectrum-match (PSM) Report Format

The PSM-level reports are the subject of extensive documentation, available from the 

CPTAC Data Portal under the “About the data” tab (https://cptac-data-

portal.georgetown.edu/cptac/aboutData/show?scope=dataLevels), and have been partially 

described in a separate publication2. Briefly, * .psm files are the tab-delimited files produced 

by the CDAP at NIST from the search engine results. These files list PSMs as rows with data 

in columns. Data include MS-GF+ output as well as the precursor, iTRAQ, and phosphosite 

data when appropriate. ‘FileName’ and ‘ScanNum’ uniquely identify a single MS/MS 

spectrum. When two or more identifications score identically for the top-ranked position, the 

field ‘AmbiguousMatch’ is given a value of 1, and the row is repeated with the alternate 

identification(s). The mzIdentML files are produced by the DCC and are translations of the 

PSM files into the PSI standard12 from the CDAP PSM files. The informatics methods for 

the mzIdentML conversions are also available from the CPTAC Data Portal under the 

“About the data” tab.

Protein Reports (Gene-level)

The protein reports have been described elsewhere2 and in documentation available from the 

CPTAC Data Portal under the “About the data” tab. However, the concepts and thresholds 

are worth repeating, here. To generate the protein reports, the PSM-level data was 

aggregated to the peptide-level and peptides were parsimoniously assembled for gene 

inference. Peptides were associated with genes through their protein sequences and NCBI 

Gene and UniProt annotations. Assembling at the gene-level removes the potential problems 

associated with inappropriately assigning quantitative data to minor protein isoforms. 

Comparisons at the gene-level are also commonplace for genomics scientists, as many such 

users are interested in proteoegenomic comparisons. Following assembly, the gene-level 

FDR was assessed using the MAYU (not an acronym) technique to more accurately model 

inferences with both target and decoy hits13. The parsimony analysis required at least two 

unshared peptides per gene and two spectra per peptide. The PSM-level QValue was reduced 

until a MAYU-estimated gene-level FDR of 1%, for the entire assembly, was achieved. A 

summary of the QValue thresholds necessary to achieve this level of confidence can be 

found in Table 3.

The protein reports are distributed across several files. For label-free quantitation (e.g., 

spectral counting as in Zhang et al.1), *.precursor_area.tsv and *.spectral_counts.tsv files list 

the sample-level precursor areas for total and unshared peptides or spectral counts along 
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with metadata by gene. For iTRAQ data, gene-level iTRAQ log-ratios, with respect to the 

common POOL sample, are reported in the *.itraq.tsv files. For these files, the first 3 rows 

provide the mean, median and standard deviation of the sample log-ratios. Gene-level “roll-

up” was performed in the following way, aggregated for all peptide ions or only the unshared 

peptide ions: (1) select the peptide ion spectrum with maximum total reporter intensity from 

each spectrum data file, (2) remove outliers using the “libra” technique implemented by the 

TransProteomicPipeline (TPP)3,4 and find the arithmetic mean of the retained log-ratios 

(sample : pooled control channel), (3) normalize each sample’s aggregate log-ratios using 

the sample median. Metadata, including organism, chromosome and locus are associated 

with each row in these files as columnar data.

Regardless of the quantitation workflow, protein and peptide identification summary reports 

are provided: *.peptide.tsv and *.summary.tsv. These files explicitly record the peptide-to-

gene mapping information as well as the data summarized across the whole analysis, 

respectively.

Results

The goal of the CDAP is to produce uniform reports that can be used to compare across the 

participating proteomic centers, major TCGA sample types, and major -omics technologies 

(e.g., RNAseq vs. MS-based proteomics).

Logistically, it was straightforward to (1) create peak lists, (2) search them, and (3) filter the 

results to 1% PSM-level FDR using q-values provided by MS-GF+. Summary counts 

(number of identifications, peptide sequences, files, etc.) from each of the datasets are shown 

in Fig. 1. Note that these numbers were calculated by removing the fraction labeled ‘A’ from 

the breast cancer datasets and by ignoring PSMs which cannot be unambiguously assigned. 

Removing ambiguous peptides from the phospho datasets may be removing relatively more 

peptides than for the global sets because peptides with different localizations frequently have 

tie scores. As these peptides are enriched in phospho datasets, more peptides will not be 

counted. The purpose of Fig. 1 is simply to indicate the relative numbers of identifications 

and their magnitude for each dataset as well as the actual values in order to provide scale to 

the acquired data and processed data units.

Examining the PSM and gene-level FDRs

We also examined the gene-level FDR resulting from the gene-based parsimony analysis 

using the full 1% PSM-level FDR filtered TCGA datasets. As datasets of this size become 

increasingly available, it is important to note that a gene/protein-level FDR assessment is 

critical to determine and report. At the 1% PSM-level, the MAYU gene-FDR varied from 

20–40% (not shown). Such identification-estimated FDRs as high as these are unacceptable 

by proteomics journal standards, but are an unavoidable consequence of processing very 

large datasets. The FDRs were refined slightly by applying the MAYU technique to account 

for the possibility that some of the potential false positive genes, whose number is estimated 

from inferred decoy genes, coincide with true positive target genes. The MAYU correction 

for the gene-FDR is more pronounced as the number of inferred target genes increases (not 
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shown.) However, even with this correction, gene-level FDRs remain unacceptably high at 

1% PSM-level FDR for most datasets.

To investigate features that may help discriminate true from false identifications, we ran a 

portion of the TCGA colon dataset through Percolator14. This analysis revealed SpecEValue 

(the score on which the discriminate score used for filtering, QValue, is based) to be the 

feature weighted most heavily (by absolute value) (Figure S1). This result is expected and 

served as a positive control. The second two most heavily-weighted features were the 

number of missed cleavages and the number of spectral counts for a given peptide sequence. 

This result is consistent with low spectral count peptides carrying higher decoy/target 

peptide rates (Figure 2). Not only do low spectral count peptides carry higher target/decoy 

rates, they also contribute a large number of potentially false peptide sequences (Figure 3).

While Reiter et al.13 and others indirectly address the issue of disproportionately large 

protein-level FDRs in large datasets, this has not been thoroughly described in the literature. 

It can be approximated using Poisson statistics15. In Figure 4, we have plotted the 

relationship between false target peptide sequences (assumed to be a number equivalent to 

the number of decoy sequences) and false protein identifications at greater than or equal to 

one, two and three shared peptide sequences per protein. This plot shows that in order to 

maintain a <1% gene-level FDR before MAYU correction, the number of decoy peptide 

sequences must be restricted to less than 2,000 for a target gene identification set of ~10,000 

genes at >=2 unshared peptide per protein.

High numbers of false peptide sequences in large datasets are exacerbated due to the 

following: after multiple LC/MS/MS runs have been accumulated, a level of “saturation” is 

achieved. That is, fewer and fewer new target protein identifications are made by new 

peptides; the majority tend to re-identify (or confirm) existing peptide IDs, and it is not 

uncommon to see highly abundant true peptides represented by thousands of PSMs. On the 

contrary, false peptide sequences tend to randomly distribute over the entire proteome at an 

approximate probability of 1 / n where n is the number of protein sequences in the database. 

The consequence is that the ratio of false / true peptide sequences increases 

disproportionately to the number of PSMs, creating a situation where the gene-level FDR 

can be >>10× the PSM-level FDR, as was observed to be the case for all of the global 

TCGA datasets, prior to gene-level filtering.

Filtering the TCGA datasets to 1% gene-level FDR

Guided by the Percolator results, we elected to impose a >1 spectrum / peptide filter. The 

effects of this and other filtering strategies can be observed in Figure 5 for the TCGA colon 

dataset. As this figure shows, an increase in the spectral count requirement by one reduced 

the gene-level FDR from 42% to 8% for the colorectal dataset. We chose to use this strategy 

in combination with a reduction in the allowed QValue threshold (per file) to reduce the 

gene-level FDR to 1%. Table 3 shows the QValue thresholds required for each of the 

datasets to achieve this level of confidence on the gene-level. These thresholds were 

determined empirically, and only in the case of two of the datasets was 1% PSM-level FDR 

able to sufficiently control the gene-level FDR.
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Comparing analyses from CDAP reports and Zhang et al.1

The goal of the CDAP is to provide common standardized analyses across all of the CPTAC 

datasets, while each contributing laboratory pursued independent analyses. The Vanderbilt 

University colorectal cancer study has been published, and consequently, we compared 

gene-level overlap and the similarity of spectral counts as assembled by the two separate 

pipelines. Gene-level summaries include all steps of the data processing: (1) spectrum 

identification, (2) protein assembly and (3) gene mapping. For one sample, TCGA-

A6-3807-01A-22, the gene IDs and total spectral counts were extracted from both analyses. 

Figure 6 shows the overlap in gene identifications and Figure 7 shows the pairwise 

correlation of the natural logarithms of gene-level spectral counts. Figure 6 shows that about 

1,100 genes were additionally identified in the Zhang et al. assembly with an overlap of 

about 73%. This is inevitably due to variations in the data analysis pipelines. In particular, 

the Zhang et al. assembly used 3 search engines (MS-GF+, MyriMatch16 and the spectral 

library search engine Pepitome17) and a 2.6% protein-level FDR for filtering. Moreover, the 

CDAP assembly excluded single spectrum peptides, Zhang et al. did not1. These factors also 

affected the correlation. On average, the Vanderbilt assembly identified more spectra for the 

lower abundance genes, consistent with the added sensitivity from combining multiple 

search engines. Other differences visible by comparing the two gene sets may be attributable 

to parsimony (e.g., handling of shared peptides) as well. However, considering the large 

number of data analytical differences, identification overlap and correlation is reasonably 

good. It is also worth noting that strict filtering also has the unwanted consequence of 

eliminating many good assignments. Here, were have tried to strike a reasonable balance and 

produce gene-level datasets with a low, estimated FDR.

Discussion

The CDAP was designed to facilitate a fully-described common data analysis across all of 

the CPTAC datasets for public data access. CDAP was intended to perform conservatively. 

Hence we designed a filtering strategy to minimize (but not eliminate) most of the potential 

for incorrect gene identifications. In order to maximize performance for a given parameter 

set, it makes sense to find the settings that maximize the number of target gene 

identifications at a given (low) FDR. However, it should be noted that at a 1% gene-level 

FDR for a dataset containing 10,000 gene IDs, approximately 100 are estimated to be 

completely spurious. This should give caution to those expecting results free of errors.

Phosphopeptide datasets

Protein- or gene-assembly is more commonly performed on non-enriched data. 

Phosphorylation studies usually include a “roll-up” to the phosphosite-level, instead of the 

gene-level, for the purpose of analyzing phospho-signaling network biology. However, the 

CDAP assembly algorithms have not yet been applied to the phosphopeptide datasets for 

public release. Instead, we provide the peptide-spectrum-match data from which phospho-

site data may be “rolled-up” by the end-user. When completed, CDAP gene-level summaries 

will be described in documentation to be posted to the DCC as soon as they are available. As 

such, no gene-level or site-level assemblies are available at the time of writing for the 
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enriched datasets. Selecting and developing these methods is particularly challenging when 

assigning quantitative information to a site as sometimes peptides overlap or peptides with 

multiple phosphorylations are present which overlap, and it is unclear how best (or most 

appropriately) to “roll-up” the iTRAQ information. Additionally, since our references are on 

the gene-level, assigning phosphosites requires designating a representative protein 

sequence, which can be non-trivial.

Decoy peptides

With the initial release of the CDAP PSM files, decoy hits were removed for the sake of 

simplicity. While this makes for cleaner reports, it also prevents the use of 3rd party tools 

(e.g., Scaffold, IDPicker, TPP, etc.) for independent assembly and FDR-filtering. To remedy 

this, the next planned release of the PSM files will include decoy hits.

Non-reference peptides

The CDAP processed cancer tumor data should be useful for many researchers inside and 

outside of the field of proteomics for conducting pan-cancer analyses. However, since the 

sample-specific sequence databases (generated by the TCGA) were not used in the primary 

processing of the data files, non-reference peptides (those not occurring in RefSeq or other 

sequence databases) are not observable without adding them or adding a de novo search 

node to the pipeline. These results will be useful for labs seeking to detect and quantify 

protein products that correspond to splice variants, mutations, insertions, deletions, 

rearrangements, copy number aberrations, or epigenomic changes that were detected at the 

genome level. As work on the construction of protein FASTA files from individual patients 

continues within the program, future releases may include the addition of these sequences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Acronyms and Abbreviations

CDAP Common data analysis pipeline

CE collision energy

CID collisional-induced dissociation

CPTAC Clinical Proteomic Tumor Analysis Consortium

DCC Data coordinating center

dMZ delta m/z

ESI electrospray ionization

FASTA sequence database standard

FDR false discovery rate

HCD higher-energy collisional dissociation

HWHM half width at half max

ID identification

ISB The Institute for Systems Biology

iTRAQ Isobaric tags for relative and absolute quantitation

LC-MS/MS liquid chromatography tandem mass spectrometry

M million

MGF Mascot generic format

MS/MS tandem mass spectrometry

MS1 primary mass spectrometry signal

MS2 tandem mass spectrometry signal

MS-GF+ mass spectrometry generating function

mzIdentML HUPO PSI standard for peptide identification results

mzML HUPO PSI standard for mass spectrometry data

mzXML deprecated standard for mass spectrometry data developed by ISB

NCE normalized collision energy

NIST National Institute for Standards and Technology

NISTMSQCNIST mass spectrometry quality control

OCX object linking and embedding control developed by Microsoft

Rudnick et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2017 March 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



PNNL Pacific Northwest National Laboratories

PSM Peptide-spectrum match

PTM post-translational modification

QValue multiple hypothesis testing-correct p-value (false discovery statistic)

RAW Thermo-specific raw mass spectrometry data files

TCGA The Cancer Genome Atlas

TIC total ion current

TPP Trans-Proteomic Pipeline
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Figure 1. 
Summary of CDAP results for major CPTAC analysis of TCGA samples. * MS2 counts 

derived from MGF files at NIST. Identification results are listed at 1% PSM-level FDR. ** 

PSM counts exclude identifications marked as ambiguous (i.e., >1 equivalently-scoring 

peptide matches.)
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Figure 2. 
Decoy / Target identification rate over a range of spectra / peptide values. This figure show 

that peptides with fewer identifying spectra are more likely to be false or incorrect 

identifications.
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Figure 3. 
The number of decoy sequences contributed by identifications over a range of spectra / 

peptide values. This plot shows that the majority of decoy peptide sequences (which can 

disproportionately affect the protein-level FDR) are contributed by identifications with fewer 

spectra / peptide.
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Figure 4. 
Poisson predictions for random target identification for a range of random (e.g., decoy) 

peptide sequence values. Green shows values for requiring >=1 peptide / protein for 

identification; red shows >=2 peptides / protein; purple >=3 peptides / protein. Red square 

shows Poisson prediction for the colorectal cancer dataset; red circle shows actual value. 

This figure shows that Poisson predictions using the number of decoy sequences can 

accurately predict the number of false protein identifications, and that requiring more 

peptides can greatly reduce the number of target protein identifications for the same number 

of random peptide assignments.
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Figure 5. 
The number of target gene identifications and corresponding gene-level FDR for a number 

of threshold settings. Point furthest to the right shows the unacceptably high gene-level FDR 

resulting from only requiring a PSM-level FDR of 1% and one spectrum / peptide.
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Figure 6. 
Gene identification overlap between CDAP analysis and Zhang et al1.

Rudnick et al. Page 20

J Proteome Res. Author manuscript; available in PMC 2017 March 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 7. 
Gene-level spectral count correlation between the CDAP analysis and Zhang et al1.

Rudnick et al. Page 21

J Proteome Res. Author manuscript; available in PMC 2017 March 04.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Rudnick et al. Page 22

T
a
b

le
 1

S
o
ft

w
ar

e 
an

d
 o

p
ti

o
n
s 

u
se

d
 i

n
 t

h
e 

C
o

m
m

o
n
 D

at
a 

A
n
al

y
si

s 
P

ip
el

in
e.

P
ro

gr
am

V
er

si
on

So
ur

ce
R

ef
er

e
nc

e
P

ur
po

s
e

O
pt

io
ns

 U
se

d
iT

R
A

Q
P

ho
s

ph
o

R
eA

dW
4M

as
c

ot
2.

ex
e

ft
p
:/

/c
h
em

d
at

a.
n
is

t.
g
o
v
/d

o
w

n
lo

ad
/p

ep
ti

d
e_

li
b
ra

ry
/s

o
ft

w
ar

e/
cu

rr
en

t_
re

le
as

es
/R

eA
d
w

4
M

as
co

t2
/

N
o
n
e

M
S

 a
n
d

M
S

/M
S

d
at

a
ex

tr
ac

ti
o
n
s,

p
re

cu
rs

o
r 

m
/z

an
d

ch
ar

g
e

st
at

e 
re

-
ev

al
u
at

i
o
n

-c
 -

C
h
ar

g
eM

g
fO

rb
i 

-
F

ix
P

ep
m

as
s 

-M
ax

P
I 

-
m

et
ad

at
a 

-
M

o
n
o
is

o
M

g
fO

rb
i 

-
N

o
P

ea
k
s1

 -
P

Iv
sR

T
 -

se
p
1
 -

se
p
Z

C
 -

m
sf

r 
-

X
m

lO
rb

iM
s1

P
ro

fi
le

 -
iT

R
A

Q
 -

T
o
lP

P
M

 2
0

- iT
R

A
Q

M
S-

G
F

+
v
9
7
3

3
h
tt

p
:/

/o
m

ic
s.

p
n
l.

g
o
v
/s

o
ft

w
ar

e/
m

s-
g
f

K
im

 e
t

al
.8

S
eq

u
en

ce d
at

ab
as

e 
se

ar
ch

ja
v
a 

–
X

m
x
3
5
0
0
M

 –
ja

r
M

S
G

F
P

lu
s.

ja
r 

-d
<

fi
le

>
.f

as
ta

 -
t 

2
0
p
p
m

 -
e

1
 -

m
 (

3
 f

o
r 

Q
E

x
ac

ti
v
e,

 1
fo

r 
O

rb
it

ra
p
) 

-i
n
st

 (
1
 f

o
r

Q
E

x
ac

ti
v
e,

 1
 f

o
r

O
rb

it
ra

p
) 

-n
tt

 1
 -

th
re

ad
 2

-t
d
a 

1
 -

ti
 0

,0
 -

n
 1

 -
m

ax
L

en
g
th

 5
0
 -

m
o
d

<
fi

le
>

.t
x
t

- p
ro

to
co

l 
2

(3
 f

o
r

p
h
o
s

p
h
o

an
d

iT
R

A
Q

)

- p
ro

to
c

o
l 

1

N
IS

T-
P

ro
M

S
N

IS
T

 (
d
ev

el
o
p
er

 c
o
m

m
u
n
ic

at
io

n
)

M
S

1
d
at

a
an

al
y
si

s

in
 a

 f
il

e 
ca

ll
ed

 p
ro

m
s.

in
i

(<
m

zX
M

L
fi

le
>

.r
aw

.m
zX

M
L

<
se

ar
ch

 r
es

u
lt

fi
le

>
.r

aw
.F

T
.h

cd
.c

h
.M

G
F
.m

zi
d
.t

sv
<

o
u
tp

u
t 

fi
le

>
.r

aw
.t

x
t

<
se

ar
ch

 e
n
g
in

e 
n
am

e:
M

S
-G

F
+

,
M

S
P

ep
S

ea
rc

h
,

S
p
ec

tr
aS

T
, 
O

M
S

S
A

)
<

in
st

ru
m

en
t:

O
R

B
I_

H
C

D
, 
O

R
B

I,
L

T
Q

, 
Q

T
O

F
>

P
ho

sp
ho

R
S

1
.0

h
tt

p
:/

/m
s.

im
p
.a

c.
at

/?
g
o
to

=
p
h
o
sp

h
o
rs

T
au

s 
et

al
.1

1

P
h
o
sp

h
o
si

te
lo

ca
li

za
ti

o
n

A
ct

iv
at

io
n
T

y
p
es

=
"H

C
D

" M
as

sT
o
le

ra
n
ce

V
al

u
e=

"0
.0

2
"

J Proteome Res. Author manuscript; available in PMC 2017 March 04.

ftp://chemdata.nist.gov/download/peptide_library/software/current_releases/ReAdw4Mascot2/
http://omics.pnl.gov/software/ms-gf
http://ms.imp.ac.at/?goto=phosphors


N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

Rudnick et al. Page 23

Table 2

NIST Peptide Mass Spectral Libraries created from CPTAC data

Instrument/Mode Species Derivative/PTM Number
Spectra

Ion trap - HCD Human iTRAQ-4 part 1 581,416

Ion trap - HCD Human iTRAQ-4 part2 620,216

Ion trap - HCD Human iTRAQ-4/Phospho 223,340

Ion trap - HCD Mouse iTRAQ-4 17,851

Ion trap - HCD Mouse iTRAQ-4/Phospho 15,746
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Table 3

A summary of q-value (FDR) thresholds used in the CDAP to filter major TCGA datasets.

Dataset Max Spec.
FDR

MAYU
FDR

Target
Genes

TCGA_Colorectal_VU_Proteome 0.115% 1.00% 5561

TCGA_Breast_BI_Proteome 0.077% 1.00% 10599

TCGA_Breast_BI_Phosphoproteome 0.185% 0.99% 7526

TCGA_Ovarian_JHUZ_Proteome 0.165% 1.00% 8588

TCGA_Ovarian_JHUZ_Glycoproteome 1.000% 0.32% 891

TCGA_Ovarian_PNNL_Proteome 0.271% 0.99% 7471

TCGA_Ovarian_PNNL_Phosphoproteome 1.000% 0.46% 5161
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