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A description of the growth of sheep and its genetic analysis
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Abstract

The Gompertz is one of a family of growth functions that, when the environment [eg.food, housing) is non

limiting, provides a useful description of growth as a comparatively simple, single equation. It has three parameters
of which the important ones are mature size, A, and the rate parameter, B. Estimates of A and B, however, are

highly correlated and defining their separate values for individual animals is problematic. This problem was
explored using five methods for estimating the parometers, or transformations of them, to describe the growth of two
genotypes of Suffolk sheep kept under non-limiting conditions. 0 ne genotype was under selection for high lean

growth rate and the other was its control. Live weights that were collected at least fortnightly from near birth to 150

days of age over a 9-year period on 1934 lambs were used. The Gompertz form adequately described the growth of
the great majority of the lambs evaluated. When considering A and B as a lumped parameter, Z = A ·B, and fitting

z, B and an initial condition [a transformed birth weight) as the parameters, the problems in estimation were
substantially overcome as shown by a low correlation ofz with estimates ofB both within and across animals.

Usefully Z has a biological interpretation in that z,k is the maximum daily growth rate. Since the Gompertz form
adequately described growth in these sheep, the extent ofgenetic co-variation for the growth parameters values (A,
B, z) was estimated to detennine if they were amenable to selection. A weighted univariate animal model was- fitted.
Mature size, A, and the rate parameter; B, were mlXierately heritable (0,37 [s.e. 0·04) and 0·38 [s.e. 0·05],

respectively) as was live weight at 150 dqys of age (0·31 [s.e 0·06)). However there was a substantial negative
genetic relationship between A and B (-0-48). Z was- highly heritable (0'72 (s.e 0·05)). After 9 years ofselection, the
genotype selected for high lean growth rate was heavier [P -c0·001] at 150 days of age [5·2 kg] and at maturity

[6·6 kg], with a maximum growth rate [z/e) that was 1·12 times that cf the control. Our lumped parameter Z, in
effect a rate parameter scaled for mature size, avoided problems in estimating A and B and, in so doing, offers a

general and robust description of lamb growth amenable to selection.

Keywords: genetic parameters, Gompertz function, growth sheep.

Introduction
The idea that an animal of a given kind will grow to
a final or mature size is both widely accepted and
useful (Brody, 1945; Parks, 1982). The question of the
scale on which size is best measured remains open, at
least as far as sheep are concerned. ln models of pig
and poultry growth it has been found to be useful to
express mature size in terms of protein weight
(Em m e ns and Fisher, 1986; Kn a p, 2000). With the
protein content of the mature lipid-free empty body
being essentially constant (Em mans, 1988), the use of
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protein as the measure of mature size is equivalent to
defining mature size as the mature ltptd-Free empty

body weight. As the empty body weight is the sum
of the lipid-free and lipid weights. the use of this
scale allows mature size and mature fatness to be
treated as separate characteristics. Taylor et al. (1986)

proposed that mature size should be expressed as the
observed mature weight adjusted to a constant level
of fat content of 25%. With lipid-free weight as a
measure of mature size this is equivalent to

following the suggestion of Taylor et al. (1986) but
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which leads to a=B·lnA. By substituting into
equation (I)

where W is live weight, t is time and B is a rate
parameter. Since the relative growth rate will be zero
when W = A ,the mature size, then

Material and methods
Gompertz growth function
The Gompertz growth function arises from the
assumption that relative growth rate, (dW;tit)jI!V,
declines linearly with the weight of an animal on a
logarithmic scale. That is

The main objective of this study was to explore the
use of the Gompertz equation in describing the
actual growth of two genotypes of Suffolk sheep kept
under environmental conditions designed to be non
limiting. In doing so, we consider the considerable
problems in estimation when fitting this function to
data from individual animals. If the parameters of
the Gompertz form adequately describe the potential
growth of an animal, then variation between animals
in the values of those parameters may be, in part,
genetic in origin. Thus, as the final aspect of this
study, the extent of genetic co-variation for the
values of the parameters of the Gompertz form are
estimated.

(2)

(3)

(,)

(4)

0= «:«. InA

(dW;tit)! W= a-B.lnW

(dW! dt)! W = B· lo(A! W)

(dWI dt)! W= B·lnA -B·lnW

which can be written as

The a bso lute grow th rate (dW;tit) is then

The Gom pertz, or any other growth function, cannot
be expected to describe all actual growth curves.
Whether by accident or design, animals do not
always achieve their potential to grow. The failure
may be due to inadequate feeding, disease or
adverse environments. including the climatic
environment. A consequence is that real growth data
tend not to be properly described by a smooth
function with the same values of the parameters
throughout. The data may have discontinuities or
changes arising from environments which cause a
variable deviation from the potential. But there are
cases where the potential to grow is met at most if
not all times and in such cases the data are expected
to be well described by the function (Emmans, 1997).

with the 'constant level of fat' set at 0%. The latter

adjustment makes it easier to distinguish between
the separate ideas armature size and mature fatness.

While in terms of modelling there are advantages in

constructing the body from the weight of its

components, there is the disadvantage that the
amount of information from slaughter experiments
in which body composition is measured is much
scarcer, and more expensive to obtain, than data on

live weight. A Iso. as accurate measures of weight can
be obtained repeatedly for a given animal, it is
sensible to start with ideas about such live weight

data in order to make the first steps towards a
growth model. The power of the approach will be
greater as the range, and to a lesser extent, the
number of observations increases. These steps are
made here for sheep. Similar analyses have been
done for poultry (Emmans and Fisher, 1986; Hancock
etaJ., 1995; Gous etal., 1999) and pigs (Knap, 2000).

There are many forms of equations that have been
proposed to describe growth (Winsor, 1932; Parks,
1982; France et ct., 1996). The criteria used to decide
among them also differ. In this study, our approach
was to choose a form of an equation which had the
main properties expected, which had few parameters
and which had support from at least some data sets.
The desired properties of a growth function are (i)
weight tends to a final or asymptotic value with
time, (ii) growth rate has a maximum at some
intermediate weight, and (iii) the relative growth rate
decreases monotonically, preferably in some simple
way, as weight increases toward maturity. A growth
equation with these properties, although not the only
one, is the Gompertz function which benefits from
having only three parameters, of which two are the
important ones and the other the initial condition.
This function has been, and is being, widely used for
describing a variety of material. Among the recent
uses are the follow ing. Ad rn aas u and Ahlgren (2000)
used it to describe the growth in length offish, as did
A kbas and Yaylak (2000) for growth in Japanese
quail. Arseneau et ol. (1998) used the function to
assess the relationship between time since lichen
colonization and standing lichen biomass. It was
used by Clark etal. (2000) for the growth ofwhales,
by Gous et af. (1999) and M ignon-G r-aste a u et al.
(2000) for chickens, and by Friggens et at. (1997) and
Zygoyiannis (1997) for sheep. Bajzer (1999) has
discussed possible reasons for the function being a
good description of growth. As there is support for it
being a useful and robust description of the potential
of an animal to grow we chose the Gompertz form to
describe growth in this study.
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dWI dt= B.w·ln(AI W) (5). lnW= lnA-exp(Go-B·t) (7)

When equation 5 is divided through by mature

weight A, it becomes

where the degree of maturity in weight, U, is defined
as U = WJ4 and du;tft is the rate of maturing. The
form of equation (Sa) is in Figure 1 and shows that

the rate 0 f m a tu ring has a max im urn when U = 1 Ie;;

0·368. The only parameter that affects the rate of
maturing is B, as shown in Figure 1. On integration,

equation (5) leads to

du dt:» B.ln{ilu)

w= A-exp(-exp(Go-B.t))

(sa)

(6)

would be expected to be more suitable when the
variances are roughly proportional to the values of W
(method 11).

Lewis etal. (1998) found that the estimates of A and B
were very highly correlated. A possible way to
overcome the inevitable problem of estimating A and
B as separate parameters is to consider them together
by defining a variable Z as the product A B. This
lumped parameter Z would be expected to have a
lower error of estimation, and a distribution of
values closer to normal, than A and B separately and
can be estimated (method lb) from a modified form
of equation (6) as

where the third parameter, Go' is a transformed

initial weight given by Go= In(-ln(Wol A)) and Wo is
the weight at t= O. Integrating equation (Sa) leads to

the equivalent maturing curve
Z has a biological interpretation in that Z,k is the
maximum daily growth rate.

Methods for estimating the values of the growth
parameters
Non-linear methods. 1n principle, the values of the
three parameters of the Gompertz form can be
estimated by fitting equation (6) to VV; t data pairs
(method la ] using non-linear regression (H a n cock et
al., 1 995; G o u s et aI., 1 999). Where the range in W is as
wide as the 4 kg near birth to the 80 kg at 150 days of
age, a ratio of 20, as seen in this study. the use of the
logarithmically transformed form of equation (6)
which is:

u = exp(- exp(G o - B' t)) (6.). Linear methods. An alternative approach for
estimation proposed by Emmans (1988) and
Ferguson and Gous (1993a and b), is to use equation
(1) where (dWfift)/W is estimated for each of a range
of weights (method 111). The values of (dWfift)jW are
then regressed on In W for the different time periods.
For this study, the time interval between weights was
specified as at least 10 days. The work of Cullis and
McGilchrist (1990) suggests that estimates of A and B
obtained by this approach w ill be highly correlated.

Equation (6) can be transformed to

Proportion of mature size

Figure 1 Rate of maturing (du,tf:lt) relative to degree of
maturity in weight. 11= W/A, where tis time in days. Wand
A are live weight at time t and maturity. respectively (du,tf:lt
is by d efi nition at its max im u m when U = I; e '" 0'368).

where G = - In(- In(WI A)), using a prior estimate of
A. Successive estimates of A can be tested for their
ability to give the same estimate of B for early and
late independent subsets of the data. For this study,
data were separated as those before and after
weaning, with the values of A tested up to 400 kg
(method IV).

The parameters obtained by the five estimation
methods described are shown in Table 1.

Sheep data
Suffolk selection flock The data come from a selection
experiment in Suffolk sheep at the Scottish
Agricultural College (SAC) described in Simm et al.
(2002). Between 1980 and 1983 about 160 mature
Suffolk ewes were purchased by SAC, then the East
of Scotland College of Agriculture, from 42 pedigree
flocks throughout the United Kingdom. Lambing
began in January. From a week of age, lambs were
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Table 1 Parameters estimated when using the five estimation
methods

Description Growth
Method Fit (equationt) param eters+

I. Non-linear Weight on time (6) A; B; Go
Ib Non-linear Weight on time (8) Z;B;G,
II Non-linear Log, weight on

time (7) A; B; G,
III Linear Relative growth rate

on log, weight for
period B,,;B

IV Linear Iteration on prior
estimate of A (9) for
2 periods A;B

t Equation number as referenced in text.
t A is mature size, B is the rate parameter. G is
transformed initial weight nes.r-tes.rw 01 A))). Z _ A B.
and B, is the intercept of the regression of relative growth
rate on log, weight.

creep fed and gradually switched to a complete,
p elleted diet that was high in energy and protein (12
MJ metabolizable energy and 180 g crude protein per
kg dry matter). From weaning at 56 days of age, they
were penned (in early years individually and in later
years in groups) and offered this diet ad libitum until
they were 6 to 8 months of age. The food was
designed to allow each animal to fully express its
genetic potential to grow.

At mating in 1985 a selection experiment began. The
flock was closed and randomly divided into a
selection and a control line; the selection line had
about twice the number of the control. Firstly in ram
lambs (from 1986), and latterly in ewe lambs (from
1989) as well. live weights (LWT). and ultrasound
measurements of muscle (UMo) and fat depth
(UFO), were recorded at 150 days of age. These
measurements were combined into a selection index
constructed as 0·1 03LWT + 0·257U M 0 - 0·406U Fo.
The index was designed to increase the rate of lean
deposition, with little change in the rate of fat
deposition (Simm and Dingwall, 1989), Lambs were
selected on index score to produce one line with high
index scores and another line with average index
scores as the control. lndex scores were scaled such
that the average of the control line remained at 100
points, and the standard deviation of the index was
40 points.

The control line contained six sire families. In the
selection line, six ram lambs with the highest index
scores were chosen each year. No more than two sons
of a sire were selected. In both lines, rams were used
in their first year and for a single season.

The selection experiment ended in 1994. At that time
response in live weight, and ultrasound muscle and
fat depth, in both sexes amounted to between 7 and
15% of the overall mean of the trait (Simm et al.,
2002).

Live weights. Live weights were available on ram
lam bs from 1985. and on ewe lam bs from 1989
through 1994. In 1985, 1986and 1987 weights were
collected about every 2 weeks from 56 (weaning) to
generally 150 days of age (maximum age at w eighing
of 159 day). From 1988 onward weights were
collected as often as weekly from near birth (as early
as 2 days of age) through 150days of age.

There were 2037 sheep with live weight records. Of
these. 103 were excluded because they did not reach
150 days of age or were obviously ill for an extended

period. The remaining 1934 sheep had in total 35401
live weights. Of these live weights, 63 were deleted
as outliers (less than 0.2%). Outliers were defined as
those with a standardized residual greater than 4·0
based on the linear regression of weight i- 1 on
weight). Which of the pair of weights was removed
as the outlier was determined by inspection. The
remaining 35338 live weights gave an average of 18
(s.d,5) observations for each animal.

Comparison ofmethodsfor obtaining growth parameters
The statistical characteristics of the values of the
growth parameters obtained by different estimation
methods were investigated using the non-parametric
exploratory data techniques described by Ott (1993).
With these techniques, values are identified by their
distance from the median in relation to the inter
quartile range (IQR). The number of extreme
observations was found for each growth parameter
estimated by each of the five methods.

Four reasons for rejecting the total record of a sheep
for inclusion in the genetic analysis were: (f) the
iterative fit did not converge; (H) the residual m.s.
was ~ 3·5 kg f For methods l a and lb, or the equivalent
for method 11; (iii) A was ~ 300 kg; or. (iv) Z was ~

2·4 kg! day. The rejection values chosen for the latter
three criteria were based on the exploratory
techniques described above. They correspond with a
value 3·5 times the lQR above the median. There
were no values this distance below the median.
However for method 111 there were 10 estimates of A
that were low (less than 20 kg) and these too were
excluded.

Using these rejection criteria, an 'accepted set of
sheep' was defined for each estimation method. For
these. the shapes of the distribution of the growth
parameter values were checked for skewness and
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The significance of each fixed term was determined

by considering both the sequential and marginal F
statistic obtained from A SRem [. lnclud ing the tw 0

way interactions did not improve fit for any of the

grow th param e te r v a lues or WI50 (P> 0,05). For som e
growth parameter values, individual main effects
were also unimportant (P> 0·05). However, each

main effect did d ef ne variation for at least one of the
growth parameter values, and all were important

w hen describing Wl 5 0 (P < 0·05). Therefore sex, birth
and rearing type, the age and breed of the rearing
dam, and the day of birth covariate were included as

fixed terms in the mixed models fitted.

The fixed effects considered were sex, birth type
(single, twin or triplet), rearing type (single or twin)
and age of the rearing dam (2, 3 or 4 years of age and

older). An embryo transfer (ET) programme in 1992

and 1993 meant that in some cases a lamb was born
and reared by a surrogate dam. The surrogate dam
was always a Suffolk cross. The importance o f a lamb
having been natural born or from ET in combination

with the breed of its rearing dam was also tested (the
category levels were natural born lamb with 100%

Suffolk dam or ET lamb with 75% or 50% Suffo1k

rearing dam). The day of birth within a lambing

season was included as a covariate. These main
effects, their two-way interactions, and the covariate

were included in the initial model. Animal (direct

additive), birth year and residual were fitted as
random effects.

kurtosis using Genstat (Genstat 5 Committee, 1998).
The relationships between parameter values were
summarized, within each method, as (i) the

correlation of the estimated values obtained within
an animal, and (ii) the correlation of the estimated
values across animals. The linear regression of each

growth parameter between estimation methods was

also fitted.

Linear mixed-model
A linear mixed model was defined as:

to describe the set of accepted growth parameters
values, where y was a vectoroF observations, b was a

vector of fixed systematic environmental effects with

incidence matrix X, and d. m, C and r w e re vectors of
random direct additive, maternal additive, litter and

birth year effects with incidence matrices Zd' Zm' Zc
and Zr The random vector of residuals was defined

as e; Birth year was fitted as a random
environmental effect because husbandry and Food
was the same throughout the study and thus any

year effects would represent random seasonal
fluctuations in p e rfo rm a n ce level. The (co)variance

structure oFthe model fitted was:

between iterations was less

calculations were done separately
variable.

than 0·01. The

For each response

where A was the numerator relationship matrix, and

Iv I, and Ie were identity matrices of order equal to
the num ber of litters, birth years and records,

respectively, and 0i, 0m 2
, 0/, 0/ and 0/ were the

direct additive, maternal additive, litter, birth year

and residual variances, respectively. The covariance

between the direct and maternal additive effect was
set at zero. In Simm et ol. (2002) the effect of this co
variance component for growth traits was tested,

using largely the same data, and found to be small
and not significantly different from zero.

Model selection
The sufficient set of fixed and random terms to

include in a mixed-model to adequately describe the
accepted set of growth parameter values (A, B, Z and

Go) and live weight at 150 days of age (WI SO) was
based on analyses using an average information (A 1)

REML algorithm (ASReml: Gilmour et el. 1995 and
1998). The convergence criterion for this algorithm
was that the change in the log-likelihood value

The random effects to be included in the model were
selected by comparing log-likelihood values from a

series of nested models (given the chosen setoffixed
effects). The improvement in fit when adding a
random term was assessed by comparing minus

twice the difference in the maximum log-likelihood
value (the log-likelihood ratio test) of nested models

to a chi-square distribution with one degree of
freedom. If the fit improved significantly (P< 0·05)
the random term was added to the model and the

process continued until all random terms had been
tested.

Model fitting
In the mixed models fitted, W1 5 0 and each growth

parameter value (A, B, Z, Go) were considered as the

response variate. For such analyses one could
presume that the growth parameter values were
estimated with equal reliability for each animal. In

practice, the s.e. of the estimates of these growth
parameter values were expected to vary between
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animals. This was partly because the number of
observations per animal differed and partly because

of the way these observations were distributed

(variation in the frequency of recording at some
ages). Both these sources of variation could be

accounted for by weighted analyses using the

reciprocal of the square of the a.e. of the estimate of
the grow th param e te r Y a lu e as the weight.

Weighted univariate A SRem 1 ana lyses were therefore

conducted foreaeh growth parameter value. In these
the across-animal residual variance (0/) is a
weighted one. Since the weights themselves

represented the uncertainty in the estimated
parameter values for an animal, 'relative' weights

were used which thus became scaled by the
estim ated 0/.

A s the A SRem 1software that we used did not allow a
weighted multivariate animal model analysis to be
carried out, only univariate analyses were done.
However, the additive correlation between the

growth parameter values and W'50 was empirically
estimated as the correlation between the
corresponding estimated breeding values (EBVs).
The EBVs were obtained as best linear unbiased
predictions (BLUP) from the fit of the 'best' mixed
model chosen for each growth parameter value and

W'so'

We also wished to obtain the heritability (the ratio of
additive genetic and phenotypic variance) for each
growth parameter. Doing so required that the
weighted residual variance (O/wr) be adjusted to
account for the weighting to allow calculation of the
observed phenotypic variance (all')' This was done as

(12)

where OJ is the adjusted residual variance and <Avtis
the median weight for each growth parameter. The
median weight was used since the distribution of
weights was skewed particularly for the estim ates of
mature size (A).

Comparison ojselectionand control line
One objective of the study was to compare the
performance of the selection and control line. Least
squares means for BLur EBV for ~so' A, B, Z, and
Go were therefore obtained by fitting a simple fixed
effects model (Genstat 5 Committee, 1998). The
model included line, year and their interaction. Year,
and its interaction with line, were fitted because
differences between lines may have changed over
time with selection.

Results
Estimationof the valuesof thegrowth parameters
The reasons for excluding sheep are shown in Table
2. The fewest sheep were retained with method IV,
since some sheep were excluded because they lacked
live weight records before weaning.

The mean values of the growth parameters were
consistent across methods. Estimates of A were more
variable than those of B which, in turn, were more
variable than those of Z. Across methods, when the
mean value of A was higher, the mean value of B was
lower. As a consequence, the mean values of Z were
more similar among methods (a coefficient of
variation of the mean values of less than 2% rather
than more than 5% for A and B).

The distributions of A were substantially skewed and
highly kurtotic (P< 0·001). Although for some
methods, the distribution of Band Z were also

Table 2 Number of convergence failures and, of the remaining animals, number (percent(Jfje) of extremegrowth parameters values
obtained when using thefive estimation methods

Criteria for rejectio nj
Failed to No. No.

Method con ve rg e t remaining r.rn .s. 2:3.5 kg2 A 2:30okg Z 2: 2-4 used

I, 4' 1892 27 (1-4) 51 (2·7) 16 (0.8) 1818
Ib 33 1901 27 (1-4) 60 (3·2) 22 (1.2) 1818
II '"9 1825 154 (8-4)§ 85 (4-7) 28 (1 -5) 1609
III N/A 1934 NjA 108 (5·6) 54 (2.8) 1826
IV 89 1536 NjA 19 (I -2) 0(0) 1517

t Analysis failed to converge (method la, u, and 11) or reached the boundary of search space (401 kgformethod IV).

t An animal may be rejected on more than one criterion. For method 111, the full record on 10 animals was rejected because
A < 20kg.
§ N um ber with r.m.S 2: (-/3-5/ W)' "- 0·0028, where Wj' _ 35·4 w as the mean live weight of the 1934 animals considered in the
study.
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Table 3 Mean correlation coefficient (standard deviation) o!theglllwth parameters within andacross sheep [oreach estimation method

Method
Growth

Correlation parameters II 111 IV

Within animals A,B -0'982 (0.009) -0'976 (0.013) -0·988 (0.005)t NIA
B, Z -0·133 (0.666) NIA NIA NIA

Across animals A,B -0'774 -0'791 -0-786 -0'793
A,Z 0·609 0·642 0·535 0·663
B,Z -0,053 -0,117 -0-003 -0,161

Correlation of 8., the intercept of the regression of relative growth rate on log, weight, and B.

asymmetrical, any disparity from normality was less
severe.

The correlation between the estimatesof the values of
the growth parameters were investigated both
within and across animals. These results are shown
in Table 3. The 'within animal' correlation measures
the extent of the association between estimates of
pairs of parameters for an animal. For all methods,
the within animal correlation of A and B was
consistently very close to -1. The within animal
correlation for Band Z was obtained only with
method lb and was small (---0.13) and variable [s.d .
0.67). Across animals, the findings were similar. The
correlation of A and B (less than - 0'77) and of A and
Z (greater than 0'54) remained high. Only the
estimates of Band Z were relatively independent
(correlation of -0·16 to -0·003).

The R-square values for the linear regression of
estimated values of a growth parameter obtained
from one method on that obtained from another
were calculated (results not shown). In all cases, the
regression coefficient was positive. The R-square
values for Z were consistently the highest with
correlation coefficients of 0·87 to 0'96.

Choice ofmethod
Based on the results in Tables 2 and 3, and on
properties of the distributions as discussed earlier,
we chose to use the estimates of the growth
parameters from methods l a and Ib for further
analysis because they resulted in (1) a large 'accepted
set' of observations (1818 of the possible 1934
animals) and (ii) direct estimates of the lumped
parameter Z, which itself had favourable properties
(e.g.a low correlation with estimates of B both within
and across animals).

Variance estimates
For the accepted set of growth parameter values
from methods la and lb the data consisted of 127

sires, 657 genetic dams and 815 rearing dams.
Generally the genetic and rearing dam was the same
animal; they differed when lambs were cross
fostered or were produced by embryo transfer. On
average, a genetic dam lam bed 1·7 times and gave
birth to a litter of 1·81am bs.

In Table 4, the log-likelihood values obtained during
model selection are summarized for W,~O and the
growth parameter values. For presentation purposes,
the log-likelihood is expressed as the difference from
the value obtained from the most comprehensive
model fitted. The 'best' model to describe WIso
included a direct and maternal additive effect, as did
that chosen by Simm et aT. (2002) for analyses of
similar data. A litter effect rather than a maternal
additive effect defined variation in the growth
parameters values (P"" 0·05), with the exception of Z
for which both maternal additive and litter variance
was detected (P"" 0.01).

The estimate of phenotypic variance and variance
ratios obtained for W, so and A, B, Z and Go are show n
in Table 5. The estimates for WHO were from an un
weighted analysis whilst those for the growth
parameter values are from weighted analyses. For
the growth parameter values, the results are shown
relative to the 'observed' phenotypic variance
(adjusted as in equation 12).

For all measures, the direct heritability was at least
moderate in size, with that for Z being high (0'72).
This may be in part due to Z being defined as A B
and A and B having the high phenotypic correlation
reported in Table 3. Although the mixed-model fitted
was slightly different to that used by Simm et al.
(2002) to analyse largely the same data, the estimates
of direct (0·31 V. 0·29) and maternal (0·11 V. 0,16)

heritability of W, so were similar in both analyses. The
litter variance for Go was approximately twice that
forthe other growth parameters, which is likely to be
ref ecting its association with weight a ro u nd birth.
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Table 4 Comparison of log-likelihood values for the various models fitted from univariate analyses of W 150 (un-weighted) and the
growth parameter values (weighted)

Log-likelihood v alue s t

Model fittedt W A B Z

DR 11 ·60 5·10 10·10 30·38
DMR ..04 2·90 10·10 3·93
DCR 9·69 ..60 ..00 3·93
DMeR 0 o 0 0

41 ·80
26-00

..30
o

t Log-likelihood values expressed as the differences from the most comprehensive model fitted (OMeR). Values shown in
bold identify the model thatf1tted 'best' for a measure.

t Random effects were defined as: D - direct additive; M - maternal additive; C -litter; R - birth year.

Univariate models alone were fitted in these

analyses. However, an empirical estimate of the
genetic relationship among the measures could be
obtained as the simple correlation between their
EBVs. The correlation between EBVs for mature size
(A) and the rate parameter (8) was negative (-0-48),
whilst the correlation between EBVs for mature size
and the initial condition (Go) and t so-d ey weight
(W'50) were positive (0'39 and 0·54, respectively). The
EBV for Z increased with EBVs for both A (°'56) and
B (0.19).

Comparison ofgrowth parameter valuesbetwa<!n sexes
The estimate of A was found to be 1·27 times as great
for a male as for a female (P <: 0·01; Table 6), which is
sim ila r to fi nd ings elsew here (H am m ond, 1932). This
coincided with a greater maximum growth rate
(°'480 kg! day in males versus 0'379 kg) day in
females: P <: 0.001). Although the rate parameter 8 in
a male was 0·97 times that in a female, it did not
differ between sexes (P> 0·05). The growth curves
for the average male and female are show n in Figure
2.

Comparison ofgrowth parameter valuesbetween lines
There was an interaction between line and birth year
for EBV for W'50 and the growth parameter values
(P< 0·001). For W,so' A and Z the EBVs were always
higher in the selection than in the control line, with
the difference increasing over years. This is shown
for the live-weight traits in Figure 3. In 1994, the final
year of selection, the selection line was genetically
5-2 kg heavier in t so-d ay weight and 6·6 kg heavier
in mature weight than the control line (P< 0-001).

This coincided with a maximum growth rate in the
selection line that was 1·12 times that of the control
with mean values of 0·4-80 and 0·427 kgl day,
respectively.

The pattern of change in EBVs between lines for the
rate parameter B was different. There was little
differentiation between lines through 1991.
Thereafter, the average EBV for B steadily decreased
in the contro lline. In 1994 the mea n v a lu e for the rate
parameter was 0·01 096 (s.e. 0·00005) in the selection
line and 0-01016 (s.e. 0·00007) in the control line, an
advantage of8% to the selection line.

Table 5 Estimate of the phenotypic variance (0 1), and ratios amongvariances (s.e.), for the 'best' modeldescribing w 150 (un-weighted)
and theBfowth parameter values(weifjhted) P

w ,. A B Z G

a' 37·49 465·02 4'9353E-06 2·0323E-02 9·1154E-03,
Ratiot

h' 0·313 (0.058) 0·365 (0.044) 0·384 (0.051 ) 0·722 (0.047) 0-554 (0.041),
h ' 0·108 (0.029) 0·055 (0.024)
dC' 0·075 (0.027) 0·125 (0.031) 0·085 (0.024) 0-218 (0.030)

r- 0·106 (0.050) 0·095 (0.047) 0-072 (0.041) 0·101 (0.049) 0·060 (0-034)

h/ ~ 0/10/, «: ~ 0",'/0/, t' ~ 0/1 Op'and r' ~ 0,'10/, where 0/, 0",'. 0c' and Or' are the direct additive, maternal additive,

litter, and birth year variances, respectively.
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Table 6 Least-squares meansfor W 150 (live weight at 150 days ofage)andfor theestimatesofgrowth parametervalues(method la and lb)
0/ sex (1003 males; 786 femalesH

So> W, 50 A

Male 64-9 109-8
Female 54-5 86·3
Maximum s.e.t 1-I *** 3-8***

B Z G

0-01 085 -306 -108
0·01122 ·030 ·028
0-00039 0·030*** 0-01 8***

93 9486 87 88 89 90 91

____r

--~--_r-~~-

-41--~--~-------~---'

85

,,~-~----------~----,

Year

Figure 3 Genetic trends for ISO-day (A) and mature (II)
live weight (kg) in the lean growth selection (---) and
control (- - -) genotype.

One strong attraction of the Gompertz function is
that its two main parameters have meaning (A is

mature size and B is a measure of the rate of
maturing). For population mean data over a wide
range of degree of maturity, the function is also easy
to fit using non-linear regression. But as the size of
the population providing the data decreases towards
one so that, in the limit, they come from an
individual animal, and as the range of weights
becomes smaller, so the problems of estimation
become greater. While the data from the great
majority of our animals could be well fitted to the
function with low residuals, and the values of its
parameters estimated, the values of individual
parameters could not be well estimated for a given
animal. This was in part because the standard errors
were appreciable but also because the estimates forA
and B were highly correlated and hence were not
independently estimated. The use of the lumped
parameter Z, defined as A, B, and where Z/ e is the

35"SO"'SO'""

""

'""
0; 80
C
~
~

60c,
-> 40C

W

o
o

t Weighted least-s<juares with the inverse of the squared s.e. of the estimated values of the growth parameters used as the
weights.
t Asterisks ind icate where, between sexes, esti mated means differ.

internal tests that can be used to see if this was likely
to have been the case. One such test is to check that
the values of the function using early and late
growth data are consistent, as was done with method
111 in this work.

Discussion
The way in which actual body weight changes with
time in sheep, as with other animals, depends on the
way in which they are treated in terms of their
feeding and environment. Growth at a weight can
also depend on health status. It is not sensible to
expect data on actual growth, which may well be
caused to depart from the potential because of
deficiencies in feeding, environment and health, to
be totally consistent with any particular form of
growth function. Despite this being obvious the
literature is full of examples where actual growth
data, often of doubtful provenance, have been used
to try to choose between growth functions. In clear
distinction from this approach it has been found to
be useful for several agricultural species (turkeys:
Emmans, 1989; chickens: Gous et aJ., 1999; pigs:
Ferguson and Gous, 1993a and b; Knap, 2000; quail:
A kbas and Yay lak, 2000; sheep: Friggens et a/., 1997:

Zygoyiannis et al., 1997) to use the idea of potential
growth which can be described by a function. By
definition this is the growth that would be observed
in conditions that were not limiting. There is always
a problem in saying that a particular eet o Fconditions
were not acting to limit growth, but there are often

D.y

Figure Z The estimated growth curve for the average male
(--) and female (- - -J lamb.
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maximum growth rate, helped. The value of the
parameter Z was easier to estimate reliably for a

single animal as it overcame, to some extent, the

problem of the estimates of A and B being highly
correlated.

The comparison of estimation methods was not

based on a formal test. Since growth parameter

values were obtained for the same set of animals for
all methods, these estimates and their errors were not

independent. Furthermore, the number of

parameters fitted varied between methods as did the
characteristics and amount of data considered (For
instance individual weights versus relative growth
rates). Even if the sets of growth parameter values

were independent between methods. residual mean
squares would in part refl ect the unique features of
the method. A ny comparisons based on goodness-of
fit tests are unconvincing.

Instead, a more empirical approach was adopted to
compare and choose between estimation methods.
This involved considering the frequency with which
an iterative fit converged and whether the estimates
obtained fell within a defined and biologically
sensible range for growth parameters (Table 2). As
part of their criteria for choosing a non-linear
function to describe growth in dairy cattle, Perotto et
al. (1992) adopted a similar strategy. The attributes of
the growth parameter values themselves were also
considered. The within and between animal
estimates of A and B proved to be highly and
negatively correlated (Table 3) and, particularly for
A, were skewed and le p to k urto ttc in their
distribution. The estimate of the lumped parameter Z
was comparatively independent of B and essentially
normally distributed. Taken together, the non-linear
fit of the Gompertz equation transformed to fit Z
rather than A (method lb) was the best and we chose
it as the method to employ.

The mean values of A for the males and females of
109·8 and 86·3 kg (Table 6), can be compared with
other estimates for Suffolk sheep. Oberbauer et al.
(1994) reported the mature empty body weight in
Suffolk males as 97·9 (s.e. 7·8) kg. This was based on
the fit of the Brody growth equation to weights
collected at 16 slaughter events spread between 1
and 600 days of age. Oberhauer et d. (1994) note that
even at the final slaughter age, weight had not
reached an asymptote since these animals were given
food in a manner that allowed them to continue to
fatten. While the form of the Brody equation is
unsuitable, its use on these data is unlikely to cause
any gross error in the estimate of the asymptote.

The ratio of the male to the female mature size
observed in this study is close to that ofl·3 estimated
by Hammond (1932). Between species the value of
the rate parameter, B, is scaled to AD.27 (Taylor, 1965

and 1980; Emmans, 1997). For the pre-weaning
grow th of eight mam m alia n species, including sheep,
the value of the scaled rate parameter B*= B.A°.2 7 ,

varied little around a mean of 0·03528 (Emmans,
1997). For the males and females in the current study,
the values were 0·03858 and 0·03739 respectively,
only a little higher than those expected on an
lnte rs pectes basis.

While, in principle, an animal has values forA and B
(and for Go' but this is only the starting condition),
and these refl ec t its inheritance to at least some
extent, the difficulty of estimating these separate
growth parameter values for an individual meant
that the genetic analysis was not as straightforward
as we had hoped. Since the frequency and spacing of
live weight recording differed between animals, the
relia bility 0 Fo u r estimates of A and B varied between
animals. Weighted analyses were used to account for
this by fitting univariate mixed-models. Genetic co
variances between the values of the growth
p ara m eters were therefore not 0 btained.

Mature size, A. and the rate parameter, B, were
moderately heritable (0·37 and 0·38, respectively) as
was live weight at 150 days of age (0.31). Effective
selection to increase A and B therefore seems
plausible. However, there appears to be an
antagonism between the rate of maturing and
mature size. Our empirical estimate of the genetic
relationship between these growth parameters was
substantially negative (-0'48). This suggests that the
components of growth are inherently in balance, and
disturbing this homeostasis may prove problematic.
The persistence of the scaled rate parameter B* = B·
Ao·n across species is perhaps further evidence of

this. Our lumped parameter Z = A B was however
highly heritable (0·72). Its higher heritability than
either A or B probably reflects fewer problems with
estimation; its higher heritability than weight for age
probably reAects the greater amount of information
used to estimate it. There is appreciable genetic
variation in the overall means by which sheep grow,
captured in Z, and this appears more amenable to
selection.

After 9 years of selection on an index designed to
increase lean growth rate, the index score of the
selection line increased substantially by over 4
genetic s.d. units (Simm et aJ., 2002). Although the
index did not explicitly act to increase live weight per
se; it did not constrain it to allow for more rapid
improvement in lean growth. Consequences were
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increases in live weight at t so-days (the age of
selection), mature size and maximum growth rate as
represented by Z.

The positive relationship between the EBVs for the
growth traits observed in this study suggests such
correlated selection responses should be expected.
Where the absolute size or weight of an animal in
addition to its lean composition is important. it is
arguable whether such an increase in weight is in
fact desirable. Examples of this are where there are
limits in the carrying capacity of land (such as in
marginal grazing areas) or where there is a desire for
carcasses of given weight at given levels of fatness or
conformation. A constraint on any increase in live
weight may prove more sustainable in such
situations, although undoubtedly would result in
slower improvement in lean growth. The
consequences of selection on correlated traits must
be considered to ensure the outcome of a breeding
programme is tailored to the economic and social
demands of the industry to which itis applied.

Random regression is an increasingly popular tool to
resolve the genetic merit of animals for records that
are collected repeatedly over time (Schaeffer and
Oelkers, 1994; Jamrozik and Schaeffer, 1997). such as
the live weights in this study. In a companion paper,
random regression methods have been used to
analyse these same growth data, and the respective
merits of the techniques compared (Lewis and
Bro the.rsto n e.i zunz).

Acknowledgements
The financial support of the Scottish Executive
Environment and Rural Affairs Department,the Ministry of
Agriculture. Fisheries and Food (now Department for
Environment. Food and Rural Affairs). the Meat and
Livestock Commission and the Suffolk Sheep Society for
this research is gratefully acknowledged. We are very
grateful for the technical assistance of many current and
former SAC staff. especially Jack FitzSimons, Sue Murphy.
Colin Sle sso r. Mark Ramsay and Hazel Brown. We also
thank Sue Brotherstone and Ian White (U niversity of

Edinburgh) for their helpful suggestions, particularly with
rega rd s to the weighted ana lyses that were perform ed.

References
Admassu, D. and Ahlgren, I. 2000. Growth of juvenile

rila pia. Oreochromis niloticus L from lakes Zw ai, Langeno
and chamo (Ethiopian rift valley) based on otolith
microincrement analysis. Ecology of Freshwater Fish 9:
127-137.

Akbas, Y. and Yaylak, E. 2000. Heritability estimates of
growth curve parameters and genetic correlations between
the growth curve parameters and weights at difTerent age of
Ja pa nese qua u. A rchiv ftir Gej1ugelkunde 64: I 41 -146.

Arseneau, M. I., Ouellet, I. P. and Sirois, L. 1998. Fruticose
arboreal lichen biomass accumulation in an old-growth
balsam fi r forest. Canadian Journal of Botany 76c 1 669-1 676.

Bajzer, Z. 1999. Gompertzian growth as a self-similar and
allom etric process. Growth, Development and Aging 63: 3-11.

Brody, S. 1945. Bioenergetics and growth. Reinhold, New
York.

Clam, S. T., Odell, D. K. and Lacinak, C. T. 2000. Aspects
of growth in captive killer whales (Orctnus orca). Marine
Mammal Sciencel6c 11 0-1 23.

Cullis, B. R. and McGilchrist, B. R. 1990. A model of the
analysis of growth data from designed experiments.
Biometrics 46: 1 31 -I 42.

Emmans, G. C. 1988. Genetic components of potential and
actual growth. In Animal breeding opportunities (ed. R. B.
Land, G. Bulfield and W. G. Hill) British Society oj A nimal
Production occasional publication no. 12, PP: 153-181.

Emmaus. G. C. 1989. The growth of turkeys. In Recent
advances in turkey science (ed. C. N ixey and T. C. Grey)
Poultry science symposium no, 21. pp. 135-166. Butterworths.
London.

Emmans, G. C. 1997. A method to predict the food intake of
domestic animals from birth to maturity as a function of
tim e.Journal ofTheoretica/ Biolo,gy 186: 189-1 99.

Emmaus, G. C. and Fisher, C.1986. Problems in nutritional

theory. In Nutrient requirements oj poultry and nutrmonoi
research (ed. C. Fisher and K. N. Boorman). pp. 9-39.
Butterw orths, Lond on.

Ferguson, N. S. and GOllS, R. M. 1993a. Evaluation of pig
genotypes. 1. Theoretical aspects of measuring genetic
param eters. A nima/ Pnxluction 56: 233-243.

Ferguson, N. S. and Gous, R. M. 1993b. Evaluation of pig
genotypes. 2. Testing experimental procedure. Animal
Production 56: 245-249.

France, J., Dijkstra., J., Thornley, J. H. M. and Dhanoa, M.
S. 1996. A simple but flexible growth function. Growth,
Development and Aging 60: 71 -83.

Pnggens. N. c., Shanks, M.• Kyriazakis, I., Oldham, J. D.
and McClelland, T. H. 1997. The growth and development
of nine European sheep breeds. 1. British breeds: Scottish
Blackface. Welsh M ou ntain and Shetland. Animal Science 65:
409-426.

Genstat 5 Committee. 1998. Genstat 5, release 4.1 (PCI
Windows NT). Rothamsted Experimental Station,
Ha rp e n d e n. UK.

Gilmour, A. R., Cullis, B. R., Welham, S. J.and Thompson,
R. 1998. ASReml user guide NSW Agriculture, Orange,
N SW. 2800,A ustralia.

Gilmour, A. R., Thompson, R. and Cullis, B. R. 1995.

Average information REML. an efficient algorithm for
variance estimation in linear mixed models. Biometrics 51:

1440-1450.

u ous, R. M.• Moran, E. T., Stilborn, H. R., Bradford, G. D.
and Emmans, G. C. 1999. Evaluation of the parameters
needed to describe the overall growth. the chemical growth.
and the growth of feathers and breast muscles of broilers.
Poultry Science 78: 81 2-821 .



62 Lewis, Emmaus, Dingwall and Simm

Hammond, J. 1932. Growth and development of mutton
qualities in the sheep. Oliver a nd Boyd. Ed; nbu rgh.

Hencock, C. E., Bradford, G. D., Emmans, G. C. and GOUS,
R. M. 1995. The evaluation of the gmwth-parameters of 6

strains of commercial broiler-chickens. British Poultry
Science36: 247-264-

jamrostk, J. and Schaeffer, L. R. 1997. Estimates of genetic
parameters for a test day model with random regressions

for yield traits of first lactation Holsteins. journal of Dairy
Science 80: 762-770.

Knap, P. W. 2000. Time trends of Gompertz growth
parameters in 'm eat-type' pigs. Anima! Science 70: 39-49.

Lewis, R. M. and Brotherstone, S. 2002. A genetic
evaluation of growth in sheep llsing random regression

techniques. Animal Science 7% 63-70.

Lewis, R. M., Emmans, G. C., Simm, G., Dingwall, W. S.
and FitzSimons, J. 1998. A description of the growth of
sheep. Proceedings of the British Society ofA nimal Science 1998,
p.47.

Mignon-Grasteau, 5., Piles, M., Varona, L., Rochambeau,
H, de, Poivey, J, P., Blasco, A. and Beaumont, C. 2000.
Genetic analysis of growth curve parameters for male and

female chi ck e ns resulting from selection on shape ofgrowth

cu rve. journal ofAnimal Science 78: 251 5-2524.

o berbauer, A. M" A mold, A. M. and Thonney, M. L. 1994.
Genetically size-scaled growth and composition of Dorset
and Suffolk rams. A nimat Production 59: 223-234.

Ott, R. L. 1993. An introduction to statistical methods and data
analysis, fourth edition. Dux bu ry Press, Bel mont. CA.

Parks, J. R. 1982. A theory of feeding and growth of animals.
Springer-Verlag, Berlin.

Perotto, D., Cue, R. I. and Lee, A. J. 1992. Comparison of

non lin ear fu n ctions for describing th e grow th cu rye of three

genotypes of dairy cattle. Canadian journal of A nimal Science
72: 773-782.

Schaeffer, L. R. and Dekkers, J. C. M. 1994. Random

regressions in animal models for test-day production in

dairy cattle. Proceedings of the fifth world congress on genetics
applied to livestock production, Guelph, vol. 18, Pl" 443-446.

Simm, G. and Dingwall, W. S. 1989. Selection indices for

lean meat production in sheep. Livestock Production Science
21: 223-233.

Simm, G., Lewis, R. M., Grundy, B. and Dingwall, W. S.
2002. Responses to selection for lean growth in sheep.

A nimal Science 7% 39-50.

Taylor, StC. S. 1965. A relation between mature weight and

the time taken to mature in mammals. Animal Production 7:
203-220.

Taylor, St C. S. 1980. Genetic size-scaling rules in animal

growth. A nimal Production 30: I 61-1 65.

Taylor, St C. S., Thiessen, R. B. and Murray, J. 1986. Inter

breed relationship of maintenance efficiency to milk yield in

cattle. A nimal Production 43: 37-61.

Winsor, C. P. 1932. The Gom p ertz cu rv e as a grow th cu rve.
Proceedings of the National Academy of Sciences of the United
Smtes of America 18: 1 -8.

Zygoyiannis, D., Kyriazakis, I., Stamataris, c., Friggens,
N. C, and Katsaounis, N, 1997. The growth and

development of nine European sheep breeds. 2. Greek

breeds: Boutsko, Serres and Karagouniko. Animal Science 65:

427-440.

(Received 27 February 2001-Accepted 16july 2001 )


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2002

	A description of the growth of sheep and its genetic analysis
	R. M. Lewis
	G. C. Emmans
	G. Simm

	tmp.1401292049.pdf.WIdvP

