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A DESCRIPTIVE DEFINITION OF SOME 

MULTIDIMENSIONAL GAUGE INTEGRALS 

CLAUDE-ALAIN FAURE 

(Received December 23, 1993) 

0 . INTRODUCTION 

It is now a classical result that the Riemann-type Kurzweil-Henstock integral 

is equivalent to the Denjoy-Perron integral. So it can integrate any derivative in 

dimension one, but in higher dimension there are differentiable vector fields with 

a non-integrable divergence. This deficiency was removed by J. Mawhin [9], who 

introduced the notion of regularity of an interval in the definition of the integral. 

Nevertheless, his integral failed to be additive (i.e. there exist functions which are 

integrable on intervals Ii and I2 without being integrable on the interval I\ U I2), 

and it was the starting point of many researches. Let us mention the Mi-integral of 

J. Jarnik, J. Kurzweil and S. Schwabik [3], and the works of W. F. Pfeffer [13] and 

D. J. F. Nonnenmacher [12]. 

The main purpose of this paper is to establish a very complete fundamental the-

orem for several multidimensional integrals, including J. Mawhin's integral [9] and 

W. F. Pfeffer's integral [13]. A characterization of these two integrals (using some 

null condition) can be found in [8]. For the a-regular integral a remarkable theorem 

is given in [5], where the authors W. B. Jurkat and R. W. Knizia introduce a useful 

outer measure associated to any interval function. This tool is very natural in the 

frame of Kurzweil-Henstock integration for its definition is based on the notion of 

gauge. The results of the present paper are obtained by defining an appropriate 

outer measure for each integral. 

In order to derive our fundamental theorem it is useful that the integral can 

integrate the derivative of any differentiable interval function. The two integrals 
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of J. Mawhin and W. F. Pfeffer have this property, but it does not seem to be the 

case for the Mi-integral. In this paper we present a modified version of this integral 

which has the desired property. The definition of this Mo-integral is inspired by 

a noteworthy result of J. Kurzweil and J. Jarnik [7] on regular differentiability of 

interval functions. The proofs of the fundamental theorem will be given for the 

Mo-integral but the other cases require only minor modifications. 

1. PRELIMINARIES 

Let I = [<ii, bi] x . . . x [an, bn] be any (non-degenerate) compact interval of (Rn. 
n 

a) the measure of I is the number m(I) = f] (b; — a;), 

b) the length of I is the number £(I) = max (b; — a-.), 

c) the thickness of I is the number t(I) = min (bi — a;), 

d) the regularity of I is the number r(I) = t(I) £(I)~l. 

We denote by J (I) the set of all (non-degenerate) compact subintervals of I. In 

the following we shall work with the ball V(x, 6) — {y G lRn/ max \x{ — yi \ ^ 6}. 

1.1 Definition. An interval function F: J (I) —> (R is called a-differentiate at 

x e I (for a fixed parameter 0 < a < 1) if there exists fx G R such that for every 

e > 0 there exists 6 > 0 with the property 

| F ( J ) - / x m ( J ) | < e m ( J ) 

for every J G J7(I) with rr G J C V(#,($) and r(J) ^ a. The function F is called 

(ordinary) differentiate at x if it is a-differ entiable at x for every 0 < a < 1. In 

that case the derivative fx is denoted by F'(x). 

The following remarkable result of J. Kurzweil and J. Jarnik shows that the dif-

ferentiability of an additive interval function does not depend on a. 

1.2 Proposi t ion . Let F: J (I) —» U be an additive function and x G IntI . We 

suppose given 6 > 0 with V(x,6) C I and such that \F(K) - fxm(K)\ ^ em(K) 

for every K G J (I) with x G K C V(x,(^) and r(I\") ^ a. Then the inequality 

\F(J)-fxm(J)\^Ke£(J)n 

holds for every J G J (I) with x G J C 17(.r,<5), where AC is a constant depending 

only on the integer n and the parameter 0 < a < 1. 

P r o o f . See Corollary 1 in [7]. • 
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1.3 Theorem. (Kurzweil-Jarnik) ff an additive interval function F: J (I) -> R 

is a-differentiable at x G Int I for some 0 < a < 1. then F is (3-differentiable at x for 

every 0 < (3 < 1 (i.e. F is differentiate at x). 

Let A be any subset of I. A figure $ over A is a finite family of non-overlapping 

intervals Ji, J2, • • •, Js € *f(I) together with a family of points x\,X2,. •. ,x s G .4 

such that X{ G J{ for all i = 1 , . . . , 5. The regularity of the figure $ is the number 

r(3>) = min r(Jz). A partition of the interval I is a figure II over I such that the 

intervals Ji cover I. 

Any positive map 6: A —> LR+ is called a gauge on A Given a gauge 6: A —> R+ 

one says that a figure $ over A is 6-fine if J; C V(o;t-, £(:£;)) for all i. We denote 

by T(A,6) the set of all 6-rme figures $ over A and by T(I,6) the set of all (5-fine 

partitions II of I. 

1.4 Definition. Let / : I —> IR be a function. Given a partition n of I one can 
s 

form the Riemann sum S(f,H,I) = ^ f(xi)m(Ji). The function / is called 
i= i 

a) DP-integrable (or also strongly integrable) if there exists c G IR such that for 

any e > 0 there exists a gauge 6: I -> R+ with the property | S(f, II, I) - c | < e for 

every partition II G T(I,6), 

b) a-regularly integrable (for a fixed 0 < a < 1) if there exists c G R such that for 

any e > 0 there exists a gauge o*: I -> R+ with the property | S(f, II, I) - c | < e for 

every partition IT G 7*(I, 6) with r(II) ^ a, 

c) M-integrable (or also regularly integrable) if there exists c G IR such that for 

any e > 0 and any 0 < a < 1 there exists a gauge (5: I —> R+ with the property 

| S(f, II, I) - c | < e for every partition II G T(1,6) with r(II) ^ a, 

d) Mi-integrable if there exists c G R such that for any e > 0 and any If > 0 there 

exists a gauge 6: I -> R+ with the property \S(f,IT,I) — c | < e for every partition 
s 

II G T(I,6) with Si(II) := ^ ™<(<I;) r ( ^ ) " 1 ^ If (compare with the definition 

in [3]). 

In any case the integral c G R is unique, and it is denoted by f j f. 
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J* 

2 . TWO FURTHER INTEGRALS 

The failure of the additivity for the M-integral is due 

to the pathological behaviour of regular intervals on the 

boundary dl of I. This trouble can be avoided by defining 

a new parameter of regularity for all the intervals which 

are in contact with the boundary. 

2.1 Definition. Let J = [ci,Ji] x . . . x [cn,dn] G J (I). 

The relative regularity of the interval J is the number 

Q(J) = r(J*), where 

{ di — £(J) if Ci = cti, + J Ci + £(J) if di = bi a n d Q > a^, 

d* = < 
Ci otherwise, [ di otherwise. 

One easily shows that Q(J) = regjr(J) as defined in [8], where T is the family of all 

k-planes which include a k-dimensional face of I (for k = 0 , l , . . . , n — 1). 

2.2 Definition. A function / : I —•> IR is said to be Pf-integrable (or also exten-

sively integrable) if there exists c G U such that for any e > 0 and any 0 < a < 1 

there exists a gauge 6 : I -> IR+ with the property |S ( / , II, I) - c | < e for every 

partition II G V(I,5) with g(U) := min g(Ji) ^ a. According to the Theorem 2 in 

[8] this definition is equivalent to the definition of W. F. Pfeffer [13]. 

For n ^ 3 it is not clear whether the Mi-integral can integrate derivatives or not. 

The following modification of this integral is motivated by Proposition 1.2. 

2.3 Definition. A function / : I —•> (R is said to be M0-integrable if there exists 

c G (R such that for any e > 0 and any K > 0 there exists a gauge 5: I —> (R+ with 

the property | S(f, II, I) - c | ^ e for every partition II G P(1,6") with 

s 

1 = 1 

The integral c G (R is unique since for any gauge 6: I -> IR+ there exists a (5-fine 

partition n of I with S0(IT) ^ m( I ) r ( I )~ n . For instance one chooses a partition 

II G V(I,S) with r(Ji) = r(I) for al i i = 1 , . . . , s (cf. Cousin's Lemma in [10]). 

2.4 Remark. Let us denote by DP(I), R a(I) , M(I), Mi(I), Pf(I) and M0(I) 

the respective sets of integrable functions. Then we obtain the following chain of 

inclusions (in any case the integrals coincide): 

DP(I) C Mi(I) C M0(I) C Pf(I) C M(I) C R a ( I ) . 
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One has Pf(I) C M(I) since g(J) ^ r(J) for every interval J £ J (I). In order to 

verify the inclusion M0(I) C Pf(I) one remarks that for any partition II G V(1,1) 

with g(Yl) ^ a the following inequality holds: 

s s 

So(II) =^e(JS)n ^ ^2m(Jna-n ^ m,(H)a~n, 
i=l i=l 

where H is the interval [ai - 1, bi + 1] x . . . x [an - 1, bn + 1]. For n = 2 one has 

Mi (I) = Mo(I) and for n — 1 all these integrals are equivalent. 

2.5 Proposition. Let H be an interval with I C IntH and let F: J(H) -> IR be 

an additive differentiable function. Then its derivative F' is MQ-integrable on the 

interval I and / 7 F' = F(I). 

P r o o f . One first chooses a parameter 0 < a < 1. Let e > 0 and K > 0 be 

given. For each x E I there exists 5(a;) > 0 with V(x,(5(a;)) C H and such that 

\F(J)-F'(J)m(J)\ ^SK-lK-lm(J) 

for every J £ J(H) with rr E J C V(x,(5(o;)) and r(J) ^ a. Now let n be a o^fine 

partition of I with So (II) ^ K. Then by Proposition 1.2 one gets 

s s 

^ | F , ( ^ ) m ( J , ) - F ( J 0 | ^ ^ T e X - 1 / ^ ) 7 1 ^ e. 
i=i i=i 

Hence \S(F', 11,1) — F(I) | ^ e and the assertion is proved. • 

The following example shows that one cannot weaken the hypothesis by supposing 

that the function F is differentiable only on the interval I. 

2.6 Example. Let I = [0,1] x [0,1] be the unit square and let / : I -> (R be the 

regularly integrable function defined by 

f(x,y) — sin(2K.r~2y)x_4 if 0 < y < x2 and f(x,y) — 0 elsewhere. 

Now consider the indefinite integral F(J) = Jjf. The function F is everywhere 

differentiable and F' = / . But / is not extensively integrable (for the proof see the 

similar example 4.2 in [1]). 

We finish this section by proving some basic properties of the Mo-integral. 

2.7 Proposition. A function f: I -> (R is Mo-integrable if and only if for any 

e > 0 and any K > 0 there exists a gauge 5: I —Y (R+ with the property 

\S(f,U1,I)-S(f,U2,I)\^e 
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for all S-fine partitions ITi and TL2 of I with E0(IIi) ^ K and E0(n2) ^ K. 

P r o o f . (<=) For any k G N with k ̂  m(I) r(I)~n there is a gauge ô  : I -> IR+ 

with the property | 5 ( / , I I i , / ) - S( / , I1 2 , I ) | ^ ± for every III, n 2 G V(I,S) with 

E0(nz) ^ k. Clearly, one may assume Sk+i ^ 6k for all k. One chooses for each 

k a partition Pk G V(I,6k) with E0(P/C) ^ m(I)r(I)~n (such a partition exists by 

Definition 2.3). Then S(f, Pk, I) is a Cauchy sequence and one easily shows that the 

limit of this sequence is the integral of / . D 

2.8 Corollary. If a function f: I -> U is Mo-integrable on the interval I, then f 

is Mo-integrable on any subinterval J G J (I)-

P r o o f . Let J\,... ,Jt be complementary intervals of J. We put a = min r(Jk). 

Given e > 0 and K > 0 there exists a gauge 6: I -> U+ with the property 

| 5 ( / , n i , I ) - 5 ( / , n 2 , I ) | ^ ^ 

for every I i i , II2 G V(I,6) with E0(n{) ^ K + m ( I ) a " n . Given P i ,P 2 G P(J,<&) 

with E0(P;) ^ K one chooses for each k = 1 , . . . , t a partition Qk G V(Jk,6) with 

E0(Q/c) ^ m( J/c) a~n . Considering II; = Pi U Qi U . . . U Qt one gets 

| 5 ( / , P i , j ) - S ( / , p 2 , j ) | = | S ( / , n 1 , I ) - 5 ( / , n 2 , I ) | ^ £ . 

Therefore / is M0-integrable on J by the preceding proposition. D 

2.9 Proposition. Let I = Ii U I2 be a division of I. If a function f: I -> R is 

Mo-integrable on the intervals I\ and I2. then f is Mo-integrable on the interval I 

and one has / , / = Jh f + Jh f. 

P r o o f . Left as exercise (one just follows the usual demonstration). D 

2.10 Lemma (Saks-Henstock). Let f: I -> U be a Mo-integrable function and 

let F(J) = Jj f be its indefinite integral. We suppose given a gauge 6: I —> 05+ 

with the property |S(/ , II ,I) - / 7 / | ^ e for every partition II G V(I,6) satisfying 

E0(n) <$ K + 2 n m( I ) . Then for any figure $ G T(I,6) with E0($) ^ K one has 

1) liifMmW-F^l^e, 
[
i=i ' 

2) £\f(xi)m(Ji) - F(Ji)\^2e. 

P r o o f . 1) One chooses complementary intervals K\,... ,Ktoi the figure $ with 

r(Kj) ^ | for all J . Given n > 0 one considers for each J a gauge 6j: Kj -> U+ 
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with the property \S(f,PjyKj) - F(K5)\ ^ \ for every partition P5 € V(Kj,Sj) 

with So(Fj) ^ 2nm(Kj). Obviously, one may assume that 8j ^ S. Choosing for 

each j such a partition Pj one gets a S-fine partition II = $ U Pi U . . . U Pt of I which 

satisfies E0(II) ^ K + 2n m(I). By additivity of F the first term is ^ 

t 

3 = 1 

and since 77 is arbitrary the assertion is proved. The second inequality is a direct 

consequence of the first one. • 

3. T H E OUTER MEASURES ASSOCIATED TO AN INTERVAL FUNCTION 

3.1 Definition. Let F: J (I) -> IR be any interval function and let A C I be 

a subset. Given a figure <£ over A one can form the variational sum W(F,$,A) — 
s 

^2 \F(Ji) |. The strong F-outer measure of the subset A is the number 
i=\ 

ms
F(A) =inf sup{VF(F ,$ ,A) /$G.F(A , r5)}, 

5 

where 6 runs over all gauges on A. Similarly, we define the following numbers: 

m£(A) = inf sup {W(F,$, A) / <S> G T(A,5) and r($) ^ a } , 

m£(A) = sup inf sup{!V(F, $,A) I $ G ̂ (-4,5) and r($) ^ a } , 

m£(A) = sup inf sup{VV(F, $ , A ) / $ G ̂ "(A,(5) and £>($) >a}, 

mF(A) = sup ini sup{W(F,$, A) / § € T(A,6) and S0(*) </<"}. 

This notion of outer measure appears (for the a-regular case) in [4] and [5], One 

remarks that for n — 1 all these definitions are equivalent. 

3.2 Lemma. mF(A) ^ mF(A) ^ mF(A) ^ mF(A) ^ m^(A) for every subset A. 

P r o o f . The only non-trivial inequality is mF(A) ^ mF(A). One first shows 

that £o($) ^ m(H) a~n for every figure $ G -F(A, 1) with O(3>) ^ a (cf. Remark 2.4). 

The desired inequality is then easily verified. • 

3.3 Proposi t ion. mF has the following properties (where the asterisk * stands 

for the letters s, a, r, e or 0): 
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1) m£(0) = 0 (by convention), 

2) Ai C A2 implies mp(Ai) ^ m£(>42), 
/• OO v C O 

3) mp( \J Ak) ^ ^2 mp(Ak) for every sequence of subsets Ak C I, 

H = i ' fc=i 

4) m^(A i U A2) = m^(i4i) + mp(A2) if the subsets A\ and A2 are contained in 

two disjoint open sets U\ and U2 (in particular mp is a metric outer measure). 

P r o o f . We give a demonstration for m-p (the other cases are similar or simpler). 

3) Clearly, one may assume that the subsets Ak are pairwise disjoint. Given e > 0 

and K > 0 there exists for each k G N a gauge 5k : Ak -> K+ such that 

W(F,$k,Ak)<m°p(Ak) + 2-ne 

for every figure $k G ^"(-4^,^) with EO($A,) ^ K. One thus obtains a gauge S on 
OO 

the set A := IJ A^. By decomposing every figure <£ G .F(A, J) with En($) ^ K into 
fc=i 

a finite union of figures $k € T(Ak,5k) one concludes that 

OO 

W(F,^,A)^J2
m

°^
A
^-

{
-

£
' 

fc=i 

OO 

This proves that m° (A) ^ ]T) m£(AA;) + £ since the constant If is arbitrary 
fc=i 

4) We want to show that m£(.4i)+m£(-42) ^ m£(-4), where A = Ai +A2. Given 

e > 0 there exists K > 0 such that for any gauge $;: A{ —r (R+ one can find a figure 

$i G T(Ai,Si) with E0($i) < K and 

VV(F,^,Ai)>7n^(A,)-e. 

Now for this e > 0 and this If > 0 there exists a gauge J: A —•> IR+ such that 

W(F,$,A) <m*F(A)+e 

for every figure <£ G JF(A,(^) with £ 0($) ^ 2Iv. For each x G Ai one may assume 

that V^OXx)) C Uf. Choosing two figures $i and <I>2 as above one obtains 

m£(A i ) + m°F(A2) < W(F, $ i , A i ) + VV(F, <S>2, A2) + 2e < m°F(A) + 3e 

since JV(F, $ i , Ai) + VV(F, $ 2 , A2) = JV(F, $ i U $ 2 , -4). • 

556 



In what follows the Lebesgue outer measure of a subset A C I is denoted by m(A). 

{
OO OO N 

£ m(Jk)lA C IJ JfcV 
fe=i fc=i -1 

3.4 Proposition. Let F: J (I) -> U be the measure function, i.e. F(J) = ra(J) 

for every J G J (I). Then nip (A) = nip(A) is the Lebesgue outer measure m(A). 

P r o o f . By Lemma 3.2 it is enough to verify the inequalities mp(A) ^ m(A) 

and m(A) ^ nip (A). One easily shows that mp(J) = ra(J) for every J G J (I). 

Then 
OO OO OO 

AC [J Jk implies nip (A) ^ ^ P r a ^ A ) = ^ r a ( J f c ) . 
k=l k=l fc=l 

Hence one obtains nip (A) ^ ra(A) since the sequence of intervals Jk is arbitrary. 

Now we prove the other inequality. Given e > 0 there is a gauge 6\ A -> (R+ 

such that W(F,$,A) < mp(A) + £ for every $ G T(A,5) with r($) ^ a. By the 

so-called Covering Lemma (cf. Proposition p. 496 in [10]) there exist two (possibly 

finite) sequences of non-overlapping intervals Jk G J (I) and of points Xk G Jk H A 

such that 

Jk C V(xk,S(xk)) and r(Jk) ^ a for all k, and -4 C MJ*.. 
k 

Then £ra(J f c) < m£(-4) + e implies ra(A) ^ ra£(A) + e\ D 

3.5 Corollary. For any f: I —> IR the following conditions are equivalent: 

1) / is stTongiy integrable and Jj f = 0 foT eveTy J G i7(I), 

2) / is a-regularly integrable and Jj f = 0 foT eveTy J G i7(I), 

3) f(x) = 0 almost everywhere. 

P r o o f . Left as exercise. Hint: Consider the sets Ek := { x G / / | / ( # ) | > £} 

for (2=>3) and the sets Ffc := {x el/k-1 < \f(x)\ ^ k} for (3 => 1). D 

3.6 Definition. Let F: J (I) -> IR be any interval function and let E C I be a 

subset. The function F is called 

a) BV* (or of bounded variation) on E if nip(E) < oo, 

b) AC* (or absolutely continuous) on E if for any e > 0 there exists 77 > 0 such 

that ACE and m(A) < rj imply m£(A) < e, 

c) LzT* (or Lipschitzian) on I/j if there exists C > 0 such that ra^(A) ^ Cra(Al) 

for every subset ACE. 
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3.7 Remark. For n = 1 the additive interval functions are identified with func-

tions F: I -» R. Then one easily verifies that for E = I the above definitions are 

equivalent to the usual definitions of a) functions of bounded variation, b) absolutely 

continuous functions, c) Lipschitzian functions. 

3.8 Definition. One says that a function F: J(I) —> 1R is BVG* (respectively 
oo 

A CO* and LZG*) if there is a decomposition I = (J Ek of the interval / such that 

F is BV* (respectively AC* and LZ*) on each subset Ek. The function F is called 

*-variationally normal if A C I and m(A) = 0 imply mp(A) = 0. 

3.9 Lemma. 1) If a function F: J (I) -> K is LZG*, then F is ACG*. 

2) If a function F: J (I) -» R is ACG*, then F is BVG* and *-variationally normal. 

P r o o f . Easy verification. • 

3.10 Theorem. Let F: J (I) -> U be an additive function. If F is BVG*, then 

F is differentiable almost everywhere. 

P r o o f . We show that if the function F is BV a on a subset E C Int I, then F 

is differentiable almost everywhere on E (the assertion then follows by Lemma 3.2). 

According to a theorem of A. J. Ward (cf. Theorem IV-11.15 in [15]) it suffices to 

prove that the set E^ := {x G E j DaF(x) = oo} is of measure zero, where DaF(x) 

denotes the usual upper a-derivative. 

We choose a gauge S: E -> (R+ such that W(F, $, E) < nip(E) -F1 for every figure 

<1> G J(E,S) with r($) ^ a. Now let k G N be fixed. For any point x G E^ and any 

?/ > 0 there exists an interval Jx^ G J (I) with the properties 

x G Jx,^ Q V(x,7]),r(Jx^) > a and F(JXiT]) > km(JXiV). 

All these intervals form a Vitali covering of Foo, and then by the Vitali Covering 

Theorem there exist finitely many disjoint intervals JXi,1}i (i = l , . . . , s ) such that 
s 

m^Eoo) ^ J2 m(Jxt,r}i) + p Therefore one obtains 
t = i 

m(Soo) ̂  1(^2^^^) +l) < l(m£(E) + 2), 

and this proves the assertion since k is arbitrary • 
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4. T H E FUNDAMENTAL THEOREMS 

4.1 Proposition. Let f: I -» (R be *-integrable (where * = s, a, r. e, 0). Then 

the indefinite integral F(J) = Jj f is LZG*. 

P r o o f . We give a demonstration for the M0-integral. We show that F is LZ° 

on the set Ek = {x G I / | /( .c) | ^ k}. So let A C Ek he any subset. Given e > 0 

and Iv" > 0 there exist two gauges Si : I —•> (R+ and 82 : A -> IR+ such that 

1) | S ( / , n , I ) - F(I) | ^ e for every II G P(J,<*i) with E0(II) ^ K + 2nm(I) , 

2) W(m, $, A) < m(A) + e for every $ G .F(-4, J2), cf. Proposition 3.4. 

We consider the gauge 8: A —> (R+ defined by o^x) =-= mm(Si(x),82(x)). Then for 

any figure $ G .^(A,^) with E0($) ^ I-' one obtains 

W(F,*,A) = Y^\F{Ji)\^Yi\F{Ji)-f(xi)m{Ji)\ + 
i=l 1=1 

s 

^ | / ( ^ ) m ( J i ) | ^ 2s + fcVV(m,$,A) < km(A) + (k + 2)e 
i = i 

according to the Saks-Henstock Lemma 2.10. Hence m^(A) ^ km(A) + (k + 2) e, 

and since £ is arbitrary this proves that F is Lipschitzian on Ek. • 

4.2 Notations. Let F: J (I) -> R be an interval function. We shall use the set 

EF = {x G Int I / F is not differentiable at x} U <9I and the function / F : I -» R 

defined by / F (x ) = F'(x) ii x £ EF and / F (x ) = 0 if x G £ F . 

4.3 Proposition. If F: J(I) —> 1R is an additive function and ifmp(EF) = 0 

(Viiere * -= a, r, e, Oj, then the function fF is *-integrable on I and fjfF = K(^I) 

for every interval J G .f(I). 

P r o o f . We give a complete demonstration for the Mo-integral. One first chooses 

some parameter 0 < a < 1. Let e > 0 and K > 0 be given. For each point x £ EF 

there exists 8(x) > 0 with V(x,8(x)) C I and such that 

| F(H) - F'(x) m(H) \ $C e K~1 K~l m(H) 

for every H G J (I) with x € H C V(x,8(x)) and r(H) ^ a. By hypothesis there 

is a gauge 8: EF -> K+ such that W(F, $,EF) < e for every figure $ G T(EF,8) 

with En($) ^ -^- Now let II G V(J,8) be any (5-fine partition of some fixed interval 
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J e J (I) with Eo(II) ^ K. Then by Proposition 1.2 one gets 

s 

\S(fF,U,J)-F(J)\^ ^ | / F ( i . ) m ( f f i ) - - 5 ' ( ^ ) | 
1 = 1 

^ £ \F(Hi)\+ £ iF'ixJmiHJ-FiHi)] 
xieEF Xi£EF 

s 

^ W(F, $, EF) + Y, E K~l £ ( ^ ) n < 2e. 
i= i 

This proves that fp is integrable on the interval J with j 7 / F = F(J). 

For the extensive integral there is a little complication since the relative regularity 

depends on the interval J. So we proceed as follows: 

1) We show that fF is extensively integrable on I. 

2) Hence fp is extensively integrable on every subinterval J G i7(I). 

3) By Remark 2.4 one has fjfF = fjfF-

4) Using that mF(EF) = 0 (cf. Lemma 3.2) one gets 7 j / P — -^(^) by the regular 

case. • 

By combining the four preceding results we obtain our fundamental theorem: 

4.4 Theorem (Fundamental Theorem). Let F: J (I) —> U be an interval function 

and let * = a, r, e, 0. Then the following conditions are equivalent: 

1) F is the indefinite ^-integral of some function f: I —> U, 

2) F is additive and LZG*. 

3) F is additive and ACG*, 

4) F is additive, BVG* and variationaily *-normaI. 

5) F is additive, differentiate almost everywhere and variationally ^-normal, 

6) F is additive and mF(Ep) = 0. 

4.5 Corollary. Let f: I -> 1R be a-regularly integrable and let F(J) = fj f be 

its indefinite integral. Then F'(x) = f(x) almost everywhere. 

P r o o f . This follows from Corollary 3.5 since the function / j - — / is a-regularly 

integrable with fj (fp - f) = 0 for every interval J G J (I). • 

4.6 Corollary. Let f: I -> R be M-integrable. Then f is Pf-integrable if and 

only if its indefinite integral F(J) = fj f satisfies mF(dI) = 0. 

P r o o f . One has mF(A) = mF(A) for every subset A C Int I. • 

For the function / : I -> U of Example 2.6 one remarks that mF(0,0) = oo. 
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5 . CONCLUDING REMARKS 

In [12] D. J. F. Nonnenmacher introduces another integral lying between the Mi-

integral and the Pf-integral, and he gives the following characterization of its integral 

(thus getting a descriptive definition): 

5.1 Definition. An interval function F: J (I) —> 1R is said to satisfy the condi

tion Afn-i (on I) if for any e > 0 and any K > 0 there exists a gauge 5: I —> R+ 

such that VV(F,$,I) < e for every figure $ G T(I,8) with Y,U{dJi) ^ K, or 
i = i 

s 

equivalently with ^ m(Ji)t(Ji)~l ^ K. 
i = i 

5.2 Proposition. Let f: I -» {R be regularly integrable. Then the function f is 

integrable in the sense ofD. J. F. Nonnenmacher if and only if its indefinite integral 

F(J) = fj f satisfies the global null condition Nn-\. 

The important Proposition 1.2 of J. Kurzweil and J. Jarnik can be extended to 

the case of points x G dl by modifying the definition of differentiability: 

5.3 Definition. A function F: J (I) —r U is called a-relatively differentiable at 

x G dl (for some fixed parameter 0 < a < 1) if there exists fx G R such that for any 

s > 0 there exists 6 > 0 with the property 

| F ( J ) - / x m ( J ) | ^ e m ( J ) 

for every J G J7"(I) with x G J C V(#,(_)) and D(J) ^ a (the relative regularity). 

Once again one remarks that the function F of Example 2.6 is not relatively 

differentiable at the origin. The Proposition 2.5 can be now expressed as follows: 

5.4 Proposition. If a function F: J (I) —> (R is additive and relatively differen

tiable, then the derivative F' : I —> IR is Mo-integrable and JrF
f = F(I). 

The next modification of Example 2.6 is based on a remark of M. Anciaux. 

5.5 Examp le. Let I = [0,1] x [0,1] be the unit square. Given some parameter 

0 < a < 1 we consider the function / : I -» (R defined by 

f(x,y) = x~
3 if 0 < y < ^ax and f(x,y) = —x~

3 if \ax < y < ax 

(and 0 elsewhere). Then / is a\-regularly integrable for any a ^ a\ < 1 but not 

cY2-regularly integrable for any 0 < cY2 < a, cf. Example 4.1 in [1]. 
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5.6  Open  problems.  1)  Find  (if  there exists one) a  function  / :  I  —•>  IR which  is 

Pf-integrable  but  not Mn-integrable. 

2)  Find  (for  n  ^  3)  a  function  / :  I  ->  IR which  is  M
0
-integrable  but  not  Mi-

integrable. 

3)  Clarify  which  are  the  relations  between  the  Mo-integral  and  the  integral  of 

D.  J.  F. Nonnenmacher. 

4)  Finally, determine whether  the  LZG
S
  (or  also  ACG

S
)  interval  functions  give  a 

descriptive  definition  of  the  strong  integral. 

Addendum:  After  this  paper  was  submitted,  J.  Jarnik  and  J.  Kurzweil  gave  an 

example  of  a  Pf-integrable  function  which  is  not  Mi-integrable, cf.  [2]. 
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