
UC Irvine
UC Irvine Previously Published Works

Title
A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion 
experiments in tokamaks

Permalink
https://escholarship.org/uc/item/73q40870

Journal
Plasma Physics and Controlled Fusion, 55(2)

ISSN
0741-3335

Authors
Kramer, GJ
Budny, RV
Bortolon, A
et al.

Publication Date
2013-02-01

DOI
10.1088/0741-3335/55/2/025013

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73q40870
https://escholarship.org/uc/item/73q40870#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 55 (2013) 025013 (23pp) doi:10.1088/0741-3335/55/2/025013

A description of the
full-particle-orbit-following
SPIRAL code for simulating fast-ion
experiments in tokamaks

G J Kramer1, R V Budny1, A Bortolon2, E D Fredrickson1, G Y Fu1,
W W Heidbrink2, R Nazikian1, E Valeo1 and M A Van Zeeland3

1 Princeton Plasma Physics Laboratories, PO box 451, Princeton, NJ 08543, USA
2 University of California-Irvine, Irvine, CA, USA
3 General Atomics, PO Box 85608, San Diego, CA 92186, USA

Received 25 July 2012, in final form 29 November 2012

Published 21 January 2013

Online at stacks.iop.org/PPCF/55/025013

Abstract

The numerical methods used in the full particle-orbit following SPIRAL code are described

and a number of physics studies performed with the code are presented to illustrate its

capabilities. The SPIRAL code is a test-particle code and is a powerful numerical tool to

interpret and plan fast-ion experiments in tokamaks. Gyro-orbit effects are important for fast

ions in low-field machines such as NSTX and to a lesser extent in DIII-D. A number of physics

studies are interlaced between the description of the code to illustrate its capabilities. Results

on heat loads generated by a localized error-field on the DIII-D wall are compared with

measurements. The enhanced Triton losses caused by the same localized error-field are

calculated and compared with measured neutron signals. Magnetohydrodynamic (MHD)

activity such as tearing modes and toroidicity-induced Alfvén eigenmodes (TAEs) have a

profound effect on the fast-ion content of tokamak plasmas and SPIRAL can calculate the

effects of MHD activity on the confined and lost fast-ion population as illustrated for a burst of

TAE activity in NSTX. The interaction between ion cyclotron range of frequency (ICRF)

heating and fast ions depends solely on the gyro-motion of the fast ions and is captured exactly

in the SPIRAL code. A calculation of ICRF absorption on beam ions in ITER is presented.

The effects of high harmonic fast wave heating on the beam-ion slowing-down distribution in

NSTX is also studied.

(Some figures may appear in colour only in the online journal)

1. Introduction

In toroidal fusion devices the motion of the particles is

determined by the Lorentz equations. The particle motion

consists of the fast gyro-motion with typical frequencies

in the MHz range for ions, the drift motion with typical

frequencies in the range of up to a few hundred kHz for

ions, and the precessional motion which is typically on the

order of a few kHz for ions. The fast gyro-motion is often

neglected and the orbits are calculated at the center of the

gyro-orbit because the inclusion of the gyro-motion makes the

calculations very expensive in CPU time [1–4]. In the guiding

center approximation the magnetic moment of the particles,

which is an adiabatic invariant [5, 6], is taken to be conserved

while the magnetic and electric fields and other relevant plasma

properties are calculated at the guiding center location. The

assumption made in guiding center theory is that the gyro-

orbit is small compared with the characteristic scale length

of the fields, a condition that is usually met for thermal ions

in present day large tokamaks. Fast ions, however, can have

substantially larger Larmor radii that can become comparable

to the characteristic scale lengths of the plasma profiles,

turbulence and magnetohydrodynamic (MHD) structures such

as Alfvén eigen modes and therefore, the guiding center
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approximation is not valid anymore [7]. This is especially

the case in spherical tokamaks such as NSTX with their low

toroidal fields. Another consequence of averaging over the fast

gyro-motion in the guiding center approximation is that the

interaction between ion cyclotron waves (ICRF) and the ions

is not captured in guiding center calculations although efforts

have been made to approximate the ICRF–particle interaction

in guiding center codes with kick operators [8, 9] but only

a full-orbit treatment of the particle motion can capture the

interaction between particles and ICRF.

With the advance of high-speed parallel computers it

has become possible to follow the full orbits of fast ions

in toroidal geometry and use statistically relevant ensembles

of test particles to study the interaction between waves and

particles without the limitations imposed in guiding center

theory. The motion of charged particles in electromagnetic

fields is governed by the Lorentz equations:

dv

dt
= q

m
(v × B + E),

dr

dt
= vt (1)

with m the mass, q is the charge, r is the position and v is the

velocity of the particle while B and E are the magnetic and

the electrical fields at the particle position.

Apart from the electromagnetic forces the fast ions are also

affected by the thermal plasma through which they move. At

high energies the fast ions suffer drag from thermal electrons

that slow them down without a significant change in direction

while less frequent collisions with thermal ions are responsible

for changes in the travel direction of the fast ions, known as

pitch-angle scattering.

In this paper, a description of the SPIRAL code is

given and is interlaced with results from physics studies

to illustrate the code capabilities. The SPIRAL code

is written in the C language [10] and it makes use of

the Numerical Algorithms Group (NAG) library routine:

nag ode ivp adams gen (d02cjc) [11] which is a highly

accurate, variable order, variable step size modified Adams

method for solving the differential equations. When particles

are followed in static magnetic fields only for ∼50 ms, their

energies are usually conserved better than 10−5. Due to the

nature of the problem, following a large number of independent

test particles on their paths through the plasma, parallel

processing of individual orbits is straightforward and we have

used the MPI package [12] to handle the parallel processing.

The execution time increases linearly with the number of test

particles and scales inversely with the number of CPUs on

which the code is running. Great care has been taken that

(partial) results are stored on disk as soon as they they are

available and can be monitored during the run. When a

computer failure occurs during a run, the SPIRAL code can

very easily be restarted from that point, avoiding loss of CPU

time. In the output file a large number of variables is written

for access with a post-processor code so that the results can be

studied in detail. Moreover, realistic first walls for different

machines can be selected in the code so that particle losses

and heat loads to the first wall can be studied accurately. The

calculation of the intersection of particle orbits with the wall

are handled by the used NAG routine which will stop when the

particle intersects the wall.

In section 2 the implementation of the equilibrium

magnetic fields is discussed. Equilibrium solvers usually

give the relevant fields on a discrete spatial mesh and a

robust interpolation routine is presented that obtains the fields

between the mesh points under the condition that Maxwell’s

equations are satisfied. In this section single particle orbits in

NSTX and DIII-D are studied and it is shown that gyro-motion

effects are significant in NSTX while they are small in DIII-D.

Slowing-down and pitch-angle scattering are discussed in

section 3 and 3D equivalents of the 2D equations for pitch

angle and slowing-down as given in [13] are derived.

For an accurate comparison between simulations and

experimental results it is important to use realistic fast-ion

distribution functions that reflect the ones present in the

experiments. It is (almost) impossible to measure the full

spatial and velocity distribution of the fast ions. Therefore, the

SPIRAL code has the capability to either read a given fast-ion

distribution or generate it internally as discussed in section 4

and a study in NSTX is presented on the effects of a tearing

mode on the beam-ion distribution.

Toroidal-symmetry breaking fields are ubiquitous in

tokamaks. They arise from the finite number of toroidal

field coils, from ferritic steel that is needed for strength,

or they can be induced deliberately with external field coils

for shaping the plasma edge and suppressing edge-localized

modes (ELMs) while losses induced by toroidally localized RF

antennas can create hot spots [14]. In section 5 the numerical

techniques are discussed that were used to implement those

error fields in the SPIRAL code in such a way that Maxwell’s

equations are satisfied accurately. Instead of using a Fourier

harmonic decomposition of the ripple fields we have chosen

to specify the ripple fields on a cylindrical mesh so that highly

localized perturbations, which are poorly described by a finite

number of Fourier harmonics, can be included as well as

conventional toroidal ripples. In this section, two cases are

presented. In the first case the effects of a highly localized

magnetic perturbation from a scaled mock-up Test Blanket

Module (TBM) for ITER in DIII-D on the neutral beam

ions and on the 1 MeV tritium population are simulated and

compared with observations. In the second study the effects of

resonant magnetic field perturbations (RMPs) on the beam ion

confinement in NSTX are simulated to investigate whether the

effects are large enough to observe RMP-enhanced beam-ion

losses and/or changes in the confined fast-ion population that

can be measured with the Fast Ion Dα (FIDA) diagnostic [15].

In section 6 the implementation of MHD modes and

RF waves in the SPIRAL code is discussed. MHD activity

can have large effects on the fast-ion population via resonant

interactions. Resonances between fast ions and a reversed

shear Alfvén eigenmode (RSAE) in DIII-D are studied. In

addition, the effects of short (<1 ms) bursts of torodicity-

induced Alfvén eigenmode activity, which are often observed

in NBI-heated discharges in NSTX, on the neutral-beam

slowing-down distribution are investigated (section 6.1).

One of the major heating schemes proposed for ITER is

ion cyclotron range of frequency (ICRF) heating where RF

2



Plasma Phys. Control. Fusion 55 (2013) 025013 G J Kramer et al

waves interact with the gyro-motion of the ions. Because this

interaction involves the gyromotion of the particles it cannot

be calculated with particle-orbit following codes that use the

guiding center approximation which neglects the gyro-motion.

Because the full gyro-motion is retained in the SPIRAL code,

the interaction between the ICRF waves and ions appears

naturally in the simulations. Two studies in ICRF absorption

by fast ions are discussed in section 6.3. The first one is a study

for ITER in which an estimate is calculated for the parasitic

absorption of ICRF on the deuterium beam-ion slowing-down

distribution (section 6.3). As a second example the interaction

between high harmonic fast waves (HHFWs) and neutral beam

ions in NSTX are studied. Because of NSTX’s low magnetic

field a large number of harmonic ICRF resonances are present

in the NSTX plasma and particles can interact with several of

those along their drift orbits. A preliminary study is presented

of HHFW effects on a beam-ion slowing-down distribution

showing that a significant fraction of the energetic beam ions

is lost due to the HHFW (section 6.3). Conclusions are drawn

in section 7. Where possible, comparisons between full orbit

and guiding center calculations will be made but an exhaustive

study between the two calculations is beyond the scope of this

paper.

2. Equilibrium magnetic and electrical fields

For an accurate calculation of charged particle orbits in

plasmas, the magnetic and electric fields should be known

accurately in the region where the particle moves. The

equilibrium magnetic fields in tokamaks are usually calculated

on a discrete mesh with equilibrium codes such as EFIT [16]

and q-solver. SPIRAL can read the output from those codes,

which consist of the poloidal flux function, �p(R, Z), and

the diamagnetic correction to the toroidal magnetic field. The

radial and vertical components of the poloidal magnetic field

are obtained by taking the derivatives of �p with respect to R,

and Z:

BR = 1

R

∂�p(R, Z)

∂Z
,

BZ = − 1

R

∂�p(R, Z)

∂R
. (2)

Taking accurate numerical derivatives from a function that is

given on a finite mesh is difficult because it has to preserve the

divergence-free condition as dictated by Maxwell’s equations

which translates in this case to ∂RBR(R, Z)+∂ZBZ(R, Z) = 0

because of the toroidal symmetry. In SPIRAL we have solved

this problem by fitting a 2D Chebyshev polynomial expansion

[17] to the given discrete points of the poloidal flux function:

�p(R, Z) =
∑

i

∑

j

aijTi(R)Tj (Z). (3)

Once a good fit is obtained (usually 15–30 radial and vertical

terms are needed), derivatives can be obtained analytically by

rearranging the expansion coefficients (see appendix A). It can

be shown easily that the magnetic field obtained in this way is

divergence free as required by Maxwell’s equations up to the
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Figure 1. (a) A full orbit (red) and its guiding center orbit (blue) for
a 90 keV deuteron in NSTX. The particle was launched at the LFS
mid-plane parallel to the magnetic field. (b) The parallel and (c) the
perpendicular velocities along the drift orbit.

computer accuracy over the entire region where the Chebyshev

expansion is valid.

We will now study two single particle orbits in the

equilibrium fields of NSTX and DIII-D and find that full-orbit

effects are significant in NSTX while in DIII-D the effects are

minimal. The particle orbit in a typical equilibrium field for

NSTX is shown in figure 1 where a 90 keV deuteron, which

is the maximum NBI injection energy in NSTX, was launched

at R = 1.4 m and Z = 0.0 m with a pitch, v‖/v, of one

which means for NSTX that the particle velocity is anti-parallel

to the local magnetic field. (The parallel component, v‖, of

the particle pitch, v‖/v, is parallel to the local magnetic field

whereby the sign ofv‖ is defined to be positive when the particle

moves in the direction of the plasma current which is opposite

to the toroidal magnetic field direction in NSTX). Both the

full orbit (in red) and guiding center orbit (in blue) are shown,

where the latter is obtained from the full orbit by evaluating

the instantaneous guiding center which is given as

Rgc = Rp − mv × B

qB2
, (4)

where B is taken at Rp, the particle location. There are two

things noteworthy about this orbit. First, the gyro-frequency

is only 12 times higher than the drift frequency which violates

the assumption made in guiding center theory that the gyro-

frequency is much higher than the drift frequency. Second, it

can be seen from figure 1 that the full orbit has excursions of

up to 3.7 cm away from the guiding center orbit which can be

understood as follows: at the launch point the Lorentz force is

zero because particle velocity is parallel to the magnetic field

(figure 1(b)). Only when a perpendicular velocity component

develops (figure 1(c)), a magnetic force arises and pulls the

particle back onto its poloidal orbit.

When this orbit is calculated with the guiding center

equations [18] the projection of the orbit onto the poloidal

plane is virtually the same as the instantaneous guiding center

3
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Figure 2. (a) A full orbit (red) for a 80 keV deuteron in DIII-D. The
particle was launched at the LFS mid plane parallel to the magnetic
field. (b) The parallel and (c) the perpendicular velocities along the
drift orbit.

(equation (4)) with deviations between the two orbits of less

than 1 mm. Notably in the guiding center calculation the

parallel velocity of this particle remains constant along the

orbit because its magnetic moment was chosen to be zero at the

start. As a consequence, a poloidal transit of the guiding center

in the guiding center calculation is completed slightly faster

than one transit in the full-orbit calculation. This difference is

reflected in the poloidal transit frequency which is 388.2 kHz

for the full-orbit calculation and 398.6 kHz in the guiding

center approximation, a difference of more than 10 kHz (or

2.6%). This difference is not caused by numerical differences

in the magnetic fields because the same parametrization of the

magnetic fields was used in the guiding center and full-orbit

calculations.

The orbit for an 80 keV deuteron in DIII-D is shown in

figure 2 where the particle was launched at the LFS mid-

plane at R = 2.12 m with its velocity anti-parallel to the local

magnetic field line (pitch: v‖/v = 1.0 because the plasma

current is opposite to the toroidal magnetic field direction).

In this case the gyro-frequency is more than two hundred

times higher than than the drift frequency and therefore,

guiding center theory is more accurate than in the NSTX

case. This is also reflected in the difference between the full

orbit and guiding center orbit where the maximum difference

between the two orbits is 1.2 mm which is indistinguishable

in figure 2(a). The perpendicular velocity that the particle

develops in this case is a very small fraction (less than 4%)

of the initial parallel velocity as can be seen in figures 2(b)

and (c) and therefore, the poloidal transit frequency difference

between the full-orbit calculation (66.378 kHz) and the guiding

center calculation (66.430 kHz) is small, 52 Hz.

Key-particle-orbit frequencies, such as the poloidal transit

frequency, and toroidal transit and precession frequencies,

which are quintessential for wave–particle interaction studies,

are determined in the SPIRAL code using a two-dimensional

Fourier transform of the poloidal and toroidal projection of

the particle orbit. For the poloidal frequencies the radial

(a) (b)
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Figure 3. A full orbit (red) and its guiding center orbit (blue) for an
80 keV deuteron in DIII-D for which the frequency spectra in
figure 4 were calculated. (a) Poloidal and (b) top view. The particle
was launched at the mid-plane at x = 2.12 m, y = 0.0 m with a
pitch of 0.8 and followed for one poloidal transition.
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Figure 4. spectra of the poloidal (a) and toroidal (c) projection of
the particle orbit shown in figure 3. with a zoom around zero
frequency in (b) and (d). The poloidal bounce frequency, fb, is
indicated in (b) while in (c) the toroidal transit frequency, ft , is
shown.

and vertical coordinates are treated as real and imaginary

quantities, respectively, for the complex fast Fourier transform.

The output is a spectrum with the bounce frequency and its

harmonics centered close to zero frequency while the cyclotron

frequency and its harmonics form broad structures at higher

frequencies. The broadening is caused by the varying magnetic

field along the particle orbit. In a similar way the toroidal

frequencies are obtained from the projection of the particle

orbit in the mid-plane.

Poloidal and toroidal spectra for the orbit depicted in

figure 3 are shown in figure 4. The orbit is for an 80 keV

deuteron launched at the mid-plane at x = 2.12 m, y = 0.0 m

with a pitch of 0.8. The fundamental cyclotron frequency is

clearly visible between ±12 and 18 MHz while the second

and third harmonic cyclotron harmonics are visible at twice

4
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Figure 5. (a) Particle energy as a function of time for a deuteron that was launched at 1 MeV and (b) the slowing-down time calculated from
equation (12). When the particle reaches thermal velocity the slowing-down is switched off in the SPIRAL code.

and three times the fundamental frequency, respectively. The

poloidal bounce frequency at 49.6 kHz and its harmonics are

visible in figure 4(b) while the toroidal transit frequency at

191.6 kHz is visible in figure 4(d) together with its harmonics.

Static electrical fields in plasma equilibria arise from

plasma rotation and pressure gradients:

E(R, Z) = −∇� = vplasma × B + ∇p/q (5)

with vplasma the bulk plasma toroidal velocity, p is the plasma

pressure, q is the charge of the fast ion and B is the equilibrium

magnetic field. These static electrical fields can be included in

SPIRAL calculations as an electrical potential function �(�p).

3. Slowing-down and pitch-angle scattering

Before discussing perturbative fields that are included in

SPIRAL we will first discuss slowing-down and pitch-angle

scattering in 3D geometry and the particle distributions that

can be included in the code.

On their journey through the plasma the fast ions lose

energy to the background thermal plasma. At high fast-

ion velocities the energy loss is mainly to the electrons

without substantial scattering but when the fast ions approach

thermal velocity the interaction with the thermal ions becomes

important and the ion interaction gives rise to pitch-angle

scattering.

Traditionally, slowing-down and pitch-angle scattering

are written in guiding center formalism [19] as a collision

operator, C, for a distribution of energetic particles, f :

Cf = νd∂λ(1 − λ2)∂λf − ν

v2
∂v(v

3 + v3
c )f (6)

with v = |v|, λ = v‖/v the particle pitch, ν the collision rate

given by

ν = neZeffe
2q2

f ln �

4πǫ2mimfv3
c

, (7)

where ne is the electron density and the Coulomb logarithm,

ln �, is given by � = 12πneλ
3
D with λD the Debye radius

[20, 21] and νd is the pitch-angle scattering rate given by

νd = v3
c

2v3
ν, (8)

where the critical velocity, vc is calculated as

v3
c = 3

√
π

4

me

mi

(

2KBTe

me

)3/2

(9)

with me, (mi, mf) the electron (plasma, fast-ion) mass, qf is

the charge of the fast ion and Te is the electron temperature.

The first term of the right-hand side of equation (6) describes

the pitch-angle scattering while the second term describes the

slowing down whereby the v3 term is due to fast-ion–electron

interactions while the v3
c comes from fast-ion–ion interactions.

From the collision operator (equation (6)) the slowing-down

equation:

dv

dt
= −ν

(v3 + v3
c )

v3
v (10)

can be obtained. This equation is valid in both the guiding

center formalism with v = (v‖, v⊥) and in full-orbit formalism

with v = (vx, vy, vz) and it is valid for velocities above the

thermal velocity of the bulk plasma. When no precaution is

taken the fast ions can slow down to zero velocity in simulations

where the particles are followed for several slowing-down

times as can be seen from equation (10). In long simulations

one can avoid this unphysical situation by marking the particle

lost to the thermal bulk when the particle energy is close to the

local plasma temperature or by switching off the slowing-down

acceleration are as follows:

dtv = −ν
(v3 + v3

c )

v3
erf

(

Ef

KBT
− 1

)

v (11)

with erf(x) the error function and Ef = 1
2
miv

2 is the fast-ion

energy. When particle energy is much higher than the thermal

energy the error function is one and the particle slows down

as usual as can be seen in figure 5(a) while near the thermal

velocity the error function goes to zero and the de-acceleration

is stopped. In SPIRAL one can either stop following the

5
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particle when it reaches thermal velocity or following it to

the requested end-time with the slowing-down force turned off

as describe above.

The slowing-down time quantifies the time it takes to

thermalize the particle and one can specify the velocity

slowing-down time, τv, or the energy slowing-down time, τE

which is half the velocity slowing-down time. The velocity

slowing-down time can be calculated from equation (10) as

τv = |v|
|dtv| = 1

ν

v3

(v3 + v3
c )

1

erf
(

Ef

KBT
− 1

) . (12)

In the high energy limit (v ≫ vc) this becomes τs = 1/ν

but when the velocity is near the critical velocity the energy

slowing-down time shortens as is shown in figure 5(b). In

SPIRAL measured electron temperature and density profiles

are used. Therefore, the scattering rates and critical velocities

are dependent on the location of the particle in the plasma.

Pitch-angle scattering in guiding center theory has been

derived in [13] for an ensemble of fast ions. The new pitch,

λn, is calculated from the old one, λo, at discrete time steps,

�t , as

λn = λo(1 − 2νd�t) ±
√

(1 − λo)2νd�t, (13)

where the time step is chosen in such a way that νd�t ≪ 1

and the ± sign is determined randomly at each time step. This

operator fulfills the condition that |λn| � 1 − νd�t . In fact,

this constraint is slightly too restrictive because it can be shown

that there is a small region in pitch space close to |λn| = 1 that

cannot be reached by the particle. This region is given by

|λn| > 1 − νd�t and can be removed by ignoring the factor

of two in the first term of equation (13). Removing this factor

does not influence the random-walk process due to the pitch-

angle scattering because the random process is governed by

the second term in equation (13).

In contrast to pitch-angle scattering in the guiding center

approximation with two velocity components, the full-orbit

treatment requires scattering in three dimensions. In this

section, we derive the full 3D pitch-angle scattering from

geometrical considerations and obtain the 3D equivalent of

equation (13). We will also derive the 2D pitch-angle scattering

equation (equation (13)) without the extra factor of two in the

first term.

In the 3D equivalent of pitch-angle scattering as depicted

in figure 6, the fast ion is scattered over a small angle, �θ , into a

velocity cone around its original velocity, vold. The location on

the cone, indicated with φ, is in this case the random variable

and averaging is performed by taking a large number of small

scattering time steps along the particle orbit.

For the 3D pitch-angle scattering we can choose without

the loss of generality the following coordinate system: (p0 =
v̂‖o, p1 = v̂⊥o, p2 = p0 × p1) with v̂‖o and v̂⊥o unit vectors

defined by the particle velocity parallel and perpendicular

to the magnetic field before scattering. The parallel and

perpendicular scatter angles are now given by: �θ‖ =
�θ sin(φ) and �θ⊥ = �θ cos(φ). From figure 6 it can be

seen that the new parallel velocity after scattering becomes

v‖n = v cos(θ + �θ‖) cos(�θ⊥) (14)

P
1

P 2

B

V old

V new

v

v
||

⊥
∆

∆
θ

∆θ

φ

Figure 6. Pitch-angle scattering in 3D parallel/perpendicular space.

while the new perpendicular velocities along the p1- and
p2-axis become

v⊥p1
n = v sin(θ + �θ‖) cos(�θ⊥),

v⊥p2
n = v sin(�θ⊥), (15)

which corresponds to a rotation of the old velocity vector over
an angle pair (�θ‖, �θ⊥) and therefore, the new pitch, |λn|,
after scattering is naturally restricted to equal or less than one.

Using now the fact that |�θ | ≪ 1 and expanding the
geometrical functions in equations (14) and (15) we obtain the
following expressions for the three velocity components:

v‖n = v(cos(θ) cos(�θ‖) − sin(θ) sin(�θ‖)) cos(�θ⊥)

≈ (v‖o(1 − �θ2
‖ /2) − v⊥p1

o�θ‖)(1 − �θ2
⊥/2),

v⊥p1
n = v(cos(θ) sin(�θ‖) + sin(θ) cos(�θ‖)) cos(�θ⊥)

≈ (v‖o�θ‖ + v⊥p1
o(1 − �θ2

‖ /2))(1 − �θ2
⊥/2),

v⊥p2
n = v sin(�θ⊥) ≈ v�θ⊥. (16)

These equations are implemented in the SPIRAL code where
the angle, φ, is drawn from a uniform distribution between 0
and 2π .

We can recover the Monte Carlo collision operator
(equation (13)) from the 3D results of equation (16) by
noting that the expectation of the parallel scattering angle is
< �θ2

‖ >φ= �θ2/2 where < · >φ stands for averaging over
φ along the full circle while averaging over the perpendicular
scattering angle gives < �θ⊥ >φ= 0. After substituting those
values in equation (16) we obtain for the parallel component:

v‖n = v‖o(1 − �θ2/4) ± v⊥p1
o�θ/

√
2, (17)

where the ± sign which arises from the square root of �θ2/2
acts as the random variable in the scattering process. If we
now identify �θ2/4 with νdτ we obtain

v‖n = v‖o(1 − νdτ) ±
√

v2
⊥o2νdτ , (18)
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Figure 7. Spread of pitch-angle distribution as a function of orbit
following time. The solid line is a square-root fit to the data.

which is the same result as in equation (13) except for the factor

two in the v‖o term.

The spread in pitch of an ensemble of particles that is

initialized at the same location and with the same pitch angle

should follow a square-root behavior with time. Both the

guiding center and the 3D formulation follow that behavior

and are in excellent agreement with each other as can be seen

from figure 7 where the spread in pitch of an ensemble of 2500

particles, initialized with zero pitch was followed in time.

There is an important difference in pitch-angle scattering

between the guiding center and full-orbit formalism that can

affect the calculated orbits. In the guiding center formalism,

the orbit of the guiding center is continuous during the

scattering while the particle orbit has (small) discontinuous

jumps because v⊥ changes discontinuously when the particle

scatters. This can be seen from the expression for the gyro-

radius, ρ = v⊥/ωc. Those discontinuities in the particle orbit

are physically unrealistic. In full 3D geometry, the scattering

takes place at the particle location and therefore, the orbit of

the particle is continuous which is physically correct while the

guiding center orbit has discontinuous jumps at each scatter.

4. Particle distributions

Single-particle-orbit studies are useful to gain insight in

the details of the particle–plasma interaction but statistically

significant ensembles of particles are needed for fast-ion

transport studies. A number of fast-ion distributions can be

generated by SPIRAL such as a fusion alpha birth profile

and two-temperature Maxwellian distributions. Fast-ion

distributions can also be read from an external file. This option

is very useful to import the distribution functions as calculated

with other codes such as the TRANSP/NUBEAM [22, 23]

package.

Ensembles of fusion-born alpha particles can be generated

by SPIRAL from a given alpha-particle birth profile which

is a flux function. The test particles are drawn from that

distribution and placed uniformly toroidally and poloidally on

the flux surface. The particle pitch is drawn from a uniform

pitch distribution, the alpha particle energy is set to its birth

energy of 3.5 MeV, and the gyro-phase is drawn from a uniform

distribution between 0◦ and 360◦.

Maxwellian fast-ion distributions of test particles can be

generated from a fast-ion density profile in combination with

a parallel and perpendicular temperature profile whereby the

profiles are given as flux functions. The parallel temperature

can differ from the perpendicular one. In a similar way as

fusion-born alpha particle ensembles, Maxwellian ensembles

are drawn from the given fast-ion density profile and placed

uniformly on its flux surface. The particle energy and

pitch are now obtained from the requested local parallel and

perpendicular temperatures while the gyro-phase is drawn

from a uniform distribution between 0◦ and 360◦.

The most flexible way of specifying the fast-ion

distribution is to read the distribution from an external file

on which the particle birth locations and velocities are written

and this option will be exploited in simulations reported in this

paper.

4.1. Effects of a tearing mode on a beam-ion distribution

The SPIRAL code has been used to calculate accurate

statistical representations of the beam-ion slowing-down

distributions in an NSTX discharge with and without the

presence of a magnetic fluctuations. This study was motivated

by the observation of a low-frequency mode that caused a

substantial changes in measured FIDA signals. The changes

in the FIDA signals are indicative of changes of fast ion

distribution function. SPIRAL was used to determine the fast-

ion redistribution associated with modes of tearing or ideal

kink nature. Here we report results from the tearing mode case,

while the detailed analysis of the ideal kink effect is discussed

in [24].

The TRANSP/NUBEAM package was used to generate

the beam-ion birth profile for the SPIRAL simulations from

the three beam sources that operated at 90 kV acceleration

voltage. In figure 8 the distribution of the Larmor radii at

the particle birth time for the three energy components of the

beam is shown. Larmor radii of up to 19 cm are present

at birth which should be compared with the characteristic

radial size of the mode (see figure 9(a)) which is on the

order of 2 cm on the low-field side and around 10 cm at

the high-field side. Because the Larmor radii are larger or

comparable to the characteristic mode structure the guiding

center approximation is not valid here and a full-orbit treatment

of the wave–particle interaction is needed. (Only at thermal

energies well below 1 keV the deuterium gyro-radius becomes

comparable or smaller then the characteristic mode structure

at the low-field side). Moreover, the Larmor radii are also

significant compared with the characteristic scale length of

the equilibrium field (∼0.5 m) which is outside the validity of

guiding center theory.
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Figure 8. Distribution of Larmor radii for 90 keV beam ions at birth
for a typical NSTX discharge. The full-energy component (red)
consists of 43.3% the injected particles while the half energy
component (blue) consists of 39.5% and the third-energy component
(green) contains 17.1% of the injected particles.

In the calculations 30 000 particles were taken from

the 3D beam-ion birth profile as calculated by the

TRANSP/NUBEAM package and distributed uniformly in

time between 0 and 25 ms. All of the particles were then

followed until they reached 25 ms which is more than twice

as long as the average energy slowing-down time. Two runs

were made. In both runs the toroidal ripple, the radial electrical

field from the plasma rotation, slowing-down, and pitch-angle

scattering were included but only in the second run the tearing

mode was included along the lines explained in section 6. We

have used an m/n = 4/1 mode as shown in figure 9(a) with

an amplitude of B̃r/B = 8 × 10−3 based on observations, and

a mode frequency of 10 kHz. When the mode was taken into

account the beam-ion losses increase from 17% to 23%. The

calculated slowing-down distribution of the confined particles

for the case without the mode is shown in figure 9(b) while in

figure 9(c) effects of the mode on the distribution are taken into

account. In figure 9(d) the difference between the distribution

with and without the mode is shown. From this figure it can

be seen that the mode mainly affects the distribution below

35 keV with pitches between 0 and 0.5 which corresponds to

mainly trapped ions, while the distribution at higher energies

and a more parallel pitch is hardly affected by the tearing mode.

The FIDA system of NSTX which registered clear changes in

the fast ion distribution in the experiment is not sensitive to

the part phase space where the calculated changes occur due

to the tearing mode. When a kink mode was used as was

reported in [24] changes in phase space were found that were

compatible with the FIDA measurements.

5. Static perturbed magnetic fields

Toroidal ripple and error fields are common phenomena in

tokamaks and it has been shown that those fields can contribute

significantly to fast-ion losses [25]. Harmonic expansions

in the toroidal angle are frequently used in particle-orbit

following codes to include those ripple fields [26]. For

ripples generated by a finite number of toroidal field coils

such an approach works well but in some cases a toroidally

and poloidally localized perturbation is created which cannot

be decomposed adequately with a manageable number of

harmonics. Such highly localized perturbations are expected

in front of the TBM in ITER because of the significant amount

of ferritic steel that is used in those modules [27]. Two

examples of toroidal ripple fields are shown in figure 10 where

a conventional ripple induced by a finite number of toroidal

field coils is shown for NSTX while a localized ripple in DIII-

D that was deliberately induced by a set of coils to create the

expected (scaled) fields in ITER induced by one pair of TBMs.

The fields in DIII-D were used to study the impact of such

localized perturbed fields on the plasma performance [28] and

first wall heat loads [29].

In order to include both the harmonic and localized

ripples accurately in the SPIRAL code, the radial, bR(R, ϕ, Z),

and vertical, bZ(R, ϕ, Z), components of the ripple field are

given at a number of toroidally equally spaced planes on

an unstructured mesh in (R, Z). On each toroidal plane a

2D Chebyshev polynomial fit is made for the bR and bZ

while the toroidal component of the ripple field, bϕ(R, ϕ, Z),

is computed from the condition that the magnetic field is

divergence free. For the interpolation in the toroidal direction

we have used a quadratic polynomial around each given

toroidal plane:

bi
x(R, ϕ, Z) = bi

x(R, Z) + ui
x(R, Z)ϕ + vi

x(R, Z)ϕ2 (19)

with x either R or Z, and i the index of the ith plane. We

demand further that the radial and vertical fields and their

derivatives are continuous half way between two adjacent

planes. In order to calculate the toroidal field we expand the

functions bi
x(R, Z), ui

x(R, Z) and vi
x(R, Z) of equation (19)

into a finite sum of Chebyshev polynomials and from the

condition that the magnetic field is divergence free we can

solve the unknown Chebyshev coefficients of the functions

ui
x and vi

x . This involves differentiating the expansions

of bi
x , ui

x and vi
x with respect to R and Z, summing the

various components, integrating with respect to ϕ and making

use of the facts that the field is periodic in ϕ and that the

Chebyshev polynomials are orthogonal. All those operations

are performed analytically using the Chebyshev expansion

coefficients and therefore, the ripple field is guaranteed to

be divergence free in the calculations down to the numerical

precision of the computer. In most ripple calculations it is

sufficient to include about 10–15 coefficients in the radial

and vertical direction to describe the ripple fields accurately

as is shown in figure 10 for a conventional toroidal ripple

in NSTX and a localized perturbation in DIII-D created

by the TBM mock-up coils. In this figure it can be

seen that the reconstructed toroidal field perturbation in

SPIRAL is in excellent agreement with the one that was

given.

Three examples of SPIRAL calculations with static

magnetic fields are given here. In the first example heat
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Figure 9. (a) Radial magnetic field fluctuation of a tearing mode that was used to calculate the slowing-down distribution (b) without and
(c) with the mode from the TRANSP/NUBEAM deposition profiles indicated in pink. (d) The difference between the slowing-down
distributions without and with the mode present.

loads on the TBM surface are calculated and compared with

measured temperatures. Full-orbit effects in this case only

become apparent near the wall at the point where they are

lost [29]. In the second example simulated triton losses are

compared with neutron signals that were measured during

the TBM mock-up experiments in DIII-D [28]. Full-orbit

simulations are needed in this case because the tritons are

born in the plasma at 1 MeV and have gyro-radii of up to

0.2 m in the DIII-D magnetic fields. In the third simulation

the effect of RMPs on the beam-ion confinement is studied for

optimizing measurable signals in the planning phase of NSTX

experiments. Because of the low magnetic fields in NSTX only

full-orbit calculations can give accurate predictions for those

experiments.

5.1. TBM-induced heat load simulations

Heat loads on the carbon tiles that protect the TBM mock-
up coils in DIII-D were calculated in the presence of the
highly localized TBM error fields as shown in figure 11. Tile
temperature rises were then calculated from the simulated heat
loads and compared favorably with measured tile temperature
rises. Details of this experiment are given in [28, 29]. The
heat load was caused by 60–80 keV beam ions that are lost
shortly after injection before the ions have time to slow down
significantly. In order to calculate accurately the location
where the particle impacts the wall, it is important to take into
account the full-particle orbit because the Larmor radius, in this
case up to about 4 cm at the point of impact, is comparable or
larger than the characteristic TBM field gradient scale lengths
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Figure 10. Toroidal magnetic ripple field for NSTX (left) and the TBM mock-up in DIII-D (right) both at the mid-plane low-field side
plasma edge. From the given radial (bR) and vertical (bZ) components the toroidal component (bϕ) is reconstructed (black line) and
compared with the given field (red crosses).

near the tile surfaces. The heat loads from the SPIRAL

simulations reproduce the measured temperature increase at

the back of the 2.5 cm thick protective carbon tiles in the TBM

experiments as was reported in [29].

5.2. TBM-induced triton losses

When NBI is injected in DIII-D, a small fraction of the fast

deuterium beam ions react with the thermal deuterium plasma:

Dbeam + Dplasma →
{

3He + n(2.56 MeV)50%,

P + T(1.01 MeV)50%.

By measuring the 2.56 MeV neutron signal one can deduce

the 1.01 MeV triton birth rate in the plasma because of the

equal branching ratios of the two reactions. In DIII-D those

1.01 MeV tritons have a large Larmor radii (figure 12), up

to 20 cm, they are marginally confined, and the orbits of

the confined tritons are very sensitive to perturbations of the

magnetic field.

The confined tritons slow down and react with the thermal

deuterium to form 4He and a 14.1 MeV neutron. Therefore,

the ratio between the 2.56 and 14.1 MeV neutrons can be used

as a sensitive measure for the triton confinement. In the DIII-

D TBM experiments it was found that this ratio decreased by

33 ± 5% [28] when the TBM error fields were engaged.

For a SPIRAL simulation of the triton burn-up

measurements we have simulated a typical DIII-D H-mode

discharge (pulse 140153) with 5.8 MW of NBI power injected

in which the TBM fields were applied. The triton birth profile

was obtained from a TRANSP run for this shot. Two SPIRAL

runs were made, one without and one with the TBM fields

present. In both cases 5000 test particles were followed
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Figure 11. Heat loads due to beam-ion losses on the protective tiles
(outlined in yellow) of the TBM mock-up experiment in DIII-D as
calculated with the SPIRAL code.

for up to 100 ms. The energy slowing-down time of those

1 MeV tritons is 175 ms, so at the end of the simulation the

confined tritons had reached an energies of 600 keV or lower.

In principle, the tritons should have been followed to around

70 kev, the energy where the DT fusion cross section peaks but

for reasons given below the triton population that is left after

100 ms is on well confined orbits.

Many tritons are born on unconfined orbits and 53.8%

are lost within the first 0.1 ms of the simulations as can be
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Figure 12. A 1.01 MeV triton orbit (red) and its instantaneous
guiding center orbit (blue) in DIII-D as calculated with the SPIRAL
code.

seen in figure 13. The large majority of the particles that are

lost immediately are born on trapped orbits with large banana

widths. In fact, after 0.1 ms all the trapped particles are lost

and only passing particles are confined. In the simulations

without the TBM fields another 0.6% of the initial tritons is

lost due to pitch-angle scattering resulting in a confined triton

population fraction of 45.6% after 100 ms. When the TBM

fields are present, significant losses occur after 0.1 ms. Those

losses vanish at around 100 ms as can be seen in figure 13.

There are two reasons for the vanishing loss rate: (i) the region

of phase space where TBM-induced losses can come from is

depleted and because the tritons are well above the critical

energy, the depleted phase-space region at high triton energies

is not refilled by pitch-angle scattering of low-energy tritons

and (ii) the effect of slowing-down on the drift orbits is a shift

of the orbits to the plasma center and hence co-going particles

move away from the low-field side plasma edge where the TBM

error fields are located. At the end of the simulation with the

TBM fields only 30.6% of the original triton population is still

in the plasma which is a reduction of 33% compared with the

run without TBM fields present. This reduction compares very

well with the observed value of 33 ± 5% as reported in [28].

5.3. RMP-induced beam-ion losses

RMPs can be beneficial for controlling ELM activity but they

can have a detrimental effect on the fast-ion confinement,

leading to increased losses and fast-ion redistribution. The

SPIRAL code has been used in the planning phase of the
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Figure 13. The confined triton fraction in the SPIRAL simulations
as a function of time for a simulation without (green) and with the
TBM fields present (red).

experiments to investigate at which RMP field amplitudes the

effects of fast-ion loss and redistribution become observable

in NSTX experiments.

For this study a standard NSTX high-density H-mode

discharge was used. The fast-ion beam-birth profile was

obtained from TRANSP/NUBEAM for beam source C with

a tangency radius of 0.49 m (figure 14). Particle starting times

were distributed uniformly between zero and 25 ms and all

the 10 000 particles were then followed until they got lost or

reached 25 ms. Slowing-down and pitch-angle scattering were

included in the calculations where the energy slowing-down

time varied from 23 ms in the core to less than 12 ms near the

edge. When the vacuum-field amplitude of the non-resonant

RMPs which were added perturbatively to the equilibrium

magnetic fields was varied the beam ion losses increased as

can be seen in figure 15. The RMP field is expressed as coil

current where a coil current of 1.5 kA gives a radial magnetic

perturbation of 3 mT at the LFS plasma edge as can be seen in

figure 16(a). The RMP-induced losses are concentrated just

below the mid-plane at the LFS. When we integrate the losses to

the low-field side wall between the mid-plane and 0.5 m below

the mid-plane as a function of toroidal angle we can clearly

see that the loss pattern is modulated with the n = 3 RMP as

is shown in figure 16(b) for the 1.5 kA calculation. Peak heat

loads in that region of up to 200 kW m−2 for a 1 MW beam

are predicted when the RMPs are present while the heat loads

are less than 20 kW m−2 for a 1 MW beam without the RMPs

present. The minimum heat load that an infrared camera which

is installed on NSTX can detect is less than 100 kW m−2 so it

is concluded that RMP generated heat loads can be detected.

With the FIDA diagnostic the confined beam-ion

population can be measured [15]. The interpretation of the

FIDA signals is not straightforward because of its complicated

weighting function in phase space. In the FIDA system

on NSTX vertical viewing cords are used which favor low-

pitch particles (|v‖/v| < 0.6) in an energy range between

30 and 60 keV. For a quantitative interpretation of the FIDA

signals, fast-ion distributions from amongst others TRANSP

11



Plasma Phys. Control. Fusion 55 (2013) 025013 G J Kramer et al

0.0 0.5 1.0 1.5
major radius [m]

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5
ve

rt
ic

a
l 
h

e
ig

h
t 

[m
]

NSTX pulse 142293

Figure 14. NSTX plasma shape with the beam birth profile as
obtained from TRANSP/NUBEAM for source C with a tangency
radius of 0.49 m.

0.0 0.5 1.0 1.5
RMP coil current [kA]

20

30

40

50

n
u
m

b
e
r 

o
f 
lo

st
 b

e
a
m

 io
n
s 

[%
]

NSTX pulse 142293

Figure 15. RMP-induced beam ion losses as a function of the
current through the RMP coils.

and SPIRAL can be used in the FIDASIM code [30] to calculate

the FIDA response to those distributions. For the RMP loss

study we have used the fast-ion distribution as calculated with

SPIRAL (figure 17(a)) in the FIDASIM code to predict the
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Figure 16. (a) The radial RMP field at the plasma boundary and (b)
calculated beam-ion losses below the LFS mid-plane without RMP
(blue) and with 1.5 kV RMP (red).

FIDA light that is observable as shown in figure 17(b). From

this figure it can be seen that the RMPs decrease the confined

beam-ion population sufficiently to detect changes in the FIDA

light. Therefore, based on the SPIRAL simulations, it was

concluded that enhanced RMP induced beam-ion losses can

be detected experimentally on NSTX from both temperature

measurements of the first wall for the lost ions and FIDA

measurements for the confined fast ions.

6. Time-varying magnetic and electric fields

Simulating the interaction between electromagnetic waves

and fast ions is of paramount importance to understand the

fast-ion transport in tokamaks and therefore, a spectrum of

electromagnetic waves can be included in SPIRAL calculations

where we have made a distinction between ideal MHD waves

that have no electrical field component in the direction of the

local magnetic field and radio-frequency (RF) waves in the

ICRF that are launched into the plasma for heating and/or

current drive purposes. In general, RF waves have an electrical

field component parallel to the magnetic field.
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Figure 17. (a) FIDA signal without (blue) and with (red) RMPs as
obtained with the FIDASIM code with the (b) the beam-ion
distributions calculated with SPIRAL as input.

In SPIRAL the electromagnetic waves are taken as

harmonic waves in the toroidal direction (see [31]):

Ẽ(R, ϕ, Z, t) = e(R, Z) exp(−i(nϕ + ωt)),

B̃(R, ϕ, Z, t) = b(R, Z) exp(−i(nϕ + ωt)) (20)

with e(R, Z) and b(R, Z) the complex fields that describe the

poloidal distribution of the wave fields, n is the toroidal mode

number and ω is the mode frequency. The electric field Ẽ and

magnetic field B̃ are related to each other by Maxwell’s laws.

Ideal MHD codes such as NOVA [31, 32] calculate

amongst other quantities the plasma displacement, ξ , on a

mesh inside the plasma. The plasma displacement can be used

to obtain the electrical and magnetic wave fields for the mode

from

Ẽ = dξ

dt
× B = −iωξ × B,

dB̃

dt
= −iωB̃ = ∇ × Ẽ

or

B̃ = ∇ × (ξ × B). (21)

Evaluating the Ẽ from ξ and B can be done accurately.

However, extracting B̃ from equation (21) is numerically

highly inaccurate because the curl operator requires the

subtraction of large but almost equal terms. These terms

have to be known with a very high precision to calculate B̃

accurately. Ideal MHD codes usually give as an output the

fluctuating magnetic field which is calculated accurately inside

NOVA. We have used the plasma displacement together with

magnetic fields as calculated by NOVA as input of the MHD

fluctuations for SPIRAL.

The plasma displacement and fluctuating magnetic fields

are given by NOVA on a discrete mesh and we have used

again Chebyshev polynomial expansions to interpolate those

quantities. The fluctuating electrical field is obtained from the

plasma displacement and equilibrium magnetic field followed

by a Chebyshev polynomial expansion:

Ẽ = −iωξ × B =
∑

i

∑

j

ẽijTi(R)Tj (Z). (22)

Depending on the size of the structures in the MHD fields, 50–

100 basis functions are needed for each coordinate. The ideal

MHD condition, Ẽ · B = 0 is fulfilled automatically in this

way and tests have shown that the fitted electrical fields satisfy

this condition better than 10−4. The accuracy of the ideal MHD

condition was improved further during the orbit calculations

by adding tiny corrections to the fluctuating electrical field

that forces the parallel electrical field to zero. This correction

for Ẽ‖ is usually less than 0.1 V m−1 while Ẽ⊥ is typically

103 V m−1 or higher for TAEs.

In a similar manner the radial, B̃R , and vertical, B̃Z ,

components of the magnetic field as calculated by NOVA are

interpolated with Chebyshev polynomials and the toroidal field

component, B̃ϕ , is calculated analytically from the divergence

free condition imposed by Maxwell’s equations and the

Chebyshev coefficients of B̃R and B̃Z . The integration over

the toroidal angle is analytically simple because of its harmonic

dependence (equation (20)). Numerically, the procedure for

obtaining the toroidal field component is robust because it

does not depend on subtle cancellations of large terms as was

the case with the curl operator. When following a particle

through the plasma we have to evaluate now two complex

fluctuating fields, Ẽ(R, Z) and B̃(R, Z), which can be

done efficiently at each (R, Z) location: the Chebyshev basis

functions are evaluated once followed by the multiplication of

the coefficients for each of the twelve field components. The

complex fields are then multiplied by the toroidal and harmonic

dependence, exp(−i(nϕ + ωt)) and the real part is used in the

orbit-following calculations.

Fitting the fluctuating electrical and magnetic fields

independently that were obtained in accordance with

Maxwell’s equations by NOVA does not guarantee that

the fitted fields obey Maxwell’s laws but where possible

comparisons were made and the fitted fields were consistent.

Moreover, It can be seen from equation (21) that the
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Figure 18. The radial (a), surface (b) and parallel (c) magnetic field components together with the radial (d) and surface (e) components of
the electrical field of a RSAE. In (f ) a single deuteron orbit. The full orbit is shown in black while the guiding center orbit is shown in gray.
The radial contours are minor radius contours.

electrical field fluctuation amplitude is proportional to the

mode frequency while the magnetic fluctuation amplitude is

independent of the mode frequency. Hence, for low-frequency

MHD activity the perturbed magnetic fields are dominant

while at high frequencies the perturbed electrical fields become

dominant. Therefore, small deviations of the independently

fitted fields from the constraints of Maxwell’s equations are

tolerable because usually only the magnetic or the electrical

field fluctuations are dominant. The alternative, evaluating the

curl operator in equation (21), is less accurate as discussed

earlier.

6.1. Single partice resonances

A reversed shear Alfvén eigenmode as calculated with the

NOVA code is shown in figure 18 where the radial (a), surface

(b), and the parallel (c) components of the fluctuating magnetic

field are shown together with the radial (d) and surface (e)

components of the electrical field. The parallel electrical field

is zero within the numerical accuracy of the calculation. In

figure 18(f ) a deuteron orbit is shown where the deuteron

was followed for 1 ms. During this time interval the mode

frequency increased linearly from 67.5 to 93.5 kHz. The

particle was launched on the mid-plane at a major radius of

1.95 m with an initial energy of 74 keV. After a number of

poloidal passages the particle starts to resonate with the mode

during a number of poloidal transits as can be seen from

the velocity and energy traces in figure 19. It quickly gains

energy (figure 19(c)) with a significant change in perpendicular

velocity (figure 19(a)) while the parallel velocity is not affected

(figure 19(b)) and its orbit shrinks by about 3 cm as can be seen

in figure 19(d).

Resonant interactions between MHD modes and fast

particles are important for fast-ion transport in plasmas where

the linear resonances are given by

ωMHD = pωt + nωφ (23)

with ωMHD the frequency and n is the toroidal mode number of

the mode, ωt is the particle poloidal transit frequency, ωφ is the

toroidal transit frequency andp is the bounce harmonic number

[33–35]. At a given location, the transit frequencies depend

on the energy and pitch. The resonances can be determined in

energy-pitch phase space by scanning the energy and pitch at a

fixed initial location as is shown in the red diamonds in figure 20

for the RSAE of figure 18 at 85 kHz where the poloidal and
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the energy exchange between the particle and the mode where an
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toroidal transit frequencies were determined with the Fourier

method as discussed above.

The resonance condition, however, does not give

information on the strength of the interaction between the

particle and the wave. This information can be obtained

by studying the energy exchange between the mode and the

particle. As a numerical experiment, we have launched

particles at the mid-plane at a major radius of 1.95 m, scanned

the pitch and energy, and recorded the minimum and maximum

energy excursion that the particle makes during a 3 ms time

interval due to the RSAE where we have used a very low RSAE

amplitude with a maximum density fluctuation of ñ/n = 10−4
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Figure 21. Energy exchange between a single deuteron and the
RSAE shown in figure 18 as a function of the initial particle energy
for a mode amplitude of (a) ñ/n = 1 × 10−4 and (b)
ñ/n = 4 × 10−3. The particles were launched at the mid-plane at
R = 1.95 m and a pitch of v||/v = 0.5.

to obtain only the linear resonances as given by equation (23).

From figure 20 it can be seen that the locations where the mode

exchanges energy with the RSAE coincide very well with the

resonances as calculated from equation (23). A good coupling

between the particle and the mode occurs for resonances with

a pitch between −0.25 and 0.05 and 0.25 and 0.75. Outside

those pitch ranges the interaction between wave and particle

becomes weak.

When we increase the RSAE amplitude to an

experimentally more realistic value of ñ/n = 4 · 10−3, the

resonances broaden as can be seen in figure 21 and new

fractional resonances appear due to the non-linear interaction

between the particle drift orbit and the mode as explained
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calculated with NOVA at the maximum mode amplitude. Note the different color scales.

in [36]. The effect of the increased number of resonances

and the broadening is that the resonances can overlap more

easily, leading to chaotic particle orbits and enhanced fast-ion

transport [36, 37].

6.2. TAE-induced fast-ion redistribution

TAEs appear regularly in NSTX as short (less than 2 ms as

shown in figure 22(b) bursts when NBI heating is applied.

Those modes reach large transient amplitudes and the mode

frequency is changing rapidly as can be see in figure 22(a).

The curves shown in figures 22(a) and (b) are polynomial

fits to the measurements that are used in the SPIRAL

simulations whereby the mode amplitude was determined

from reflectometer measurements and the frequencies were

measured with Mirnov coils. Those modes affect the fast-ion

population and in the following we will show how the SPIRAL

code can model the fast-ion redistribution in the presence of

those TAE bursts.

In the time period preceding the TAE bursts the plasma

was quiescent while 6 MW of NBI was injected from all three

beam sources so that the fast-ion distribution at the onset

of the TAE burst can be described well as slowing-down

distribution. This slowing-down distribution was calculated

with SPIRAL from the NBI-birth profile as obtained from the

TRANSP/NUBEAM codes by loading 30 000 particles from

all three energy components uniformly in time between 0 and

50 ms. Those particles were then followed with SPIRAL until

50 ms where slowing-down and pitch-angle scattering were

included. Particles that approach the thermal energy, in this

case set at twice the local temperature, before they reached

50 ms were not followed any longer and marked as thermalized.

The location of the particles in the parallel and perpendicular

velocity phase space is shown in figure 23(a).

This distribution was then modified by the burst of TAEs

after 2 ms as shown in figure 23(b) while particles were being

added from the birth profile with the same rate as during the

first 50 ms (i.e. the beams continued to fuel the plasma during

the TAE bursts with the same rate as before). The mode

amplitudes and frequencies varied continuously with time in

the simulations according to curves shown in figures 22(a)

and (b). It can be seen in figure 23(b) that some particles

get accelerated in both the parallel and perpendicular direction

to above the beam-injection energy and that a fraction of the

particles, mainly with low pitch (v‖/v) values get lost to the

plasma boundary. The lost particle rate clearly coincides with

the onset and growth of the modes as can be seen in figure 22(c)

and in total 18% of the fast ions are expelled in 2 ms.

The modes have also a significant effect on the confined

fast-ion distribution as is depicted in figure 24 where we show

the evolution of the confined fast ions between −25 and 25 cm

around the mid-plane. When the n = 2 TAEs amplitude

increases after 0.2 ms and the n = 4 and 6 TAEs appear, the

fast-ion profile collapses and broadens toward the high-field

side. This is shown more clearly in figure 22(d) where the

mid-plane distribution minus the distribution at the on-set of

the TAEs is shown. The collapse of the peak is visible as a
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trough (in blue) that forms at a major radius of 1.1 m while a

ridge (in white) becomes visible around 0.8 m when the TAEs

are excited. Such changes can be measured with the FIDA

diagnostics.

The change in the distribution is a reflection of changes

in the different particle classes as shown in figure 25. When

the TAEs become active a fraction of particles on stagnation

orbits which are located on the low-field side are changed into

passing orbits which traverse the high-field side. This explains

the broadening of the distribution. The particle population on

stagnation orbits is also found to be sensitive to getting lost

which contributes significantly to the flatting of the distribution

as shown in figure 24. The fraction of trapped particles and

particles on potato orbits is only slightly affected by the burst

of TAE activity as can be seen in figure 25.

6.3. ICRF fields

In contrast to ideal MHD modes, externally launched RF

fields for plasma heating and current drive have in general
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Figure 25. Evolution of the confined fast ions between −25 and
25 cm around the mid-plane due to the TAEs as shown in figure 23.

an electrical field component parallel to the magnetic field

direction. The full-wave code TORIC [38] can calculate

the ICRF fields in tokamaks and its output routines were

adapted to create an output file with RF fields that can be

read directly by SPIRAL. In SPIRAL the TORIC fields are

fitted in the same way as for the MHD modes but without the

restriction of a vanishing parallel electrical field component.

Because SPIRAL is a full-orbit code, the interaction between

the gyro-motion of the particle and ICRF fields is included

naturally. This is different from guiding center codes where

a kick-operator has to be constructed to include the RF

interaction [8, 9]. In this section, we will show results from
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Figure 26. (a) The radial electric field for 20 MW of ICRF heating in ITER at 52.5 MHz where the fundamental 3He resonance is located
near the plasma center (white). A trapped 500 keV deuterium orbit is indicated in purple together with its resonance at the high-field side
(black). (b) The deuterium energy, (c) the gyro-frequency at the particle location and (d) the particle’s parallel velocity for the depicted orbit.

two simulations in which RF fields are included. The first

one is a study of ICRF absorption by NBI ions in ITER

in which only the fundamental resonance layer exists in the

plasma [39]. In the second study results are presented for

HHFWs in NSTX where multiple overlapping resonances are

present in the plasma [40].

In the TORIC calculations that were used below, the

effects of the fast-ion currents generated on the dielectric tensor

were calculated from a Maxwellian distribution. As it will be

shown below, the fast-ion distribution is highly anisotropic.

For an accurate comparison between the simulations and

experiments the TORIC should include those non-Maxwellian

distributions.

6.4. ICRF heating in ITER

One of the plasma heating schemes for ITER is a 20 MW

ICRF system. This system can be tuned to 52.5 MHz which is

the on-axis fundamental resonance frequency of 3He minority

plasma species (figure 26(a)). The 3He should absorb most

of the power but the 52.5 MHz deuterium resonance is also

present in the plasma near a major radius of 5.2 m as shown in

figure 26(a) and deuterium ions which form a slowing-down

distribution from the 1 MeV beams can absorb some of the

ICRF power thereby reducing the heating efficiency of the

on-axis 3He minority heating. In figure 26(a) an orbit of a

deeply trapped 500 keV deuterium particle is shown that passes

through the resonance layer. The energy of this particle during

one poloidal transit is shown in figure 26(b) together with the
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Figure 27. Details of the energy trace for the first crossing of the
ICRF resonance layer as shown in figure 26(b).

local deuterium cyclotron frequency at the particle location

(figure 26(c)) and its parallel velocity (figure 26(d)). From

figure 26(b) it can be seen that the particle gets a kick in energy

when it crosses the Doppler shifted resonance layer where the

duration of one kick is about 1 µs or 50 gyro-periods as can

be seen in figure 27. Note also that away from the resonance

a beat wave between the gyro-motion of the particle and the
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Figure 28. (a) The radial electric field for 1 MW of HHFW heating in NSTX at 30 MHz. The different harmonic layers are shown in white
and labeled with their harmonic number. The orbit in yellow is for a trapped 20 keV deuteron while its instantaneous guiding center is
depicted in blue. (b) The deuterium energy, (c) the gyro-frequency at the particle location and (d) the particle’s parallel velocity for the
depicted orbit.

ICRF frequency can be seen. The Doppler effects on high-

energy particles are significant; in this case the resonance is

shifted from 52.5 to 50 MHz on the outer leg while resonance

occurs at 54 MHz on the inner leg. From figure 26(a) it can

be seen that the 50 and 54 MHz resonance layers are some 20–

30 cm away from the 52.5 MHz layer and therefore, it can be

concluded that the ICRF resonance layers for energetic beam

ions in ITER can be substantially broadened due to Doppler

effects.

For a high 3He minority heating energy efficiency the

deuterium beam ions should not absorb energy from the ICRF

field. We have calculated the energy exchange between the

ICRF waves and the beam ions by following 10 000 particles

drawn from the beam-ion deuterium slowing distribution as

obtained from TRANSP for 1 ms in SPIRAL with the 20 MW

RF field as modeled with TORIC. From the energy gain of

this ensemble the total absorbed power for the beam ions

was calculated as 0.08 MW which is small compared with the

20 MW input power from ICRF and so it can be concluded

that ICRF power absorption on beam ions in ITER is not

important. The 0.08 MW compares well with the 0.06 MW as

found with the TORIC code in which the fast-ion distribution

was approximated by a Maxwellian distribution.

6.5. HHFW heating in NSTX

In contrast to conventional tokamaks, multiple resonances for

HHFW heating are present in spherical tokamaks like NSTX

as can be seen in figure 28(a) where all the resonances between

the second and the 11th harmonic are present. The drift orbits

of the particles usually intersect more than one resonance and

therefore, the particles can interact with multiple resonances.

In figure 28(a) the orbit of a 20 keV deuteron is shown that

was launched at the upper turning point on the 5th harmonic

resonance layer. Despite crossing all of the harmonic layers

between five and eleven, it only exchanges energy at the 5th

harmonic layer (figures 28(b) and (c)) where it bounces and

its parallel velocity is zero as can be seen in figure 28(d). The

duration of the kick in this case is about 3 µs or 18 gyro-

periods. At the other resonance layers the particle lingers for

much shorter periods, often less than one or two gyro-periods,

and therefore, it does not interact effectively with those layers.

Similar to the ITER case, the HHFW can couple to a

population of fast ions that is created with NBI heating in

NSTX and reduce the HHFW heating efficiency. We have

used the SPIRAL code to estimate the amount of power that is

absorbed by the beam ions. For this study we calculated the

fast-ion slowing-down distribution from the beam deposition

profile by loading 20 000 particles uniformly over a 50 ms time

interval. Those particles were then followed to 50 ms without

the RF fields present resulting in the slowing-down distribution

shown in figure 29(a). This distribution was then followed

from 50 to 51 ms in the presence of the 1 MW of HHFW power.

During this interval beam ions from the birth profile were also

loaded with the same rate as in the first 50 ms to simulate

the continued beam fueling. The resulting distribution in

parallel/perpendicular phase space is shown in figure 29(b)

where the black dots represent particles that were confined
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Figure 29. The location of the particles in parallel/perpendicular phase space for (a) a beam-ion slowing down distribution just at the start
of HHFW injection and (b) after applying 1 MW of HHFW heating for 1 ms. The black dots represent confined particles while the orange
dots represent particles lost to the first wall. The beam injection energy was 90 keV (edge of yellow circle) while the half and third energy
components are at the boundaries of the purple and green circles. The red circle in the middle represents the thermal plasma and is drawn at
3 keV which is twice the central temperature.
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Figure 30. (a) The perpendicular and (b) parallel energy spectra of all the particles before (red) and after (green) 1 ms HHFW heating. In
blue the spectrum of the confined particles at 1 ms is shown.

at 51 ms while the particles that were lost during the 1 ms

HHFW heating phase are marked with orange dots. From this

figure it can be seen that the particles only gain perpendicular

velocity from the HHFW in contrast to interactions with

MHD activity where both parallel and perpendicular velocity

changed (figure 23).

The parallel and perpendicular energy distribution spectra

(figure 30) show the formation of a high-energy tail in

the perpendicular energy (figure 30(a)). The majority

of the accelerated ions are lost during the 1 ms HHFW

heating interval while the parallel confined energy distribution

(figure 30(b)) is hardly changed by the HHFW. The lost ions,

however, have gained parallel energy which can be understood

from their orbits. The parallel energy of trapped particles varies

between zero at the bounce points to a maximum on its outer leg

as can be derived from the velocity trace shown in figure 28(d).

The HHFW increases the perpendicular particle energy near

the bounce point. This increases the size of the drift orbit

and the maximum parallel energy of the particle at its largest

major radius. Those accelerated particles then get lost at the

LFS near the mid-plane with an increase in parallel energy that

was obtained from HHFW at the bounce point.

From the 1 MW of HHFW power that was used in this

simulation 21 kW (or 2.1% of the injected HHFW power) was

absorbed by the fast ions and 16 kW of that power was lost

to the wall. Although a small amount of HHFW power is

carried away by the accelerated fast ions, the impact of the

waves is very severe for the fast-ion population. In the 1 ms

when the HHFW are present 13% of the fast particles are lost.

In a separate run where NBI injection into a HHFW heated

plasma was simulated for 5 ms it was found that up to 53%

of the injected particles were lost while in the absence of the

HHFW power only 13% of the ions were lost as first-orbit

losses. Therefore, HHFW heating in combination with NBI
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Figure 31. Distribution of the Larmor radii for the confined
particles at the start (red) and at the end of HHFW heating (blue).
The Larmor radius distribution of the confined and lost particles are
indicated in green.

heating seems to lead to a decreased plasma performance in

NSTX.

The perpendicular energy gain is also reflected in the

increase in Larmor radii as shown in figure 31. The separation

between the different HHFW harmonics (figure 28(a)), about

16 cm in this simulation, is comparable or smaller that the

gyro-radii of the high-energy particles and therefore, particles

can interact with two resonance layers at one gyro-orbit. The

effects of this harmonic overlap is currently being investigated

theoretically [41].

In order to model the interaction between HHFW and

NBI accurately, the effects of the fast-ion currents generated

by the NBI and HHFW on the dielectric tensor must be

included in the calculation of the HHFW fields. In the

TORIC code the dielectric tensor is currently calculated

from a Maxwellian distribution. For an accurate comparison

between the simulations and experiments the TORIC code

is being modified to include non-Maxwellian distributions

in the calculation of the dielectric tensor [42]. Because the

RF waves modify the fast ion distribution which in its turn

modifies the dielectric tensor and hence the TF fields in the

plasma, an iterative procedure between SPIRAL and TORIC

is being developed to study the HHFW-induced modifications

of the fast-ion distribution and its feedback to the RF fields in

the plasma for detailed comparison between simulations and

experiments.

The HHFW couples most efficiently to the high-energy

particles from the slowing-down distribution and not to the

bulk thermal plasma as can be seen in figure 32 where

particles with initial energies above 10 keV get accelerated

significantly. The thermal plasma temperature in the center

used in the simulations was 1.5 keV while the distribution

above 10 keV is part of the non-Maxwellian beam-ion slowing-

down distribution. This again highlights the point that non-

Maxwellian distribution functions should be taken into account

in the RF-field calculations for a detailed comparison with

experiments.
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Figure 32. Energy gain as function of the particle energy at the start
of the 1 ms HHFW heating for an NBI slowing-down distribution as
shown in figure 29. The black marks represent particles that are
confined after 1 ms while the orange dots represent the lost particles.

7. Conclusion

In this paper, we have given a description of the numerical

methods used in the full-particle-orbit following SPIRAL code

together with a number of physics studies performed with

the code to illustrate its capabilities. Full-orbit effects are

important for fast-ion experiments in low-field machines such

as NSTX. The SPIRAL code is written as a tool to be used

in the analysis and interpretation of fast particle experiments

and it is also useful in the planning phase of experiments to

investigate their feasibility.

Apart from the toroidally symmetric equilibrium magnetic

fields, time independent toroidal ripple fields, electric fields

arising from the plasma rotation, and time dependent magnetic

electric fields from MHD modes and ICRF antennas can be

included in the SPIRAL code. Pitch-angle scattering in 3D

and slowing-down effects, which are important for fast-ion

transport studies are also included in the code. Realistic first

walls for different machines can be selected in the code so that

particle losses and heat loads in the first wall can be studied

accurately. A large number of variables is written in the output

file (appendix B) for access with a post-processor code so that

the results can be studied in detail and routines are available to

explore the output further with the Interactive Data Language

(IDL) [43].

In this paper, we have shown some results of studies

performed with the SPIRAL code where full-orbit effects play

a role. The exact location of hot spots created by fast-ion

losses depends on the gyro-radius, especially in combination

with strong magnetic field gradients which are present close

to the wall in the TBM experiments in DIII-D. Finite gyro-

orbit effects are also dominant for the calculation of the 1 MeV

tritium burn-up experiments in the presence of the TBM fields.

Fast-ion gyro-radii in NSTX are large because of its low

magnetic field while the typical scale of TAEs are on the order

or smaller than those gyro-radii which justified a full-orbit
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treatment for the interaction between TAEs and fast ions. It

was found that a short burst of TAEs can redistribute the fast

ions and induce significant losses.

The interaction between ICRF and/or HHFW and fast

ions depends solely on the gyro-motion of the fast ions.

We have shown for an ITER plasma that the wave-particle

interaction occurs naturally in the SPIRAL calculations while

in a preliminary study for NSTX we found that the HHFWs

couple efficiently to the energetic beam ions. The beam ions

got accelerated where their gyro- and drift-orbits increase so

that they do not fit into the machine any more and get lost to

the wall.

Although, where possible, comparisons between full-orbit

and guiding-center calculations were made, an exhaustive

study between the two calculations is beyond the scope of this

paper. For unambiguously studying the differences between

the two approaches one has to make sure that the differences

do not arise from small differences in the magnetic and/or

electrical fields in the different codes.
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Appendix A. Chebyshev polynomials

The Chebyshev polynomials are defined on the interval

[−1.0, 1.0] by the following recursion relation:

Ti+1(x) = 2xTi(x) − Ti−1(x)

with T0 = 1.0 and T1 = x and they form an orthogonal set

on their interval. Their range is bounded by [−1.0, 1.0] and

together with the fact that the extrema are distributed uniformly

the Chebyshev polynomials are well suited for numerical

work. When a function is expressed as a sum of Chebyshev

polynomials:

f (x) =
∞

∑

i=0

aiTi(x),

where a simple coordinate transformation is made to map the

finite range of the function onto the interval [−1.0, 1.0] where

the Chebyshev polynomials are valid. When the function is

needed up to a certain numerical accuracy, ǫ, the sum can be

truncated from where the coefficients, ai , are less than ǫ. The

uniform spread of the extrema then guaranties that the function

is accurate up to ǫ on its whole range.

The integral of a Chebyshev polynomial can be expressed

as a the sum of two Chebyshev polynomials:

∫

Ti(x) dx =







1

2(i + 1)
Ti+1(x) − 1

2(i − 1)
T|i−1|(x) i �= 1,

1
4
T2(x) i = 1,

(A1)

where one of the polynomials is one order higher and the other

one order lower than the original polynomial order.

In a similar way, the derivative of a Chebyshev polynomial

can be written as a sum of lower order polynomials:

d

dx
Ti(x) = 2i

i−1
∑

j=0 step2

Tj (x) − iT0(x) i is odd,

d

dx
Ti(x) = 2i

i−1
∑

j=1 step2

Tj (x) i is even. (A2)

When an arbitrary function is written as a finite sum of

Chebyshev polynomials:

f (x) =
n

∑

i=0

ai Ti(x)

the integral and derivative can be obtained analytically as finite

Chebyshev polynomial by rearranging the coefficients, ai , with

the proper weights from the equations (A1) or (A2). When the

function depends on two independent variables, f (x, y), the

expansion coefficients form a matrix:

f (x, y) =
n

∑

i=0

m
∑

j=0

aijTi(x)Tj (y)

and integrals and derivatives can be obtained in a similar way

as for the one variable case.

Appendix B. Code output

When individual orbits are calculated with SPIRAL as shown

in section 2 the position and velocity of the particle are

written in the output file as a function of time together with

the magnetic electric and fields and the poloidal flux at the

particle location which is sufficient to obtain various other

quantities that are important for the fast particle dynamics.

When ensembles of fast ions are calculated it is impossible

to store information for each orbit individually because of

disk space constraints. In this case only the information at

the start and end times is stored which consists of the particle

location and velocity, the magnetic field and poloidal flux at the

particle location and at the guiding center as calculated with

equation (4) and the change in particle energy due to slowing

down and interactions with the electrical fields. At the start

and end time the poloidal and toroidal transit frequencies are

calculated and the particle orbits are classified which is also

written on the output file. This information is sufficient to

calculate a large number of other quantities such as magnetic

moments, Larmor radii, toroidal angular momenta, particle

pitches, etc. which can be accessed with the post-processor

interface for IDL.
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