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A Descriptor System Approach toH Control of
Linear Time-Delay Systems

E. Fridman and Uri Shaked, Fellow, IEEE

Abstract—The output-feedback control problem is solved
for continuous-time, linear, retarded and neutral type systems. A
delay-dependent solution is obtained in terms of linear matrix in-
equalities (LMIs) by using a descriptor model transformation of
the system and by applying Park’s inequality for bounding cross
terms. A state-feedback solution is derived for systems with poly-
topic parameter uncertainties. An output-feedback controller is
then found by solving two LMIs, one of which is associated with
a descriptor time-delay “innovation filter.” The cases of instanta-
neous and delayed measurements are considered. Numerical exam-
ples are given which illustrate the effectiveness of the new theory.

Index Terms—Delay-dependent criteria, descriptor systems,
-control, linear matrix inequalities (LMIs), time-delay sys-

tems.

I. INTRODUCTION

T IME-DELAY often appears in many control systems (such
as aircraft, chemical or process control systems) either in

the state, the control input, or the measurements (see [1]–[5] and
the references therein). Time-delay is, in many cases, a source of
instability. The stability issue and the performance of linear con-
trol systems with delay are, therefore, of theoretical and prac-
tical importance.

It is well known (see, e.g., [6]–[9]) that the choice of an appro-
priate Lyapunov–Krasovskii functional is crucial for deriving
stability and bounded real criteria and, as a result, for obtaining
a solution to various control problems. The general form
of this functional leads, in the state-feedback controller
design, to a complicated system of Riccati type partial differ-
ential equations [10], [11] or inequalities [12]. Special forms
of Lyapunov–Krasovskii functionals lead to simpler delay-in-
dependent [13]–[16] and (less conservative) delay-dependent
[16]–[19], [9] Riccati equations or linear matrix inequalities
(LMIs), for -gain analysis or for memoryless state-feedback

controller design.
Recently, increasing attention has been paid to the problems

of observation, output-feedback stabilization and the design
of observer-based controllers for systems with state delay
[20]–[27]. The only solutions that have been derived, so far, for
the output-feedback control have been delay-independent
[20], [21], [26]. All the delay-independent and the delay-de-
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pendent results mentioned above treat the case of retarded type
systems. In the more general case of neutral type systems,
where the delay appears in the state derivative and in the state,
stability conditions based upon LMIs or Riccati equations
have been obtained for both the delay-independent [28], [5]
and the delay-dependent [29]–[31], [8] cases. Note that unlike
retarded type systems, neutral systems may be destabilized
by small changes in delays [32], [33]. Concerning the
control problem for neutral systems, only a delay-independent
state-feedback solution has been achieved [34].

The conservatism of the delay-dependent conditions of
[17]–[24], [31] is twofold: the transformed and the original sys-
tems are not equivalent (see [35]) and the bounds placed upon
certain terms, when developing the required criteria, are quite
wasteful. Recently, a new descriptor model transformation was
introduced in [8] for stability analysis and has it been applied to
state-feedback control and filtering of retarded type
systems in [8], [9], [19], and [27]. This approach significantly
reduces the overdesign entailed in the existing methods since
it is based on a model that is equivalent to the original system
and since fewer bounds are applied. These bounds can now
be made tighter using the recent (less conservative) bound on
cross terms that was introduced in [36].

In the present paper, we, for the first time, introduce a delay-
dependent solution to the output-feedback control problem
of systems with state delays. We solve the state-feedback and the
output-feedback control problems for neutral type linear
systems by combining the descriptor system approach with the
new bounding method. New bounded real criteria and state-
feedback solutions are given in terms of LMIs for systems which
may contain discrete and distributed delays and polytopic pa-
rameter uncertainties. The solutions we derive are delay-depen-
dent, however delay-independent results can be obtained, as a
particular case, for certain values of the design parameters. An
output-feedback controller is derived from two LMIs by ap-
plying an “innovation filter” in the form of a descriptor system.
Solutions are offered for cases of online and delayed measure-
ments. The theory developed is demonstrated throughout the
text via six numerical examples. These examples illustrate the
effectiveness of our solutions as compared to results obtained
by other methods.

Notation: Throughout the paper the superscript “” stands
for matrix transposition, denotes the dimensional Eu-
clidean space with vector norm, is the set of all
real matrices, and the notation , for means
that is symmetric and positive definite. The space of func-
tions in that are square integrable over is denoted by
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with the norm , the space of continuous func-
tions with the supremum norm is denoted
by . Denote .

II. -GAIN ANALYSIS OF LINEAR TIME-DELAY SYSTEMS

A. Delay-Dependent Bounded Real Lemma (BRL)

Given the following system:

(1)

where is the system state vector,
is the exogenous disturbance signal and is the state
combination (objective function signal) to be attenuated. The
time delays and
are assumed to be known, . The ma-
trices , and

are constant matrices of appropriate dimensions and
some of them may be equal to zero (in this case we may have
different number of delays and ). For a prescribed scalar

, we define the performance index

(2)

In order to apply Lyapunov second method for stability of neu-
tral system we assume that [1]:

A1 Let the difference operator , given
by , be delay-independently
stable with respect to all delays (i.e., the difference equation

is asymptotically stable).
A sufficient condition forA1 is given by the following in-

equality:

where is any matrix norm.
Remark 1: In the case of a single delay in the difference

operator , the following assumption is equivalent toA1:
All of the eigenvalues of are inside the unit circle.

We are looking for a BRL that depends on the delaysand
does not depend on ( ). Delay-independence
with respect to guarantees that small changes indo not
destabilize the system [32], [33]. If the conditions of the BRL
hold true for all and given , they are then true in the partic-
ular case of .

Following [8], we represent (1) in the equivalent descriptor
form:

(3)

The latter is equivalent to the following descriptor system with
discrete and distributed delay in the variable:

or

(4)

where

(5)

A Lyapunov–Krasovskii functional for the system (4) has the
form

(6)

where

(7a-e)
The first term of (6) corresponds to the descriptor system (see
e.g., [37], [38]), the third—to the delay-independent conditions
with respect to the discrete delays of, while the second and the
fourth terms—to the delay-dependent conditions with respect to
the distributed delays (with respect to).

We obtain the following.
Theorem 2.1:Consider the system of (1). For a prescribed

, the cost function (2) achieves for all nonzero
and for all positive delays , if there

exist -matrices , , , ,
, , and , ,

that satisfy the following LMI, as shown in (8) at the bottom of
the next page, where
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(9)

Proof: To prove that and , we note that

and, hence, differentiating the first term of (6) with respect to
gives us

(10)

Substituting (4) into (10), we obtain

(11)

where , and

(12)

For any -matrices and the following in-
equality holds [36]:

(13)

(8)
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for given for . Here
.

Using this inequality for and
we obtain

or after integration in the first and second terms of the latter
inequality

(14)

From (3) and the fact that and are square integrable
on , it follows that . The latter implies
underA1 that since

We substitute (14) into (11) and integrate the resulting inequality
in from 0 to . Because and

we obtain (by Schur complements) that (and ) if
the LMI holds, as shown in (15) at the bottom of the page, where
for

LMI (8) results from the latter LMI by expansion of the block
matrices.

(15)
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Note that LMI (8) yields the following inequality:

(16)

If there exists a solution to (8) then there exists a solution to
(16). This impliesA1 [39] [and, thus, the internal stability of
(1) since ].

B. Delay-Independent BRLs

For

(17)

LMI (8) implies for the delay-independent LMI, as
shown in (18) at the bottom of the page. If LMI (18) is feasible
then (8) is feasible for a small enough and for and
that are given by (17). Thus, from Theorem 2.1 the following
corollary holds.

Corollary 2.2: System (1) is stable for all ,
and if there exist ,

and , that satisfy (18).
Remark 2: As we have seen above, the delay-dependent BRL

of Theorem 2.1 is most powerful in the sense that it provides
sufficient conditions for both the delay-dependent and the delay-
independent cases [where (18) holds]. In the latter case, (8) is
feasible for , .

Representing (1) in another descriptor form:

(19)

and choosing the Lyapunov–Krasovskii functional as

(20)

where and and are given by (7), we obtain
similarly to Theorem 2.1 and [8] the following.

Corollary 2.3: Consider the system of (1). For a prescribed
, the cost function (2) achieves for all nonzero

, if there exist -matrices ,
and that satisfy the LMI, as
shown in (21) at the bottom of the next page.

Remark 3: As will be shown in Examples 2 and 3, the results
of Corollaries 2.2 and 2.3 are complementary: for some systems
only one of the two corollaries holds for a prechosen value of.

Remark 4: A delay-dependent BRL can not be obtained di-
rectly by using the representation of (19) since thereis an “al-
gebraic” type variable and therefore, by our method, the results
are delay-independent with respect to this variable. One way to
obtain a delay-dependent BRL with respect tois to apply a
“neutral type” transformation

with an appropriate “descriptor” Lyapunov–Krasovskii func-
tional. Then, only a conservative version of (13) with

(18)
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can be applied (similarly to [40]) and the result will thus be more
conservative than the one of Theorem 2.1.

C. Delay-Dependent BRL for Systems With Polytopic
Uncertainties

The BRL of Theorem 2.1 was derived for the system (1)
where the system matrices , are all
known. However, since the LMI of (8) is affine in the system
matrices, the theorem can be used to derive a criterion that will
guarantee the required attenuation level in the case where the
system matrices are not exactly known and they reside within a
given polytope.

Denoting

we assume that , namely

for some

where the vertices of the polytope are described by

We readily obtain the following.
Corollary 2.4: Consider the system of (1), where the system

matrices reside within the polytope. For a prescribed ,
the cost function (2) achieves over for all nonzero

and for all positive delays , if there
exist -matrices , , , , ,

, and , ,
that satisfy (8) for , where the matrices

are taken with the upper index.

D. Delay-Dependent Conditions in the Case of Distributed
Delay

Consider the following system:

(22)

where is piecewise continuous and bounded matrix func-
tion. As in [39], [19], we consider the Lyapunov–Krasovskii
functional which has an additional term

Similarly to the derivation of Theorem 2.1 we obtain the LMI,
as shown in (23) at the bottom of the next page, where

and where the matrices , ,
are given by (9). Note that for the distributed delay term we had
to apply a conservative version of (13) with .

(21)
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In the case of exponential matrix
a less conservative result may be obtained by applying Theorem
2.1 to the following augmented system with discrete delays:

(24)

where . The stability of (24) im-
plies the stability of (22).

E. Illustrative Examples

Example 1 [17]: We consider the following system:

(25)

where

and

For and this is an example from [17], [9]. In [17],
a minimum value of is found for . By Theorem
2.1 a minimum value of is obtained for the same.
The actual -norm of the system turns out to be 0.2364, quite

close to the we found. By [36], the system is asymptotically
stable for . By Theorem 2.1 we found that the system
is asymptotically stable for and for e.g., a
minimum value of was obtained.

Choosing now

(26)

and we obtained that the system is stable for
and e.g., for a minimum achievable value of
was achieved. Note that by using the stability conditions of [30]
we find that the LMI there is feasible only for .

Example 2: Consider the system of (25) with

For this example has been considered in [17], [9]. In
[17], the conditions of the delay-independent BRL are not satis-
fied, while in [9] (as well as by Corollaries 2.2 and 2.3) a delay
independent minimum value of was obtained.

For

we found by Corollary 2.3 that the minimum achievableis
for all delays. By Corollary 2.2, we obtained less restrictive

result: .

(23)
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Example 3: Consider the system of (25) with and
taken from Example 2 and

(27)

In this case, the conditions of Corollary 2.3 do not hold for all.
Corollary 2.2 leads to the following result: the minimum achiev-
able value of is for all delays.

III. STATE-FEEDBACK CONTROL

We apply the results of the previous section to the in-
finite-horizon control problem. Given the system

(28)

where and are defined in Section II, is the control
input, are constant matrices of appro-
priate dimension, is the objective vector, and

.
For simplicity only we took a single delayand two delays
and . The results of this section can be easily applied to

the case of multiple delays , and a dis-
tributed delay. We assume the following.

All the eigenvalues of are inside of the unit circle.
For a prescribed scalar , we consider the performance

index of (2). We treat two different cases. The first one allows
for instantaneous state-feedback while the second case is based
on a delayed measurement of the state.

A. Instantaneous State Feedback

We look for the state-feedback gain matrixwhich, via the
control law

(29)

achieves for all nonzero .
Substituting (29) into (28), we obtain the structure of (1) with

(30)

(32)
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Applying the BRL of Section II to the above matrices results
in a nonlinear matrix inequality because of the terms
and . We therefore consider another version of the BRL
which is derived from (15).

In order to obtain an LMI we have to restrict ourselves to the
case of , , where is a scalar
parameter. Note that for (8) implies the delay-dependent
conditions of [8] (for ), while for (8) yields the
delay-independent condition of Corollary 2.2. It is obvious from
the requirement of , and the fact that in (8)
must be negative definite, that is nonsingular. Defining

and

(31a-b)
we multiply (15) by and , on the left and on the right,
respectively. Applying the Schur formula to the quadratic term
in , we obtain the inequality shown in (32) at the bottom of
the previous page, where

Noticing that in (28) and we substitute (30)
into (32), denote by , and obtain the following.

Theorem 3.1:Consider the system of (28) and the cost func-
tion of (2). For a prescribed , the state-feedback law of
(29) achieves, for all nonzero if for
some prescribed scalars , there exist ,

, , , , ,
and that satisfy the LMI

shown in (33) at the bottom of the next page, where,
and are the and blocks of ,
and where

The state-feedback gain is then given by

(34)

The LMI in Theorem 3.1 is affine in the system matrices. It
can thus be applied also to the case where these matrices are un-
certain and are known to reside within a given polytope. Con-
sidering the system of (28) and denoting

we assume that , where the ver-
tices of the polytope are described by

We obtain the following.
Theorem 3.2:Consider the system of (28), where the system

matrices reside within the polytope and the cost function of
(2). For a prescribed , the state-feedback law of (29)
achieves, for all nonzero and for all
the matrices in if for some prescribed scalars there
exist , , ,
and that satisfy LMIs (33) for , where
the matrices

are taken with the upper index. The state-feedback gain is then
given by (34).

Example 4: We consider the system

(35)

where

(36)

For this is an example taken from [8]. Applying the
method of [18, Corollary 3.2] we found in [8] that the system is
stabilizable for all . For, say, a minimum value
of results for .

Using the method of [9], a minimum value of
was obtained for the same value ofwith a state-feedback gain
of .

Applying Theorem 3.1 we obtained, for the sameand for
, a minimum of with a corresponding state-

feedback gain of . For , the
gain of was obtained.

The LMI of Theorem 3.1 can be used to find the maximum
value of for which a state-feedback controller stabilizes the
system. Applying we obtained that is close
to the latter value. For this we obtained a minimum value of

with a corresponding gain of
. For a smaller gain of was

achieved.
The above results refer to the case where . For

we obtained for (and )
a minimum value of with .
For this , a near maximum value of was achieved for

with and .
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We consider next the case where

and where and as in (36) with . Ap-
plying Theorem 3.2 we obtained for and
that stabilizes the system and achieves

for all . For , a gain of
was achieved.

For we obtained, for the same value
of , a minimum value of with

.

B. Delayed State-Feedback

The situation wherein the time delay appears in the state
measurement equation (or in the actuators) results in the state-
feedback law of the form:

(37)

(33)
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which can also be solved via the LMI of (33). This is accom-
plished by considering the following asymptotically stable sub-
system:

(38)

for . The state of this subsystem is almost identical to
when and the open-loop system of (28) can, therefore,
be approximated by the following augmented system:

(39)

where

The objective vector that corresponds to the one in (28) is then
given by

where and . The state-feedback
control problem thus becomes one of finding the gain matrix

which, via the control law of

(40)

achieves for all nonzero , where
is defined in (2).

Based on the result of Theorem 3.1 we obtain the following.
Corollary 3.3: Consider the system of (39) for . For

a prescribed , the state-feedback law of (40) achieves
for all nonzero if for some pre-

scribed scalars and there exist -matrices
, , , ,

and that satisfy the LMI shown in (41) at the
bottom of the next page, where

The state-feedback gain is then given by .
Denoting

(42)

the state-feedback gain of (37)is then given by

(43)

The result of (43) stems from and from the
fact that . The nonsingularity of is not always
guaranteed. However, since a nearly singularimplies large
state-feedback gains and since the latter is encountered either
when is nearly singular or when we compute the gains for
the minimum , a possible singularity of can be avoided in
cases where is not singular and is above the minimum
possible level of attenuation.

Remark 5: The above result for the delayed state-feedback
was based on the approximation of the system of (28) and (37)
by the one of (39) and (40). A question may arise to what extent
the -norm that is achieved for the latter system describes the

-norm of the closed-loop system of (28) and (37) for .
The answer to this question may be found in the fact that the
augmented system is obtained by preceding serial component
with transfer function matrix over the significant
frequency rang. After closing the loop, the transfer function be-
tween and becomes and the actual
feedback transference, between the stateand the input to the
system is therefore .

Remark 6: The affinity of the LMI in (41) in the augmented
system matrices enables the solution of the delayed state-feed-
back problem also in the case where these matrices reside in
an uncertainty polytope. Similar to Theorem 3.2, the required
attenuation level is guaranteed by solving (41) simultane-
ously for the polytope vertices and finding, for the pair

that is in common to the resulting LMIs.

IV. DELAY-DEPENDENTOUTPUT-FEEDBACK CONTROL

We adopt in this section the dissipation approach to the solu-
tion of the output-feedback problem. It applies a controller of a
state-feedback–observer structure and requires a solution of two
LMIs.

A. Instantaneous Measurements

As in Section III the results of this subsection can
be easily rewritten also for the case of multiple delays

and distributed delay.
Lemma 4.1:Consider the system

(44a-c)

where is the measurement vector. We denote
and assume that is not singular and that .

For a prescribed and the objective function of (2),
the feedback law

(45a-b)

achieves for all nonzero and for any
delay , if for some prescribed scalars and there exist
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-matrices , , ,
and that satisfy the LMI shown in (46) at the

bottom of the next page, where

and

Proof: The proof readily follows by choosing as in (6)
(with and ) and applying (13) for

, . We obtain by integrating that

(47)

where

(48a-c)

and where the relation betweenand is given
in (31) and , with representing the fic-
titious states that emerge when completing to squares and ap-
plying Schur formula to construct .

(41)
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Unfortunately, the feedback law of (45) cannot be imple-
mented even when there exists a solution to (46), namely when
the first term in the right side of (47) is negative for all

.
Denoting and

(49)

the descriptor form for the system (44a) becomes

(50)

where and solve (46) via (45). The objective function of
(2) and (47) will then be negative if there exist and in

that depend on and satisfy

where

(51)

The problem of finding and is, in fact, a filtering
problem for the descriptor system (50).

(46)
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Consider the following “innovation” filter:

(52)

Denoting

(53)

it is readily found that the descriptor representation of the dy-
namics of is given by

(54)

Due to the assumption on and the definition of in (48)
the latter is equivalent to

(55)

Proposition 4.2: Given a -matrix , if there exists
-matrix such that

(56)

then and are nonsingular.

Proof: Let be singular. Then there exists ,
such that and, thus

The latter contradicts to (56). Hence, is nonsingular, which
implies the nonsingularity of and .

The problem now becomes one of finding the gain matrix
that will ensure the stability of the system (55) and that the
-norm of the transference fromto is less than . This

problem is solved by applying [39] and the BRL of Section II.
We obtain, from the proof of Theorem 2.1, where we apply

(13) with , that of (6), (7) satisfies if there
exist of the structure of (7b) with , , and that
satisfy (57) shown at the bottom of the page, where

(58a-b)

Note that (57) implies (56) and henceis nonsingular. We rep-
resent (55) in the equivalent form

(59)

To guarantee asymptotic stability of (59) we assume
A2 All the eigenvalues of are inside of the unit circle.

(57)
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Note that from (46) and (57) (similarly to Theorem 2.1) it fol-
lows thatA1 andA2 are valid. For a nonsingular, the system
(59) is internally stable and has -norm less than if there
exists a nonnegative Lyapunov–Krasovskii functionalsuch
that [39]).

The output-feedback controller is obtained by

(60)

where and satisfy (52). Substituting (60) in (52) and elimi-
nating there, we derive the following equations for the filter:

(61a, b)

where

and

(62)

From (56) it follows that:

Hence by Proposition 4.2, is nonsingular. We thus obtained a
decoupled system of filter equations (61a, b), the first of which
is a neutral type equation with distributed delay.

We summarize our result in the following.
Theorem 4.3:Consider the system of (44a-c) and the cost

function of (2). For a prescribed , there exists an output-
feedback controller that achieves, for all nonzero

if for some prescribed scalars and there exist
-matrices , , , ,

that satisfy (46) and -matrices , , , of
the structure of (7a) with and that satisfy
the LMI shown in (63) at the bottom of the page, where

(64)

and where is defined in (58a), and
.

If a solution to (46) and (63) exists, then is nonsingular,
assumptionsA1 andA2 hold and the output-feedback controller
is obtained by (60), where and are obtained by (61) where

.
Example 5: We consider the system of Example 4 with

, and and where is augmented
by a second column of zeros. Using (46) we find that if the
feedback law can apply both and a lower value of can
be obtained in comparison to the value obtained in Example 4
for the same . In our case, we obtained a near minimum value
of for and . The feedback control
law that achieves the later bound on the -norm of the closed
loop is:

The output-feedback control is derived for and
. A minimum value of is then obtained.

For , with the same values ofand , the resulting output-
feedback has the form of (60) and (61), where

and

The latter result for indicates that, similar to the standard
and estimation designs, the estimation procedure consists
of two phases. The first finds thea priori estimate based on the
dynamics of the system and previous measurements [in our case
(61b)]. In the second phase, (61a) in our case, the estimate of

and is updated on the basis of the current measurement
.

B. The Case of Delayed Measurements

The method of Section IV-A can be readily applied to the case
where the measurement in (44b) is delayed, namely where

(65)

(63)
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The arguments of Section IV-A can be used also in this case.
Since , the only difference here
is that the “innovation” term in (52) will now be

and in the right side of (54) we shall now obtain the additional
term

The descriptor representation of the dynamics ofwill then be

(66)

and the result that corresponds to Theorem 4.3 will be as fol-
lows.

Theorem 4.4:Consider the system of (44a, c) and (65) and
the cost function of (2). For a prescribed , there exists
an output-feedback controller that achieves, for all
nonzero if for some prescribed scalars and
there exist -matrices , , ,

, that satisfy (46) and -matrices , ,

, with and that
satisfy the LMI shown in (67) at the bottom of the page, where

is defined in (64), , and
.

If a solution to (46) and (63) exists, the output-feedback con-
troller is obtained by (60), whereand are obtained by

(68)

Example 6: We consider the system of Example 5 where the
measurement is given by (65) with , and

. For a minimum value of was
obtained by applying Theorem 4.4 with

and

For and ( ) a minimum value of
was obtained for with

and

V. CONCLUSION

A delay-dependent solution is proposed for the problem of
output-feedback control of linear time-invariant neutral and
retarded type systems. The solution provides sufficient condi-
tions in the form of LMIs. Although these conditions are not
necessary, the overdesign entailed is minimal since it is based
on an equivalent (descriptor) model transformation which leads
to the bounding of a smallest number of cross terms and since a
new Park’s bounding method is applied. The bounded real cri-
teria we obtain and the solution we derive to the state-feedback

control problem improve the results of [9], [19], where con-
servative bounding of cross terms was used, and extend them to
the neutral type case. They also allow solutions to the state-feed-
back control problem in the uncertain case where the system pa-
rameters lie within an uncertainty polytope.

A delay-dependent solution is derived for the first time to
the output-feedback control problem for systems with state

(67)
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delays. This solution is obtained by solving two LMIs with a
descriptor time-delay “innovation filter.”

The design of the output-feedback controller suffers from
an additional overdesign that stems from the need to estimate
the derivative of the state. In the special case where a result is
sought which is delay-independent with respect to the process
and delay-dependent with respect to observer, the latter overde-
sign can be removed by applying Park’s bounding method [36]
for the “filtering” phase of the design.

One question that often arises when solving control and es-
timation problems for systems with time-delay is whether the
solution obtained for certain delayswill satisfy the design re-
quirements for all delays . In the state-feedback problem
the answer is the affirmative since the LMI in Theorem 3.1 is
convex in the time delays. The situation in the output-feedback
control case is however different, in spite of the seemingly con-
vexity of the LMI of Theorem 4.3 in the delay parameters. The
fact that the and depend nonlinearly on the delay implies
that the output-feedback controller that is derived for a certain
delay will not necessarily satisfy the design specifications for
smaller delays.

In this paper we obtained the results for time-invariant sys-
tems with an infinite time horizon. Similar results can be ob-
tained in the time-varying finite horizon case by allowing the
matrices in the Lyapunov–Krasovskii to be time
dependent.
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