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ABSTRACT 

The voltage controlled oscillator (VCO) is one of the most important building 

blocks in modern communication applications such as microprocessor clock 

generation, wired and wireless communications, system synchronization, and 

frequency synthesis. The design of high performance VCOs has been increasingly 

more important and still is an active research area. Research on VCOs for the past 

decade has been concentrated in the areas of higher frequency, lower phase noise, 

low power, low operating voltage, and increased tuning range. However many of 

these objectives can be only achieved at the expense of some other objectives. This 

thesis analyzes the design of high performance of inductor-capacitor (LC) tank and 

ring VCOs. First the basics of both LC and ring VCOs are reviewed. Then through 

the basics, new LC VCO topologies and circuit tricks are derived and analyzed. The 

design, simulation, and layout guidelines are also provided. Finally, the circuit 

techniques used in both regular and quadrature VCOs and simulation results of 

regular inductor and symmetric inductor designs are compared. Next, the several 

single-ended and differential ring VCO topologies are reviewed and pros and cons 

for each type are provided. From the basic topologies, a new ring VCO cell 

topology is then introduced, along with the bias circuit, output buffers, and divider. 

A three stage VCO based on the new topology is designed and simulated in both 

thick-oxide and thin-oxide devices in 65nm CMOS SOI process. The results of thick 

and thin oxide devices are compared and confirmed the usability of the new ring 

VCO cell topology. Finally, a conclusion of the design of high performance LC and 

ring VCOs is drawn and new directions of research are predicted. 
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Chapter 1 Introduction 

Oscillators are a fundamental part in many electronic systems. Applications utilize 

oscillators range from clock generation in microprocessors to frequency translation 

in mobile phones. Different application also requires different set of oscillator 

performance parameters. As today’s integrated circuits are converging towards 

CMOS, the design of robust and high-performance CMOS oscillators, more 

specifically, voltage-controlled oscillators (VCOs), has become extremely 

important. 

 

1.1 VCO Metrics 

The key metrics of a VCO consist of: oscillation frequency, tuning range, phase 

noise, and power consumption. The frequency of oscillation is determined by the 

application in which the VCO is used in, such as microprocessor or cellular phone. 

The tuning range is determined by the necessity of the application and the variation 

on oscillation frequency due to process and temperature variation. The center 

frequency of some CMOS oscillators may vary by a factor of two at the extremes of 

process and temperature [1], thus a wide tuning range is very desirable.  

 

The design of low phase noise VCOs has become another major direction of 

research. The recent huge growth in wireless communication has demanded more 

available channels. As a result the phase noise requirement in the local oscillator 

becomes more stringent. In digital microprocessors, the phase noise of the oscillator 

will directly affect the jitter of the clock signal and the timing margin, thus limits 

system performance.  

 

Lastly, power consumption is extremely important for mobile applications such as 

cellular phones and laptops where a battery supply the power. A low power design 
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will increase the battery life and low power designs are seen in many of the recent 

publications. 

 

1.2 VCOs for Phase Locked Loops 

Phase locked loops (PLLs) are common applications for VCOs. PLLs can be used 

for clock generations, such as in a microprocessor, clock and data recovery, such as 

in an optical transmission system, or frequency synthesis, such as in a wireless 

radio. The general characteristic for VCOs used in PLLs is wide tuning range so that 

the entire frequency range is covered. Also the phase noise requirement of the VCO 

can be loosened due to that when the loop is locked, the noise generated by the 

VCO at the center of oscillation frequency will be filtered out by the loop 

bandwidth. As a result, PLLs generally use wide tuning range and noisier ring 

topology VCO.  

 

1.3 VCOs for Frequency Translation 

Another common application for VCOs is frequency translation. In this type of 

application, such as radio and cellular phone, base band data needs to be up-

converted to the carrier frequency for transmission, or received data down-

converted to base band for processing. Typically, frequency translation requires the 

VCO to have very high oscillation frequency, on the order of gigahertz, and more 

recently, tens of gigahertz, due to the fact that carrier frequencies are becoming 

higher and higher. As a result, VCOs used for frequency translation typically uses 

inductor and capacitor (LC) tank VCO topology for its relatively high oscillation 

frequency and low phase noise. 
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Chapter 2 VCO Basics 

Before venturing onto the more advanced VCO topologies and structures, this 

chapter briefly describes the basic operation principle behind regular oscillators and 

the two major VCOs families. 

 

2.1 Fundamentals of Oscillator Operation 

A simple oscillator produces a periodic output, usually a voltage. So how can a 

circuit oscillate? Consider a feedback system in Figure 2.1 with transfer function 

H(s), in order for steady oscillation to occur, the circuit must satisfy with 

Barkhausen criteria: 

 

1)( ≥sH      (2.1) 

  °=∠ 180)(sH      (2.2) 

These conditions are necessary but may not be sufficient to ensure oscillation [2]. 

Usually the loop gain of the system is twice to three times the required value [1]. 

 

 

Figure 2.1 Simple Feedback System 

 

CMOS oscillators are typically implemented as ring oscillators or LC oscillators, 

though there are many other types of oscillators. Another advantage of ring and LC 
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oscillators is that they can be easily modified to be able to change oscillation 

frequency for a given control voltage, thus making them prime candidates for 

VCOs. 

 

2.2 Ring Oscillators 

A ring oscillator consists of multiple gain stages within the loop. Each gain stage 

can be as simple as an inverter, or as complicated as a differential amplifier. Figure 

2.2 shows a three-stage ring oscillator architecture. 

 

 

Figure 2.2 Three-Stage Ring Oscillator Architecture 

 

The minimum gain per stage required can be easily derived from the transfer 

function of each stage and Barkhausen criteria. Assuming the transfer function of an 

inverting amplifier is 

0

0

1
ω
s

A
A

+
−=      (2.3) 

Then the loop gain of the system is 

3

0

3

0

)1(
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ω
s

A
sH

+
−=     (2.4) 
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The system oscillates when the total phase shift equals 180˚ from Barkhausen 

criteria. Since we have a three stage system, then  

 

°=− 60tan
0

1

ω
ωosc     (2.5) 

Solving for ωosc, the frequency of oscillation 

 

03ωω =osc      (2.6) 

The minimum gain per stage such that the loop gain is equals to unity can be 

derived from Barkhausen criteria: 

1

1

3

2

0

2

3

0 =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ω
ωosc

A
   (2.7) 

Solving for A0 we have  

A0 = 2     (2.8) 

In summary, a three-stage ring oscillator can oscillate at 03ω , where ω0 is the 3-dB 

bandwidth of each stage, and requires a minimum gain of two per stage. Higher 

number of stage will result in less gain required per stage, but will oscillator at 

lower frequency, as evident in Barkhausen criteria. 

 

2.3 LC Tank Oscillators 

As monolithic inductors have appeared in CMOS and bipolar technologies in the 

past decade, the design of high frequency monolithic inductor based oscillator has 

become more and more important. Let us look at the basics of RLC circuits first. 
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     (a)                                              (b) 

Figure 2.3 a) Simple LC Circuit in Parallel, b) Equivalent Parasitic Resistance in 

Parallel 

 

As shown in Figure 2.3(a) an inductor L is placed in parallel with a capacitor C. The 

resonance frequency for this setup is  

 

LCres 1=ω      (2.9) 

At this frequency, the impedance of the inductor, jLωres, and capacitor, 1/(jCωres), 

are equal and opposite, thus yielding an infinite impedance. However in real 

practices, inductors, and capacitors, suffer from parasitic resistive components, as 

shown in Figure 2.3(b). Let us define the quality factor of the inductor, Q, as 

 

    
sR

L
Q

ω
=      (2.10) 

If we try to convert the inductor-resistor in series circuit in Figure 2.4(a) into the 

inductor-resistor in parallel form in Figure 2.4(b), as derived in [1], we get 

 

    LLp ≈      (2.11) 

    sp RQR 2≈      (2.12) 
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  (a)                          (b) 

Figure 2.4 a) Inductor with Parasitic Series Resistance, b) Series Resistance 

Converted into Parallel Resistance 

 

As we can see in equation 2.12, the quality factor of the inductor is very important 

in determining the amount of energy lost in the tank. Figure 2.5 shows a simple gain 

stage based on an LC tank. 

 

 

Figure 2.5 Simple RLC Gain Stage 

 

At resonance, jLpω = 1/(jCpω), and the voltage gain equals –gm1Rp. However if we 

connect the output directly into the input, the total phase shift for this stage is 

approaching, but never reaches, 180˚. But if we put two gain stages in cascade, as 

shown in Figure 2.6(a), then the circuit oscillates, given the gain is large enough. 
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(a)  

 

 
(b) 

Figure 2.6 a) Cascade of Two Simple Gain Stages 

b) Redraw of 2.6 a) 

 

If we redraw circuit in 2.6(a) to 2.6(b), this type of oscillator is what we usually 

called cross-coupled LC tank oscillator.  We can also convert the gain stage into a 

differential pair form by adding a tail current source, as shown in Figure 2.7. This 

oscillator is the fundamental form of LC tank based VCOs. 
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Figure 2.7 Differential Pair with RLC Loads and Tail Current Source 

 

Another simpler way to look at how LC tank based VCO works is negative 

resistance. Figure 2.8 shows the concept.  

 

 

(a)                                                             (b) 

Figure 2.8 a) LC Tank with Parasitic Resistance in Parallel, b) LC Tank with 

Parasitic Resistance and Negative Resistance in Parallel 

 

Figure 2.8(a) shows the components of our real LC tank. The resistance Rp is a 

lumped equivalent model of the non-idealities of the inductor and capacitor. The 

oscillation will not last forever on this tank because the resistor constantly dissipates 

energy from the tank. However, if we could somehow produce a negative resistor 
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that can supply the tank with more energy than the tank can dissipate, then the 

oscillation will sustain. 

 

But how much negative resistance do we need? From Figure 2.8(b), we can see that 

in order for the overall circuit to have no positive resistance, the negative resistance, 

-Req, must be less than or equal to Rp so the parallel combination will produce a non-

positive resistance. From Appendix A, the equivalent resistance looking into the 

drains of a crossed-coupled pair is approximately 

 

gm
Req

2
−≈      (2.13) 

where gm is the transconductance of each of the NFET. 

 

From Equation 2.13, we can see that in order for the LC tank based VCO to 

oscillate, we need to increase the transconductance of the crossed-coupled NFETs. 

The analysis using negative resistance method agrees on with what we analyzed 

before with Barkhausen Criteria, which is to increase the gain of each stage. By 

increasing the gm of each stage, we increased the gain of the stage but also reduced 

the negative resistance generated from the crossed-coupled pair, thus making |Req| 

smaller compared to Rp.   
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Chapter 3 LC TANK VCO 

Figure 2.7 showed a basic LC tank based oscillator, however, the oscillation 

frequency is not tunable. To make it tunable, let us first look at some of the 

capacitive devices found in common CMOS process today. 

 

In today’s CMOS process, high quality factor monolithic inductors exist in many 

different sizes, turns, and width. We can readily compute the inductance and Q of 

these inductors through Cadence and Z-parameter simulations. There are also a few 

different types of tunable capacitors, or varactors, such as the metal-oxide capacitor 

(MOSCAP) and hyper-abrupt junction varactor (HAVAR), which are available in 

many processes. These varactors vary the capacitance based on a different bias 

voltage, and they typically offer about 20 to 30 percent of tunable capacitance. The 

following section describes how we can use these varactors to achieve a voltage 

tuned oscillator. 

 

3.1 LC VCO Circuit Topology 

By replacing fixed capacitors with varactors and adding in a control voltage, Figure 

3.1 shows the commonly used LC VCO topology utilizing varactors. 

 

The varactors in figure 3.1 are represented as VAR. Keep in mind that the varactors 

are actually PN junctions so they must be reverse biased in order for them to change 

their capacitance and avoid DC current. The DC voltage at nodes TANK_OUT and 

TANK_OUT_BAR is very close to VDD because the inductors serve as short 

circuit to VDD in DC, minus any parasitic resistance the inductors might have. To 

keep the varactors reversed biased, the VCO control voltage, Vctrl, can vary from 

ground to VDD.  
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Figure 3.1 Common LC VCO Topology with Varactors 

 

In Figure 3.1, the tail current source is implemented with an NFET with a constant 

bias voltage, VB. The amount of this current determines the power consumption and 

oscillation amplitude. The higher the oscillation amplitude will lead to better the 

phase noise, as predicted by Leeson’s Equation: 

 

)1()()( 2

2

0
f

f

fQ

f

V

F
kTRfPN cosc

Δ
+

Δ
=Δ   (3.1) 

As we can see from Leeson’s Equation, the oscillation amplitude, V0, plays a 

significant role in determining phase noise. However because the low frequency 

flicker noise, or 1/f noise from the current source, which will be up-converted [3], 

and higher 1/f noise of the N-channel device in general, a current source 

implemented by an NFET will produce more phase noise than a current source 
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implemented by a PFET. Thus, some people prefer to implement the VCO in the 

following way to reduce phase noise: 

 

 

Figure 3.2 LC TANK VCO with PFET Current Source 

 

Figure 3.2 shows the tail current being placed near VDD by a PFET. Although this 

topology reduces phase noise caused by the higher 1/f noise of the NFET, however 

it will cause another problem. The DC voltages at the tank outputs are not at VDD 

due to the headroom voltage from the PFET tail current. Thus the control voltage, 

Vctrl, can no long vary from ground to VDD or it might cause the varactors to be in 

forward bias region and conduct DC current. So the control voltage has a narrower 

range and will cause the tuning range to shorter. 
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3.2 Proposed LC VCO Topology 

In the proposed VCO topology, as shown in Figure 3.3, the VCO utilizes both the 

low 1/f noise aspect of the PFET current source and able to maintain the wide range 

of the control voltage. 

 

The tail current device is still below the cross-coupled NFET, however it is 

implemented using a PFET. This may not look like a current source, as the node Vp 

is the source of the PFET and the current will vary as the oscillation occurs, 

however, closer examination reveals that a PFET current device is no worse than the 

traditional NFET version.  

 

 

Figure 3.3 Proposed LC VCO Topology 
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First, as the channel length of modern technology gets shorter and shorter, channel 

length modulation effect on the drain current become more and more visible. Even 

an NFET current source with drain attached to the high frequency node Vp will 

cause the current to change as oscillation occurs. Although the PFET version will 

cause more current change due to square law in VGS, the overdrive voltage in 

modern VCOs are small because low supply voltage, and the high frequency 

oscillations at node Vp can be filtered out by adding a large decoupling capacitor at 

node Vp. 

 

Second, there is feedback between node Vp and Vb in the NFET current source due 

to gate to drain capacitance will affect the overdrive voltage VGS of the current 

source, and it will cause the current to change as the VCO oscillates. However in the 

PFET current device, there is no node Vb—the gate of the PFET can be directly tied 

to ground, thus ignoring the effects of the parasitic capacitance.  

 

Third, the PFET version saves the complexity and area needed for biasing. The 

NFET current source will need a good bias voltage since there isn’t much headroom 

in modern supply voltage to keep the NFET saturated. The PFET version is always 

saturated as the drain and gate are both tied to ground. 

 

From above arguments, the PFET current device will not perform any worse than an 

NFET version in terms of transient current stability. Since both the gate and drain of 

the PFET is tied to ground, the bias current can be designed from the sizing of the 

PFET, and extra-large PFET device will cause less harm than a large NFET due to 

no CGS feedback.  
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3.3 Quadrature LC VCO 

Quadrature oscillators produce outputs having a phase different of 90˚. This is very 

useful in some communication systems where the modulation scheme utilizes both 

in-phase and quadrature components and can be demodulated easily.  

 

The principle of quadrature generation is to couple two identical oscillators such 

that they operate with a 90˚ phase shift. The concept behind this is that if we 

injection a signal into an oscillation that has the same frequency, then we can, and 

will, shift only the phase of the output of the oscillator. However, we only want to 

inject a portion of each oscillator’s output into the other. As described in [1], if we 

make the transconductance of the injection mechanisms equal and opposite, or 

anitphase coupling, then we can have the outputs of the two VCOs 90˚ out of phase. 

 

 

Figure 3.4 a) Quadrature VCO Injection Mechanism, b) Quadrature VCO Injection 

Topology 
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The injection mechanism used in Figure 3.4(a) consist of a DC biased NFET current 

source and an NFET device whose drain connects to one of the output of the other 

VCO. This injection mechanism is used for each of the VCOs outputs. This kind of 

single-ended design provides better isolation between the outputs of the VCOs 

compared to a differential injection mechanism, though it consumes slightly more 

power. The outputs of the injection mechanism, Vout1 and Vout2, will be connected 

to the tank outputs of the second VCO, as shown in Figure 3.4(b) 

 

3.4 Symmetric Inductor VCO 

In some CMOS process, such as IBM 0.18μm CMOS process, contains symmetric 

inductors, or differential inductors. The single symmetric inductor of inductance L 

can replace two asymmetric inductor of inductance L/2, and thus saves about 50% 

of total layout area due to spacing required between asymmetric inductors. 

Symmetric inductors also provide higher Q than single-ended inductor [4] when 

driven by differential stimuli. 

 

 In the application of LC tank VCOs, the symmetric inductor can be best utilized. 

The LC VCO has two differential outputs, and each output has an inductor 

connected to a DC node, such as VDD. We can replace the two regular inductors 

with a larger symmetric inductor and bias the center tap of the symmetric inductor 

to the DC node, as shown in Figure 3.5 below. 

 

The design in Figure 3.5 provides better phase noise, less area, but the tuning range 

of the VCO may be slightly decreased. This is due to the interwinding or fringe 

capacitance between the segments of the symmetric inductor, where as in regular 

inductor, these fringe capacitances can be ignored [1]. However due to the layout 
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parasitic capacitance resulted from cross coupling of the asymmetric inductors, the 

fringe capacitance of the symmetric inductor is ignorable. 

 

 

Figure 3.5 Proposed LC VCO Topology with Symmetric Inductor 

 

3.5 Layout Considerations 

The layout of LC tank VCOs can get complicated. Since the VCO oscillate at very 

high frequency, the any parasitic capacitances on the tank will greatly reduce the 

oscillation frequency and tuning range. To maintain the Q for the inductors, the 

inductors must be placed at least several tens of microns apart from each other—the 

actual distance differ from technology, to avoid substrate noise coupling. The wiring 

resistance will reduce the Q of the inductor and thus cause more phase noise. As a 
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result, the use of low resistance metal wiring for high frequency paths is highly 

recommended. 

 

To minimize the effect of parasitic capacitances on the tank, the tank layout should 

be done first and prioritize high frequency paths layout. In the case of regular 

inductors, where the inductors must be places a large distance apart and the 

transistors needs to cross, the wiring of these distances should be done on the top 

level metal with thick wires to minimize wiring resistance. In the case of symmetric 

inductors, the wiring resistance is minimal. Expect around 10% extra capacitance 

and 10% reduction in inductance on the tank after layout of regular VCOs, and more 

capacitance is expected for quadrature VCOs since the tank needs to drive the 

capacitance of the extra injection mechanism.  

 

The DC nodes should be done after the high frequency paths. It is very important to 

keep the potential difference between the ground node and substrate node as small 

as possible by placing as many substrate contacts as the technology allows on the 

ground node. The VCO control voltage node should have a large decoupling 

capacitor on it to minimize effect of DC fluctuation and its effect on VCO 

oscillation frequency. 

 

3.6 LC VCO Simulation Results 

Two designs were taped out using IBM 0.18μm CMOS technology: VCO and 

quadrature VCO design used single-ended inductors and symmetric inductors. 

These VCOs are targeted for 5.8GHz WiMAX applications. The simulation results 

are discussed in the following sections, but first let us look at the inductor selection 

process. 
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3.6.1 Inductor Selection 

As discusses before and in Leeson’s Equation, the quality factor of inductors has a 

very important role in determining the phase noise. So it is important that we pick 

inductors that have high Q. Fortunately, in Cadence, there are ways to determine the 

Q of an inductor through Z parameter simulation. Figure 3.6 shows the setup. 

 

 

Figure 3.6 Inductor Z Parameter Simulation Setup 

 

Recall from Equation 2.10 that Q is defined to be  

 

sR

L
Q

ω
=     (3.1) 

In Z parameter simulation as a function of frequency, the real part of Z11 is the 

series resistance of the inductor, and the imaginary part of Z11 is the actual 

inductance. So we can computer the Q in the following method: 

 

)11(

)11(

Zreal

Zimag
Q =    (3.2) 
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With this method, we easily can determine the Q of an inductor and design the VCO 

such that the Q is highest at the frequency of interest. Figure 3.7 shows the Q 

simulation result of the inductor and symmetric inductor that were used in the 

design. 

 

 

Figure 3.7 Inductor Q Simulations 

 

The Q is around 15 for the regular inductor and 12 for the same inductance 

symmetric inductor, at 5.8GHz. However, because the symmetric inductor needs to 

double in size, as it takes over two regular inductors, the Q drops to 9 for symmetric 

inductor with twice the inductance. This lower Q of the symmetric inductor will hurt 

some phase noise performance, but as we can see in the Q simulation, the symmetric 

inductors exhibits much higher Q at higher frequencies. As a result, the symmetric 

inductors are better for high frequency VCOs. 
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3.6.2 50 Ohms Output Buffer Design 

The output buffers are needed so that they can drive a 50-Ohm off-chip probe, when 

the hardware is tested. The buffer design is simple, as shown in Figure 3.8: 

 

 

Figure 3.8 50 Ohms Output Buffer Design 

 

Again, singled-ended topology was chosen as compared to differential topology. 

This is mainly to avoid the inter-coupling between the differential outputs due to 

parasitic capacitance of the transistors. 

 

3.6.3 Regular VCO Design Simulation Results 

Figure 3.9(a) and 3.9(b) shows the topologies for regular LC tank VCO using 

single-ended and symmetric inductors, respectively. In the final design, de-coupling 

capacitors were added in to maintain the DC signal integrity.  
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(a)                                                                      (b) 

Figure 3.9 a) Final LC VCO Topology with Regular Inductors, b) Final LC VCO 

Topology with Symmetric Inductor 

 

The designs were simulated through Cadence Spectre simulator, laid out, and 

extracted with parasitic capacitance and resistance. Figure 3.10 shows the layout 

photo. 

 

 

 

Figure 3.10 a) VCO with Regular Spiral Inductor Layout 
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Figure 3.10 b) VCO with Symmetric Inductor Layout 

 

The inductors are obviously taking up the most amount of space in the layout, 

except for the array of bond pads, and the symmetric inductors in 3.10(b) obviously 

saved a large amount of space when compared to the regular inductors. Figure 

3.11(a) and 3.11(b) shows the transient and phase noise extracted simulation results 

with parasitic resistances and capacitances of the VCO with regular and symmetric 

inductor, respectively. 
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Figure 3.11 Extracted Simulation Results of the VCO at Maximum Oscillation 

Frequency. a) Regular Inductor, b) Symmetric Inductor 

 

Table 3.1 summarizes the extracted simulation. 

 

Table 3.1 Summary of LC VCO Results 

 
Criteria VCO with Regular 

Inductor 

VCO with Symmetric 

Inductor 

Oscillation Frequency/Tuning 

Range 

5.36 GHz ~ 6.36 GHz 5.27 GHz ~ 6.4 GHz 

Phase Noise at 1MHz Offset at 

Max Oscillation Frequency 

-115.5 dBc/Hz -113.2 dBc/Hz 

Differential Oscillation 

Amplitude at Max Oscillation 

Frequency 

410 mV 280 mV 

Power Consumption with 

Buffers at Max Oscillation 

Frequency 

12.4 mW (6.2 mA current 

at 2V supply) 

9.2 mW (5.1 mA current at 

1.8V supply) 

Figure of Merit (FOM) 180dB 180dB 

Core Layout Area 0.35mm
2
 0.19mm

2
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The symmetric inductor seems to be the better choice of the two designs—it saved 

both area and power. It is true that the symmetric inductor showed slightly more 

phase noise than the regular inductor design, which agrees with the Q simulation, 

but the overall Figure of Merit (FOM) did not decrease due to the savings in power 

consumption. The widely used FOM for VCOs is defined below: 

 

PNPf

f
FOM

DC

osc

⋅
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ

=
1

2

   (3.3) 

Where fosc is the oscillation frequency, ∆f is the offset the phase noise is measured 

at, PDC is the DC power consumption in mW, and PN is the phase noise. Overall, 

both designs compares favorably with other designs in literature. 

 

3.6.4 Quadrature VCO Design Simulation Results 

Figure 3.4 showed the quadrature VCO injection topology and injection mechanism. 

The VCO core used is the same as the regular VCO. 

 

The quadrature designs were also simulated through Cadence Spectre simulator, laid 

out, and extracted with parasitic capacitance and resistance. There are almost twice 

as much  parasitic capacitances in this design because the extra injection mechanism 

and longer metal routing. Figure 3.12 shows the layout photo of the quadrature 

VCOs. 
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(a) 

 

 
(b) 

Figure 3.12 a) Quadrature VCO with Regular Spiral Inductor Layout, b) Quadrature 

VCO with Symmetric Inductor Layout 



 

 28

The phase noise simulation results for regular and symmetric inductors are shown in 

Figure 3.13 (a) and (b), respectively. 

 

(a)                                                             (b) 

Figure 3.13 Quadrature VCO Phase Noise Simulation Results for a) Regular 

Inductor, b) Symmetric Inductor 

 

Again, the use of symmetric inductors saved a large amount of area, and in the case 

of quadrature VCO, improved the phase noise by about 11dB. This is due to the 

layout complexities of the quadrature VCO involving four inductors. The wiring 

resistances and capacitance contributed a lot to the phase noise. In addition, due to 

these parasitic resistances and capacitances, the quadrature outputs are not exactly 

90˚ out of phase. Figure 3.14 shows the differential output of the symmetric 

inductor VCO. 
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Figure 3.14 Quadrature Outputs of the Quadrature VCO 

 

As observed in Figure 3.14, the outputs are not exactly 90˚ out of phase. This is 

caused by the wiring parasitics in the layout which affects the Gm of the injection 

mechanism circuit. A work around for this problem is to purposely bend the routing 

wires so that all four outputs endure the same amount of parasitic resistances and 

capacitances.  

 

The summary of results of the quadrature VCO designs are listed in Table 3.2. 

 

Table 3.2 Summary of LC Quadrature VCO Results 

 
Criteria Quadrature VCO with 

Regular Inductor 

Quadrature VCO with 

Symmetric Inductor 

Oscillation Frequency/Tuning 

Range 

5.48 GHz ~ 6.34 GHz 5.23 GHz ~ 6.05 GHz 

Phase Noise at 1MHz Offset at 

Max Oscillation Frequency 

-105.69 dBc/Hz -116.62 dBc/Hz 

Differential Oscillation Amplitude 

at Max Oscillation Frequency 

400 mV 310 mV 

Power Consumption with Buffers 

at Max Oscillation Frequency 

26mW (13mA at 2V supply) 19.8mW (11mA at 1.8V 

supply) 

Figure of Merit (FOM) 168dB 179dB 

Core Layout Area 0.53mm
2
 0.35mm

2
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The complexity of layout of the regular inductor becomes obvious here in the 

quadrature VCO case. The four regular inductors must be far apart from each other 

to reduce the substrate noise coupling. The lengthy wirings that are need to cross 

couple inside the same VCO and injection between the VCOs causes a substantial 

increase in noise, as appeared in the phase noise result of the regular quadrature 

VCO. The symmetric inductor is obviously a better choice here, as it saves both area 

and power, and produces a better phase noise, even with lower Q in the inductor 

itself.   

 

3.7 LC Tank VCO Summary 

In the above sections, LC tank VCOs using regular and symmetric inductors were 

demonstrated. These VCOs oscillate around center frequency of 5.8GHz with tuning 

range of around 1GHz. Quadrature versions of these VCOs were also demonstrated. 

They also operate at 5.8GHz but with a slightly less tuning range than their regular 

VCO counterparts. The use of symmetric inductors greatly decreased the layout 

area, saved over 25% of power, and improved the FOM by 10dB for the quadrature 

VCO. 

 

This design is very comparable with other published VCOs around the same 

frequency. This design has superb tuning range compared to other designs, which 

will make this VCO very robust against temperature and process variations. Table 

3.3 shows the comparison. 
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Table 3.3 Comparison Between LC Tank VCOs 

 
 Technology Frequency/Tuning 

Range 

Power/Supply Phase Noise 

at 1MHz 

Offset 

Note 

This Work, 

Simulation 

0.18um CMOS 5.27~6.4 GHz 9.2 mW @ 

1.8V Supply 

(with Buffers) 

-113.2 

dBc/Hz 

Symmetric 

Inductor  

This Work, 

Simulation 

0.18um CMOS 5.23~6.05 GHz 19.8 mW 

@1.8V Supply 

(with Buffers) 

-116.6 

dBc/Hz 

Symmetric 

Inductor, 

Quadrature 

[5]  0.18um CMOS 8GHz ± 250MHz 30mW @ 4V 

Supply (with 

Buffers) 

-117 

dBc/Hz 

Transformer, 

Quadrature  

[6] 0.18um CMOS 4.6~5 GHz  4.5mW @ 

1.5V Supply 

(Core only) 

-120 

dBc/Hz 

Differential 

Colpitts  

[7] 2um 

InGaP/GaAs 

HBT 

4.39 GHz ± 6% 42mW @ 3V 

Supply (with 

Buffers) 

-117.8 

dBc/Hz 

 



 

 32

Chapter 4 RING VCO 

Chapter 3 described the LC tank based VCO. Now let us look at another popular 

form of VCO, ring VCOs, commonly found in microprocessors, where monolithic 

inductors are not readily available in high quality format. 

 

4.1 Basic Single-ended Ring VCO topology 

From section 2.2 we know that a simple chain of odd number of digital inverters can 

oscillate, but that oscillation frequency is fixed. How do we make it such that we 

can change the oscillation frequency via a voltage? We will look at several different 

VCO cell topologies and their pros and cons. 

 

4.1.1 Current-Starved Inverter 

The simple way to control the charge and discharge time of an inverter is to control 

the current through the inverter, via a voltage controlled current source, as depicted 

in Figure 4.1. This current source is driven by the control voltage, Vctrl, and the 

current will determine the charge up and discharge time of the inverter. This 

topology is called current-starved inverter, as the regular inverter is short of the 

current they are normally allowed to consume.  

 

With correct sizing and current levels, an odd number of stages of these current-

starved inverters can make a decent VCO. This design is simple and the oscillation 

frequency can achieve reasonably fast, and tuning range is great, due to the square-

law change in current levels in the footer device. We can size the footer device 

wider so that it doesn’t affect the output swing much. However there are several 

problems with this design. First, the inverter doesn’t work at very low bias voltages, 

such as zero, when the current in the inverter is been shut off. Second, the DC level 

of the VCO output is not constant; this can cause problems at high frequency when 
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trying to amplify the VCO output to full swing. Third, the output of each stage 

drives two gates, which limits the maximum oscillation frequency. 

 

VDD

VOUT
VIN

Vctrl

 

Figure 4.1 Current Starved Inverter 

 

4.1.2 Inverter with Pass/Transmission Gate 

Instead adjusting the current level through the inverter, we can also adjust the 

charge up and discharge time of the inverter by putting a pass gate as a delay and 

adjust this delay at the output of the inverter, as shown in Figure 4.2(a). 
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(a)                                                             (b) 

Figure 4.2 a) Inverter with Voltage Controlled Pass Gate, b) Inverter with Voltage 

Controlled Transmission Gate 

 

In this pass gate design, the control voltage, Vctrl, adjusts the pass gate strength and 

thus varies the charge up and discharge time of the delay cell as a whole. This is 

very effective in adjusting the delay and thus can control the frequency of 

oscillation very well, however, this design has several drawbacks. First, the 

maximum frequency of this design is very low, this is due to the extra capacitance 

and extra delay from the pass gate even at the maximum control voltage. Second, 

the output will not be at full swing due to a threshold drop across the pass gate. 

Third, the output of the inverter will be distorted when the control voltage is lower 

than the threshold of the pass gate. To solve some of the problems, we can replace 

the pass gate with a transmission gate, as shown in Figure 4.2(b). This does take 

care of the problem of inverter not function correctly when control voltage is low, 

however generating an exact inverted version of Vctrl will be another complexity. 
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The advantage of singled-ended ring VCO design is its simplicity and high output 

swing, when compared to differential design. However differential designs can have 

a faster oscillation frequency due to its current mode logic. Let us look at several 

traditional differential designs. 

 

4.2 Basic Differential Ring VCO topology 

Differential VCO cells can usually oscillation than the singled ended versions and 

noise performance, due to their current mode logic and native differential noise 

rejection. In theory, the minimum stages required for oscillation of differential cell 

design is two, as you can cross the outputs of the second cell to get additional 90˚ 

phase shift. Let us start with the very basic differential amplifier as the VCO cell. 

 

4.2.1 Differential Pair with Resistive Loads 

Figure 4.3 shows the basic differential amplifier with resistive loads, while the bias 

current is controlled by the VCO control voltage. 

 

 

Figure 4.3 Differential Amplifier with Resistive Loads 
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In this amplifier, the oscillation frequency can achieve very fast due to the current 

mode logic in the differential pair. The major problem with this design is that the 

tuning range is very small. The bias current is determined by the tail current source, 

and it is controlled by the VCO control voltage only. Given the design is current 

mode logic and resistive load is constant, then as long as the differential pair has 

enough current to operate, giving extra currents to the differential pair will not 

dramatically speed up or slow down the operation. Also, a change in the control 

voltage will not change the current level in its full effect due to node Vp will 

counter-adjust itself due to the constant load R. As a result the tuning range of this 

design is extremely low when compared to other ring oscillators. Current reported 

tuning range in literature is around 12% only.  

 

4.2.2 Differential Pair with PFET Loads 

In this design, we replace the resistors with DC biased PFET devices, and biased as 

shown in Figure 4.4. 

 

 

Figure 4.4 Differential Amplifier with PFET Loads 
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The goal of this design is to increase the tuning range. Consider the PFET device as 

voltage controlled resistors and the bias circuit VB as an inverted version of Vctrl. 

As the VCO control voltage changes, the resistance of the PFET device also 

changes, thus varying the gain of the differential pair. Additionally, node Vp will 

not adjust itself as much as in Figure 4.3 due to a variable load. This method can 

increase the tuning range dramatically, close to the tuning range of current starved 

inverters. The drawbacks of this design are the small output swing and varying DC 

offset at the output, as current mode logic tends to produce much smaller swings.  

 

In summary differential VCOs tends to be faster than their singled-ended parts due 

to their current mode logic nature. However differential VCOs have smaller output 

swing, and suffers the same problems of not being able to operate at low bias 

voltage and varying DC offset in the singled-ended versions.  

 

In the next proposed VCO topology, we try to maintain the maximum oscillation 

frequency advantage of the differential pair, high output swing of the singled-ended 

version and try to solve the problem of operating in low bias voltage and varying 

DC offset. 

 

 4.3 Proposed Ring VCO topology 

Let us begin by summarizing the advantages of both differential and single-ended 

topologies. First, differential topology has fast oscillation frequency due to its 

current mode logic, or looking from a different point of view, the output of the 

differential topology drives only one gate, while the output in the singled-ended 

case, drives both the gates of an NFET and a PFET. This indicates that we want the 

output to drive as less capacitance as possible to achieve maximum speed. 
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Second, the current source in the differential design seems to have no major effect 

on the tuning range, as long as we have a voltage controlled load device, which 

controls the gain, while the current source in the singled-ended design is necessary 

because it is the only tuning mechanism. If we can get rid of the current source 

AND have a voltage controlled load device, then it will help to boost the output 

swing while maintain the tuning range. With that in mind, a proposed VCO cell 

topology is shown in Figure 4.5. 

 

VOUT

VIN

VB

Vctrl

 

Figure 4.5 Proposed Ring VCO Cell Topology 

 

This topology looks very simple. The core “inverter” consists only of a common 

source amplifier, while the load device is biased by the inverting scheme from the 

control voltage. As we have seen in the differential pair with PFET loads, this 
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biasing scheme will produce a large tuning range. Also the output of the VCO cell 

drive only another gate, thus can achieving maximum frequency.  

 

However, there are still two old problems within this design: the DC offset problem 

and small swing at low control voltage problem. In the next sections, we will look at 

an experimental VCO design that utilizes several circuit tricks to solve these 

problems. 

 

4.4 Proposed Ring VCO Design 

A three-stage ring VCO was designed in 65nm SOI CMOS partially depleted 

technology, using the VCO delay cell in Figure 4.5. Let us first look at the bias 

circuit, output buffers, and divide by 2 circuits in this design. 

 

4.4.1 Bias Circuit Design 

As we discussed in section 4.3, the VCO output swing becomes smaller and smaller 

as control voltage goes to near zero. This is due to the fact that as Vctrl goes close to 

zero, the voltage at node VB becomes close to VDD. This will put the PFET load 

into subthreshold region. Though this circuit will still oscillate, but the output swing 

will be extremely small and will not be able to drive any outputs. As a result, the 

VCO does not work at low control voltages. 

 

To let the VCO to oscillate at low control voltage, we can add an extra diode 

connected NFET to the bias circuit, as shown in Figure 4.6. This diode connected 

NFET serves as a feedback device that let the current pass through it whenever the 

voltage at node VB becomes too high. We can size the NFET device much smaller 

compared to the main NFET so that it has little effect when the control voltage is 

high. 
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Figure 4.6 Proposed Ring VCO Topology with Bias Circuit Control 

 

Figure 4.7 shows the simulated resulting VB as a function of control voltage when 

adding an NFET one-tenth the size of the main NFET. As clearly visible, The 

original VB get closer and closer to VDD while adding a diode-connected NFET 

prevented VB approaching VDD. With this method, we can choose the size of the 

diode-connected NFET so that we achieve manageable VCO swing at low control 

voltages. 

 



 

 41

VB vs. Vctrl

VDD=1.5V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Vctrl (V)

V
b

 (
V

)

 

Figure 4.7 Simulated VB vs. Vctrl 

 

4.4.2 VCO Output Buffer Design 

One problem with VCO delay cell in Figure 4.5 is that the common mode voltage of 

the output is not constant, especially when the control voltage is low. This is due to 

that when the control voltage is low, the inverting bias produces a high voltage at 

node VB. This high voltage place the PFET load into subthreshold or just above 

threshold region, which limits it current conducting abilities. As a result, the 

common mode voltage at output of the VCO will have to go down to decrease the 

current of the NFET, and the swing at the output will also decrease. Since this 

occurs at the relatively low frequency end of the tuning range, the low swing can be 

amplified by the output buffers in the later stage. However the common mode 

voltage needs to be adjusted so that one design of output buffers can satisfy all 

frequencies of the VCO output. As a result, a buffering stage will be included at 

each of the VCO’s delay cell. 
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Since this ring VCO is singled ended, the output buffers will utilize simple digital 

inverters. However, extra components can be added to them. First since the common 

mode voltage at output of the VCO varies greatly when the control voltage is low, 

we can add in a device to reduce this effect, as shown in Figure 4.8(b). 

 

 
(a)                                                                 (b) 

Figure 4.8 a) Proposed Bias Circuit, b) Proposed VCO Core Cell with Output Buffer 

 

As we can see in Figure 4.8(b), the output of VCO delay cell drives an inverter. 

Naturally if the inverter is unbiased, the common mode voltage at the inverters 

output would be high when the common mode voltage at VCO output is low. 

However if we add in the extra NFET, which serve as a leak against the PFET, and 

we bias the leaking NFET so that it turns on when the common mode voltage at 

VCO output is low, then we can balance the common mode voltage at output of the 

first buffer.  

 

The leaking NFET reduces the strength of the PFET and thus lower the common 

mode voltage at the output of the first buffer. However we only want it to leak at 
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low control voltages, and we have to design a bias circuit to shut it off when the 

control voltage is high. Luckily this bias circuit is just the same as the bias circuit 

for the VCO core, as shown in Figure 4.8(a), though we cannot directly use the bias 

from the VCO core because the feedback parasitic capacitor can feed noise back 

onto the core.  

 

Figure 4.9 shows the common mode voltage at the output of the first buffer with and 

without the leaking NFET. As we can see, the leaking NFET greatly stabilizes the 

common mode voltage at low control voltages. 

 

Common Mode Voltage vs. Vctrl
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Figure 4.9 Common Mode Voltages of the VCO Buffer Stages vs. VCO Control 

Voltage 

 

Another problem with high-tuning range VCOs is that the threshold voltages of 

buffers are not constant for all of VCO’s frequencies. This means that at low 

frequencies, the threshold voltage of the buffers are around VDD/2, but at high 
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frequencies, even with an input common mode voltage near VDD/2, the output of 

the buffer does not maintain that common mode voltage. This can cause a serious 

problem if a chain of inverter is used to amplify a signal. But with the use of 

resistive feedback between the input and output of an inverter, we can set the 

common mode voltage at the output of an inverter so that it does not drift too much 

from VDD/2, as shown in Figure 4.10. 

 

 

Figure 4.10 Proposed VCO Cell with Bias Circuit and Output Buffer Stages 

 

With this feedback resistor between the input and output of an inverter, the 

common-mode voltage at the output is sort of “set” to the common mode voltage at 

the input, though depend on the resistance. The lower the resistance, the more 

accurate the common mode voltage is, but the gain of the inverter drops with lower 

resistance. Considering the trade offs here, the final three-stage buffer design for 

this VCO consists of an inverter with a leaking NFET, a regular inverter, and an 

inverter with resistive feedback and approximately unity gain. 

 

4.4.3 Divider Design 

In most PLLs, the output of the VCO usually drives a VCO divider circuit, as the 

frequency of the VCO is often too fast for the programmable feedback divider or the 

phase detector. The design of a divider that is capable of divider very fast signal is 
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another challenge. Let us look at a divide by two circuit that is capable of dividing 

the VCO output after the buffering stage. 

 

Since the ring VCO is single-ended, we cannot use the current mode logic divider. 

Single-ended divider by two circuit such as digital D flip-flop may not be fast 

enough for the highest frequency of this VCO. To ensure the divider that can divide 

for all frequencies, we decided to use the extended version of True Single Phase 

Clock (TSPC) circuit, proposed first by Yuan and Svensson in [8] and discussed in 

details by Soares and Noije in [9]. The divider is shown in Figure 4.11. 

 

 

Figure 4.11 TSPC Divider by 2 Circuit 

 

This divider is simply a D flip-flop using precharge and NMOS like blocks. The 

detailed explanation of how TSPC circuit works and the rules to construct the 

blocks can be found in [8] and [9]. However, [8] and [9] assumes the input of the 

TSPC divider by two has full swing, but since the output of the VCO does not have 
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full swings, the TSPC divider must be tweaked in size and skewed so that it can 

function in non-full swing mode. Because of this, the output of the TSPC also does 

not have full swing and the common mode voltage is highly skewed to ground. As a 

result, additional common-mode adjusting and buffering are needed at the output of 

the divider. Figure 4.12 shows the divide by two circuit with buffering stages. 

 

 

Figure 4.12 Divide by 2 Circuit with Output Buffers 

 

4.5 Experimental VCO Simulation Results 

An experimental three-stage VCO design using the proposed delay cell was 

simulated through PowerSPICE simulator. Figure 4.13 shows the setup. But first, let 

us look at a brief overview at what devices the technology offers. 
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Figure 4.13 Experimental Three-Stage VCO Topology 

 

4.5.1 Technology Overview 

The 65nm SOI CMOS technology offered two kinds of devices: thick-oxide device, 

which are intended for slower, high voltage operations, and thin-oxide device, 

which are intended for faster, low voltage operations. The nominal supply voltage 

for thick-oxide devices is 1.5V and, for thin-oxide, 1.0V. The body of these devices 

is floating, so it is important to initialize these devices so that they have the same 

body potential to avoid any change in threshold devices when the oscillation begins. 

 

4.5.2 Thick-Oxide Ring VCO Simulation Results 

The thick-oxide devices have longer channel length and thicker gate oxide 

compared to the thin-ox devices. They can sustain higher supply voltage but will be 

slower. Figure 4.14 shows the oscillation frequencies and tuning range of the VCO 

simulated using PowerSPICE. 
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THICK-OXIDE VCO FREQUENCY 
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Figure 4.14 Simulated Thick-Oxide VCO Frequency vs. Control Voltage 

 

The frequencies measured in Figure 4.14 were at the output of the VCO buffer. The 

output swing at the VCO buffer is not fully rail to rail, but at rather around 70% of 

rail to rail. However this swing is sufficient to drive the divide by two circuit, where 

at its output, the swing is fully rail to rail. 

 

Another distortion at the output of the VCO buffer is that the signal does not have 

50% duty cycle at the low end of the frequency. This is because when the control 

voltage is low, the load PFET device does not charge up fast enough, thus distorts 

the VCO output signal. However after the divide by two circuit, the duty cycle is 

corrected to about 50%, as demonstrated in Figure 4.15 (a) and (b). 
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(a) 

 
(b) 

 

Figure 4.15 PowerSPICE Simulation Results of Thick-Oxide VCO at a) Output of 

VCO Buffer, b) Output of Divide by Two Circuit 
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Figure 4.15 (a) shows the output of the VCO buffer at control voltage from zero to 

VDD, with step of 0.1V in each row, and Figure 4.15 (b) shows the output at the 

divider with the same setting. The first nanosecond in the simulation is body contact 

initialization. As we can see in Figure 4.15 (a), the duty cycle of the signal is 

obviously not 50% at the lower oscillation frequency, but after the divider, the duty 

cycle become almost 50%. 

 

The frequency of oscillation can greatly vary as temperature and process change. 

Figure 4.16 (a) and (b) shows the maximum and minimum oscillation frequency for 

a Monte-Carlo simulation of 250 cases each. 

 

 

(a) 

Figure 4.16 a) Monte-Carlo Simulation 250 cases for Thick-Oxide VCO, Maximum 

Oscillation Frequency Vctrl=VDD, 
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(b) 

Figure 4.16 b) Monte-Carlo Simulation 250 cases for Thick-Oxide VCO, b) 

Minimum Oscillation Frequency Vctrl=0 

 

As we can observe from the Monte-Carlo simulation, the maximum frequency of 

oscillation can vary from 22.6GHz to 29.8GHz, while the minimum can vary from 

2.3GHz to 4.3GHz. The mean value of the oscillation frequency is 3.22GHz to 

26.3GHz, which agrees with the nominal condition of 3.17GHz to 26.27GHz. The 

250-case Monte-Carlo simulation covers 96.3% of the population with 99.5% 

confidence. 

 

The phase noise performance is shown in Figure 4.17. The top curve is the phase 

noise at Vctrl=VDD while the bottom curve is at Vctrl=VDD/2. Predicted by 

Leeson’s Equation, the phase noise is better when the oscillator is running at lower 

frequency. 
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Figure 4.17 Phase Noise Performance of Thick-Oxide Ring VCO 

 

4.5.3 Thin-Oxide Ring VCO Simulation Results 

The thin-oxide devices have shorter channel length and thinner gate oxide compared 

to the thick-ox devices. They can sustain lower supply voltage but will be faster. 

Figure 4.18 shows the oscillation frequency and tuning range. 
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Figure 4.18 Simulated Thin-Oxide VCO Oscillation Frequency vs. Control Voltage 

 

The thin-oxide VCO core can actually oscillate up to 60GHz and as low as 3GHz. 

However, output swing limits the usability of frequency at both ends. At the high 

end, the output buffer fails to amplify the signal that is large enough for the divider 

to function correctly. This is mainly due to that fact that the supply voltage is 

lowered to 1V, while the threshold voltage of the devices remains relatively 

unchanged. At the low end of the oscillation, the PFET load device is biased in 

subthreshold such that both the swing and common mode voltage at the output of 

the VCO core is so low that no buffers with static sizing can successfully amplify 

them while still work at higher frequencies. As a result, the bias circuit has to be 

adjusted so that both high and low frequency ends of the VCO core to be avoided in 

order for the VCO to be usable in applications.  
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With the bias circuit adjusted so that the VCO core gives out acceptable levels of 

swing and common mode voltage, the three-stage buffer shown in Figure 4.9 works 

very well. The output of the buffer achieved full swing at low end of oscillation 

frequency and 80% of rail to rail swing at high end of oscillation frequency. These 

swings are just enough to let the divider to function properly. In contrast to the 

thick-oxide device, the duty cycle of the signal is about 50% for all frequencies of 

oscillation at the VCO buffer output. Figure 4.19 (a) and (b) shows the output of the 

buffer and divider, respectively. 

 

 

 
(a) 

 

Figure 4.19 a) PowerSPICE Simulation Results of Thin-Oxide VCO at Output of 

VCO Buffer, 
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(b) 

Figure 4.19 b) PowerSPICE Simulation Results of Thin-Oxide VCO at Output of 

Divide by Two Circuit 

 

Figure 4.19 (a) shows the output of the VCO buffer at control voltage from zero to 

VDD, with step of 0.1V in each row, and Figure 4.19 (b) shows the output at the 

divider with the same setting. As we can compare to figure 4.15, in strong contrast 

to thick-oxide devices at the low end of oscillation frequency, the output of the thin-

oxide devices produces great duty cycle at the output of the VCO buffer. This is due 

to that the bias circuit was biased so that the VCO doesn’t oscillate into the distorted 

region, but at the cost of tuning range. 

 

Like with thick-oxide devices, the thin-oxide devices can suffer even more from 

temperature and process variations. Figure 4.20 (a) and (b) shows the 250-case 

Monte-Carlo simulation results of the maximum and minimum VCO output 

frequency, respectively. 
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(a) 

 

 
(b) 

 

Figure 4.20 Monte-Carlo Simulation 250 cases for Thin-Oxide VCO, a) Maximum 

Oscillation Frequency Vctrl=VDD, b) Minimum Oscillation Frequency Vctrl=0 
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As we can observe from the Monte-Carlo simulation, the maximum frequency of 

oscillation can vary from 37.4GHz to 50.6GHz, while the minimum can vary from 

10.9GHz to 19.9GHz. The mean value of the oscillation frequency is 15.04GHz to 

43.23GHz, which agrees with the nominal condition of 14.93GHz to 43.15GHz. The 

250-case Monte-Carlo simulation, again, covers 96.3% of the population with 

99.5% confidence. 

 

The noise models for the thin-oxide devices were not available at the time of 

simulation. Therefore the phase noise results are not available. However the phase 

noise performance should be in-line with the thick-oxide design as the topology is 

the same.  

 

4.6 Ring VCO Summary 

A ring VCO with proposed delay cell along with bias circuit, buffers, and divide by 

two circuit was designed and simulated in 65nm SOI CMOS technology. Both the 

thick-oxide and thin-oxide devices demonstrated very high frequency oscillation 

and wide tuning range. Table 4.1 shows the summary of the results. 

 

Table 4.1 Summary of Ring Oscillator Result 

 

Thick-Oxide  Thin-Oxide  Criteria  

(Nominal Condition, 85˚C) VDD=1.5V VDD=1.7V VDD=1.0V VDD=1.2V 

Oscillation Frequency/ 

Tuning Range  

3.17GHz ~ 

26.27GHz 

5.11GHz ~ 

27.46GHz 

14.93GHz ~ 

43.15GHz 

21.75GHz ~ 

48.27GHz 

At Core 930mV 1100mV 590mV 720mV Output Swing at 

Max Frequency At Buffer 1020mV 1180mV 790mV 870mV 

Core Only 7.44mW 10.83mW 6.65mW 12mW Power 

Consumption at 

Max Frequency 
With Buffers 12.08mW 17.83mW 10.28mW 19.3mW 

Vctrl=VDD -97dBc/Hz Phase Noise 

Vctrl=VDD/2 -105dBc/Hz 

Model Unavailable 
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Both the thick-oxide and thin-oxide ring VCO based on the same design achieved a 

very wide tuning range. The thick-oxide achieved a tuning ratio of more than 8 at 

1.5V supply voltage, while the thin-oxide, due to low supply voltage headroom 

problems, achieved tuning ratio slightly less than 3. From the table, we can see that 

both VCOs perform the best at the supply voltage in which it was designed for 

(1.5V for thick-oxide and 1.0V for thin-oxide). The VCOs are fully functional at 

higher supply voltage, but the power consumption also goes up exponentially. If we 

run the VCOs at a lower supply voltage, the VCO cores and buffers will still 

function properly, but the output swing will decrease to a point where the divider 

will fail start failing.  

 

In comparison with other published ring VCOs, this design compares very 

favorably. Few of the published designs have the same tuning range as this design 

while consuming small amount of power. Table 4.2 shows the comparison. 

 

Table 4.2 Comparison Between Ring VCOs 

 
 Technology Frequency Power/Supply Phase Noise at 

1MHz Offset 

Note 

This Work, 

Simulation, 

Thick-Oxide 

65nm SOI 

CMOS 

3.2~26.3 

GHz 

7.4mW @1.5V 

Supply (Core) 

-97 dBc/Hz  Long 

Channel, 

Thick Oxide 

Devices 

This Work, 

Simulation, 

Thin-Oxide 

65nm SOI 

CMOS 

14.9~43.2 

GHz 

6.65mW @ 1V 

Supply (Core 

only) 

N/A High VT 

Devices 

[10] 180nm CMOS 2.5~5.2 GHz 17mW @1.8V 

Supply 

-90.1 dBc/Hz  Two-Stage  

[11] 180nm CMOS 5.16-5.93 

GHz 

1.8V Supply -99.5 dBc/Hz 

(Simulated) 

Three-Stage 

[12] 120nm SOI 

CMOS 

31GHz ± 

10% 

22.5mW @ 

2.5V Supply 

-95.9 dBc/Hz @ 

10MHz Offset 

Inductive 

Peaking, 

Three-Stage 

[13] 120nm CMOS 8.4~10.6 

GHz 

52.5mW @ 

1.5V Supply  

-85 dBc/Hz Five-Stage, 

Differential 

[14] 180nm CMOS 8.5~14 GHz 146mW @ 

1.8V Supply 

-95.35 dBc/Hz Four Stage 

Multi-Pass 
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Chapter 5 CONCLUSIONS 

VCO is a very important building block in modern communication systems. This 

thesis analyzed the design of high performance LC tank VCO and a ring VCO. 

Through simulation, we demonstrated great results from both designs.  

 

Four different LC tank VCOs were designed using IBM 0.18μm CMOS technology: 

regular VCO and quadrature VCO using single-ended inductors and symmetric 

inductors. By carefully choosing the components, these VCOs oscillate around 

center frequency of 5.8GHz with tuning range of around 1GHz. The use of 

symmetric inductors greatly decreased the layout area, saved power, and improved 

the FOM, especially noticeable in quadrature VCOs. This family of VCOs would 

perform well in a narrow band PLL for WiMAX applications. 

 

The design of ring VCO is concentrated from maximum oscillation frequency and 

tuning range perspective. The use of common source amplifier with PFET load as 

the main delay cell satisfied both high oscillation frequency and tuning range 

superbly. The use of additional bias circuit and resistive feedback balanced the 

common-mode voltage. Also a high speed divide by two circuit was designed to see 

that the VCO can drive loads properly with acceptable duty cycle. Both the thick-

oxide and thin-oxide ring VCO based on the same design achieved a very wide 

tuning range with full swing at the output of the divider. Overall, both the thick-

oxide and thin-oxide ring VCOs are great for wide band PLL applications. 
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Chapter 6 APPENDIX A 

Derivation of Equivalent Resistance of a Crossed-Coupled Pair 

 

VP

V2V1

Req

 

Figure A.1 Crossed Coupled Pair 

 

Let us first begin by realizing the node Vp is a common ground for the NFET pair, 

and let us put a test voltage source across the input and measure the test current 

coming out of the test voltage source to get the equivalent resistance, as shown in 

Figure A.2. 
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Figure A.2 Crossed Coupled Pair with Test Voltage Source 

 

Let us draw the small signal model of the cross-coupled pair, assuming the devices 

are matched, no back-gate effect and ignoring parasitic capacitances, as shown in 

Figure A.3. 

 

 

Figure A.3 Small Signal Model for the Crossed Coupled Pair 

 

From the small signal model, we can derive the following four equations: 
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12 VVVT −=      (A.1) 

21 IIIT =−=      (A.2) 

orgmVIV )( 121 −=     (A.3) 

orgmVIV )( 212 −=     (A.4) 

Substituting Equation A.3 into Equation A.4 and vice versa, we get 

 

oo rrgmVIgmIV ))(( 1211 −−=    (A.5) 

oo rrgmVIgmIV ))(( 2122 −−=    (A.6) 

Expanding Equation A.5 and A.6 and solving for V1 and V2 
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Substituting Equation A.2 into Equation A.7 and A.8 and solve for V1 and V2 in 

terms of IT, we have 
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Substituting Equation A.9 and A.10 into Equation A.1, we have 
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2)(1
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The equivalent resistance, Req, looking into the drains of the cross-coupled pair, is 

then 
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If we approximate that the intrinsic gain of the transistors, gmro, is much greater 

than unity, then we have 

gmgmr

gmr
R

o

eq

2
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2
2

2

0 −=
−

≈    (A.13) 

Thus, the equivalent resistance looking into the crossed-coupled pair is 

approximately equals to -2/gm. 
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