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Abstract

Hardware support for isolated execution (such as Intel SGX)

enables development of applications that keep their code

and data confidential even while running on a hostile or

compromised host. However, automatically verifying that

such applications satisfy confidentiality remains challeng-

ing. We present a methodology for designing such applica-

tions in a way that enables certifying their confidentiality.

Our methodology consists of forcing the application to com-

municate with the external world through a narrow interface,

compiling it with runtime checks that aid verification, and

linking it with a small runtime library that implements the

interface. The runtime library includes core services such as

secure communication channels and memory management.

We formalize this restriction on the application as Informa-

tion Release Confinement (IRC), and we show that it allows

us to decompose the task of proving confidentiality into (a)

one-time, human-assisted functional verification of the run-

time to ensure that it does not leak secrets, (b) automatic

verification of the application’s machine code to ensure that

it satisfies IRC and does not directly read or corrupt the run-

time’s internal state. We present /CONFIDENTIAL: a verifier

for IRC that is modular, automatic, and keeps our compiler

out of the trusted computing base. Our evaluation suggests

that the methodology scales to real-world applications.

Categories and Subject Descriptors D.4.6 [Operating Sys-

tems]: Security and Protection — Information flow controls;

D.2.4 [Software Engineering]: Software/Program Verifica-

tion; F.3.1 [Programming Languages]: Specifying and Ver-

ifying and Reasoning about Programs

Keywords Enclave Programs; Secure Computation; Confi-

dentiality; Formal Verification

1. Introduction

Building applications that preserve confidentiality of sensi-

tive code and data is a challenging task. An application’s se-

crets can be compromised due to a host of reasons including

vulnerabilities in the operating system and hypervisor, and

insufficient access control. Recognizing this problem, pro-

cessor vendors have started to support hardware-based con-

tainers (such as Intel SGX enclaves [21] and ARM Trust-

Zone trustlets [3]) for isolating sensitive code and data from

hostile or compromised hosts. We refer to containers that

provide isolation as Secure Isolated Regions (SIR). We as-

sume a powerful adversary who controls the host OS, hy-

pervisor, network, storage and other datacenter nodes as il-

lustrated in Figure 1. Since applications must still rely on

the compromised host OS for basic services such as stor-

age and communication, the burden of programming SIRs

correctly and ensuring confidentiality remains with the pro-

grammer. In this paper, we propose a design methodology

and tool support for building code to run in SIRs that can

be automatically certified to preserve confidentiality, even in

the presence of such a powerful adversary.

Confidentiality can be expressed as an information-flow

policy that tracks the flow of secrets through the program,

and checks whether secrets may explicitly or implicitly flow

to some state that the adversary can observe [7, 8, 16, 31].

Some approaches to certifying confidentiality use program-

ming languages that can express information-flow poli-

cies [17, 36, 43]. However, these approaches require use

of particular programming languages and incur a heavy an-

notation burden. More importantly, they place the compiler

and the language runtime in the Trusted Computing Base

(TCB) [37]. In this paper, we instead explore certifying the

machine code loaded into SIRs, to avoid these trust depen-

dencies.

Recent work [40] can provide assurance that machine

code satisfies general confidentiality policies, but it does not



Figure 1. Threat Model: The adversary controls the host

OS, hypervisor, and any hardware beyond the CPU package,

which may include both RAM chips and storage devices.

The adversary also controls all other machines and the net-

work. The SIR is the only trusted software component.

scale to large programs. In this paper, we propose a new

methodology for certifying confidentiality that addresses

this limitation. We propose to verify a specific confiden-

tiality policy: the code inside the SIR can perform arbitrary

computations within the region, but it can only generate

output data through an encrypted channel. We refer to this

property as Information Release Confinement or IRC. This

is a meaningful confidentiality policy because it guarantees

that attackers can only observe encrypted data. We exclude

covert channels and side channels (e.g., timing, power) from

our threat model. Previous experience from building sen-

sitive data analytics services using SIRs suggests that IRC

is not unduly restrictive. For example, in VC3 [38], only

map and reduce functions are hosted in SIRs; the rest of

the Hadoop stack is untrusted. Both mappers and reducers

follow a stylized idiom where they receive encrypted input

from Hadoop’s untrusted communication layer, decrypt the

input, process it, and send encrypted output back to Hadoop.

No other interaction between these components and the un-

trusted Hadoop stack is required.

Scalably verifying IRC is challenging, because we aim to

have a verification procedure that can automatically certify

machine code programs, without assuming the code to be

type safe or memory safe; for example, programs may have

exploitable bugs or they may unintentionally write informa-

tion out of the SIR through corrupted pointers. Our approach

is based on decomposing programs into a user application

(U ) that contains the application logic and a small runtime li-

brary (L) that provides core primitives such as memory man-

agement and encrypted channels for communication. We re-

strict the interaction between the user application and the

untrusted platform to the narrow interface implemented by

L. A key contribution of this paper is how this methodol-

ogy enables decomposing the confidentiality verification in

two parts. For L, we need to verify that it implements a se-

cure encrypted channel and memory management correctly;

L is a small library that can be written and verified once and

for all. For U , we need to verify a series of constraints on

memory loads, stores, and control-flow transitions. Specifi-

cally, we need to check that stores do not write data outside

the SIR, stores do not corrupt control information (e.g., re-

turn addresses and jump tables) inside the SIR, stores do not

corrupt the state of L, loads do not read cryptographic state

from L (since using cryptographic state in U could break the

safety of the encrypted channel [9]), calls go to the start of

functions in U or to the entry points of API functions ex-

ported by L, and jumps target legal (i.e. not in the middle of)

instructions in the code. These checks on U are a weak form

of control-flow integrity, and along with restrictions on reads

and writes, enforce a property which we call WCFI-RW. We

show that the functional correctness of L combined with

WCFI-RW of U implies our desired confidentiality policy

(IRC).

In this paper, we formalize WCFI-RW and propose a two-

step process to automatically verify that an application sat-

isfies WCFI-RW. We first use a compiler that instruments U

with runtime checks [38]. Next, we automatically verify that

the instrumentation in the compiled binary is sufficient for

guaranteeing WCFI-RW. Our verifier generates verification

conditions from the machine code of the application, and au-

tomatically discharges them using an SMT solver. This step

effectively removes the compiler as well as third-party li-

braries from the TCB. By verifying these libraries, users can

be certain that they do not leak information either acciden-

tally, through exploitable bugs, or by intentionally writing

data out of the SIRs.

Our runtime checks are related to previous work on soft-

ware fault isolation (SFI [27, 39, 44, 47]), but we note that

a simple SFI policy of sandboxing all the code in the SIR

would not be enough to guarantee IRC, because U and

L share the same memory region. Our checks implement

a form of fine-grained memory protection inside the SIR,

which we use to separate the state of U and L and guaran-

tee the integrity of control data. Moreover, our checks work

well for SGX enclaves on x64 machines (our target envi-

ronment), whereas previous work would require significant

modifications to work efficiently in this environment. One

of our key contributions is showing that the instrumentation

of U , together with the properties of L, guarantees IRC; this

work is the first that verifies and guarantees IRC using such

instrumentation.

Our approach is significantly different from verifying ar-

bitrary user code with unconstrained interfaces for commu-

nication with the untrusted platform. We require no annota-

tions from the programmer — all of U ’s memory is consid-

ered secret. The TCB is small — it includes the verifier but



does not include U or the compiler. Furthermore, the asser-

tions required to prove WCFI-RW are simple enough to be

discharged using an off-the-shelf Satisfiability Modulo The-

ories (SMT) solver. The verification procedure is modular,

and can be done one procedure at a time, which enables the

technique to scale to large programs. Our experiments sug-

gest that our verifier can scale to real-world applications, in-

cluding map-reduce tasks from VC3 [38].

In summary, the main contributions of this paper are:

(1) a design methodology to program SIRs using a narrow

interface to a library, (2) a notion called Information Release

Confinement (IRC), which allows separation of concerns

while proving confidentiality in the presence of a privileged

adversary (that controls the OS, hypervisor, etc.), and (3) a

modular and scalable verification method for automatically

checking IRC directly on application binaries.

2. Overview

Secure Isolated Regions. Protecting confidentiality of ap-

plications using trusted processors is a topic of wide inter-

est [3, 24, 28, 34]. These processors provide primitives to

create memory regions that are isolated from all the other

code in the system, including operating system and hyper-

visor. We refer to such an abstraction as a Secure Isolated

Region or SIR. The processor monitors all accesses to the

SIR: only code running in the SIR can access data in the

SIR. As an example, Intel’s SGX instructions enable the cre-

ation of SIRs (called “enclaves”) in the hosting application’s

address space. The SIR can access the entire address space

of the hosting application, which enables efficient interac-

tion with the untrusted platform. External code can only in-

voke code inside the region at statically-defined entry-points

(using a call-gate like mechanism). The processor saves and

restores register context when threads exit and resume exe-

cution inside the SIR. To protect against physical attacks on

the RAM, the processor also encrypts cache lines within the

SIR on eviction; the cache lines are decrypted and checked

for integrity and freshness when they are fetched from physi-

cal memory. SGX also supports attestation and sealing. Code

inside an SIR can get messages signed using a per proces-

sor private key along with a cryptographic digest of the SIR.

This enables other trusted entities to verify that messages

originated from the SIR. Primitives to create SIRs can also

be provided by hypervisors [11, 20, 45], with the caveat that

the hypervisor becomes part of the TCB, but in this paper we

assume SIRs are provided directly by the processor. Regard-

less of the primitives and infrastructure used to implement

SIRs, application developers who write the code that runs

inside SIRs are responsible for maintaining confidentiality

of secrets managed by the SIR. The goal of this paper is to

provide a methodology and tool support for helping applica-

tion developers ensure confidentiality.

Threat Model We assume a user that wishes to protect the

confidential data processed by an application U . The appli-

cation runs inside an SIR in a hostile or compromised host.

We assume that U is not designed to write confidential data

outside the SIR. However, U may have bugs such as ac-

cidental writes of confidential data to non-SIR memory, as

well as exploitable bugs, such as buffer overflows, use-after-

free, and dereferences of uninitialized or corrupted pointers,

which could result in confidential data leaking out of the

SIR. U may also include third-party libraries that intention-

ally try to write confidential data outside the SIR. Therefore,

we treat U ’s code as untrusted and verify that U cannot leak

secrets even if it has exploitable bugs.

The illustration of our threat model in Figure 1 lists all

the system components that are under the attacker’s control.

The adversary may fully control all of the hardware in the

host computer, including disks, network cards, and all the

chips (including RAM chips) in the system, except the pro-

cessor that runs the SIR. The adversary may record, replay,

and modify network packets or files, as well as read or mod-

ify data after it leaves the processor chip using physical prob-

ing, direct memory access (DMA), or similar techniques. We

assume that the adversary cannot physically attack the pro-

cessor to extract secrets. The adversary may also control all

of the system software in the host computer, including the

operating system and the hypervisor. This adversary is gen-

eral enough to model privileged malware running in the ker-

nel, as well as a malicious system administrator who may

try to access the data by logging into the host and inspecting

disks and memory. Denial-of-service attacks, side-channel

attacks, and covert-channel attacks are outside the scope of

this paper.

Verifying confidentiality. We illustrate the challenges in

verifying that code running inside an SIR satisfies confi-

dentiality. Consider the Reduce method in Figure 2, which

acts as a reducer in a map-reduce job. The reducer receives

encrypted a key and list of values from different mappers.

The method first provisions an encryption key (of type

KeyAesGcm, not to be confused with the data key) by set-

ting up a secure channel with a component that manages

keys (not shown for brevity). It decrypts the key and val-

ues, computes the sum of all values, and writes the output

to a buffer. The buffer is encrypted and written to a location

outside the region specified by the map-reduce framework.

Proving that this Reduce method preserves confidential-

ity is challenging. The code writes the result of the compu-

tation to a stack-allocated buffer without checking the size

of the inputs. This may result in a vulnerability that can be

exploited to overwrite the return address, execute arbitrary

code and leak secrets. Therefore, the proof must show that

the cumulative size of key and result does not exceed the

buffer size. Such a proof may require non-modular reason-

ing since the sizes may not be defined locally. Furthermore,

Reducewrites to a location outside the SIR. The proof must

show that the data written is either encrypted or independent

of secrets. The latter requires precise, fine-grained tracking

of secrets in SIR’s memory. Also, unrelated to the applica-

tion logic, we note that the Reduce method manually pro-



1 void Reduce(BYTE *keyEnc, BYTE *valuesEnc, BYTE *outputEnc) {

2 KeyAesGcm *aesKey = ProvisionKey();

3
4 char key[KEY_SIZE];

5 aesKey->Decrypt(keyEnc, key, KEY_SIZE);

6
7 char valuesBuf[VALUES_SIZE];

8 aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);

9 StringList *values = (StringList *) valuesBuf;

10
11 long long usage = 0;

12 for (char *value = values->begin();

13 value != values->end(); value = values->next()) {

14 long lvalue = mystrtol(value, NULL, 10);

15 usage += lvalue;

16 }

17
18 char cleartext[BUF_SIZE];

19 sprintf(cleartext, "%s %lld", key, usage);

20 aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);

21 }

(a) Sample reducer method

1 void Reduce(Channel<char*>& channel) {

2 char key[KEY_SIZE];

3 channel.recv(key, KEY_SIZE);

4
5 char valuesBuf[VALUES_SIZE];

6 channel.recv(valuesBuf, VALUES_SIZE);

7 StringList *values = (StringList *) valuesBuf;

8
9 long long usage = 0;

10 for (char *value = values->begin();

11 value != values->end(); value = values->next()) {

12 long lvalue = mystrtol(value, NULL, 10);

13 usage += lvalue;

14 }

15
16 char cleartext[BUF_SIZE];

17 sprintf(cleartext, "%s %lld", key, usage);

18 channel.send(cleartext);

19 }

(b) Reducer method using secure channels

Figure 2. Reducer method illustrating the challenges of proving confidentiality.

visions its encryption keys. Therefore, a proof of confiden-

tiality must also show that the key exchange protocol is se-

cure, and that the keys are neither leaked by the application,

nor overwritten by an adversary. Finally, the proof must also

show that the compilation to machine code preserves seman-

tics of source code. Therefore, building a scalable and auto-

matic verifier for confidentiality is challenging for arbitrary

user code.

Restricted interface. We propose a design methodology to

separate various concerns in ensuring confidentiality, and en-

able simpler and scalable tools to automatically verify confi-

dentiality. In our methodology, the user application U is stat-

ically linked with a runtime library L that supports a narrow

communication interface. During initialization, the runtime

is configured to setup a secure channel with another trusted

entity and provision secrets, e.g., the encryption key. The

user application can use runtime APIs to allocate memory

(via malloc and free) and send or receive data over the

secure channel (via send and recv). Figure 2(b) shows the

Reducemethod that has been rewritten to use this interface.

The method calls recv to retrieve data from the channel,

which reads and decrypts encrypted values from outside the

SIR. After computing the result, the method calls send to

write data to the channel, which internally encrypts the data

and writes it to a location outside the SIR. Observe that there

are no writes to non-SIR memory directly from this Reduce

method.

Restricting the application to this interface serves an im-

portant purpose — it allows us to decompose the task of ver-

ifying confidentiality into two sub-tasks: (1) checking that

the user applicationU communicates with the external world

only through this interface, and (2) checking that the imple-

mentation of the interface in L does not leak secrets. This

paper focuses on Information Release Confinement (IRC):

U can only write to non-SIR memory by invoking the send

API. Proving information leakage properties of the imple-

Figure 3. Memory layout of SIR and instrumentation se-

quence for unsafe stores in the application code (U ).

mentation of send (e.g., strong encryption property, resis-

tance to various side channels, etc.) would require one-time

human-assisted verification of the library code L, and is

left for future work. We feel that IRC is an important step-

ping stone for achieving confidentiality guarantees of SIRs

against various adversaries.

We do not find this narrow interface to be restrictive

for our target applications: trusted cloud services, which

are typically implemented as a collection of distributed and

trusted entities. In this setting, the application (U ) only sends

and receives encrypted messages from remote parties. We

use this approach in practice to build sensitive data analytics,

database services, key manager, etc.

Checking IRC. For scalable and automatic verification, we

further decompose IRC into a set of checks on U and con-

tracts on each of the APIs in L. First, we verify that U sat-



isfies WCFI-RW: U transfers control to L only through the

API entry points, and it does not read L’s memory or write

outsideU ’s memory. Apart from the constraints on reads and

writes, WCFI-RW requires a weak form of control-flow in-

tegrity in U . This is needed because if an attacker hijacks

the control flow of U (e.g., by corrupting a function pointer

or return address), then U can execute arbitrary instruc-

tions, and we cannot give any guarantees statically. Next,

we identify a small contract on L that, in conjunction with

WCFI-RW property of U , is sufficient for proving IRC. The

contracts onL (defined in section 4.2) ensure that only send

gets to write to non-SIR memory, and thatL does not modify

U ’s state to an extent that WCFI-RW is compromised.

From here on, we describe how we check WCFI-RW di-

rectly on the machine code of U , which enables us to keep

the compiler and any third-party application libraries out of

the TCB. Third-party libraries need to be compiled with our

compiler, but they can be shipped in binary form. Further-

more, to help the verification of WCFI-RW, our (untrusted)

compiler adds runtime checks to U ’s code, and we use the

processor’s paging hardware to protect L’s memory — al-

though the attacker controls the page tables, the processor

protects page table entries that map to SIR memory. We use

the same runtime checks on memory writes and indirect calls

as VC3 [38], but we implement efficient checks on memory

reads using the paging hardware.

Next, we describe the checks done by the VC3 instrumen-

tation. We first note that U and L share the same address

space (Figure 3). The code segments of both U and L are

placed in executable, non-writable pages. The region also

contains a stack shared by both U and L. We isolate L from

U by using a separate heap for storing L’s internal state. The

compiler enforces WCFI-RW by instrumenting U with the

following checks:

• Protecting return addresses: To enforce that writes

through pointers do not corrupt return addresses on the

stack, the compiler maintains a bitmap (write bitmap

in Figure 3) to record which areas in U’s memory are

writable. The write bitmap is updated at runtime,

while maintaining the invariant that a return address is

never marked writable. Address-taken stack variables are

marked writable by inlined code sequences in function

prologues, and heap allocations and address-taken glob-

als are marked writable by the runtime library. store in-

structions are instrumented with an instruction sequence

(instructions from label L1 to L2 in Figure 3) that reads

the write bitmap and terminates the SIR program

if the corresponding bit is not set. Note that the bitmap

protects itself: the bits corresponding to the bitmap are

never set.

• Protecting indirect control flow transfers: The com-

piler maintains a separate bitmap (call bitmap in

Figure 3) that records the entry points of procedures in

U and APIs of L. The compiler instruments indirect calls

with an instruction sequence that reads the bit corre-

sponding to the target address, and terminates the SIR

program if that bit is unset. Indirect jumps within the pro-

cedure are also checked to prevent jumps to the middle

of instructions; the checks consist of a range check on

indices into jump tables (which are stored in read-only

memory).

• Preventing writes outside SIR: The compiler adds

range checks to prevent writes to non-SIR memory (in-

structions from label L0 to L1 in Figure 3).

We note that the VC3 instrumentation offers a stronger

guarantee than IRC, and prevents several forms of memory

corruption inside the SIR. Specifically, the checks guaran-

tee: 1) integrity of all data that is not address-taken, 2) de-

tection of all sequential overflows and underflows on heap

and stack, 3) integrity of return addresses, and 4) forward

edge CFI. Future work may be able to verify of all these

properties, but for this work we focus on verifying that the

VC3 instrumentation is sufficient to guarantee WCFI-RW,

because WCFI-RW together with the correctness of L im-

plies IRC (as we show in Theorem 1), and IRC is a strong

property that provides meaningful security guarantees.

Preventing U from accessing L’s memory is also impor-

tant because L keeps cryptographic secrets; allowing U to

read such secrets could break the typical assumptions of en-

cryption algorithms (e.g., a key should not be encrypted with

itself [9]). We achieve this efficiently by requiring L to store

any such secrets in its own separate heap, and using SGX

memory protection instructions [21] to set page permissions

to disable read/write access before transferring control to U .

Note that we cannot use page permissions to prevent writes

to non-SIR memory, because those page tables are controlled

by a privileged adversary, e.g., kernel-level malware.

Let’s reconsider the Reduce method in Figure 2(b).

Compiling this method with the preceding runtime checks

and necessary page permissions ensures that any vulnerabil-

ity (e.g., line 17) cannot be used to violate WCFI-RW. Any

such violation causes the program to halt.

To achieve good performance, the compiler omits run-

time checks that it can statically prove to be redundant (e.g.,

writes to local stack-allocated variables). However, compil-

ers are large code bases and have been shown to have bugs

and produce wrong code at times [6, 23, 26, 29, 46]. The rest

of the paper describes our approach for automatically verify-

ing that the machine code of U satisfies WCFI-RW, thereby

removing the compiler from the TCB. We also show that

such a U satisfies IRC when linked with an L that satisfies

our contract (defined in section 4.2).

3. Formal Model of User Code and

Adversary

In this section we define a language, as shown in Figure 4, to

model the user code U . Each machine code instruction in U

is translated to a sequence of statements (Stmt) in the pre-

sented language. This translation is intended to reduce the



v ∈ Vars

c ∈ Constants

q ∈ Relations

f ∈ Functions ::= add | xor | extract | concat | . . .
e ∈ Expr ::= v | c | f(e, . . . , e)
φ ∈ Formula ::= true | false | e = e |

q(e, . . . , e) | φ ∧ φ | ¬φ
s ∈ Stmt ::= storen(e, e) | v := loadn(e) |

v := e | jmp e | call e | ret |
assert φ | assume φ | havoc v |
skip | s ⋄ s | s ; s

Figure 4. Syntax of U code.

complexity in directly modeling machine code for complex

architectures (such as x64), and instead leverage tools that

lift machine code to simpler, RISC-like instruction sets [10].

Furthermore, U can be thought of as a set of procedures

(with a unique entry point), where each procedure is a se-

quence of statements s0; s1; . . . ; sn. For this paper, we also

assume that execution within an SIR is single-threaded.

Variables in Vars consist of regs, flags, and mem. regs

are CPU registers (e.g., rax, r8, rsp, rip, etc.) that are 64-bit

values in the case of x64. CPU flags (e.g., CF, ZF, etc.) are

1-bit values. The instruction pointer (rip) stores the address

of the next instruction to be executed and is incremented

automatically after every instruction except in those that

change the control flow. Memory (mem) is modeled as a map

from 64-bit bit-vectors to 8-bit bit-vectors.

Memory accesses are encoded using loadn and storen
functions, where n denotes the size of the data in bytes. loadn
and storen are axiomatized using SMT’s theory of arrays.

Bit-vector operations (add, sub, etc) are axiomatized using

SMT’s bit-vector theory.

Assignment statements can be one of following two

forms: (1) v := e sets v ∈ Vars to the value of expres-

sion e, (2) reg := loadn(e) sets reg ∈ regs to the value of

the memory at address e. Statement assume φ blocks when

executed in a state that does not satisfy φ, and is equivalent

to a no-op when executed in a state that satisfies φ. Execut-

ing assert φ in a state that does not satisfy φ leads to an

error.

Control flow is changed with call, ret, and jmp state-

ments, which override the value of rip. A procedure call re-

turns to the following instruction (we verify a form of con-

trol flow integrity to guarantee this). The ret statement ter-

minates execution in the procedure and returns back to the

caller. Both call and ret are semantically equivalent to the

x64 call and return instructions, respectively — call pushes

the return address on the stack, and the ret instruction pops

the stack before returning. jmp e encodes a jump to an arbi-

trary location, either in the current procedure or the begin-

ning of a procedure (as an artifact of tail call optimizations).

The choice statement s ⋄ t non-deterministically exe-

cutes either s or t. Choice statements together with assume

statements are used to model conditional statements. A typ-

ical conditional statement if (φ) {s} else {t} is modeled as

{assume φ ; s} ⋄ {assume ¬φ ; t}.
The havoc v statement assigns a fresh, symbolic value to

the variable v ∈ Vars . When havocing memory variables, a
havoc statement may optionally specify a predicate to char-
acterize which memory locations are modified; for instance,
havocφ mem statement scrambles all memory locations spec-
ified by predicate φ. Intuitively, this creates a new memory
mem′ whose content is the same as in memory mem for all
addresses that do not satisfy φ, as follows:

assume ∀a. ¬φ(a) ⇒ mem
′[a] = mem[a];

mem := mem
′

We note that the user code U does not contain havoc

statements. However, we use the havoc statement to model

actions of the adversary, as we show later.

Software interrupts (e.g., int 3 instruction) terminate the

execution of a SIR; we model them using assume false.

Other exceptions (such as division by zero, general protec-

tion faults, etc.) also cause the SIR to terminate, which sim-

plifies both the modeling and verification. We do not find this

to be a limitation in our experience writing SIR programs.

We define state σ to be a valuation of all variables in

Vars . Let σ(v) be the value of a variable v ∈ Vars in state

σ and similarly let σ(e) be the valuation of expression e

in state σ. Let stmt(σ) be the statement executed in state

σ (computed from the instruction pointer and the code in

memory). The semantics of a statement s ∈ Stmt is given by

relation R over pairs of pre and post states, where (σ, σ′) ∈
R if and only if s = stmt(σ) and there is an execution

of s starting at σ and ending in σ′. We define operational

semantics for a subset of Stmt in Figure 5, and use standard

semantics for the remaining statements. A sequence π =
[σ0, . . . , σn] is called an execution trace if (σi, σi+1) ∈ R
for each i ∈ {0, . . . , n− 1}. We also use stmt(π) to denote

the sequence of statements executed in π. Furthermore, in

order to decouple the verification of U from the verification

of L, we only let π to “step into” procedures of U , i.e.,

procedures inL’s code are executed atomically and therefore

only contribute with one state transition to execution traces.

The initial state σentry is the result of a jump from L’s

code into U ’s entry point. Prior to the jump, L performs

the necessary initialization to support the memory manage-

ment (malloc and free) and communication (send and

recv) services. For instance, L may engage in a key ex-

change protocol with remote entities to establish the key

used by send and recv. σentry assigns an arbitrary value

to addresses of mem that include the non-SIR memory, U ’s

stack, and U ’s heap. σentry also assigns an arbitrary value

to all regs, flags, except for the stack pointer rsp which

points to U ’s stack.

Modeling the adversary Our formal model of the adver-

sary is similar to Moat [40]. The adversary may force the

host to transfer control from the SIR to the adversary’s code

at any time during the execution of the SIR (by generating



〈storen(ea, ed), σ〉 ⇓ σ
[

mem 7→ σ(mem)[σ(ea) := σ(ed)]
]

〈reg := loadn(ea), σ〉 ⇓ σ
[

reg 7→ σ(mem)[σ(ea)]
]

〈reg := e, σ〉 ⇓ σ
[

reg 7→ σ(e)
]

〈jmp e, σ〉 ⇓ σ
[

rip 7→ σ(e)
]

〈call e, σ〉 ⇓ σ
[

rip 7→ σ(e),

rsp 7→ σ(rsp− 8),

mem 7→ σ(mem)[σ(rsp− 8) := next(σ(rip))]
]

〈ret, σ〉 ⇓ σ
[

rip 7→ σ(mem)[σ(rsp)],

rsp 7→ σ(rsp+ 8)
]

Figure 5. Operational semantics of s ∈ Stmt : (σ, σ′) ∈ R

iff 〈s, σ〉 ⇓ σ′ and stmt(σ) = s. σ
[

x 7→ y
]

denotes a state

that is identical to σ, except variable x evaluates to y. The

memory update expression mem[x := y] returns a new mem-

ory that is equivalent to mem, except for index x — multibyte-

sized accesses follow the processor’s endianness semantics.

next(e) is the address of the subsequent instruction in U af-

ter decoding the instruction starting at address e.

an interrupt, for example). Once the CPU transfers control

from the SIR to the adversary, the adversary may execute an

arbitrary sequence of instructions before transferring control

back to the SIR. The adversarial operations include arbitrary

updates to non-SIR memory, privileged state accessible to

the OS and hypervisor layers (e.g. page tables), registers,

and devices. Moat defines the following active adversary H,

which only havocs non-SIR memory, and proves a theorem

that H models all adversarial operations in our threat model.

DEFINITION 1. Havocing Active Adversary H.

Between any consecutive statements in an execution of U , H
may observe and perform a single havoc on mem¬SIR, where

mem¬SIR is the set of locations outside the SIR boundary

(¬SIR).

Composing U with active adversary H We transform each

statement s within U to:

havoc¬SIR mem; s (1)

This composed model, hereby called UH, encodes all

possible behaviors of U in the presence of H.

4. Formalizing Confidentiality

Confidentiality is typically defined as a hyper-property [12],

where we require that the adversary cannot infer secret state

based on observations. Automatically checking if a program

satisfies confidentiality usually requires precise tracking of

the memory locations that may contain secrets during exe-

cution. This is accomplished with either a whole-program

analysis of UH, which is hard to scale for machine code,

or fine-grained annotations which specify locations with se-

crets, which is cumbersome for machine code [40]. We fol-

low a different approach in order to scale the verification to

large programs without requiring any annotation.

We expect UH to communicate with non-SIR entities, but

follow a methodology where we mandate all communication

to occur via the send and recv APIs in L. We require (and

verify) that UH does not write to non-SIR memory. Instead,

UH invokes send, which takes as an argument a pointer

to the input buffer, and encrypts and integrity-protects the

buffer before copying out to non-SIR memory. This method-

ology leads to a notion called information release confine-

ment (IRC), which mandates that the only statements in π

that update non-SIR memory (apart from H’s havoc opera-

tions) are the call send statements.

DEFINITION 2. Information Release Confinement. An ex-
ecution trace π = [σ0, . . . , σn] of UH satisfies information
release confinement or IRC, if all updates to the adversary
observable state (i.e., mem¬SIR) in π are caused by either
call send statements or havoc¬SIR mem operations (from
H), i.e., IRC(π) iff:

∀ i ∈ {0, . . . , n− 1} .

(stmt(σi) 6= call send ∧ stmt(σi) 6= havoc¬SIR mem) ⇒

(∀ a. ¬SIR(a) ⇒ σi(mem)[a] = σi+1(mem)[a]) (2)

UH satisfies IRC iff all traces of UH satisfy IRC.

IRC and Confidentiality. IRC is an important building

block in guaranteeing confidentiality. It ensures that, in any

execution, the only outbound communication with the envi-

ronment is via send. Hence, we can arrange for send to

encrypt all its received data before transmitting it, to pre-

vent explicit information leaks. In order for the encrypted

data to be confidential, we additionally need to ensure that

the encryption key in L does not leak or gets overwritten.

The definition of IRC enables us to separate properties we

require from the application code UH, and properties we re-

quire from L, in order to guarantee confidentiality.

It is important to note that IRC is not sufficient for pro-

tecting secrets from all side channels. Observations of the

number and timing of send invocations, memory access

patterns, electromagnetic radiation, etc. potentially reveal

secrets. Nevertheless, if an application UH satisfies IRC,

then we can eliminate certain channels and obtain various



degrees of confidentiality by imposing additional constraints

on the implementation of send. We can arrange for send

to output messages with constant-sized buffers (using appro-

priate padding) to prevent the adversary from making any in-

ference based on message sizes. In addition, we can arrange

for send to do internal buffering and produce sequences of

output messages that are separated by an interval that is in-

dependent of secrets, to prevent the adversary from making

any inference based on timing. These defenses impose addi-

tional constraints only on the implementation of send. We

plan to explore guaranteeing such properties of our send

implementation in future work.

In the remainder of this section, we formalize the proper-

ties on both UH and L, such that the SIR satisfies the IRC

property. To decouple the verification, we decompose IRC

into 1) checking WCFI-RW of UH, and 2) checking correct-

ness properties of L’s API implementation.

4.1 WCFI-RW Property of UH

WCFI-RW further decomposes into the following two prop-

erties:

(a) A weak form of control flow integrity (CFI) of UH. A

trace π of UH satisfies weak CFI if 1) each call state-

ment in π targets the starting address of a procedure in U

or API entry point of L, 2) each ret statement in π uses

the return address saved by the matching call statement

in π, 3) each jmp statement in π targets a legal instruction

within the procedure or the starting address of a proce-

dure in U .

(b) UH does not read from or write to L’s memory, and does

not write to non-SIR memory.

WCFI-RW guarantees that UH only calls into L at allowed

API entrypoints, which allows us to soundly decouple the

verification of UH from L. WCFI-RW prevents a large class

of CFI attacks (e.g., ROP attacks): backward control edges

(returns) are fully protected, and forward edges (calls and

jumps) are significantly constrained. Furthermore, observe

that by preventing jumps into the middle of instructions, we

guarantee that the code of UH that we statically verify is

same that will execute at runtime. However, this form of

CFI is weaker than standard CFI [2] because it allows a pro-

cedure in UH to call any other procedure in UH. In other

words, a program that satisfies WCFI-RW may exhibit con-

trol transfers that are not present in the source program, and

this can bootstrap certain control-flow attacks. Nevertheless,

for any such attack that is not blocked by WCFI-RW, we

prove that they still cannot break IRC (soundness theorem in

section 4.3); in the end, the attacker only observes encrypted

values.

To formalize WCFI-RW, we construct a monitor automa-

ton M (defined next) from UH to check whether UH satis-

fies WCFI-RW, similar in spirit to prior works on CFI [2,

19]. M is synchronously composed with UH, such that the

statements executed by UH form the input sequence of M.

We say that WCFI-RW is violated whenever M reaches

a stuck state during the execution of UH. The formaliza-

tion of WCFI-RW requires the following predicates over

addresses in the region (illustrated in Figure 3). For any

SIR address a, AddrInHeap(a) is true if a belongs to U ’s

heap. AddrInStack(a) is true if a belongs to the SIR’s stack

(which is shared by both U and L). AddrInU(a) is true

if a belongs to U ’s memory (stack, globals, or heap), and

AddrInL(a) is true if a belongs to L’s memory (globals or

heap). AddrInCode(a) is true if a belongs to SIR’s code (ei-

ther U or L’s code). Finally, writable(mem, a) is true iff the

bit corresponding to address a is set in the write bitmap.

DEFINITION 3. WCFI-RW Monitor Automaton

M = (Q,Σ,Γ, δ, q0, Z0, F ) is a generalized pushdown

automaton where Q = {σ} is its set of states, Σ = {
call e, ret, jmp e, v := e, v := loadn(ea), storen(ea, ed),
havoc¬SIR mem } is its set of inputs, Γ = {a |AddrInCode(a)}
is its finite set of stack symbols, q0 = σentry is its initial state

(σentry being the machine state following the jump from L

into U ’s entry point), Z0 = aentry is its initial stack, F = Q

is its set of accepting states, δ: (Q×Σ×Γ∗) → P(Q×Γ∗)

is its transition function. Furthermore, let next(rip) be the

address of the subsequent instruction inU after decoding the

instruction starting at address rip, and σ′ be the state result-

ing from executing a statement s ∈ Stmt starting in σ, i.e.,

(σ, σ′) ∈ R (as per the operational semantics in Figure 5).

The transition function δ is as follows:

δ(σ, call e, γ) =

{

{(σ′, next(σ(rip)) · γ)} iff ψcall

∅ otherwise

whereψcall
.
= σ(e) is the address of a procedure entry in U

δ(σ, call x, γ) = {(σ′, γ)}

where x ∈ {malloc, free, send, recv}

δ(σ, ret, a · γ) =

{

{(σ′, γ)} iff σ(mem)[σ(rsp)] = a

∅ otherwise

δ(σ, jmp e, γ) =

{

{(σ′, γ)} iff ψjmp

∅ otherwise

where ψjmp
.
= ψcall ∨ σ(e) is an instr. in current procedure

δ(σ, flag := e, γ) = {(σ′, γ)} where flag ∈ flags

δ(σ, rsp := e, γ) =

{

{(σ′, γ)} iff ψrsp

∅ otherwise

where ψrsp
.
= AddrInU(σ(e))

δ(σ, reg := e, γ) = {(σ′, γ)} where reg ∈ regs \ {rsp}



δ(σ, reg := loadn(ea), γ) =

{

{(σ′, γ)} iff ψload

∅ otherwise

where ψload
.
= ¬AddrInL(σ(ea))∧¬AddrInL(σ(ea)+n−1)

δ(σ, storen(ea, ed), γ) =

{

{(σ′, γ)} iff ψstore

∅ otherwise

where ψstore
.
= AddrInU(σ(ea)) ∧ AddrInU(σ(ea) + n− 1)

δ(σ, havoc¬SIR mem, γ) = {(σ′, γ)}

DEFINITION 4. WCFI-RW

WCFI-RW is violated in an execution trace π = [σ0, . . . , σn]
when no transition exists in M for a statement in stmt(π)
i.e. M gets stuck. Formally, WCFI-RW(π) iff (with starting

state σ0 = σentry and initial stack γ0 = aentry):

∃γ0, . . . , γn ∈ Γ∗ .

n−1
∧

k=0

(σk+1, γk+1) ∈ δ(σk, stmt(σk), γk)

UH satisfies WCFI-RW if all traces of UH satisfy WCFI-RW.

The role of the pushdown stack in Definition 4 is to match

the calls and returns. M only modifies the pushdown stack

on call and ret statements, and updates the state as per the

operational semantics defined in Figure 5. We now describe

each case in the definition of the transition function δ of M.

On a call to a procedure in U , M pushes the return ad-

dress (i.e., the address of the subsequent instruction) onto

the pushdown stack, for use by the ret statement. On a call

to L’s API, since L only contributes one step to the trace,

and since correctness of L’s APIs (section 4.2) guarantees

that the call returns to the call site, M does not push the re-

turn address onto the pushdown stack. A ret produces a valid

transition only when the topmost symbol on the pushdown

stack matches the return address on the machine’s stack; this

transition pops the topmost element off the pushdown stack.

A jmp produces a valid transition if it targets a legal instruc-

tion in the current procedure, or the beginning of a procedure

in U . Assignment to rsp succeeds if the new value is an ad-

dress in U ’s memory — this constraint is needed because

call and ret accesses mem at address rsp, and WCFI-RW

requires stores to be contained within U ’s memory. Other

registers and flags can be assigned to arbitrary values. Fi-

nally, to satisfy WCFI-RW’s constraints on reads and writes,

a load proceeds iff the address is not within L’s memory,

and a store proceeds iff the address is within U ’s memory.

4.2 Correctness of L’s API Implementation

While we strive for full functional correctness of L, the

following contract (in conjunction with WCFI-RW of UH)

is sufficient for proving IRC of the SIR.

(a) malloc(size) (where the return value ptr is the

starting address of the allocated region) must not 1)

modify non-SIR memory or stack frames belonging to

U , 2) make any stack location writable, or 3) return a

region outside U ’s heap. Formally, when stmt(σ) =
call malloc, we write (σ, σ′) ∈ R iff ψmalloc holds,

where ψmalloc is the conjunction of:

⊲ ∀a. (¬SIR(a) ∨ (AddrInStack(a) ∧ a ≥ σ(rsp))) ⇒
σ(mem)[a] = σ′(mem)[a]

⊲ ∀a. AddrInStack(a) ⇒
(writable(σ(mem), a) ⇔ writable(σ′(mem), a))

⊲ σ′(ptr) = 0 ∨ ((σ′(ptr) ≤ σ′(ptr) + σ(size)) ∧
AddrInHeap(σ′(ptr)) ∧
AddrInHeap(σ′(ptr) + σ(size)))

First, by forbidding malloc from modifying U ’s stack

above rsp, we prevent malloc from overwriting re-

turn addresses in U ’s stack frames. Second, by forbid-

ding malloc from making a stack location writable,

we prevent a return address from being corrupted later

by code in U — malloc should only modify the

write bitmap to make the allocated region writable.

Both restrictions are paramount for preventing WCFI-RW

exploits. Finally, we require malloc to return a region

from U ’s heap (or the null pointer), and ensure that a

machine integer overflow is not exploited to violate IRC.

(b) free(ptr) must not 1) modify non-SIR memory or

stack frames belonging to U , or 2) make any stack lo-

cation writable. Formally, when stmt(σ) = call free,

we write (σ, σ′) ∈ R iff ψfree holds, where ψfree is the

conjunction of:

⊲ ∀a. (¬SIR(a) ∨ (AddrInStack(a) ∧ a ≥ σ(rsp))) ⇒
σ(mem)[a] = σ′(mem)[a]

⊲ ∀a. AddrInStack(a) ⇒
(writable(σ(mem), a) ⇔ writable(σ′(mem), a))

These constraints are equivalent to the constraints on

malloc, and are likewise paramount for preventing

WCFI-RW exploits. Note that we do not require malloc

to return a previously unallocated region, nor do we re-

quire free to mark the freed region as invalid; full

functional correctness would require such properties.

WCFI-RW does not assume any invariants on the heap

values, and therefore vulnerabilities such as use-after-

free do not compromise WCFI-RW.

(c) send(ptr,size)must not make any address writable

or modify the stack frames belonging to U . Formally,

when stmt(σ) = call send, we write (σ, σ′) ∈ R iff

ψsend holds, where ψsend is:

⊲ ∀a. (AddrInBitmap(a) ∨ (AddrInStack(a) ∧
a ≥ σ(rsp))) ⇒ σ(mem)[a] = σ′(mem)[a]

send is used to encrypt and sign the message buffer

before writing to non-SIR memory, and it is the only API

call that is allowed to modify non-SIR memory. However,

we forbid send from modifying a caller’s stack frame

or the bitmap. By preventing send from modifying U ’s

stack above rsp, we prevent send from overwriting a



return address in any of U ’s stack frames. Furthermore,

send cannot modify the bitmap and make any location

writable, thereby preventing a return address from being

modified later by some code in U .

(d) recv(ptr,size) must 1) check that the destina-

tion buffer is a writable region in U ’s memory, and

2) not modify any memory location outside the input

buffer. Formally, when stmt(σ) = call recv, we write

(σ, σ′) ∈ R iff ψrecv holds, where ψrecv is the conjunction

of:

⊲ ∀a. (σ(ptr) ≤ a < σ(ptr) + σ(size)) ⇒
(writable(σ(mem),a) ∧ AddrInU(a))

⊲ ∀a.¬(σ(ptr) ≤ a < σ(ptr) + σ(size)) ⇒
σ(mem)[a] = σ′(mem)[a]

⊲ σ(ptr) ≤ σ(ptr) + σ(size)

recv is used to copy an encrypted, signed message from

non-SIR memory, decrypt it, verify its signature, and

copy the cleartext message buffer to U ’s memory. The

first two constraints ensure that the message is written to

a writable memory region within U (which guarantees

that a return address is not modified by recv), and that

the cleartext message is not written out to non-SIR mem-

ory. The final constraint ensures that an integer overflow

is not exploited to violate IRC.

In addition to the contracts above, we check the following

contracts for each of malloc, free, send, and recv:

• page permissions, following the API call, are set to pre-

vent read and write access to L’s memory. Write access is

disabled to prevent U from corrupting L’s state, whereas

read access is disabled to prevent reading L’s secrets.

• stack pointer rsp is restored to its original value.

• the API call satisfies the application binary interface

(ABI) calling convention (Windows x64 in our case)

For the purposes of this paper, we assume that the im-

plementation of L satisfies the above contracts. Since L is

written once, and used inside all SIRs, we could potentially

verify the implementation of L once and for all manually.

4.3 Soundness

THEOREM 1. If UH satisfies WCFI-RW and the implemen-

tation of L’s API satisfies the correctness properties given in

section 4.2, then UH satisfies IRC.

A proof of Theorem 1 is given in supplement material [1].

5. Verifying WCFI-RW

In the remainder of this paper, we describe an automatic,

static verifier for proving that a developer-provided UH sat-

isfies the WCFI-RW property. Verifying such a property

at machine code level brings up scalability concerns. Our

benchmarks consist of SIR programs that are upwards of

100 KBs in binary size, and therefore whole-program analy-

ses would be challenging to scale. Intra-procedural analysis,

on the other hand, can produce too many false alarms due to

missing assumptions on the caller-produced inputs and state.

For instance, the caller may pass to its callee a pointer to

some heap allocated structure, which the callee is expected

to modify. Without any preconditions on the pointer, a mod-

ular verifier might claim that the callee writes to non-SIR

memory, or corrupts a return address, etc.

Instead of verifying WCFI-RW of arbitrary machine

code, our solution is to generate machine code using a com-

piler that emits runtime checks to enforce WCFI-RW, and

automatically verify that the compiler has not missed any

check. Our compiler emits runtime checks that enforce that

unconstrained pointers (e.g., from inputs) are not used to

corrupt critical regions (e.g., return addresses on the stack),

write to non-SIR memory, or jump to arbitrary code, etc. As

our experiments show, the presence of these checks elimi-

nates the unconstrained verification environments described

above. Consequently, most verification conditions (VCs)

that we generate can be discharged easily. Even in cases

where the compiler eliminates checks for efficiency, the

compiler does not perform any inter-procedural optimiza-

tion, and we demonstrate that a modular verifier can prove

that eliminating the check is safe.

5.1 Runtime Checks

We use the compiler to 1) prepend checks on store instruc-

tions to protect return addresses in the stack, 2) prepend

checks on store instructions to prevent writes to non-SIR

memory, and 3) prepend checks on indirect call and jmp

instructions to enforce valid jump targets. We also use the

processor’s page-level access checks for efficiently prevent-

ing reads and writes to L’s memory by code in UH.

Runtime Checks on Stores: To enforce that writes through

pointers do not corrupt return addresses on the stack, the

compiler maintains a bitmap (see write bitmap in Fig-

ure 3) to record which areas in U ’s memory are writable,

while maintaining the invariant that a return address is never

marked writable. The write bitmap maps every 8-byte

slot of U ’s memory to one bit, which is set to one when those

8 bytes are writable. The bitmap is updated at runtime, typ-

ically to mark address-taken local variables and malloc-

returned regions as writable, and to reset the bitmap at pro-

cedure exits or calls to free. For instance, if a caller expects

a callee to populate the results in a stack-allocated local vari-

able, the caller must mark the addresses of that local vari-

able as writable before invoking the callee. A store instruc-

tion is prepended with an instruction sequence that reads

the write bitmap and terminates the SIR program if the

corresponding bit is zero (see instructions from L1 to L2 in

Figure 3). This check on store can enable stronger prop-

erties than backward edge CFI in that it also prevents many

forms of memory corruptions. While this gives us stronger

security guarantees at runtime, we only require a weak form

of CFI for proving WCFI-RW.



In addition, the compiler prepends store with range

checks that prevent writes outside the SIR region (see in-

structions from L0 to L1 in Figure 3).

Finally, we use the processor’s paging instructions to re-

voke write permissions on L’s memory while UH executes,

and to reinstate write permissions following an API call to L

— we also use page permissions to make code pages and the

call bitmap non-writable at all times. The SIR provider

guarantees that the processor respects the page permissions

of SIR memory. In the case of Intel SGX 2.0, the processor

provides the emodpr instruction to change page permissions

of enclave (SIR) memory. The processor hardware performs

the page-level access checks without any noticeable perfor-

mance overhead. Note that we cannot use the page permis-

sions to prevent writes to non-SIR memory because the ad-

versary H controls the page tables for all non-SIR memory.

Runtime Checks on Loads: WCFI-RW mandates that UH

does not load from L’s memory. This ensures that UH never

reads secrets such as the secure channel’s cryptographic

keys, which is necessary because strong encryption proper-

ties no longer hold if the key itself is used as plain text. To

that end, L disables read access to its memory by setting the

appropriate bits in the page tables. On each API call, L first

sets the page permissions to allow access to its own memory,

and resets it before returning back to UH.

On a side note, although we would like UH to only read

SIR memory (and use recv to fetch inputs from non-SIR

memory), we avoid introducing range checks for two rea-

sons: 1) WCFI-RW does not require this guarantee, and 2)

loads are frequent, and the range checks incur significant ad-

ditional performance penalty.

Runtime Checks on Indirect Control Transfers: The

compiler maintains a separate bitmap (see call bitmap

in Figure 3) that records the entry points of procedures in

U and APIs of L. The call bitmap maps every 16-

byte slot of U ’s memory to one bit, and the compiler ac-

cordingly places each procedure’s entry point in code at

a 16-byte aligned address. The compiler prepends indirect

calls with an instruction sequence that reads the bit within

call bitmap corresponding to the target address, and

terminates the SIR program if that bit is zero. Indirect jumps

to within the procedure are also checked to prevent jumps

to the middle of x64 instructions, which can lead to control-

flow hijacks.

The reader may question our choice of runtime checks,

as one could simply instrument instructions implementing

the validity checks on the corresponding transitions in the

WCFI-RW monitor M (from Definition 3). However, this

would require us to build a provably correct implementation

of a shadow stack within SIR memory, and use the shadow

stack during call and ret instructions to check that the

processor uses the same return address as the one pushed

by the matching call instruction. However, it is non-trivial

to protect the shadow stack from code running at the same

privilege level — doing so might require the very techniques

that we use in our runtime checks.

5.2 Static Verifier for WCFI-RW

We present a modular and fully automatic program veri-

fier, called /CONFIDENTIAL, for checking that the compiler-

generated machine code satisfies the WCFI-RW property.

Since runtime checks incur a performance penalty, the com-

piler omits those checks that it considers to be redundant. For

instance, the compiler eliminates checks on writes to local

scalar variables (and therefore does not need to make them

writable in the write bitmap) and to variables whose ad-

dresses are statically known. The compiler also tries to hoist

checks out of loops whenever possible. These optimizations

do not compromise WCFI-RW, and /CONFIDENTIAL proves

them safe so as to avoid trusting the compiler. Since we ver-

ify WCFI-RW at the machine code level, we do not need to

trust the implementation of these optimizations.

/CONFIDENTIAL is based on a set of proof obligations

for verifying that the output machine code (modeled as UH)

satisfies WCFI-RW. It modularly verifies each procedure in

isolation and is still able to prove WCFI-RW for the entire

program — this soundness guarantee is formalized as a the-

orem that we present later in this section. It is important to

note that modular verification is possible because the com-

piler does not perform any global analysis to optimize away

the runtime checks. /CONFIDENTIAL generates proof obli-

gations for each store, load, call, ret, jmp, and rsp up-

date in the procedure. While generating proof obligations,

/CONFIDENTIAL does not distinguish statements based on

whether they originated from U ’s source code or the runtime

checks, since the compiler is untrusted. These proof obliga-

tions are implemented by instrumenting UH with static as-

sertions, which are discharged automatically using an SMT

solver by the process of VC generation. We present the in-

strumentation rules in Table 1, and describe them below.

The instrumentation rules use the following functions,

which are defined for a given U :

• policy(e) is true iff address e is the starting address of a

procedure in U or an API entrypoint of L. This predicate

is consistent with the state of call bitmap, which

remains constant throughout the SIR’s execution.

• writable(mem, e) is true iff the bit corresponding to ad-

dress e is set to one in the write bitmap region of

mem.

• b(mem, ea, ed) is a partial function (only defined for val-

ues of ea for which AddrInBitmap(ea) holds) that returns

the largest address that is marked writable as a result of

executing store(ea, ed)

• start(p) returns the starting address of procedure p

• end(p) returns the ending address of procedure p

• legal(e) is true for any e that is the starting address of an

instruction in U — we need this predicate because x64

instructions have variable lengths.



Stmt s Instrumented Stmt I(s)

call e assert policy(e) ∧ (∀i. (AddrInStack(i) ∧ i < rsp) ⇒ ¬writable(mem, i)) ∧ (rsp ≤ old(rsp)− 32);
call e

storen(ea, ed) assert (
∨{ea,ea+n−1}

i (AddrInStack(i) ∧ i ≥ old(rsp) ∧ ¬(old(rsp) + 8 ≤ i < old(rsp) + 40))) ⇒ writable(mem, ea);

assert (
∧{ea,...,ea+n−1}

i (AddrInBitmap(i) ⇒ (b(mem, i, ed[8 ∗ (i+ 1− ea) : 8 ∗ (i− ea)]) < old(rsp)− 8)));
assert SIR(ea);
storen(ea, ed)

rsp := e assert (e[3 : 0] = 000 ∧ e ≤ old(rsp));
rsp := e

ret assert (rsp = old(rsp)) ∧ (∀i. (AddrInStack(i) ∧ i < old(rsp)) ⇒ ¬writable(mem, i));
ret

jmp e assert (start(p) ≤ e < end(p)) → legal(e);
assert ¬(start(p) ≤ e < end(p)) → (rsp = old(rsp) ∧ policy(e) ∧ (∀i. (AddrInStack(i) ∧ i < rsp) ⇒ ¬writable(mem, i));
jmp e

Table 1. Instrumentation rules for modularly verifying WCFI-RW

• old(rsp) is the value of rsp at procedure entry, and is

modeled as a symbolic variable because the procedure

may be called at an arbitrary depth in the call stack.

Functions policy, start, and end are defined by pars-

ing the executable (DLL format) produced by the com-

piler. legal is defined by disassembling the executable code,

which is a precursor to the formal modeling step that pro-

duces UH. Since the memory layout and code pages remain

constant throughout execution, these functions are defined

once for a given U and are independent of the current state.

Functions writable and b are evaluated on the contents of

write bitmap within mem, and their definition involves a

load from mem and several bitvector operations. We also re-

call predicates AddrInStack, AddrInBitmap, AddrInL, and

SIR from section 4, which are used to define various regions

in the SIR’s memory (see Figure 3).

Static Assertions on Calls: On each statement of the type

call e, we assert that 1) the target address e is either a

procedure in U or an API entrypoint in L, 2) all addresses

in the callee’s stack frame are initially unwritable, and 3)

the caller follows the Windows x64 calling convention by

allocating 32 bytes of scratch space for use by the callee.

Static Assertions on Stores: UH may invoke storen(ea, ed)
on an arbitrary virtual address ea with arbitrary data ed.

Hence, we must argue that the proof obligations prevent all

store instructions that violate WCFI-RW. We case split this

safety argument for each memory region in the virtual ad-

dress space (Figure 3). The call bitmap, the code pages,

and L’s memory are marked non-writable in the page tables

— store to these areas results in an exception, followed by

termination. Within U ’s memory, /CONFIDENTIAL treats all

writes to the heap and globals as safe because WCFI-RW

does not require any invariants on their state — while the

heap and global area may store code and data pointers,

/CONFIDENTIAL instruments the necessary assertions on

indirect control transfers and dereferences, respectively. We

are left with potential stores to U ’s stack, write bitmap,

and non-SIR memory, and their proof obligations are:

• AddrInStack(ea): if ea is an address in a caller’s stack

frame but not in the 32-byte scratch space (which is

addressed from old(rsp) + 8 to old(rsp) + 40), then ea
must be marked by the write bitmap as writable. On

the other hand, UH is allowed to write arbitrary values to

the current stack frame or the 32-byte scratch space.

• AddrInBitmap(ea): only addresses in the current stack

frame can be made writable. It suffices to check that the

largest address whose write permission is being toggled

is below old(rsp). Note that unaligned stores may change

two words at once. Since the instrumentation code only

checks the write permissions of the first word (for perfor-

mance reasons), we further restrict the largest address to

be below old(rsp)− 8 to account for unaligned stores of

up to 8 bytes.

• SIR(ea): WCFI-RW mandates thatUH does not store to

non-SIR memory, for which /CONFIDENTIAL generates

a proof obligation: assert SIR(ea).

Static Assertions on Assignments to rsp: For each state-

ment of the type rsp := e, we check that the new stack pointer

e 1) is 8-byte aligned, 2) does not point to a caller’s stack

frame (i.e., must not be greater than the old rsp). The con-

straint that the rsp never points to a caller’s stack frame is

necessary for modular verification. We use a guard page (i.e.,

a page without read or write page permissions) to protect

against stack overflows — in the case where the procedure

needs stack space larger than a page, we check that the com-

piler introduces a dummy load that is guaranteed to hit the

guard page and cause an exception, thus preventing the pro-

cedure from writing past the guard page.

Static Assertions on Returns: For each ret statement, we

check that 1) rsp has been restored to its original value, and

2) the procedure has reset the write bitmap so that all

addresses in the current stack frame are unwritable.

Static Assertions on Jumps: A jmp is safe if it either tar-

gets a legal address within the current procedure p (i.e., not

in the middle of an instruction), or the start of a procedure

(often used for performing tail calls). In the case of jmp to a



procedure, we check the same properties as a call instruc-

tion, except that rsp is restored to its original value.

Syntactic Check for SIR instructions: Code in UH runs at

the same privilege level as L, and hence may invoke instruc-

tions to override page permissions (such as emodpr in SGX

2.0). We guard against this vulnerability by simply check-

ing for the presence of special SIR instructions (all SGX

instructions) in UH, which is captured by a regular expres-

sion on the disassembled machine code. Though not strictly

required for WCFI-RW, /CONFIDENTIAL forbids all SGX

instructions because of certain instructions (such as egetkey

for accessing the sealing key) which return cryptographic se-

crets to the user code.

5.3 Optimization to the Proof Obligations

If we can estimate the stack size needed for a procedure,

then we can optimize the proof obligations for store, ret,

and call statements (see Table 2). The modifications are:

• store: further assert that updating the write bitmap

does not mark any address below the estimated stack

space to be writable.

• call: further assert that the current rsp is not within

the estimated stack space (which would otherwise fal-

sify the callee’s precondition that the stack space is non-

writable). The modified assertion on store also allows

us to omit the proof obligation that all addresses below

the current rsp are non-writable (prior to the call).

• ret: now asserts non-writability of only the addresses in

the estimated stack space, instead of all addresses below

the old(rsp). Since the range of addresses is bounded, we

instantiate the ∀ quantifier, and help the SMT solver to

eliminate hundreds of timeouts in our experiments.

Although the optimization is sound for any positive value of

estimate, we are able to compute a precise estimate for all

of our benchmarks. The estimate is computed by aggregat-

ing all the stack subtractions and checking that there is no

assignment to rsp within a loop. If rsp is assigned within a

loop body, then the optimization is disabled. Furthermore,

this optimization may lead to false positives in rare cases

of safe programs, in which case we fall back to the unop-

timized implementation. For instance, this may happen if a

procedure decrements rsp after making a procedure call,

but we have not encountered such cases in our evaluation.

5.4 Soundness

The following theorem states that our proof obligations im-

ply WCFI-RW.

THEOREM 2. (Soundness of I) Let p be a procedure, and

I(p) be procedure p instrumented with the assertions given

in Table 1 (and with optimizations in Table 2). If for each p

in UH, I(p) is safe (i.e., no trace of I(p) violates such an

assertion), then UH satisfies WCFI-RW.

A proof of Theorem 2 is given in supplement material [1].

6. Implementation

We develop a toolchain for building IRC-preserving SIRs.

The developer first compiles U ’s code (written in C/C++)

using the VC3 compiler [38], to insert checks on indirect

control-flow transfers, and checks on stores to prevent tam-

pering of return addresses and to prevent stores from exceed-

ing the SIR boundary — the instrumentation also protects

against several classes of memory corruption errors, but we

do not leverage these guarantees for proving IRC.

/CONFIDENTIAL takes as input a DLL withU ’s code, and

an implementation of L that provides the required guaran-

tees. First, /CONFIDENTIAL parses the DLL to extract all

the procedures. Next, for each procedure, /CONFIDENTIAL

invokes the Binary Analysis Platform (BAP [10]) to lift the

x64 instructions to statements in our language (Figure 4),

which are then converted to BoogiePL [15]. Indirect jmp and

call instructions require some preprocessing before model-

ing them in BoogiePL, and we discuss this detail later in this

section.

Next, for proving WCFI-RW, /CONFIDENTIAL instru-

ments each procedure in BoogiePL with assert statements

as given in Table 1 and Table 2. The Boogie verifier [4] gen-

erates VCs and automatically discharges them using the Z3

SMT solver [14]. If all assert statements in all procedures

are valid, then by Theorem 1 and Theorem 2, UH satisfies

IRC. /CONFIDENTIAL checks the validity of each assert

in parallel, which in combination with the modular analysis,

allows /CONFIDENTIAL to scale to realistic SIR programs.

Modeling Procedure Calls Since the analysis is modular,

/CONFIDENTIAL replaces each procedure call by a havoc to

the machine state in lieu of specific procedure summaries.

The havoc is performed by assigning fresh, symbolic values

to volatile registers and CPU flags, and assigning a fresh,

symbolic memory (called new mem below) which is sub-

ject to certain constraints as shown below. We encode the

constrained havoc to machine state using the following state-

ments in order, which are instrumented after the call state-

ment in UH.

⊲ assume ∀i. (AddrInStack(i)∧ i < rsp∧¬writable(mem, i))
⇒ load8(mem, i) = load8(new mem, i)
A callee procedure may have an unbounded number of

store instructions that can modify any memory loca-

tion marked writable in the write bitmap — the havoc

must preserve the non-writable locations in the current

stack frame because our instrumentation guarantees that

a callee cannot change their writability (as opposed to the

heap which may be made writable by calling malloc,

and then modified).

⊲ assume ∀i. AddrInStack(b(mem, i, 11111111))
⇒ load1(mem, i) = load1(new mem, i)
Our instrumentation guarantees that a portion of the

write bitmap (specifically the part that controls stack

addresses) is restored on ret, which validates this as-

sumption.



Stmt s Instrumented Stmt I(s)

storen assert (
∨{ea,ea+n−1}

i (AddrInStack(i) ∧ i ≥ old(rsp) ∧ ¬(old(rsp) + 8 ≤ i < old(rsp) + 40))) ⇒ writable(mem, ea);

(ea, ed) assert
∧{ea,...,ea+n−1}

i (AddrInBitmap(i) ⇒ (old(rsp)− estimate ≤ b(mem, i, ed[8 ∗ (i+ 1− ea) : 8 ∗ (i− ea)]) < old(rsp)− 8));
assert SIR(ea);
storen(ea, ed)

call e assert policy(e) ∧ (rsp ≤ old(rsp)− 32) ∧ (rsp ≤ old(rsp)− estimate);
call e

ret assert (rsp = old(rsp)) ∧ (∀i. (i < old(rsp) ∧ i ≥ old(rsp)− estimate) ⇒ ¬writable(mem, i));
ret

Table 2. Optimized instrumentation rules for store, call, and ret statements

⊲ mem := new mem

This step assigns a new memory that is related to the old

memory by the above assume statements.

⊲ havoc rax, rcx, rdx, r8, r9, r10, r11;

This step havocs all volatile registers (as defined by the

Windows x64 calling convention) with fresh, symbolic

values.

⊲ havoc ZF, AF, OF, SF, CF, PF;

The callee may cause arbitrary updates to the CPU flags,

which is modeled by this havoc.

The constrained havoc above models an arbitrary U pro-

cedure that has an unbounded number of statements in any

order — we prove this lemma within the proof of the sound-

ness theorem 2. The constrained havoc (in the statements

above) is followed by a jump to the next instruction, as com-

puted during disassembly. This is sound because WCFI-RW

guarantees that the callee uses the return address placed by

the caller. There is a caveat that a call to L’s API is replaced

by its contract (defined in section 4.2) in lieu of the con-

strained havoc defined above.

We also assume the following preconditions at the begin-

ning of each procedure:

⊲ ∀i. (AddrInStack(i)∧i ≥ old(rsp)) ⇒ ¬writable(mem, i)
This assumption treats all addresses in the local stack

frame as non-writable upon procedure entry. It is upon

the procedure to explicitly update the write bitmap

to make parts of its stack frame writable. This precondi-

tion is sound since we enforce it at all call sites.

⊲ AddrInStack(old(rsp)) ∧ old(rsp)[3 : 0] = 000
We assume the initial stack pointer must be within the

stack region and that it is 8-byte aligned. This precondi-

tion is sound because we enforce this property on every

assignment to rsp.

Modeling Indirect Control Transfers. In order to use VC

Generation and SMT solving, we need to statically approx-

imate the set of jump targets for each register-based indi-

rect jump. While we can use standard off-the-shelf value

analysis, we observed that the compiler idiomatically places

a jump table in memory, which is indexed dynamically to

compute the target. Correspondingly, our verifier determines

the base address of the jump table and reads its contents to

compute the set of potential jump targets; this step is not

trusted. An indirect jump is then modeled as a “switch” over

direct jump statements to the potential targets, with the de-

fault case being assert false. The presence of assert false

allows the approximation step to be untrusted. Indirect calls

are handled using a similar method as direct calls; we in-

troduce a constrained havoc on writable memory, volatile

registers, and all CPU flags.

Modeling Havocs from H. While our adversary model

requires inserting havoc¬SIR mem before each statement in

U , it is efficient and sound to do so only before load

statements [40]. We havoc the result of a load state-

ment if the address is a location in non-SIR memory;

reg := loadn(e) is transformed to if (SIR(e)) {reg :=
loadn(e)} else {havoc reg}.

Verifying Procedures with Loops. /CONFIDENTIAL uses a

candidate loop invariant that a portion of the write bitmap

(specifically the part that controls stack addresses) is pre-

served across loop iterations — we expect this invari-

ant to hold because 1) the VC3 compiler tends to set

the write bitmap only in the procedure’s prologue,

which occurs before loop bodies, and 2) our proof obli-

gations guarantee that callees preserve this portion of the

write bitmap. Empirically, we find that this loop in-

variant is sufficient for proving our assertions within loop

bodies.

7. Evaluation

We evaluate /CONFIDENTIAL on several SIR programs that

process sensitive data, and we summarize the results in

Table 3 and Figure 6. We choose the three largest Map-

Reduce examples from VC3 [38]: Revenue, IoVolumes, and

UserUsage. UserUsage and IoVolumes processes sensitive

resource usage data from a cloud platform. IoVolumes pro-

cesses storage I/O statistics, and UserUsage aggregates the

total execution time per user. Revenue reads a log file from

a website and calculates the total ad revenue per IP address.

Each of these benchmarks implement the mappers and re-

ducers within the SIRs, and place large parts of the untrusted

Hadoop stack outside the SIR boundary. Performance evalu-

ation of these applications is described in [38], which reports

that the average cost of the run-time checks is 15%. We also



experiment with three SPEC CPU2006 benchmarks: bzip2,

astar, and lbm.

As Table 3 and Figure 6 show, /CONFIDENTIAL is able

to prove almost all assertions needed to check WCFI-RW in

less than 20 seconds each, which demonstrates the potential

in scaling our approach. We performed full verification of

the lbm benchmark (i.e., no timeouts or false positives),

which took roughly 3 hours of wall clock time. We also

discovered few procedures across many benchmarks that

have instructions that BAP [10] could not process, and we

plan to experiment with alternative tools in future.

All benchmarks were compiled with the optimization

level at -O2. All experiments were performed on a machine

with 160GB RAM and 12 Intel Xeon E5-2440 cores running

at 2.40GHz. As mentioned previously, /CONFIDENTIAL par-

allelizes the verification by spawning several instances of the

Z3 SMT solver, where each instance is responsible for prov-

ing one of the instrumented static assertions.

Benchmark Code Verified Timed out False

Size Asserts Asserts Positives

UserUsage 14 KB 2125 2 4

IoVolumes 17 KB 2391 2 0

Revenue 18 KB 1534 3 0

lbm 38 KB 1192 0 0

astar 115 KB 6468 2 0

bzip2 155 KB 10287 36 0

Table 3. Summary of results.

Figure 6. Summary of performance results

False Positives. We found four assertions that produced

spurious counterexample traces, all within a single proce-

dure of UserUsage. The violating procedure is a C++ con-

structor method, which writes the vtable pointer in the

newly allocated object. Since the memory allocator termi-

nates the SIR if it fails to allocate memory, the compiler op-

timizes away the range checks on the pointer returned by the

memory allocator — this is the only observed instance of

the compiler performing global optimization. Since /CON-

FIDENTIAL does not do any global analysis, it flags this

method as unsafe. We could fix the issue by disabling this

optimization.

Timeouts. Prior to implementing the optimizations in sec-

tion 5.3, we had experienced several hundred timeouts. Af-

ter the optimizations, only roughly 0.2% of all assertions

(across all benchmarks) do not verify within the 30 minute

timeout, as shown in Table 3. The main source of complexity

in the generated VC comes from the combination of quan-

tifiers and multiple theories such as arrays and bitvectors

that are typically hard for SMT solvers. Another reason is

the presence of a few large procedures in the SPEC bench-

marks — largest procedure has above 700 x64 instructions

and 5200 BoogiePL statements — which generated large

SMT formulas. These large procedures (considering those

above 420 x64 instructions and 3500 BoogiePL statements)

accounted for 31 (69%) timeouts. We found that all of these

assertions are associated with store instructions, and they

enforce that the store targets a writable region in memory

— one feature of these large procedures is heavy use of the

stack space in memory, potentially causing the SMT solver

to reason heavily about aliasing in order to prove that the tar-

get address is marked non-writable. Ten (22%) of the time-

outs are on assertions associated with ret instructions, where

the solver struggled to prove that all locations in the current

stack frame are made non-writable (even with the optimiza-

tion in section 5.3) — unless the procedure explicitly resets

the write bitmap prior to the ret, the SMT solver must

prove that none of the stores in the procedure are unsafe. The

remainder of the timeouts, roughly 9%, were neither on the

return instructions, nor in large procedures — we find that

they are associated with store instructions, where the solver

is able to prove that the store targets the write bitmap but

not whether the written value is safe.

We manually investigated the assertions that time out (by

experimenting at the level of the BoogiePL program) and

were able to prove some of them using additional invari-

ants and abstractions, without requiring any specific knowl-

edge of the benchmark or its source code. Although we ma-

chine check these proofs (using Boogie and Z3), we continue

to count them as timeouts in Table 3, since our goal is to

have a fully automatic verifier of WCFI-RW. For roughly

half of the timeouts observed on ret instructions, we hy-

pothesized intermediate lemmas (a few instructions prior to

the ret) and simplified the VC by introducing a havoc to

mem followed by an assume that is strong enough needed

to prove the final assertion — we also prove that the in-

termediate lemma holds prior to the havoc, making this

transformation sound. Specifically, for a stack address a,

we either 1) havoc the write bitmap if the procedure con-

tains instructions to reset the write bitmap corresponding

to address a, and these instructions are sufficient to prove

the final assertion ¬writable(mem, a), or 2) we introduce

assert ¬writable(mem, a) at earlier points in the program,

if the procedure does not make a writable. This approach

eliminates 6 of the 10 timeouts on ret instructions.

We also experimented with the 31 timeouts on store in-

structions within the large procedures. With the exception of

3 of these 31 timeouts, we were not able to get Z3 to prove



the assertions, even after simplifying the VC with interme-

diate lemmas and havoc statements. These 3 assertions were

at relatively shallow depths in the control flow graph of the

procedure, where there are fewer loads and stores leading to

the assertion. Finally, we tried the CVC4 [5] solver, but we

did not succeed in eliminating any more timeouts.

Having performed this investigation, we are hopeful that

with improving SMT solvers and better syntactic heuristics

for simplifying the VCs, we will eliminate all timeouts.

8. Related Work

Confinement of programs to prevent information release

has been studied for many years [22]. We are interested in

achieving confinement in user programs, even with buggy or

malicious privileged code. We use trusted processors [3, 24,

28, 34] to create isolated memory regions where we keep

confidential application code and data, but our techniques

are also applicable if isolation is provided by the hypervi-

sor [11, 20, 45], or runtime checks [13]. Independently of

the isolation provider, we need to reason about the appli-

cation code to provide formal guarantees of confinement,

which is the goal of our work.

Our method to check for WCFI-RW draws inspiration

from prior work to perform instrumentation in order to sat-

isfy control-flow integrity (CFI [2, 33]) and software fault

isolation (SFI [27, 39, 44]). Like SFI, we introduce run-time

checks to constrain memory references. Our run-time checks

are similar to the ones used in VC3 [38], but importantly we

use the paging hardware to check reads, which is more effi-

cient than relying on compiler instrumentation. Unlike VC3,

we verify that our checks guarantee IRC. Native Client [47]

also enforces a form of SFI, but its run-time checks for 64-bit

Intel processors would require us to create SIRs with a min-

imum size of 100GB [39], which is not practical for our tar-

get environment (x86-64 CPUs with SGX extensions). This

is because the SIR’s address space must be statically con-

figured and physically mapped by the CPU upon the SIR’s

creation, whereas the 64-bit Native Client scheme was im-

plemented in a setting where the virtual address space can

be large. Our run-time checks also enforce stronger secu-

rity properties; for example, Native Client does not guaran-

tee that calls return to the instruction immediately after the

call. Native Client ultimately enforces a different policy: it

aims to sandbox browser extensions and trusts the host OS,

while we aim to isolate an application from a hostile host.

This requires us to model a powerful, privileged adversary

(H) while reasoning about the application’s execution.

There have also been efforts to perform SFI with formally

verified correctness guarantees. RockSalt [30] uses Coq to

reason about an x86 processor model and guarantee SFI; it

works for 32-bit x86 code, while our system works for the

x86-64 ISA. ARMor [49] uses HOL to reason about ARM

processor model and guarantee SFI. Native Client, XFI [18]

and [48] include verifiers that work on machine code. Our

verification scheme is different from these works since it

uses different runtime checks (which provide stronger guar-

antees) and it supports aggressive compiler optimizations

that remove redundant checks. We require more complex

reasoning and thus use an SMT solver to build our verifier.

Unlike all of the above works, our ultimate goal is pre-

serving confidentiality of a trusted application running in

an untrusted and hostile host. Our specific definition of

WCFI-RW, together with contracts we assume on the library

methods guarantees IRC, which is the novel aspect of our

work. We also prove that all the pieces (the compiler checks,

the static verification, and the contracts on library meth-

ods) all combine together and guarantee IRC. Moat [40]

has the same goal as our work, and the main difference is

that Moat works for any code, and our work requires the

application to perform all communications through a nar-

rowly constrained interface. On the flip-side, Moat performs

global analysis, tracks secrets in a fine-grained manner, and

is not scalable beyond programs containing few hundred x86

instructions. In contrast, our approach is modular, avoids

fine-grained tracking of secrets, and hence scales to larger

programs. As mentioned before, our notion of confidential-

ity does not prevent information leaks via side channels such

as memory access patterns. This channel has been addressed

in GhostRider [25], which presents a co-designed compiler

and hardware (containing Oblivious RAM) for guaranteeing

memory trace oblivious computation.

Translation validation (e.g., [32, 35, 41, 42]) is a set of

techniques that attempt to prove that compiler optimizations

did not change the semantics of the program given as input

(after the optimizer run). Our work is similar in spirit to

translation validation since we use an off-the-shelf, untrusted

compiler and validate whether the code it produced satisfies

the security properties we are interested in.

9. Conclusion

We presented a methodology for designing Secure Isolated

Regions, which enables certification of applications that

need their code and data to remain confidential. Our method-

ology comprises enforcing the user code to communicate

with the external world through a narrow interface, com-

piling the user code with a compiler that inserts run-time

checks that aid verification, and linking it with a verified

runtime that implements secure communication channels.

We formalized the constraints on user code as Information

Release Confinement (IRC), and presented a modular auto-

matic verifier to check IRC. We believe that IRC, together

with additional requirements on the implementation of the

runtime, can guarantee a strong notion of confidentiality.
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