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A Descriptor System Approach 6, Control of
Linear Time-Delay Systems

E. Fridman and Uri Shakedrellow, IEEE

Abstract—The output-feedback H ., control problem is solved pendent results mentioned above treat the case of retarded type
for continuous-time, linear, retarded and neutral type systems. A gystems. In the more general case of neutral type systems,
delay-dependent solution is obtained in terms of linear matrix in- where the delay appears in the state derivative and in the state,

equalities (LMIs) by using a descriptor model transformation of . - . . .
the system and by applying Park’s inequality for bounding cross stability conditions based upon LMIs or Riccati equations

terms. A state-feedback solution is derived for systems with poly- have been obtained for both the delay-independent [28], [5]
topic parameter uncertainties. An output-feedback controller is and the delay-dependent [29]—[31], [8] cases. Note that unlike

then found by solving two LMIs, one of which is associated with retarded type systems, neutral systems may be destabilized

a descriptor time-delay “innovation filter.” The cases of instanta- by small changes in delays [32], [33]. Concerning tHe,
neous and delayed measurements are considered. Numerical exam- ' :

ples are given which illustrate the effectiveness of the new theory. cONtrol problem for neutral systems, only a delay-independent
o ) state-feedback solution has been achieved [34].
Index Terms—Delay-dependent criteria, descriptor systems, The conservatism of the delay-dependent conditions of
H -control, linear matrix inequalities (LMIs), time-delay sys- . o
tems. [17]-[24], [31] is twofold: the transformed and the original sys-
tems are not equivalent (see [35]) and the bounds placed upon
certain terms, when developing the required criteria, are quite
|. INTRODUCTION wasteful. Recently, a new descriptor model transformation was
IME-DELAY often appears in many control systems (suchitroduced in [8] for stability analysis and has it been applied to
as aircraft, chemical or process control systems) eitherstate-feedbacld.., control andH, filtering of retarded type
the state, the control input, or the measurements (see [1]-[5] @&ystems in [8], [9], [19], and [27]. This approach significantly
the references therein). Time-delay is, in many cases, a sourctegfuces the overdesign entailed in the existing methods since
instability. The stability issue and the performance of linear cofi-is based on a model that is equivalent to the original system
trol systems with delay are, therefore, of theoretical and pra@nd since fewer bounds are applied. These bounds can now
tical importance. be made tighter using the recent (less conservative) bound on
Itis well known (see, e.g., [6]-[9]) that the choice of an apprgross terms that was introduced in [36].
priate Lyapunov—Krasovskii functional is crucial for deriving Inthe present paper, we, for the first time, introduce a delay-
stability and bounded real criteria and, as a result, for obtainidgpendent solution to the output-feedbétk control problem
a solution to variousd,, control problems. The general formof systems with state delays. We solve the state-feedback and the
of this functional leads, in the state-feedbalk, controller output-feedback., control problems for neutral type linear
design, to a complicated system of Riccati type partial diffegystems by combining the descriptor system approach with the
ential equations [10], [11] or inequalities [12]. Special formgew bounding method. New bounded real criteria and state-
of Lyapunov—Krasovskii functionals lead to simpler delay-infeedback solutions are given in terms of LMIs for systems which
dependent [13]-[16] and (less conservative) delay-dependsrdy contain discrete and distributed delays and polytopic pa-
[16]-[19], [9] Riccati equations or linear matrix inequalitiegameter uncertainties. The solutions we derive are delay-depen-
(LMIs), for Ly-gain analysis or for memoryless state-feedbadgkent, however delay-independent results can be obtained, as a
H, controller design. particular case, for certain values of the design parameters. An
Recently, increasing attention has been paid to the problemgput-feedback controller is derived from two LMis by ap-
of observation, output-feedback stabilization and the desiglying an “innovation filter” in the form of a descriptor system.
of observer-based controllers for systems with state del@plutions are offered for cases of online and delayed measure-
[20]-[27]. The only solutions that have been derived, so far, forents. The theory developed is demonstrated throughout the
the output-feedbackl,, control have been delay-independentext via six numerical examples. These examples illustrate the
[20], [21], [26]. All the delay-independent and the delay-degffectiveness of our solutions as compared to results obtained
by other methods.
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L]0, oo) with the norm|| - ||, , the space of continuous func-The latter is equivalent to the following descriptor system with
tions¢: [—h, 0] — R™ with the supremum norrr | is denoted discrete and distributed delay in the variaple
by C,,[—h, 0]. Denoter,(0) = z(¢t + 8) (§ € [-h, 0]).

. Ly-GAIN ANALYSIS OF LINEAR TIME-DELAY SYSTEMS #(t) =y(t), 0=-y(t) +Z Fiy(t—gi) + <Z Ai) z(t

=0
A. Delay-Dependent Bounded Real Lemma (BRL)
. . - Z A; / ) d7 + Brw(t)
Given the following system: + hz
m . m Or
=Y FRi(t—g) =Y Aw(t—hi)+ But)
i=1 i=0 ) 0 1 )
2(t) = 0t € [~h, 0] B [{C } |/ [w }
_ () D_Ai] I [y
2(t) = col{Cox(t) + Dw(t), Crx(t — hq), ... P
Crn-T(t_ hrn)v Crn—l—l-/r(t_gl)v m 0 t
+ dr + w(t), (4
Cinx(t _grn)} (1) ; |:AZ:| /t b ( ) |:B1:| ( ) ( )
wherez(t) € R™ is the system state vectas(t) € £1[0, ] where
is the exogenous disturbance signal a € R? is the state
combination (objective function signal) to be attenuated. The E— |:In 0} ' (5)
time delays0 = hg, h; > Oandg; > 0,¢ = 1, ..., m 0 0
are assumed to be knowh,= max;=1, __ m{h:, g;}. The ma- . :
tI’ICGSAZ, i=0,...mF, i=1,.. m B andC, i = A Lyapunov—Krasovskii functional for the system (4) has the

0, ..., 2m are constant matrices of appropriate dimensions alfi™
some of them may be equal to zero (in this case we may have - - z(t)
different number of delays; andh;). For a prescribed scalar V() = [=" (8) ¥ ()] EP [y(t)}

~ > 0, we define the performance index m
oo + Z / (1) Sz () dr
J(w) = / (sz — 72wTw) dr. (2) i=1 Jt=h
0 m t
T
In order to apply Lyapunov second method for stability of neu- + Z / Y (NUiy(r) dr
tral system we assume that [1]:
Al Let the difference operatd?: C[—h, 0] — R™, given + Z / / s)AT RisAy(s) ds df (6)

by D(x:) = x(t) — >~ Fiz(t — g;), be delay-independently h; +0

stable with respect to all delays (i.e., the difference equation

Dz, = 0 is asymptotically stable). where
A sufficient condition forAl is given by the following in- P 0
equality: P = [PQ PJ , AA>0, U;>0, 5 >0, Riz>0.
m (7a'e)
Z |F] < 1 The first term of (6) corresponds to the descriptor system (see
i=1 e.g., [37], [38]), the third—to the delay-independent conditions

with respect to the discrete delaysyefvhile the second and the
fourth terms—to the delay-dependent conditions with respect to
the distributed delays (with respectid.

We obtain the following.

Theorem 2.1:Consider the system of (1). For a prescribed
~ > 0, the cost function (2) achieve§w) < 0 for all nonzero
w € L0, o) and for all positive delaysg:, ..., gm, if there
existn x n-matrices) < Pp, P», P3,S; = ST, U; = UL, Wy,

i0, Wiz, Wiy andR;1 = R, Ri», Ris = Rzg, t=1,...,m

where| - | is any matrix norm.
Remark 1: In the case of a single delay in the difference
operatorDz,, the following assumption is equivalentAd.:

A1’ All of the eigenvalues of'; are inside the unit circle.
We are looking for a BRL that depends on the delayand
does not depend o, (i = 1, ..., m). Delay-independence

with respect tog; guarantees that small changesgindo not
destabilize the system [32], [33]. If the conditions of the BR

hold true for allg; and giver;, they are then true in the partic—that satisfy the following LMI, as shown in (8) at the bottom of

ular case ofy; = h;
¢ v the next page, where
Following [8], we represent (1) in the equivalent descriptor pag

form: m m
. \111:<ZAZT>P2+P2T<ZAZ>

#(t) =y(t)

=0 1=0
=Y Fy(t-g) Z Azt — hi) + Biw(t).  (3) +Y (WEA + AT Wis) + > S;
i=1 =1 =1
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=0 i=1

U3 =—P3— P + Z (Ui + hi AT RisA;)
i=1
Dip = [Wh Wi +Pi]

;1 Rp .
Ri = 3 = 1, ey
[RZ?; Rig} ' m
. . 2m
¢ty dre. 9)
=1

Proof: To prove that’ < 0 and.J < 0, we note that

! 41 EP [z} =2'Px

and, hence, differentiating the first term of (6) with respedt to

gives us

0

where = col{z(t), y(t), w(t), y(t—g1), ...

i 0 0 0 |7
T T T
v erlp] ela] oo a)]
:£T * —’Y2Iq
* % —Ul
| * * * Un |

m

. 5 + ZTZ — Z |:$T(t — hZ)SZaZ(t — hz)

=1

t
+ / v (1) AT Ris Agy(r) dr — m} (11)
t—h;

) y(t - gm)} and

0 I m
A m 0 A:ZF
vl Ll ()

P

0 Y (Ui +hiATRisA;)

i=1

0

ni(t) = =2 [ t [=" () y" (1)]P" [ Ai}y(s)ds. (12)

—h;

(10) For any2n x 2n-matricesR; > 0 and 4; the following in-

— 22T () Pri(t) = 2™ () y7 ()| PT [jf(t)} .

Substituting (4) into (10), we obtain

equality holds [36]:

-2 /tt b (s)a(s)ds

7h7'

) 4 (02t — 7" 0yl <[ [bé”T[M};R &) ] e a9

—1y;

_\Ifl \Ifg P2T.31 ]7,1(1)11 hrnq)rnl —WII:;A;L et —Wg;gArn P2TF1 PQTFrn éT Cg 1
* \Ifg PgBl h1(1>12 hm,q)m,g —WﬂAl —W£4Am, PéTFl e PgTFn, 0 0
* N | 0 e 0 0 e 0 0 v 0 0 D7
0 0
* * * * _hrnan 0
v % : S * —S - 0 0 - 0 0 0]<0 (8
% % . . . * * e _Snl 0
* * * * * * U, 0
* * * * * * * i
| * * * * * * * * —I |




256 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002

for a(s) € R?™, b(s) € 7?2" given fors € [t — h;, t]. Here We substitute (14) into (11) and integrate the resulting inequality

(2,2) = (MTR + DR RM; +1). in ¢ from 0 tooo. Becausd/(0) = 0, V(o0) > 0 and
Using this inequality fora(s) = col{0 A;}y(s) andb = oo
Pceol{z(t) y(¢)} we obtain / 2y dt
ws [ RO s I R DR ‘23/ MG Cunt = ) dt
t—lu;
s a(?) + H)CT +wT DT)(Cox(t) + Duw(t)) dt
.UML+DPL@}M / (&) )(Cox(t) + Dut))
t T . . .’L’(t) + Z — G Crn ZCT?H-Z (t - gz) dt
+2/t . y'(s)ds[0 AT |R;M;P {y(t)} k / +
' o = (H)CTCm(t) dt
_i_/t_hi y'(s)[0 AT R; [AJ y(s)ds Z/

or after integration in the first and second terms of the latter
inequality

+ [ T O +7 DY Cosle) + Du(t) d
0

we obtain (by Schur complements) that< 0 (andV < 0) if
; the LMI holds, as shown in (15) at the bottom of the page, where
ni < hale ()T y(&) T 1PT(ME Ri+1) R (R, M; +z)p[“’( )} fori=1,..m

u(t)
Wit Wiz
W, =R,M;P, W,=
+ 2zt (@t) — 2T (t — ) [0 AT|R;M;P ng} |:Wi3 Wi4:|
Lo
t (I>7ZWY7T+PT’ @7: |: 7,1:|
+/ y'(s)[0 AT|R; [2} y(s)ds. (14) ’ ;2
t—h; ? m
T . m

From (3) and the fact that(t) andw(#) are square integrable T ; GiG 0 n Z Wi [j 0}
on [0, o), it follows thatDy, € L3[0, co). The latter implies = i 0
underAl thaty, € £5[0, co) since 0 0

m 0 AT:|
+ [ | Wil
1Dyellr, = lly(®)llr, ; 090
— Z ||yt = k)|, |1 — Z \E| lv@llp,. M (8) results from the latter LMI by expansion of the block
— ’ — * matrices.
[— 0 0 0 0 0 CE A
T - —-Wwr . —_WT T . T 0

v orrls) mw mewe L] [ ] e [g) o R] [

* —~2I 0 0 0 DT

>k * _thl 0

* * * e —h R, 0 0 0 0

* * * * -5 0 0 0 0 <0

* * * * * Sm 0

* * * * * * -U;
L * * * * * * * * -1, |

(15)
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Note that LMI (8) yields the following inequality: and choosing the Lyapunov—Krasovskii functional as
m t
P PEAD UL IR PR, ww@%mwwpwﬂ
=1
s U, - 0 <0. (16) +Z/ Uie(r) dr

* e U +Z/ (1) dr (20)
If there exists a solution to (8) then there exists a solution to lei
(16). This impliesAl [39] [and, thus, the internal stability of whereU; > 0, S; > 0 and£ andP are given by (7), we obtain

(1) sinceV < 0]. O similarly to Theorem 2.1 and [8] the following.
Corollary 2.3: Consider the system of (1). For a prescribed
B. Delay-Independent BRLS ~ > 0, the cost function (2) achievew) < 0 for all nonzero
For w € L3[0, co), if there existn x n-matricesP; > 0, P,, P,
B el . andU; =UY, S, = SF, i =1, ..., mthatsatisfy the LMI, as
Wi==b k= h; i=1....om QA7) ghownin (21) at the bottom of the next page.

LMI (8) implies for ¢ — 07T the delay-independent LMI, as Remark 3: As will be shown in Examples 2 and 3, the results
shown in (18) at the bottom of the page. If LMI (18) is feasiblef Corollaries 2.2 and 2.3 are complementary: for some systems
then (8) is feasible for a small enough- 0 and forR; andW; only one of the two corollaries holds for a prechosen value of
that are given by (17). Thus, from Theorem 2.1 the following Remark 4: A delay-dependent BRL can not be obtained di-

corollary holds. rectly by using the representation of (19) since theigan “al-

Corollary 2.2: System (1) is stable for all; > 0, h; > 0, gebraic” type variable and therefore, by our method, the results
i=1,...,mandJ < Oifthere exist0 < P, = PL', P,, P;, are delay-independent with respect to this variable. One way to
U; = U andS; = SF,i =1, ..., m that satisfy (18). obtain a delay-dependent BRL with respect:ids to apply a

Remark 2: As we have seen above, the delay-dependent BRheutral type” transformation

of Theorem 2.1 is most powerful in the sense that it provides
sufficient conditions for both the delay-dependent and the delay- )+ Z A / z(s)ds
independent cases [where (18) holds]. In the latter case, (8) is i
feasible forh; — oo, i =1, , M.
Representing (1) in another descnptor form: 2; A4 )+ Brw(?)
A;x(t —h;) + B -
E: o)+ Bl 0= —y(t) +a(t) = > Fialt g
0=—y(t) + 2(t) — Z Fiz(t — g;) (19) With an appropriate “descriptor” Lyapunov—Krasovskii func-

e} tional. Then, only a conservative version of (13) wiify = 0

ATPy+ PFAg+> . S; P -PF+AYP, PfB. PfA, - PfA, P{F - P{F, C" C§
i=1
* —Ps—P{+> Ui P{B; P{A; -~ PfA, PfF, - PfF, 0 0
=1
* * —~2I 0o ... 0 0 0 0o DT
* * * -5 ... 0 0 0 0 0
<0.
0 0 0 0 0
* * S 0 0 0 0
* * * -0n 0 0 0
* * * * Urn, 0
* * * * * -1
i * * * * * * * =1

(18)
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can be applied (similarly to [40]) and the result will thus be morB. Delay-Dependent Conditions in the Case of Distributed
conservative than the one of Theorem 2.1. Delay
) Consider the following system:
C. Delay-Dependent BRL for Systems With Polytopic
Uncertainties

The BRL of Theorem 2.1 was derived for the system (B)(t) — Z Fa(t—g;) = Z Az (t — hy)

where the system matrices;, I;, C;, ¢ = 1, ..., m are all i=1 i=0

known. However, since the LMI of (8) is affine in the system 0

matrices, the theorem can be used to derive a criterion that will +/

guarantee the required attenuation level in the case where the

system matrices are not exactly known and they reside W|th|r\1N% ereA,

given polytope.
Denoting

) Aa(s)z(t + s)ds + Brw(t) (22)

(s) is piecewise continuous and bounded matrix func-
tion. As in [39], [19], we consider the Lyapunov—KrasovskKii
functional which has an additional term
{Ai F, i=1,..., m}
Q= N
Ao B1 Cy C D

Vi) =70 s (0P|
we assume thd € Co{Q2;, j =1, ... N}, namely

]

+§; [ T (F)Siz(r) dr

—h;

m t
+ T(Uy(r)dr
where theV vertices of the polytope are described by ; /t—g; v (r)Uig(r)

€) €) ;o m o .0 t
A7 F7, o i=1..,m ) + Z / / y' (5)AT Riz Ay (s) dr df
A(()j) B?) C(()j) cW  pW i=1 J—hi 146
0 t
We readily obtain the following. +/ / sH (1A (O)RyA4(0)x(7) dr df, Rgq > 0.
Corollary 2.4: Consider the system of (1), where the system —d Jt+6

matrices reside within the polytoge For a prescribed > 0,
the cost function (2) achieveEw) < 0 over2 for all nonzero Similarly to the derivation of Theorem 2.1 we obtain the LMI,

N N
QIijQj for some0 < f; <1, ijzl
j=1 ot

=

w € L1[0, o) and for all positive delays;, ..., g, if there as shown in (23) at the bottom of the next page, where
existn x n-matrices0 < Pl(j), Wi(f), Wg), Wiz, Wi, j =

1,...,N, Py, Ps,andRY U9 sY i =1, ... m,j = o

1, ..., Nthatsatisfy (8) fori = 1, ..., N, where the matrices Yo =1 + [d Ag (0)RaAu(0) b

Ao, A, Fi, B, Co, O, P, Wi, Wia, Ri1, R, Uy, Si,
and where the matriceB;, £ = 1, 2, 3, ®;1, ®;2, Wiz, W,

t=1, ... . "
TR ™ g given by (9). Note that for the distributed delay term we had
are taken with the upper index to apply a conservative version of (13) wit; = 0.
Py + PF Ps — Pf + P A P'B, PfFr, --- PI'F, PTA; --- PTA,, 0 0]
. ~Ps—Pf+> (Ui+S) o PfR --- P{F, 0 ... 0 C" CF
i=1
* * —v2I 0 e 0 0 e 0 0 DT
* * * -U; - 0 0 e 0 0 0
<0. (1)
* * * * -U,, 0 0
* * * * * -5
* * * * * * S 0
* * * * * * * -1
L * * * * * * * * -1 |
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In the case of exponential matrik,(s) = Ay exp{—Aqos} close to they we found. By [36], the system is asymptotically
a less conservative result may be obtained by applying Theorstable forh < 4.36. By Theorem 2.1 we found that the system
2.1 to the following augmented system with discrete delays: is asymptotically stable foh < 4.47 and for e.g.2, = 4.4 a
minimum value ofy = 0.48 was obtained.
o(t) = z(t) — eAdp(t — d) + Agov(t) Choosing now
() = Y Fii(t— g;)
i=1

(26)

s[4 4]

0.8 -0.1

= At —hi)+ Aav(t) + Biw(t)  (24) andD = 1 we obtained that the system is stable foK 3.9
=0 and e.g., folh = 3.5 a minimum achievable value ef= 1.16

t o du(t—s) . . was achieved. Note that by using the stability conditions of [30]
whereu(t) = f,_, e @(s) ds. The stability of (24) im- e find that the LMI there is feasible only far < 0.15.

plies the stability of (22). Example 2: Consider the system of (25) with

E. lllustrative Examples 0 1 0 0.9
Example 1 [17]: We consider the following system: D=0 A= [—2 —3} A= [—1.3 —1.9}
i(t) - Fié(t — g) = Aoa(t) + Ara(t — h) + Buw BN:H} Co=[1 0].
z2(t) = Cox(t) + Dw (25)
For I1 = 0 this example has been considered in [17], [9]. In
where [17], the conditions of the delay-independent BRL are not satis-
_9 0 1 0 fied, while in [9] (as well as by Corollaries 2.2 and 2.3) a delay
Ao = [ 0 —0 9} Ay [_1 _1} independent minimum value of = 4.37 was obtained.
' For
B =[-05 1] and Cy=[1 0]. 02 0
k= [ 0.1 —0.1}

ForFy = 0 andD = 0Othisis an example from [17], [9]. In [17],
a minimum value ofy = 2 is found forh = 0.846. By Theorem we found by Corollary 2.3 that the minimum achievabisy =

2.1 a minimum value ofy = 0.25 is obtained for the samk. 89 for all delays. By Corollary 2.2, we obtained less restrictive
The actualH..-norm of the system turns out to be 0.2364, quiteesult:y = 22.

_\Ifo \IJQ PQTBl hlq)ll - hrnq)rnl —Wﬁ;Al e — g;gArn P2TF1 LR PQTF,n OT C(:)F dPQT ]
* \Ifg PgTBl ]7,1(1)12 et hrnq)rnQ —WﬂAl et —W£4A7n P3TF1 e PgTFrn 0 0 dPgT
R e | 0 e 0 0 e 0 0 = 0 0 DT 0
* * * —hiRy - 0 0 e 0 0 e 0 0 0 0

0 0 0 0 0 0 0 0
* * * * —h.R 0 0 0 0 0 0 0
* ok * -5 0 0 0 0 0 <0
* * * * —Sm 0
* * * * * U
* * * * * * * -1 0
* * * * * * * * -1 0
L * * * * * * * * *  —dRy ]

(23)
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Example 3: Consider the system of (25) with;, C andD wherez andw are defined in Section Ik, € R is the control
taken from Example 2 and input, I, Ao, Ay, A, By, B, are constant matrices of appro-
priate dimensiony is the objective vector’; € R?*™ and

2 0 13 Dy € R™,
Ag = [ 0 _15} A= [_3 1} For simplicity only we took a single delayand two delays
hy andhs. The results of this section can be easily applied to
o= -0.8 0 27) the case of multiple delayg, ..., gm, i1, ..., hy and a dis-
1 0.2 -08 tributed delay. We assume the following.

A1’ All the eigenvalues of” are inside of the unit circle.

In this case, the conditions of Corollary 2.3 do not hold forall ~ For @ prescribed scalar > 0, we consider the performance

Corollary 2.2 leads to the following result: the minimum achievldex of (2). We treat two different cases. The first one allows
able value ofy is v = 0.46 for all delays. for instantaneous state-feedback while the second case is based

on a delayed measurement of the state.

ll. STATE-FEEDBACK CONTROL A. Instantaneous State Feedback

. . . We look for the state-feedback gain matfixwhich, via the
We apply the results of the previous section to the ins

- : . ontrol law
finite-horizon H., control problem. Given the system

S(F, Ao, A1, A2, By, Ba, C1, Di2) u(t) = Kx(t) (29)
] . _ _ _ achieves/(w) < 0 for all nonzerow € L]0, o).
#(t) = Fi(t — g) = Aox(t) + Are(t — hn) + Aga(t — ho) Substituting (29) into (28), we obtain the structure of (1) with
7 = col{C1x, Disu}, z(t) =0 Vt<0 Ao =Ao+ BK, A1 =4
(28) C3Co=C{C1+ K'"DI,D1K. (30)
= 0 hilerxT+1) ho(exdT+1) € 0 € 0 9 QT o
= B (&1 2(€2 L] 4, 2| 4, 3 0
e | 0 0 0 0 DT 0
* * _thl 0 0 0 0 0
kS kS * —hQRQ 0 0 0 0
* * * * -5 0 0 0
* * * * * -5, 0 0
* * * * * * - 0
* * * * * * * i
* * * * * * * *
* * * * * * * *
* * * * * * * *
| * * * * * * * *
7| 1| 1In |0 10 0 [0 0 7
@o] erls] e li] nelo ] merls i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 <0 (32)
0 0 0 0 0
0 0 0 0 0
-5t 0 0 0 0
5 -5;t 0 0 0
s s -uyt 0 0
* * * —thl_l 0
* * * * —h2R2_1
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Applying the BRL of Section Il to the above matrices resultere assume thae € Co{$2;, j = 1, ... N}, where theV ver-
in a nonlinear matrix inequality because of the tetRfsB, K tices of the polytope are described by
andP} B, K. We therefore consider another version of the BRL ' ' '
which is derived from (15). A9 AW Ay F

In order to obtain an LMI we have to restrict ourselves to the oy = B9 pv @w» pw |’
case ofW; = ¢;P,¢ = 1, ..., m, Wwheres; € R is a scalar 1 2 1 12
parameter. Note that fe;; = 0 (8) implies the delay-dependentyye optain the following.
conditions of [8] (forF; = 0), while fore; = —1 (8) yields the
delay-independent condition of Corollary 2.2. Itis obvious fro
the requirement df < P, and the fact thatin (8)- (P + P')
must be negative definite, th&tis nonsingular. Defining

Theorem 3.2: Consider the system of (28), where the system
"hatrices reside within the polytogge and the cost function of
(2). For a prescribe@® < =, the state-feedback law of (29)
achievesJ(w) < 0 for all nonzerow € £1[0, o) and for all
the matrices if2 if for some prescribed scalass, € € R there

1 Ql 0 . existo < Q1, U, gl,gg, Qs, Qs € Rnxn’ﬁb FQ € R2nx2n

Pr=Q= [QQ Q3:| and A =diag{Q, Iptprian}  Jnqy € RO that satisfy LMIs (33) forj = 1, ... N, where
(31a-b) the matrices
we multiply (15) by AT and A, on the left and on the right,
respectively. Applying the Schur formula to the quadratic term 71, i=0,1,2 F, By, By, C1, D12, Ri, R
in @, we obtain the inequality shown in (32) at the bottom of
the previous page, where are taken with the upper indgxThe state-feedback gain is then
given by (34).

0 I Example 4: We consider the system

- 2
- ZAi I

2
0 ZAT
T 7

—

#(t)—Fa(t — g) = Aox(t) + A1z(t—h) + Brw(t) + Bau(t)

= r -1 _
’ .. , At) = col{Cra(t), Disu(t)} (35)
2 T 0 Z EzA;T
+ Q+Q — . where
ZEiAi 0 i=1
i=1 o 0 S _[oo0] 4 _[-1 -1
0 [0 1} 1_[ 0 —0.9}
Noticing that in (28ym = 2 andD = 0 we substitute (30)
into (32), denotek (), by ", and obtain the following. B, — H B, — m
Theorem 3.1:Consider the system of (28) and the cost func- 1 1
tion of (2). For a prescribet < -, the state-feedback law of Ci=[0 1] Di=0.1. (36)

(29) achieves/(w) < 0 for all nonzerow € £3[0, o) if for

some prescribed scalass, e € K, there exist), > 0, 51 = For I = 0 this is an example taken from [8]. Applying the

-1 o _ <1 737 _ —1 nxn L. _ p—1
Sp 5 4 s ’QZX;LU g Q2, Q?’é’xf ﬁ - R; _th ' method of [18, Corollary 3.2] we found in [8] that the system is
RhQ - 32 336 R he b andy’ fehR that satisfy t eEI;MI stabilizable for all. < 1. For, sayh = 0.999 a minimum value
shown in (33) at the bottom of the next page, Whilfie, Ri> ¢\ _ 1 8399 results fork = —[0.10452 749058].

andR;s are the(1, 1), (1, 2) and(2, 2) blocks ofR;, v = 1, 2 Using the method of [9], a minimum value ¢f= 0.228 44
and where was obtained for the same value/oWvith a state-feedback gain
) ) OfKT[O_le%]. ] o tor th iy
- Applying Theorem 3.1 we obtained, for the samand for
E1=Q3— Q7 +Q1 <Z AT + Z 5iAiT> +Y7"B;. e = —0.3, a minimum~ of 0.1287 with a corresponding state-
=0 =t feedback gain off = [0 — 1.0285 x 10°]. Fory = 0.14, the
gain of K = [0 —147.5] was obtained.

The state-feedback gain is then given by The LMI of Theorem 3.1 can be used to find the maximum
value of 4 for which a state-feedback controller stabilizes the
K=YQr". (34) system. Applying = —0.3 we obtained thak = 1.28 is close

to the latter value. For this we obtained a minimum value of

The LMI in Theorem 3.1 is affine in the system matrices. | = 0.1691 with a corresponding gain o = [0 — 1.2091 x

. ) 0°]. Fory = 0.18 a smaller gain o\ = [0 —130.38] was
can thus be applied also to the case where these matrices are i e dry g [ ]

gg;?i'ggatr;‘de asg/estl;nnc:v;? (t;)g;easrl%e dv:rtgltri]ng given polytope. Con-pa above results refer to the case where= 0. For /' =
diag{—0.1, —0.2} we obtained fol, = 0.999 (ande = —0.4)
. aminimum value ofy = 0.1485 with K = [0 —1.6094 x 10°].
O- Ao Ay Ay F For thisF', a near maximum value df = 1.2 was achieved for
B, B, O, Dy e = —0.36 with v = 22.83 and K = —10°[0.5118 5.6568].
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We consider next the case where For F' = diag{—0.1, —0.3} we obtained, for the same value
1 1 of h = 0.99, a minimum value ofy = 0.3686 with K =
A = [_ - } . By= [ 0 } [0 —2.334 x 107].
0 —09+g 1-yg
g €[-0.2 0.7] B. Delayed State-Feedback

The situation wherein the time delay appears in the state

and wheredo, By, 'y and Dy, as in (36) WithF” = 0. Ap- o oment equation (or in the actuators) results in the state-
plying Theorem 3.2 we obtained fér = 0.99 ande = —0.3 )
feedback law of the form:

thatK = [0 —1.3962 x 107] stabilizes the system and achieves
v = 03384 forall g € [-0.2 0.7]. Fory = 0.4, a gain of

K = [0 —215.53] was achieved. u(t) = Ka(t — hy) (37)
_QQ + Qg El 0 ]7,1(51 + 1)?11 ]7,1(51 + 1)?12 ]7,2(52 + 1)?21 ]7,1(52 + 1)?22
—T — —T —
* —Qg — Qg: By hl(El =+ 1)R12 hl(El =+ 1)R13 hQ(EQ + 1)R22 hQ(EQ + 1)R23
* * —’YQIq 0 0 0 0
* * 0 _hlﬁll —hlﬁlg 0 0
* * * x —hlﬁlg 0 0
kS kS kS kS * —hgﬁgl —]LQFQQ
* * * * * * —hoRos
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
i * * * * * * *
0 0 1 @ Qléf Y'Dl, 0 3 0 h1Q3 AT 0 h2QF AT
ElAlgl EQAQFQ 0 0 0 0 W ;2; 0 thgA{ 0 hQQgAg
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0 0 0 0
* -5, 0 0 0 0 0 0 0 0 0 0
N s =5 0 0 0 0 0 0 0 0 0 <0 (33)
* * * -8, 0 0 0 0 0 0 0 0
* * * * —I 0 0 0 0 0 0 0
* * * * * —I 0 0 0 0 0 0
* * * * * * -U 0 0 0 0 0
* * * * * * x  =U 0 0 0 0
* * * * * * * x —hiRyy  —hiRis 0 0
* * * * * * —hiRys 0 0
* * * * * * * * —hoRo1  —hoRos
* * * * * * * * * * * —hoRy3 |
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which can also be solved via the LMI of (33). This is accom- The result of (43) stems frof’; K] = Y Q7" and from the
plished by considering the following asymptotically stable sulfact thatu ~ K,z + K. The nonsingularity of/ is not always

system:

u(t) = —pu(t) + pu(?) (38)

for 1 < p. The state of this subsystem is almost identicad(#)
whenp — oo and the open-loop system of (28) can, therefor
be approximated by the following augmented system:

E(t) — FE(t — g) = Ao + Ar€(t — hy) + A2&(t — ha)
+Bou(t) + Biw(t) (39)

where¢ 2 col{z,u}, 1 < p

_ rA, 0 _ A

AR
L0 —pl, U

- [Ay 0 - [F 0

A2__O 0} F‘[o 0}

N,_'O - B

p- (2] 5-[%]

guaranteed. However, since a nearly singdlaimplies large
state-feedback gains and since the latter is encountered either
when Dy, is nearly singular or when we compute the gains for
the minimum-~, a possible singularity o/ can be avoided in
cases wherd);, is not singular andy is above the minimum
ﬁt)ssible level of attenuation.

Remark 5: The above result for the delayed state-feedback
was based on the approximation of the system of (28) and (37)
by the one of (39) and (40). A question may arise to what extent
the H..-norm that is achieved for the latter system describes the
H_,-norm of the closed-loop system of (28) and (37)fex p.

The answer to this question may be found in the fact that the
augmented system is obtained by preceding serial component
with transfer function matrix, + O(p~) over the significant
frequency rang. After closing the loop, the transfer function be-
tweenr andu becomes! — K) 1 K; +O(p 1) and the actual
feedback transference, between the stad@d the input to the
system is therefor& + O(p~1).

Remark 6: The affinity of the LMI in (41) in the augmented
system matrices enables the solution of the delayed state-feed-
back problem also in the case where these matrices reside in

The objective vector that corresponds to the one in (28) is theRl Uncertainty polytope. Similar to Theorem 3.2, the required

given by
2(t) = col {Co&(t), CLE(t — hy)}
whereCy = [C, 0] andC

[0 Dis]. The state-feedback

K = [K; K] which, via the control law of
(40)

achieves/(w) < 0 for all nonzerow € £3[0, o), whereJ(w)
is defined in (2).

Based on the result of Theorem 3.1 we obtain the followin%e

Corollary 3.3: Consider the system of (39) far <« p. For
a prescribed) < +, the state-feedback law of (40) achieve
J(w) < 0 for all nonzerow € Li[0, oo) if for some pre-
scribed scalars; andes there exis{n + £) x (n + £)-matrices
0 < Q1, @2, Q3, U, S1, Sa, Ri1, Ri2, Riz, Ro1, Roo, Raa
andY € R*(+0 that satisfy the LMI shown in (41) at the
bottom of the next page, where

2
Ao+ > (1+e)AT | +YTB].

=1

E1=Q3—-QF +

The state-feedback gain is then given&y= Yot
Denoting

A 0
M=Q, — { } Y. (42)
I,
the state-feedback gain of (37)is then given by
I,
K:YM*[O}. (43)

control problem thus becomes one of finding the gain matrix

attenuation levely is guaranteed by solving (41) simultane-
ously for the polytope vertices and finding, for< p the pair
{Y, @} thatis in common to the resulting LMIs.

IV. DELAY-DEPENDENTOUTPUT-FEEDBACK CONTROL

We adopt in this section the dissipation approach to the solu-
tion of the output-feedback problem. It applies a controller of a
state-feedback—observer structure and requires a solution of two
LMIs.

A. Instantaneous Measurements

As in Section Il the results of this subsection can
easily rewritten also for the case of multiple delays
g Gmo hy, ..., hy, and distributed delay.

Lemma 4.1: Consider the system

a:(t) — Fﬂ?(t — g) IZOQZ(t) +le(t — h1) +Zg$(t — hQ)

+ Byw(t) + Bou(t), z(t)=0Y¢t<0
y(t) Iaol’(t) + Dglw(t)
z = col{Cx; Digu} (44a-c)

wherey € R is the measurement vector. We dendte=
DT, Dy, and assume that is not singular and that, DI, = 0.
For a prescribeg > 0 and the objective functiod(w) of (2),
the feedback law

(45a-b)

0
Py

0
Py

T

Y

Py
P

Py

uw=—[0 R‘lBQT]{ P
o ol
QQ Q3

achieves/(w) < 0 for all nonzerow € £[0, «0) and for any
delayg > 0, if for some prescribed scalasg ande, there exist
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n x n-matrices) < Qu, Q2, Q3, U, 51, Sz, Ruy, Ruia, Rus, 2 / - (w? — wT)(w—w*)dt (47)
R51, Ry5 and R,3 that satisfy the LMI shown in (46) at the 0
bottom of the next page, where
where
. 2 2
== Q?) - Qg + Ql <Z A? + Z EZA;T> FP = diag{PTa Il4n+P+’I}F'udiag{Pa Il4n+p+q}
1=0 =1 X
and w* =572[0 B?]P|:y:|
g =-Q3—QF — B;R™'Bj. . x
_ _ . w*=—R"'[0 BI|P { } (48a-c)
Proof: The proof readily follows by choosing as in (6) Y
ithy = 4 =2 = lying (13) folR; M; = . ) o
(withy = &, m andU, = 0) and applying (13) for? and where the relation betweérand@,;, i = 1, ..., 3isgiven

1,1 =1, 2. We obtain by int tingV'(¢)/dt that ) = . . .
it e obtain by integratingV'(#)/ a in (31) and¢ = col{z, y, m }, with 7, representing the fic-

[ eo - titious states that emerge when completing to squares and ap-
T T *T *
/s /0 & Ipldt + /0 (u” =™ ) Ru —u”) dt plying Schur formula to construgt,. O

[Q2 +QF = 0 hi(er + 1)Ri1 hi(er + D)Ria ho(e2 + 1)Ror hi(e2 + 1)Roo
. —T — T —
—Qg — Qg Bl hl(El —|— 1)R12 hl(El —|— 1)R13 hQ(EQ —|— 1)R22 hQ(EQ —|— 1)R23
—21, 0 0 0 0
0 —h1Rq1 —h1Rq2 0 0
3k —hlﬁlg 0 0
—hyRy; —hyRyy
* —hoRas

*

*
* ¥

*
*
*

*

R R G S S S S S S S S
R R G S S S S S S S S

QI%%%%%%%%%%%-}(—%%

o
o

h QY AT
hi QY AT

haQF A% 7
haQ§ AY

©N
O
=
(O}
=N

Q1 Q1

AR

}z

Ll

m

[\™)

g

L]

9

[™]
S

o
o

[V

—

<0 (41)

|
OO OO OC OO OO0

(V]
|
~
OO

|
-
Iooooooooooo~|’o

o oo oCco oo o oo oo ©
SO oo oo oo oo o

*
|
<

0_ 0_
—hiRii  —hiRa»

* —thlg 0_ 0_
* * —hoRy1  —hoRa

3k 3k >k —thgg J

|
%%%%—v{-%%%mlooooo

-
%%%7{-7{-%%(0|OOOOOO
C OO OO OO o OO oo O oo ©
C OO O OO OO OO0 O OO

* ¥ ¥ ¥
*
* ¥

*
*
*
*
*

*
*
*
*
*
|
* * ok *
QO OO OO0 OO Oy

*
*
*
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i - 0 0
Unfortunately, the feedba_lck law 0f_(45) cannot be imple " () + w(t) (50)
mented even when there exists a solution to (46), namely when B B,

the first term in the right side of (47) is negative for &lle

Ritarte, ~ . where P, and P; solve (46) via (45). The objective function of
Denotingr = w — w* and (2) and (47) will then be negative if there existt) andj(t) in

©=—I+~ 2B,BTP, @49) R" that depend of(¢) and satisfy

the descriptor form for the system (44a) becomes .00
Ja:/ (zTz—~4%17) dt <0, V7€ L0, 0)
0

[x} = |5 —2 T [x} where
" ;Aiﬂ Dbty O] Ly 2(t) = R~ BI Py(x — &) + R-Y/PBL Py(y — ). (51)
2
- Z [ 0 } /t y(r)dr + [E} y(t = g) The problem of findinge(¢) andy(t) is, in fact, aH filtering
ot LA S £ problem for the descriptor system (50).

_QQ + Qg El 0 ]7,1(51 + 1)R11 ]7,1(51 + 1)R12 ]7,2(52 + 1)R21 ]7,2(52 + 1)R22
EQ By h1(€1 + 1)??2 h1(€1 + 1)?13 hQ(EQ + 1)?;2 hQ(EQ + 1)?23
=y, 0 0 0 0
* 0 _hlﬁll —h1F12 0 0
* * * * —hi1Ri3 0 0
* * * * * —hgﬁgl —hQFQQ
* * * * * * —haRas3
* * * * * * *
r,= * * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
L * * * * * * *

0 0 Q. Q1 quCT 0 QF 0 h1Q3 AT 0 haQ3 A3 7
ElAlgl 52142?2 0 0 0 FU Qg: 0 thg:A{ 0 hQQg:Ag
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
-S1 0 0 0 0 0 0 0 0 0 0
s —Ss 0 0 0 0 0 0 0 0 0
5 T 0 0 0 0 0 0 0 <0 (46)

* * * -5, 0 0 0 0 0 0 0

* * * * -1 0 0 0 0 0 0

* * * * * -U 0 0 0 0 0

* * * * * * -U 0 0 0 0

* * * * * * * —hiRyy  —hiRis 0 0

* * * * * * —hiRi3 0 0

% " % % * * * —hoRo1  —haRoo
* * * * * * * * * * —hyRys |
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Consider the following “innovation” filter:
0 1

[iﬁF gAi—i-’y_?BlBlTPg o [ﬂ
—zzj N / i+ | 2] ite-9)
K [0~ Coi + | |t 52)
Denoting
=2l =[- 1] =)

it is readily found that the descriptor representation of the dy-

namics ofe is given by
0 I

e 2
[o} | _Ai+yBBIPR, ©
=0

S

_ 0
— KfCoEl + |:B1

o
a(r)dr + {;} lt — g)

:| F(t) - KfDQlw(t). (54)

Due to the assumption aR2; and the definition ofv* in (48)
the latter is equivalent to

1

c1 2
[ 0 } T )| DA+ 2BBIR, ©

=0
[al-B R L o
+ [;} e(t—g) + { []_gj — KfDQI}F(t). (55)

Proposition 4.2: Given an x n-matrix ©, if there exists: x
n-matrix Pz such that

OP;+ P07 <0

—K;[Cy 0]

(56)

then® and P5 are nonsingular.
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Proof: Let ©P5 be singular. Then there existsc R",
x # 0 such tha®Psz = 0 and, thus

s (OPs+Pletr =o0.

The latter contradicts to (56). Hené®P5 is nonsingular, which
implies the nonsingularity o® and Ps. O

The problem now becomes one of finding the gain matrix
K that will ensure the stability of the system (55) and that the
H__-norm of the transference fromto z is less thany. This
problem is solved by applying [39] and the BRL of Section .

We obtain, from the proof of Theorem 2.1, where we apply
(13) with M; = 0, thatV of (6), (7) satisfiesV’ < 0 if there
existP of the structure of (7b) with < Py, R, R, andU that
satisfy (57) shown at the bottom of the page, where

0 1

U, =PT | (<
! <ZAZ> +’7_2.BlB?P2 ©
1=0

r 2
0 Y AT ) ++72PFBiBY
+ 1=0
LI eT
ro 0 }
+ R R
L0 hil+hoRo+ U
o ory
Uy, =PTK;[C, 0]+{ 0 }KfP. (58a-b)

Note that (57) implies (56) and hen€eis nonsingular. We rep-
resent (55) in the equivalent form

m B {{AOM—S&B?P«Z cﬂ HKlC 0]}
: Ej +g [N et — ) + {E} Za(t — g)
+{[£J—Kfp2l}F(t)—Z

=1
t
/t—ng

To guarantee asymptotic stability of (59) we assume
A2 All the eigenvalues o®~1F are inside of the unit circle.

oy

s

[6051 (S) + Dgﬁ(s)] ds. (59)

W, — W, FT<[O}—KfD21> hlﬁT{O
B, Ay

* -2, 0
* * —hlﬁil

* * 0

* * *

L * * *

_ 0 Py . T077
| wrr ) Lo)e P[]
A, Pf F
0 0 0
0 0 0 <0 (57)
—hoRy 0 0
* -R 0
* * -U
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Note that from (46) and (57) (similarly to Theorem 2.1) it foland where¥; is defined in (58a)% = —Q3'Q.Q7* and
lows thatAl andAz2 are valid. For a nonsingul#, the system P; = le.
(59) is internally stable and hd$.,-norm less thany if there If a solution to (46) and (63) exists, théh is nonsingular,
exists a nonnegative Lyapunov—Krasovskii functiokabuch assumption&l1 andA2 hold and the output-feedback controller

thatV < 0 [39)]). is obtained by (60), wherg andg are obtained by (61) where
The output-feedback controller is obtained by Ky = Py,
. N N Example 5: We consider the system of Example 4 with=
_ _p-lpT =
u=—R7B; [P + P (60) 0,Co = [0 1]andD,; = [0 0.1] and whereB; is augmented

wherez andj satisfy (52). Substituting (60) in (52) and elimi-Py @ second column of zeros. Using (46) we find that if the

natingg there, we derive the following equations for the filter: fé€dback law can apply both andy a lower value ofy can
be obtained in comparison to the value obtained in Example 4

Oi(t) — Fi(t — g) for the saméh. In our case, we obtained a near minimum value
2 B o of vy = 0.11 for h = 1.28 ande = —0.34. The feedback control

= A.&(t) + Z Aiz(t — h) + [0 I1K; [y(t) — Coz(t)] law that achieves the later bound on #g,-norm of the closed

=1

loop is:
2 ot o

+2_ Al O]Kf/t  [#(s) = Coi(s)] ds w*=—[0 145.5601]x — [0 5.6408]y.

=1 i
— Pl 01K [9(t = 9) = Coi(t __9)] The output-feedback control is derived flor= 0.999 and

g(t) = 2(t) — [I, 01K [5(t) — Coz(t)] (61a,b) ¢; = —0.29. A minimum value ofy = 0.86 is then obtained.

h For~ = 1, with the same values @fande, the resulting output-
where feedback has the form of (60) and (61), where

A, = Ay + (fy_QBlBlT - BQR—lBQT) P

and —2.49 x 1079 0.4027

[3.76 % 10=° 3.37 x 10—9}
T 445% 1079 6.75x 1073

[ 3.27x 1072 814 x 10—8}
2 f—

0=1,— (ry—?BlBlT - BQR'—lBZ,T) P (62)

From (56) it follows that:
and

—-0P; —-PY6T +2P'B,R'BIP; < 0. )

B Kp=[21574 1528 —54-107° 54-1077]".

Hence by Proposition 4.2 is nonsingular. We thus obtained a

decoupled system of filter equations (61a, b), the first of whicthe Iatter result fofs ; indicates that, similar to the standalgl

is a neutral type equation with distributed delay. and H., estimation designs, the estimation procedure consists
We summarize our result in the following. of two phases. The first finds treepriori estimate based on the
Theorem 4.3:Consider the system of (44a-c) and the cogfynamics of the system and previous measurements [in our case

function of (2). For a prescribel < v, there exists an output- (61b)]. In the second phase, (61a) in our case, the estimate of

feedback controller that achievelw) < 0 forallnonzeraw €  4(¢) andy(t) is updated on the basis of the current measurement

L]0, oo) if for some prescribed  scalaes ande, there exist (1),

n X n-matrices) < Ql; QQ, Qg, Sl, SQ, le’ARilA’ Rig,ﬁig,

¢ = 1, 2 that satisfy (46) an@ x n-matricesk,, Ry, U, P of B The Case of Delayed Measurements

the structure of (7a) wittP; > 0 andY € R?"*" that satisfy . . .
the LMI shown in (63) at the bottom of the page, where The method of Section I_V—A can_be readily applied to the case
where the measurement in (44b) is delayed, namely where

_ o cr_
W= - Y[ 0]_[ OO}YT (64) 7(t) = Cox(t — hy) + Dayw(t). (65)
. T0 _ N N Py . T077
7, pT[ }_mﬂ hlPT[ } /pr[ } [ }32 PTH
By Ay Az Py F
* —21, 0 0 0 0
* * —h Ry 0 0 0 <0 (63)
* * 0 —hQRQ 0 0
* * * * -R 0
L % * * * * -
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The arguments of Section IV-A can be used also in this case. i

Sincez(t — h) = z(t) — ftt_h y(s) ds, the only difference here
is that the “innovation” term in (52) will now be

K; [y(t)—ﬁo <55(t)_ /tt a(s) ds)} +[B?Ju(t). (68)

—h Example 6: We consider the system of Example 5 where the
and in the right side of (54) we shall now obtain the additionaheasurement is given by (65) with= 0.999, »; = 0.4 and
term Co = [0 1]. Fore = —0.43 a minimum value ofy = 25.3 was

t obtained by applying Theorem 4.4 with
K;Co / ea(s) ds. [ 283 % 10~°  3.62 x 10—8}
t—Ty P2 —

_ _ _ 8.11 x 1071% 3.67 x 107!
The descriptor representation of the dynamics will then be

+ Ky [y(t) — Coz(t) + Co /t

—hl

i(s) ds}

p, _ |425x 1079 3.09 x 1079
& , B 7 [383x107° 43x107°
{0} Y A+ iBBIR 6 —Kr[Co 0] and
= K;=1[1068.9 7123 1.57-107* 1.57-107°]".
€ 07_ — [ _ Forh = 0.9 and (; = 0.4) a minimum value ofy = 10.39
' {EJ + {_} eat = 9) + K Co /t_hl ea(r) dr was obtained for = —0.43 with
2 " 3.02x107%  7.98 x 1078
0 B 0 _ Py = —10 -1
- Z cads + —K Doy 7’(t) —1.82 x 10 3.63 x 10
i=1 AZ t—h; Bl

418 x 1072 2.76 x 107
66 =
(66) Fs [3.46 x 107° 3.52 x 103}

and the result that corresponds to Theorem 4.3 will be as falRd

lows. _ K;=[186.485 201.312 —0.0276 0.0008]" .
Theorem 4.4:Consider the system of (44a, ¢) and (65) and

the cost function of (2). For a prescrib@d< -, there exists

an output-feedback controller that achievé&w) < 0 for all V. CONCLUSION

nonzerow € £3[0, oo) if for some prescribed scalars ande» A delay-dependent solution is proposed for the problem of

there exist x n-matricesh < @1, @2, @3, 51, 52, Uy, Riv,  guput-feedbackl..., control of linear time-invariant neutral and
Riz, Riz, ¢ = 1, 2 that satisfy (46%51”@ X n-matricesky, Rz, retarded type systems. The solution provides sufficient condi-
U,0 < Py, Py, Pswith P = [ 5} —ﬁg]andY € R*" that tions in the form of LMIs. Although these conditions are not
satisfy the LMI shown in (67) at the bottom of the page, wheigecessary, the overdesign entailed is minimal since it is based

U, is defined in (64).P1 = Q;*, P, = —Q3'Q2Q;" and  on an equivalent (descriptor) model transformation which leads
P = QEI- to the bounding of a smallest number of cross terms and since a
If a solution to (46) and (63) exists, the output-feedback cofew Park’s bounding method is applied. The bounded real cri-
troller is obtained by (60), where andy are obtained by teria we obtain and the solution we derive to the state-feedback
) 0 H, control problem improve the results of [9], [19], where con-
Z 9 z servative bounding of cross terms was used, and extend them to
{ 0} - Z Ai+~2BBTP, © LJ the neutral type case. _They also allqw solutions to the state-feed-
o back control problem in the uncertain case where the system pa-
2 o . 0 rameters lie within an uncertainty polytope.
- Z [ } / G(r) dr + [_} gt — g) A delay-dependent solution is derived for the first time to
= LAl Jin, F the output-feedbacK ., control problem for systems with state

7, FT{O}—YDm h {?Uo—i—FT{O” hQFT{O} {PQT}BQ FTM'
B: Ay Ao Pg F
* —21, 0 0 0 0
* * ~hi Ry 0 0 0 <0 (67)
* * 0 —thg 0 0
* * * * -R 0
L % * * * * -U
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delays. This solution is obtained by solving two LMIs with a [15]
descriptor time-delay “innovation filter.”

The design of the output-feedback controller suffers fro
an additional overdesign that stems from the need to estimate
the derivative of the state. In the special case where a result j§7]
sought which is delay-independent with respect to the process
and delay-dependent with respect to observer, the latter overd?é]
sign can be removed by applying Park’s bounding method [36
for the “filtering” phase of the design.

One question that often arises when solving control and eg19]
timation problems for systems with time-delay is whether the
solution obtained for certain delajs will satisfy the design re- [20]
quirements for all delayk; < A;. Inthe state-feedback problem
the answer is the affirmative since the LMI in Theorem 3.1 is[21]
convex in the time delays. The situation in the output-feedbac
control case is however different, in spite of the seemingly con-
vexity of the LMI of Theorem 4.3 in the delay parameters. The
fact that theP, and P; depend nonlinearly on the delay implies [23]
that the output-feedback controller that is derived for a certain
delay will not necessarily satisfy the design specifications for[24]
smaller delays.

In this paper we obtained the results for time-invariant sys-
tems with an infinite time horizon. Similar results can be ob-[2%]
tained in the time-varying finite horizon case by allowing the
matricesP, U;, S;, R; in the Lyapunov—Krasovskii to be time

2]

dependent. [26]
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