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Abstract

A Design Flow for the Development, Characterization, and Refinement of System Level

Architectural Services

by

Douglas Michael Densmore

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alberto Sangiovanni-Vincentelli, Chair

The electronics industry is facing serious challenges because of the increased demand on func-

tionality and strong pressures on both time-to-market and cost requirements. The complexity designers have

to deal with creates design quality problems that force serious delays in product introductions and even prod-

uct recalls. There is a need for methodologies and tools that can drastically reduce design errors and costs.

Electronic System Level (ESL) tools attempt to fulfill this need by increasing the abstraction and modularity

by which designs can be specified. However, simply because these design styles are introduced, this does

not automatically imply an acceptable level of accuracy and efficiency required for widespread adoption

and eventual success. This thesis introduces a design flow which improves abstraction and modularity while

remaining highly accurate and efficient. Specifically this work explores a Platform-Based Design approach

to model architectural services.

Platform-Based Design is a methodology in which purely functional descriptions of a system are

top-down assigned (or mapped) to architecture services which have their models for capabilities and costs

exported from the bottom up. Architecture services are a set of library elements characterized by their

capabilities (what functionality they support) and costs (execution time, power, etc). These libraries of

components “parametrize” the set of architecture services that can be chosen by the designer to implement

functionality and limit the design space thus favoring design re-use. The design process then proceeds

toward implementation by binding functionality to architectures composed of elements from the library.

The components that form a platform instance are selected by evaluating their capability of supporting the

mapped functionality within the design constraints and by optimizing objective functions. The design space

exploration can be done via simulation of the mapped designs by changing the mapping and the choice of
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components. Keeping the architecture services and the functional aspects of the design separate facilitates

design space exploration since this exploration requires only the change of the mapping of functions to

architectural services or the selection of a different set of components to build the platform instance. In

either case, only a minor change to the description of the design is required to perform the evaluation.

The design flow proposed in this thesis specifically focuses on how to create architecture service

models of programmable platforms (FPGAs for example). These architecture service models are created

at the transaction level, are preemptable, and export their abilities to the mapping process. An architecture

service library is described for Xilinx’s Virtex II Pro FPGA. If this library is used, a method exists to extract

the architecture topology to program an FPGA device directly, thus avoiding error prone manual techniques.

As a consequence of this programmable platform modeling style, the models can be annotated directly with

characterization data from a concurrent characterization process to be described.

Finally, in order to support various levels of abstraction in these architecture service models, a

refinement verification flow will be discussed as well. Three styles will be proposed each with their own

emphasis (event based, interface based, compositional component based). They are each deployed depend-

ing on the designer’s needs and the environment in which the architecture is developed. These needs include

changing the topology of the architecture model, modifying the operation of the architecture service, and the

exploring the tradeoffs between how one expresses the services themselves and the simulation infrastructure

which schedules the use of those services.

To provide a proof of concept of these techniques, several design scenarios are explored. These

scenarios include Motion-JPEG encoding, an H.264 deblocking filter, an SPI-5 networking protocol, and

a communication structure of a highly concurrent system architecture (FLEET). The results show that not

only is the proposed design flow more accurate and modular than other approaches but also that it prevents

the selection of more poorly performing designs or the selection of incorrectly functioning designs through

its emphasis on the preservation of fidelity.

Professor Alberto Sangiovanni-Vincentelli
Dissertation Committee Chair



i

For Mom and Dad

When you comin’ home son? I don’t know when, but we’ll get together then...

Para Remolachita

¡Colorı́n colorado, esta tesis se ha acabado! Besitos



ii

Contents

List of Figures v

List of Tables viii

1 Introduction 1

1.0.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Time to Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 1st Focus: System Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 2nd Focus: Programmable Architecture Services . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Naı̈ve Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Proposed Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 System Level Architecture Services 25

2.0.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Background and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 System Level Event Based Architecture Services . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 METROPOLIS Architecture Construction . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 METRO II Architecture Construction . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Architecture Service Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Xilinx Architecture Modeling Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 FLEET Architecture Modeling Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Synthesis Path for Architecture Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Architecture Service Characterization 67

3.0.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1 Platform Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Characterization Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



iii

3.2 Extraction of Platform Characterization Data . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Data Extraction Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Example Platform Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Organization of Platform Characterization Data . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Data Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.2 Data Storage Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Integration of Platform Characterization and Architectural Services . . . . . . . . . . . . . . 80

3.5.1 Sample Annotation Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 System Level Service Refinement 85

4.0.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Background and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1.1 State Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.2 Trace Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.3 Synchronized Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Event Based Service Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Interface Based Service Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 Compositional Component Based Service Refinement . . . . . . . . . . . . . . . . . . . . . 132

4.5.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Design Flow Examples 140

5.0.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.1 Characterization Aided Fidelity Example: Motion-JPEG . . . . . . . . . . . . . . . . . . . 142

5.2 Service Aided Mapping Modularity Example: H.264 Deblocking Filter . . . . . . . . . . . 144

5.2.1 Application Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.2 Mapping Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.3 Design Space Exploration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Architecture Platform Refinement Example: SPI5 Packet Processing . . . . . . . . . . . . . 154

5.3.1 Application Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.2 Architecture Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.3 Refinement Based Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.4 Platform Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.5 METROPOLIS Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Communication Subsystem Refinement Example: FLEET Communication Structure . . . . 166

5.4.1 Communication Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.4.2 Verification Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170



iv

6 Conclusions and Contributions 174

6.0.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 180



v

List of Figures

1.1 Overall EDA Revenue Growth and EDA Design Segment Growth [Ric05] . . . . . . . . . . 2

1.2 “Methodology Gap” Challenge in EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Global Embedded Systems Market [Rav05] . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Semiconductor Design Cycle Time Decline [Gar05a] . . . . . . . . . . . . . . . . . . . . . 7

1.5 Technological SoC Heterogeneity [Don04] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Device Component and Communication Heterogeneity [Int06b] . . . . . . . . . . . . . . . 8

1.7 Growing Gap Between Device Capacity and Designer Productivity [Int99] . . . . . . . . . . 10

1.8 Time to Market Revenue Consequences [IBM06] . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Platform-Based Design Methodology [Alb02] . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.10 METROPOLIS Design Environment and Organization . . . . . . . . . . . . . . . . . . . . . 15

1.11 Makimoto’s Wave and Programmable Devices [Tsu00] . . . . . . . . . . . . . . . . . . . . 17

1.12 Naı̈ve Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.13 Proposed Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Proposed Service Style Versus Existing Service Styles . . . . . . . . . . . . . . . . . . . . 27

2.2 System Level Architecture Modeling in the Proposed Flow . . . . . . . . . . . . . . . . . . 28

2.3 Architecture Platform Composition and Creation . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Architecture Service Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Composing Architectures Using Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 METROPOLIS Process Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 METROPOLIS Medium Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 METROPOLIS Quantity Manager Example Code . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 METROPOLIS State Media Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 METROPOLIS Port Interface Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 METROPOLIS Architecture Netlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 Graphical METROPOLIS Architecture Representation . . . . . . . . . . . . . . . . . . . . . 42

2.13 Architecture Service Model Proposal in METRO II . . . . . . . . . . . . . . . . . . . . . . 44

2.14 Architecture Extensions for Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.15 Architecture Extensions for Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.16 METROPOLIS PowerPC Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.17 METROPOLIS MicroBlaze Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.18 METROPOLIS Synthetic Master/Slave Model . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.19 METROPOLIS PLB Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



vi

2.20 METROPOLIS OPB Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.21 METROPOLIS BRAM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.22 METROPOLIS Quantity Manager Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.23 FLEET SHIP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.24 FLEET Services Created . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.25 Automatic Xilinx MHS Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Transcending RTL Effort with ESL Design Technologies . . . . . . . . . . . . . . . . . . . 68

3.2 Characterization of Architecture Services in the Proposed Design Flow . . . . . . . . . . . . 69

3.3 A Design Flow for Pre-characterizing Programmable Platforms . . . . . . . . . . . . . . . . 74

3.4 Combo Systems Resource Usage and Performance . . . . . . . . . . . . . . . . . . . . . . 76

3.5 PowerPC System Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Characterized Data Organization Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 METROPOLIS Sample Annotation Semantics Using Characterized Data . . . . . . . . . . . 83

4.1 System Level Service Refinement in the Proposed Design Flow . . . . . . . . . . . . . . . . 86

4.2 METROPOLIS Style Refinement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Event Based Refinement Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Vertical Refinement Illustration in METROPOLIS . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Horizontal Refinement Illustration in METROPOLIS . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Macro and MicroProperty Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Event Petri Net Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 Interface Based Refinement Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 Refinement Domains in Interface Based Refinement . . . . . . . . . . . . . . . . . . . . . . 118

4.10 METROPOLIS Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.11 Resulting CFA for Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.12 CFA Visual Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.13 CFA FSM Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.14 SIS Commands and EXLIF Requirements for FORTE Flow . . . . . . . . . . . . . . . . . . 128

4.15 Surface Refinement Flows for METROPOLIS . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.16 Strict Transition Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.17 Stuttering Transition Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.18 Lack of τ-Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.19 External Non-Determinism Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.20 .fts for Abstract Consumer LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.21 .fts for Refined Consumer LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.22 .inv for Consumer LTSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.23 .sync for Producer/Consumer LTSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1 MJPEG Architecture Topologies in METROPOLIS . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Macroblock and Block Border Illustration for H.264 Deblocking Filter . . . . . . . . . . . . 146

5.3 Deblocking Filter Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4 Decomposition of GetStrength Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5 Decomposition of EdgeLoop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6 Mapping a Functional Model onto an Architectural Model for H.264 . . . . . . . . . . . . . 149



vii

5.7 H.264 Functional Topology Mapping Candidates . . . . . . . . . . . . . . . . . . . . . . . 150

5.8 METROPOLIS H.264 Simulation Results for All Candidate Topologies . . . . . . . . . . . . 151

5.9 METROPOLIS H.264 Simulation Results for Various FIFO Sizes . . . . . . . . . . . . . . . 152

5.10 METROPOLIS H.264 Accuracy Versus FPGA Implementation . . . . . . . . . . . . . . . . 154

5.11 Successive Platform Refinement Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.12 Platform Development for SPI-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.13 METROPOLIS Architecture Model for Platform 2.2 . . . . . . . . . . . . . . . . . . . . . . 163

5.14 Sample Control Flow Automata for Abstract and Refined FIFO Scheduler . . . . . . . . . . 164

5.15 FIFO Occupancy Data for Platform 2.1 and 2.2 . . . . . . . . . . . . . . . . . . . . . . . . 165

5.16 LTS Communication Example #1 for FLEET . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.17 LTS Communication Example #2 for FLEET . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.18 LTS Communication Example #3 for FLEET . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.19 FLEET System Architecture Service Refinement Opportunities . . . . . . . . . . . . . . . . 170

5.20 LTS for Entire FLEET System Level Service Models . . . . . . . . . . . . . . . . . . . . . 172



viii

List of Tables

1.1 Relationship Between Factors, Solutions, Supporting Techniques, and Outcomes . . . . . . 5

1.2 Characteristics of Programmable Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Programmable Platform Technology Classification . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Example Programmable Platform Architecture Classifications . . . . . . . . . . . . . . . . 19

1.5 Horizontal/Vertical Axis Classification Example [Pat01] . . . . . . . . . . . . . . . . . . . 19

1.6 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Comparison of Architecture Service Modeling Approaches . . . . . . . . . . . . . . . . . . 34

2.2 PowerPC store instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 PowerPC load instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 PowerPC Service Performance Estimation Summary . . . . . . . . . . . . . . . . . . . . . 54

2.5 MicroBlaze Service Performance Estimation Summary . . . . . . . . . . . . . . . . . . . . 55

2.6 PLB Bus Service Performance Estimation Summary . . . . . . . . . . . . . . . . . . . . . 58

2.7 OPB Bus Service Performance Estimation Summary . . . . . . . . . . . . . . . . . . . . . 59

2.8 Memory Service Performance Estimation Summary . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Performance Characterization Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Example CoreConnect Based System Permutations for Characterization . . . . . . . . . . . 75

3.3 Non-linear Performance Observed in PPC Systems . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Sample Simulation Using Characterization Data . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Refinement Verification Related Work Classification . . . . . . . . . . . . . . . . . . . . . 92

4.2 Potential Vertical Refinement Event Traces . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Potential Horizontal Refinement Event Traces . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Resource Utilization Event Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Latency Event Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Asymptotic Analysis of Surface Refinement Flows . . . . . . . . . . . . . . . . . . . . . . 132

5.1 MJPEG Encoding Simulation Performance Analysis . . . . . . . . . . . . . . . . . . . . . 144

5.2 H.264 Performance and Cost Results for All Topologies . . . . . . . . . . . . . . . . . . . . 153

5.3 Example of SPI-5 Data Generation Using the Architecture and Application Parameters . . . 156

5.4 SPI-5 Application Parameter Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Traces from FIFO Scheduler CFAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.6 FLEET LTS States and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



ix

Acknowledgments

I would first like to thank my advisor Alberto Sangiovanni-Vincentelli. Not only for his support in helping

me to complete this thesis (and by implication my graduate student career), but also for his mentorship,

advice, and leadership. As I go forward in my career I will forever benefit from our interaction and I hope

that I can be an example to other students some day as he was to me.

Naturally I need to acknowledge all the wonderful fellow graduate students I have worked with

over the past 6+ years while at Berkeley. In particular Abhijit Davare, Qi Zhu, Trevor Meyerowitz, Alessan-

dro Pinto, Guang Yang, Mark McKelvin, Donald Chai, Matt Moskewicz, and Will Plishker. I enjoyed our

many interactions both academic and otherwise. I look forward to when our paths cross again. Best of luck

in all your future endeavors.

Additionally, although not listed explicitly here, all the residents of the Donald O. Peterson (DOP)

Center (Alberto’s group in particular), many other EECS graduate students, and Berkeley students in general

were a pleasure to spend time with. I wish them all the best not only in their studies but in all aspects of

their life. Hopefully we will one day realize what an honor it was to study at a place like Berkeley. It is

impossible to list everyone important to me here. In the event of an omission, know that you are still in my

heart.

As a UC Berkeley graduate student I have had the pleasure of working with some of the best

researchers in the world. My discussions with Ivan Sutherland, Yoshi Watanabe, Shinjiro Kakita, Samar

Abdi, Felice Balarin, Luciano Lavagno, Marly Roncken, John Moondanos, Jason Cong, Adam Donlin,

Patrick Lysaght, John Wawrzynek, Dan Garcia, Edward Lee, and David Patterson were truly inspirational

and I am a better person as a result of our interaction. Thanks for the doors you opened and continue to open

for me both in terms of my career and intellectually.

As every researcher knows, nothing gets done without a tremendous support staff. The Berkeley

staff and administrators such as Sheila Humphreys, Colette Patt, Ruth Gjerde, Mary Byrnes, Beatriz Lopez-

Flores, Loretta Lutcher, and Carla Trujillo gave Berkeley a human touch and on some level they are the

reason that I came to Berkeley. They are extremely dedicated folks and a true asset to the university. Thanks

for everything!

While at Berkeley I was involved in various student groups such as BGESS, LAGSES and HKN.

Fellow members of these groups such as Noaa Avital, Kofi Boakye, Nerayo Neclemariam, Lisa Angus,

Fabian Beltran, Esther Zeledon, Rey Guerra, Hakim Weatherspoon (Makda and the kids too), Rob Crockett,

and Greg Lawrence provided the extra laugh or pat on the back that made all the difference.

A number of companies have supported me throughout the years as well. Intel in particular has



x

been amazing providing me with 4 internships and two fellowships. They gave me a chance when I was

a 20 year old sophomore with little experience. Without this co-op experience I would not have had the

confidence to know that I could be a successful engineer. Xilinx and Cypress semiconductor as well have

been open to my research and supported me during internships and provided me with equipment during my

time as a grad student. Cadence Berkeley Lab was also vital in my early development as a researcher.

Naturally I am indebted to other my other readers as well. Prof. Jan Rabaey’s and Prof. Lee

Schruben’s participation in both my qualifying exam as well as the thesis process in general was much

appreciated and I hope that you both found the process both educational and interesting. Best of luck in all

your future goals both personal and academic. A special thanks to Jan for dealing with my crazy “signature

issues”.

I want to thank the various students that I mentored during my time at Berkeley as well. Murphy

Gant, Rhishi Limaye, Alex Elium, Jue Sun, and Rodny Rodriguez all helped me to learn what I do well and

what I need to work on regarding my teaching and mentoring skills. Aspects of our collaborations are part

of this work! I hope you learned one half of what I learned from you all. Also my time mentoring Iyibo

Jack from the University of Washington was extremely beneficial as well.

As any student will tell you, a strong networks of friends is vital to complete any PhD program.

My undergrad crew of Dale Winling, Neel Varde, Chris Burke, Jake Montgomery and Ryan Owen gave me

a reason to look forward to August for the past 6 years (one day it will be Mock 10!). Of course, Steve

Berke, Moses Morales, and Nils Hernandez have been my “California peoples” since 1998. Who would

have thought almost ten years later we would still be in touch. Patrick Collins opened up my eyes to a lot of

things in life and just plain showed me how to relax a little. I can’t think of a better roommate in the world

and congratulations on the engagement. “That serum is raw”!

Over the past 11 years of my college experience, I have far too often had to put school ahead

of my family. I hope to remedy this in the future. Mom and Dad, thanks for instilling in me the values,

perseverance, and wisdom needed to complete my studies. Diana, Luke, and Kate, please keep following

your own dreams and know that while I have achieved some measure of success, it pales in comparison to

what you can achieve. You all are so talented. To Matt, Alyson, and the boys, I look forward to establishing

a better relationship with you all as I transition into my “adult life” as a married man. I miss you all, and

can’t wait to see you all back in Michigan!

Finalmente tengo que decirle algo a la persona más importante en mi vida. Erika, tú eres la razón
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Chapter 1

Introduction

“The perfect computer has been developed. You just feed in your problems and they never come

out again.” - Al Goodman

The Electronic Design Automation (EDA) industry is currently experiencing a slow down in

growth. This slow down ranged from 1% [Jay05] to -0.6% [Gar05b] growth in 2005 and only 3% [Jay05]

growth in 2006. This data is down from a growth spike of 7.6% in 2001 [Lau02]. In order to counteract

this slowdown, companies (both established and new) are looking to exploit new business opportunities.

In previous years, tools were able to make incremental improvements to their approaches and designers

were able to use existing and traditional design flows to produce products successfully (on time and at a

profit). The success of these small improvements was able to sustain growth. Many analysts feel that this

incremental process will not be possible in the future [Peg06]. A change in the EDA industry will have to

occur for this segment to grow and thrive. This change must be systematic and across the entire industry in

order to be truly effective. Designers are going to have to shift to a new way of not only designing systems

but also to new ways of thinking about the design process.

One of these new business opportunities is in Electronic System Level (ESL) design tool and

methodology development. According to the International Technology Roadmap for Semiconductors (ITRS)

in 2004 [Int04b] ESL is defined as “a level above RTL including both HW and SW design”. ESL is defined

to “consist of a behavioral level (before HW/SW partitioning) and architectural level (after HW/SW parti-

tioning)” and is claimed to increase productivity by roughly 200K gates/designer-year. The ITRS states that

ESL will produce an estimated 60% productivity improvement over what they call “intelligent testbench”

approaches (the previously proposed ITRS electronic system design improvement). While these claims

cannot be verified as yet and do look quite aggressive, most agree that the overaching benefits of ESL are to:

• Raise the level of abstraction at which designers express systems;
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• Enable new levels of design reuse;

• Provide for design chain integration across tool flows and abstraction levels.

As a direct result of ESL tool introduction, EDA growth is predicted to be 22% [Ric05] in 2007!

Figure 1.1 shows not only the impact ESL will have on increasing EDA growth in the future (in terms of

overall revenue projections), but it also shows how ESL tools are predicted to rival RTL tools (Register

Transfer Level; usually specifying a relatively low abstraction level) in terms of revenue potential. This

trend is very important as RTL is the current design benchmark in EDA.
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Figure 1.1: Overall EDA Revenue Growth and EDA Design Segment Growth [Ric05]

ESL methodologies and tools are of increasing interest because they specifically look to exploit the

“design gap” experienced by current design flows. More accurately this should be termed a “methodology

gap” which exists between old design methodologies (i.e. RTL) and new design methodologies (i.e. ESL).

Figure 1.2 presents a qualitative graph relating design complexity to designer productivity with both RTL

and ESL design methods. Today, most designers work with RTL design tools and languages (VHDL and

Verilog for example). They find themselves in the “methodology gap” where the system they are trying to

create exceeds the capabilities of their design environment. This is not to say that the methodology gap

cannot be crossed. On the contrary, the gap can be overcome with existing design methods but only at

a significantly increased cost (both financially and in designer effort). Existing RTL design methods will

continue to be employed until the additional cost of design overwhelms the commercial viability of the final

design. This “maximum tolerable design gap” as shown in Figure 1.2 varies per technology, per market

segment, or even per product and is always present at some level.
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Figure 1.2: “Methodology Gap” Challenge in EDA

A transition from RTL to ESL is required to completely overcome the “methodology gap”. A

transition must occur since it is well accepted that design complexity will continue to increase (reflected

in the continuance of Moore’s Law). Today, the design community is approaching a point of inflection

between the two methods - the rate of ASIC design starts in recent years has remained flat while implemen-

tation/programmable technology’s growth has continued to trend upwards [Gar08]. An important question,

therefore, is “what limits the widespread adoption of ESL by the majority of designers?”. A simplistic an-

swer is that ESL design methods, tools, and languages are simply not mature enough to convince designers

to risk traversing the gap between the two methodologies. To further complicate the answer, we must respect

that ESL methods must tackle multiple design problems. It is ultimately the design projects itself which in-

fluences the relative importance of each problem. Therefore, a complex compromise must be struck between

the ESL vendors who create a set of tools and the system designers who must work in ESL environments.

Because of the potential to bridge the “methodology gap”, ESL is being widely adopted and there

have been a number of industrial tools and academic tools created to be ESL based solutions. While this

thesis will not cover the entire space of these tools or provide a taxonomy of these approaches, [Dou06c]

does provide a comprehensive taxonomy and the reader is invited to examine this work. That taxonomy

exposes the fact that there are many contributions. Each approach attempts to solve a variety of design

problems. However, there is by no means a unified view of how to best attack the forces driving ESL de-

velopment. Fortunately there are a number of design scenarios which ultimately dictate which methodology

is employed. A major contribution of that taxonomy is that it clearly demonstrates that all tools can be

categorized around three orthogonal design aspects:



4

Definition 1.0.1 Functionality - this is “what” a system does. This can also be considered the application

the design implements. Other common terms for this area are application domain or behavior.

Definition 1.0.2 Architecture - this is “how” a system carries out its operation. This can also be consid-

ered the services the system provides. Other terms for this area are platform components or services. Note

that this can be traditional HW ASIC components, programmable processing engines, as well as general

purpose processors (GPPs) capable of running software. All of this development is subject to abstraction in

which case architecture services could be anything from logic gates to ISA instructions. The development

of architecture service models in this area is the focus of this thesis.

Definition 1.0.3 Mapping - this is the process of assigning functionality to architecture (behavior to ser-

vices). Often this is called binding as well and is traditionally seen as part of the synthesis process. This

an assignment between behaviors in the functional model and services in the architectural model. Mapping

can be “many-to-one”. This allows “many” functional behaviors to be assigned to “one” architectural

service. For example a DCT and FFT behavior can be mapped to a single abstract service dealing with

signal processing.

There is a great deal of work related to each of these three areas as was shown in the taxonomy

work [Dou06c]. Often ESL tools will fall into one of these categories only or perhaps combinations. The

areas themselves will be touched on more specifically in Section 1.2 when System Level Design (a method-

ology within ESL) is described in more depth. It should be pointed out again that this thesis in general will

focus on architecture service model development for ESL. This thesis will demonstrate how embedded

system architecture service models can be created and how to formally verify properties of these models as

it relates to refinement.

At this point is should be made very clear that this work is of interest since in order to legitimize

ESL and to continue its adoption, architecture service modeling will need to be provided in such a way that

various desired ESL characteristics attributed to abstraction can be maintained while achieving performance

goals associated with RTL. Specifically this thesis will:

Demonstrate that architecture service modeling in system level design (SLD) can allow abstraction and

modularity while maintaining accuracy and efficiency.

Abstraction allows the system to be described early and at a reasonable cost but it also casts a

shadow of doubt over the accuracy of performance analysis data. Since the data gathered during simu-

lation guide the selection of one system architecture over another, the veracity of data recovered from ESL
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performance analysis techniques with respect to the system feature being investigated must be considered

carefully by the designer. Fear of inaccuracy in ESL performance analysis is a major impediment to the tran-

sition from RTL to ESL. Preventing this inaccuracy is paramount for ESL acceptance and legitimacy

and is the major goal of this thesis.

Modularity encourages reuse, localizes system functionality, provides more system observability,

and helps to manage complex system development. However modularity can often be at odds with sim-

ulation efficiency. Overheads often associated with modularity may decrease simulation speed or enforce

rigid syntactic or semantic requirements on the designer. If a design environment is to be widely accepted it

must remain equally efficient (if not more so) as the current design environments it is replacing for the same

amount of design productivity gains (both in terms of design time saved and design space explored). Pre-

venting this inefficiency is also paramount for ESL acceptance and legitimacy and is partner to accuracy

as a goal of this thesis.

To these ends, the goals of this thesis are outlined in Table 1.1. This table shows how environmen-

tal and industrial factors (Heterogeneity and Complexity) lead to the solutions (Modularity and Abstraction)

that a ESL methodology should achieve. This thesis provides the techniques listed to achieve these goals

and produce the stated outcomes (Accuracy and Efficiency). This is the central proposition of all of the work

contained in this thesis.

Factor Solutions Supporting Techniques Outcomes

Heterogeneity Modularity Event Based Architecture Service Modeling (Chapter 2) Accuracy

Architecture Service Characterization (Chapter 3)

Complexity Abstraction Architecture Service Refinement Verification (Chapter 4) Efficiency

Table 1.1: Relationship Between Factors, Solutions, Supporting Techniques, and Outcomes

1.0.1 Chapter Organization

The rest of this introductory chapter will provide a more in depth analysis of the current industrial

design environment and this thesis’ contributions toward addressing these issues. First in Section 1.1, a

more in-depth discussion of ESL’s (and hence this thesis’) motivating factors will be covered. Section 1.2

will introduce the reader to the System Level Design methodology within ESL and more specifically to

the METROPOLIS design environment which will be used primarily to demonstrate the techniques outlined.

Section 1.3 will introduce the reader to programmable platforms and the powerful role they will play in

architecture service modeling. Finally Section 1.4 will introduce the contribution this thesis makes to the
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area of ESL in the form of a complete design flow. It will outline a naı̈ve design flow approach and close

the chapter with the improved proposed design flow which will be discussed throughout this thesis.

1.1 Motivating Factors

There is a great deal of financial commitment and human resource effort involved in EDA. In

2005 the revenue in EDA was 3.9 billion dollars and was 4.3 billion dollars in 2006. It is projected as

being as high as 7.4 billion dollars in 2009 [Ric05]. According to [Rav05] the embedded hardware market

(which uses EDA tools) will reach $78.7 billion in 2009 assuming an aggregate 14.2% growth rate. Figure

1.3 illustrates this tremendous growth of embedded integrated circuits, software, and printed circuit boards.

This information clearly shows it is a very costly proposition to begin the process of shifting the entire

industry to a new design methodology. It is not done on a whim or due to passing marketing pressures. The

slow down in growth mentioned previously in the introduction however has started the migration process

to ESL and it appears that there is no turning back. The migration to a new methodology is very cognisant

of and concerned primarily with four key factors. The first factor is heterogeneity in device types, systems

fabrics, and technologies. The second factor is complexity both in application and architecture designs. The

third factor is time to market pressures. In semiconductor design for example, the design cycle times have

decreased 33% since the early 1990’s [Gar05a]. A sampling of design cycle time decline is shown in Figure

1.4. This trend means that designs must avoid long development cycles and developer iterations in order to

see profits necessary to justify new product development. The final factors are involved in nanometer era

design effects and are not discussed in this thesis (but mentioned since they deserve recognition). This thesis

focuses in next three sections on the first three factors in more detail. These factors are what will lead to the

solutions outlined in Table 1.1 and ultimately the techniques upon which this thesis is based.

1.1.1 Heterogeneity

Heterogeneity is defined as “the quality or state of being heterogeneous” where heterogeneous is

defined as “consisting of dissimilar or diverse ingredients or constituents” [Mer06]. In the case of embedded

system design and electronic system design in general, there are primarily two broad classes of heterogene-

ity. The first class deals with the various technologies integrated on a printed circuit board (PCB) or even

the device die itself. Figure 1.5 shows “Existing and Predicted First Integration of SoC Technologies with

Standard CMOS Processes”. Notice by the release date of this thesis (Spring 2007), all 11 of the presented

technologies have been introduced. These technologies range all the way from basic CMOS logic to chem-
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Figure 1.4: Semiconductor Design Cycle Time Decline

[Gar05a]

ical sensors and electrobiological components. In order to make sure that these devices function properly,

models must be created which can capture the complex interactions caused by such diverse combinations.

As nano-technology continues to be developed [Cha03] it is clear that integration heterogeneity issues will

only continue to become more complex and critical.

�����

���	


���

�����	

�	����



���


��	

	�	�

��������������

���������������

�����������������

�� ��    !  "  #  $  %  � ! !"

Figure 1.5: Technological SoC Heterogeneity [Don04]

The second type of heterogeneity is inter-device heterogeneity. This description speaks to the

many different types of individual components that are often assembled in a design (often on a single die).

Figure 1.6 shows the Intel PXA270 System on a Chip (SoC). This integrated circuit is used in such devices

as the Mypal A730 Personal Digital Assistant. This PDA has many state of the art features and is equipped

with a digital camera and a VGA-TFT display. The primary issue in these types of systems is making sure
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that the communication between individual components can be sufficiently captured during simulation so

that not only system functionality can be verified during design but also that debugging is manageable. One

must be able to isolate communication from computation, deal with different data types, and different timing

domains. Also it is important that each component be designed separately so that various product families

can be developed with these components to service markets with different performance, power, and price

requirements.
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Figure 1.6: Device Component and Communication Heterogeneity [Int06b]

Heterogeneity is a factor that is not only difficult to manage but is increasingly becoming required.

It is not practical or possible to have homogeneous systems for today’s applications and in many cases the

presence of heterogeneity may be seen as a design’s strength. From this key design factor comes the first

solution of this thesis: Modularity.

Definition 1.1.1 Modularity - the ability to define clearly the boundary between interacting components

both in terms of their communication, computation, and coordination. At these boundaries, components

should be able to be tested and verified for correct functionality. In addition, there should be rules re-

garding how systems are composed of these components and how those boundaries can be changed during

refinement.
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If a design is modular, one can test its components in isolation and will allow for reuse. Modu-

larity allows communication issues to be isolated from computation issues as well. Throughout this thesis,

modularity will be emphasized as it is a critical contribution in the design of system level architecture

service simulation and verification techniques. Modularity will be constantly monitored in the context of

maintaining an efficient simulation environment.

1.1.2 Complexity

The second factor influencing the development of system level design methodologies is the in-

creasing complexity seen both at the application level as well as how many devices can be introduced on

a die. Moores law fuels much of this progress on the technology side but applications are increasingly

requiring more memory and compute power. Multimedia applications are an excellent example of this phe-

nomenon. IBM’s cell processor [Jim05] (an example of a cutting edge architecture design) is prominently

featured in the Sony Playstation 3 and the most sophisticated devices in PCs today are related to graphics

processing for videogames [Nol05]. Figure 1.7 provides a very clear illustration of the issues these com-

plexity trends introduce. One of these is the increasing complexity of designs as measured by the number

of transistors present in a device. This figure shows a 58% per year compounded complexity growth rate.

However, the productivity rate (as measured in transistors per staff month) is only increasing at a 21% com-

pounded growth rate. This growth rate mismatch leads to an increasing productivity gap (this manifests

itself as the “methodology gap” discussed earlier). There is no inherent problem with the producvity gap.

In theory this just means that all of the power of a device will not be realized. However in practice this gap

leads to at least two side effects. The first effect is that in the quest to utilze all that complexity, designs end

up taking more time to develop. This is due to the fact that new architectural innovations must occur in order

to take advantage of the added silicon. In the case of general purpose processors for example, companies

like Intel are no longer pursuing advanced superscalar techniques but rather looking a multi- and many-core

devices. These designs bring with them a whole set of verfication, test, and design difficulties. In the event

that productitvity can not keep pace it is very likely that design times will dramatically increase. This trans-

lates into lost revenue and lost opportunities for many companies. In order to prevent this, the second effect

is seen. Companies often respond by increasing the number of employees to tackle this problem. This leads

to more development costs which end up raising the cost of the device. It is also not clear that this is simply

a manpower issue. It is possible that more manpower will only exacerbate the complexity and management

problem. In the event that the market will not bare this increased cost either the employees cannot be hired
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or companies are not as profitable. Often what this means is that only the largest companies are able to

compete in this space and as a result creativity and competition are not promoted. Innovation cannot occur

and the small companies which may be ideally placed to look at new ideas are not viable!
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Figure 1.7: Growing Gap Between Device Capacity and Designer Productivity [Int99]

As heterogeneity was coupled with modularity, the complexity factor is coupled with the solution

of design Abstraction.

Definition 1.1.2 Abstraction - the addition of system behaviors. A system is more abstract if it has more

possible behaviors and less abstract if it has fewer possible behaviors. Abstraction does not have to do

with code size, complexity of execution, or number of “details”. Abstraction can be seen as a relaxation of

constraints which expands the space of behaviors a system can exhibit. It is the process of obscuring aspects

of the design in order increase the ability of the designer to only consider those which help to develop a

design at that particular stage.

Abstraction could be a set of transistors being represented as logic gates, a set of bus transactions

being reduced to a IP interface, or the operation of a processor being a set of abstract services (add, divide,

etc). Abstraction will allow more device resources to be utilized more easily but it must be tempered by

the level of controllability, observability, and accuracy. Higher levels of abstraction allow design changes to

most dramatically effect the overall design but a designer also has the least insight into how precisely the

changes brought about this change. The inverse is true for less abstraction. What is needed is something

with the best of both techniques. This thesis will show how abstraction can be achieved while maintaining
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accuracy. Specifically maintaining relative accuracy or fidelity.

Definition 1.1.3 Fidelity - requires that all pairs of corresponding measurements m1, m2 in a abstract

model and p1, p2 on the actual implementation, hold m1 < m2 if and only if p1 < p2.

1.1.3 Time to Market

The first two factors, heterogeneity and complexity, were aspects of embedded system designs

that were technology and application driven. The final factor, time to market pressure, is consumer driven

and is in opposition to the other factors. Time to market is why a design method needs to be accurate and

efficient. If it is not, there will be long iterations in the design and as a consequence release dates will slip.

Figure 1.8 shows three markets described by what the industry norm is regarding time between subsequent

product releases (fast, medium, and slow). These markets could represent digital consumer devices (PDAs,

cell phones), set-top equipment (televisions, DVD players), and automotive industries respectively. The

Y-axis is what percent of revenue is lost if you are N months late (X-axis). While this is a fairly qualitative

figure, the spirit of it remains. Essentially any longer than 12 months late is considered a product failure

from a revenue standpoint. As little as 3 months late can be drastic as well (potentially losing as much as

15% of the expected product revenue). The lesson learned here is that time to market windows are small

and the financial cost of missing them is extremely high.
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Time to market issues cannot be ignored since it they are why companies cannot take an arbitrary

amount of time to produce designs. Granted it is not the only factor calling for an efficient design process (for

example it would not be cost effective to manufacture an arbitrary number of devices at any design process

speed in order to weed out process errors) but it is nonetheless a very powerful factor and the underlying

influence behind almost all EDA efforts (tool design by nature looks to speed up the design process since

time is often equated with designer effort).

1.2 1st Focus: System Level Design

The beginning of this chapter discussed Electronic System Level (ESL) design and its increasingly

important role in EDA. Often an approach within ESL concerned with specific system wide integration goals

(reuse, modularity, formal techniques) is called System Level Design (SLD) [Kur00] (often ESL and SLD

are used interchangeably). SLD allows for a designer to think of traditional software and hardware aspects

of the design separately. Algorithms are decoupled from the elements which implement them. For the

purposes of this thesis, system level design is going to refer primarily to the level of abstraction employed.

Computation will take place at the granularity of function calls typically. Communication operations will

be considered as transactions (as opposed to bit-level or register interactions).

Definition 1.2.1 System Level Design - a design methodology whereby the interactions amongst compo-

nents at an increased abstraction level are examined. Design is done taking the entire system into consider-

ation as well, not just individual components.

It is important to understand that SLD is a large design umbrella defined by a generic set of goals

with a number of various approaches possible within ESL. In fact within ESL there are many industrial

and academic offerings with claims to be members of the SLD community. In [Dou06c] (the taxonomy

previously mentioned), over 90 tools and environments were categorized. The approaches differed by their

ability to support (F)unctional modeling, (P)latform services, or (M)apping capabilities. Approaches could

be combinations of these distinctions. If this thesis work is to use the terminology used in that source, then

specifically it will examine an FPM approach. FPM approaches are attractive since this thesis investigation

could be carried out in one unified environment. In particular this thesis will be focusing in on a particular

style within ESL called, Platform-Based Design [Alb02]. Platform-Based Design (PBD) is concerned with

what is termed the orthogonalization of concerns. These concerns are:

• Functionality (what something does) and Architecture (how it does it). For example multiplication
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itself is very well defined functionally. However, the architecture which implements it may be a

series of adders or a dedicated multiplier. This separation goal is shared by a variety of other SLD

methodologies.

• Behavior (Semantics) and Performance Indices (Latency, Throughput, etc). Behavior defines how a

device operates. A bus protocol is an example of a behavior. Performance is a cost of that behav-

ior. Bus transaction latency times (performance) are a function of many things not specified by the

behavior (for example clock speed is not a behavior).

• Computation, Communication, Coordination. How things compute should be separate from how they

interact (communicate) with other aspects of the system, and both computation and communication

should be separate from the scheduling mechanisms.

By keeping these issues separate, the now modular design allows for a smoother verification

process, reuse, and abstraction. These are exactly elements that were stated as goals of this thesis!

In order to achieve these goals, PBD is a three stage process: top down application development,

bottom up performance exposure, and defining a common semantic meeting point to explore functionality

and architecture mappings. Figure 1.9 illustrates this methodology and provides the needed description.

An ESL tool using a Platform-Based Design methodology is METROPOLIS [Fel03]. As men-

tioned, METROPOLIS is an FPM (Functionality, Platform, and Mapping) ESL solution. It is developed at

UC Berkeley and is available through the Gigascale Systems Research Center (GSRC). The design envi-

ronment is shown in Figure 1.10 along with its organizational structure in terms of primary and support

activities. The beginning of a METROPOLIS design flow starts by describing either a functional model or

architectural model in the METROPOLIS Meta-Model (MMM) language. Working at the MMM level to

develop architecture service models will be the scope of the discussion in Chapters 2 and 3. From this

user input, the Meta-Model compiler decomposes the description into an abstract syntax tree (AST). This

AST can be fed into any number of backends in order to simulate the design, perform synthesis, or for ver-

ification tasks. The majority of this thesis is interested in using METROPOLIS for design space exploration

(DSE). Chapter 4 will include a discussion of how backends can be used to verify refinements of architecture

services.

Another ESL tool using Platform-Based Design is METRO II. Also an FPM based approach, it is

the successor to METROPOLIS. Primarily it looks to streamline METROPOLIS and provide better support

for heterogeneous IP import, cleaner separation of annotation and scheduling activities, and a three phase

simulation engine. Chapter 2 will provide a proposal on how architecture service models may be modeled

using this tool.
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Figure 1.9: Platform-Based Design Methodology [Alb02]

Definition 1.2.2 Design Space Exploration - the process of looking at a variety of designs and using the re-

sults of simulation, verification, or other analysis methods to make decisions regarding which design should

be selected, which modifications can be made to existing designs to increase performance, and observe

potential design issues that may have been overlooked during specification. This process is done prior to

committing to a particular design with the intention of physically creating it or its prototypes.

Chapters 2 and 3 will discuss how models can be developed for DSE. Chapter 4 will utilize a

backend for verification which be used in conjunction with simulation to make guarantees about design

correctness during DSE. Chapter 5 will provide a number of case studies to demonstrate the applicability of

the techniques proposed.

It should be noted that this thesis is independent of METROPOLIS or METRO II. It is true

that there are aspects of these environments exploited to achieve the goals outlined previously. However

these can be applied to other tools as well. More specifically, a design environment with the following

characteristics would also be able to take advantage of the techniques outlined by this thesis:
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1. Support for multiple models of computation - this thesis requires both tagged signal modeling seman-

tics as well as data flow modeling.

2. Explicitly separate an architecture model’s behavior and how its operation is scheduled - this thesis

requires this separation to meet its performance and reuse goals. The refinement formulation is also

highly dependent on this distinction.

3. Event based synchronization - this thesis requires that elements which form architecture services be

coordinated with events.

More specifics about METROPOLIS and METRO II execution and modeling will be covered in

Chapter 2 and can be found in [Fel03] and [Abh07].
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Figure 1.10: METROPOLIS Design Environment and Organization

1.3 2nd Focus: Programmable Architecture Services

When having a discussion about creating abstract, modular architecture service models which

are still efficient and accurate one must quickly determine what types of implementation devices one is

going to consider. One could consider static architecture service models. A static architecture service model

for the purposes of this thesis is one which has its functionality bound during manufacturing. This is the

case when speaking about a General Purpose Processors (GPP) such as Intel’s Pentium 4 [Int06a] or ARM
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style processor [ARM06]. ASIC designs could also be members of this group. These devices are perhaps

programmable at the ISA level (GPPs) but one cannot change the computation fabric or interaction between

computation or communication units after fabrication. The are usually either very special purpose (ASICs)

or very generic (GPPs). Often they have a high design cost but are often cheaper to manufacture and recoup

that design cost in sales volume. At the other end of the spectrum are programmable architectures or plat-

forms (the term platform denoting a set of services which typically are not associated with traditional CPU

architectures). A programmable platform is a system for implementing an electronic design. Examples of

these are Platform FPGAs and ASIPs. These systems are distinguished by their ability to be programmed

regarding their computation (functionality), communication (topology), or coordination (scheduling). Pro-

grammable platforms are increasing in use and popularity for several reasons: [Kur02], [And00]

• Rapid Time-to-Market - One can often eliminate fabrication time by using off the shelf parts. This

also bypasses a large part of the verification time as well since parts are well understood and there is

no post silicon verification phase.

• Versatility, Flexibility (increase product lifespan) - Design reuse within a programmable architecture

family is often possible.

• In-Field Upgradeability - Many devices are reprogrammable using as little as a personal computer

or a portable flash memory card.

• Performance: 2-100x compared to GPPs - Special purpose computation units can exploit spatial

concurrency or dedicated hardware can be created.

Table 1.2 lists a set of characteristics that allow programmable platforms to achieve those advan-

tages. However they naturally have some disadvantages as well:

• Performance: 2-6x slower than ASICs - Programmable architecture topology overhead related to

programming the device may hurt performance. For example, FPGAs are unable to perform routing

as efficiently as a custom ASIC due to its mesh like structure.

• Power: 13x compared to ASICs - Programmable architecture fabric is not typically optimized for

power although companies are starting to improve their power consumption dramatically.

Overall the strengths outweigh the weakness as both of the weaknesses are becoming less of an

issue as technologies mature. Programmable Platforms often have a very regular device fabrics (FPGAs for

example are famous for this). This regularity allows for advances in device technology (such as transistor
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scaling) to be taken advantage of with minimal design changes. An FPGA is able to double its computing

capacity every 18 months with the same die size potentially. In fact, industry luminary Tsugio Makimoto of

Sony Corporation has programmable platforms as a key extension of his now famous “Makimoto’s Wave”.

Figure 1.11 illustrates this point. The wave demonstrates the observation that the electronics industry oscil-

lates between standardization and customization. Standardization is used to proliferate designs and enable

new companies and designers to enter into the marketplace. Customization occurs as a means for innovation

and to enter new market areas where standards are not in place. Standardization is able to take advantage

of factors such as regularity, automation, and predictability. All of those factors are reasons why this thesis

explores programmable architectures services (a standardized approach). Tool development by its very

nature is most productive during the standardization cycle of the wave.
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Figure 1.11: Makimoto’s Wave and Programmable Devices [Tsu00]

Because of their increasing relevance and prevalence, programmable platforms are a natural tar-

get for ESL design flows. In addition, they directly target time to market issues. Also they often side step

technology heterogeneity issues since they have regular design fabrics. Finally, they can be customized

to directly address new complex applications. From a practical standpoint, if one were to create architec-

tural models of a programmable device, these models by definition could be used to represent a very large

set of individual architecture instances (i.e. each configuration). By modeling the primitives of the pro-

grammable platform a very large design space can be easily created from a relatively small model set.

However it is not enough to say that this thesis will focus on programmable platforms since this is still a

broad classification. The discussion will now begin the process of narrowing down the focus within this

space.
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To begin, the characteristics of programmable platforms are shown in Table 1.2. These charac-

teristics are intentionally vague and meant to contrast those not typically explored in static architectures.

The architecture models to be described allow for all of these features as each is a very important aspect

of a programmable platform. As mentioned this table highlights the strengths of programmable platforms

especially when dealing with concurrency and distributed control.

Characteristic Description

Spatial Computation Data processed by spatially distributing the computations

Configurable Datapath Functionality and interconnection network of computational units is flexible

Distributed Control Units process data based on local control

Distributed Resources The required resources for computation are distributed throughout the device

Table 1.2: Characteristics of Programmable Platforms

Table 1.3 shows the wide range of programmable devices. As the table progresses, the level of

abstraction increases as does the intended scope of the device (from component to whole system). For this

thesis, FPGAs, SoCs, and Hybrid Architectures will be focused on. This thesis is presented purposefully

device agnostic. However, the key issue here is abstraction (the granularity at which the device is modeled).

This thesis is going to look at functional and transaction level models. Therefore it is inappropriate to

talk about PLDs. In addition, analog issues will not be explicitly mentioned therefore Field Programmable

Analog Arrays (FPAAs) will not be covered.

Device Description

Programmable Logic Device (PLD) PROMS, PLAs

Examples: Flash Memory Devices from Intel [Int04a]

Field Programmable Gate Array (FPGA) Contains uncommitted configurable logic blocks (CLBs)

*FOCUS of this thesis Examples: Altera Cyclone FPGA [Alt04]

Field Programmable Analog Array (FPAA) Contains uncommitted configurable analog blocks (CABs)

Examples: Anadigm AN10E40 [Ana04]

System on a Chip (SOC) Static and reconfigurable components at function unit level

*FOCUS of this thesis Examples: Cypress PSoC [Cyp04]

Hybrid Architectures Static and reconfigurable components at function and bit-level

*FOCUS of this thesis Examples: Xilinx Virtex II Pro [Xil02]

Table 1.3: Programmable Platform Technology Classification

Table 1.4 illustrates the various aspects which need to be considered when creating a model of a

programmable architecture. The left column indicates the various aspects of programmable platforms that

are of interest in a modeling framework. A description and example of each is provided in the right column.

This thesis will be dealing with functional unit granularity and tight chip level host coupling. The other
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factors do not directly apply to this thesis. Reconfiguration methodologies are not directly discussed (but

can be modeled still) and arbitrary memory organizations can be modeled.

Classification Description

Granularity Size of the smallest reconfigurable functional unit addressed by mapping tools

Tradeoff between flexibility and performance overhead

Examples: CLB, ADC, ISA (bit level, function unit, program control)

Host Coupling Type of coupling to host processor

Loose System Level/Loose Chip Level/Tight Chip Level

Examples: Through I/O (SPLASH);

Direct communication (PRISM); Same chip (GARP, Chameleon)

Reconfiguration Methodology How the device is programmed

Examples: bit stream (serial, parallel); dynamic; partial

Memory Organization How computations access memory

Examples: large blocks vs. distributed

Table 1.4: Example Programmable Platform Architecture Classifications

Finally, Table 1.5 shows the potential design levels (abstractions) upon which programmable de-

vices can operate. There are two axes. The left column is the vertical axis which represents abstraction.

The other three right columns are the types of design element categories. This thesis will be concerned

with both the Microarchitecture level and the Process/Systems level. System Level Design dictates that it

only really makes sense to examine the levels above “Implementation”. RTL based design would be more

concerned with “Implementation level” and its goal would be to integrate the ESL solution with a tool that

could traverse this portion of the design flow.

Design Levels (Vertical Axis) Design Elements (Horizontal Axis)

Communication Storage Processing

Implementation Switches/Muxes RAM Organization CLB/IP Block

Microarchitecture *FOCUS Crossbar/Bus Register File Size Execution Unit Type

Cache Architecture Interpreter Levels

Instruction Set Architecture Address Size Register Set Custom Instructions

Process Architecture *FOCUS Interconnection Network Buffer Size Number/Types of tasks

Systems Architecture *FOCUS

Table 1.5: Horizontal/Vertical Axis Classification Example [Pat01]

In summary, this thesis will be concerned with modeling architecture services for FPGAs, SoCs,

and Hybrid Architectures at the functional unit granularity with details present regarding the mi-

croarchitecure and system level. Specific examples will be discussed regarding the Xilinx Virtex II Plat-

form FPGA [Xil02] (hybrid architecture) in Chapter 2.
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These sets of programmable platform categorizations were chosen since they are at the appropriate

level of abstraction desired. Additionally, they are easily described as modular components. They are easy

to characterize which will improve accuracy as well.

1.4 Thesis Contribution

At this point the reader should now be familiar with the items necessary to understand the back-

ground, goals, and context of this thesis. This final section will attempt to make very clear the contribution

of this research. Thus far this chapter has established several things:

• Introduced Heterogeneity, Complexity, and Time-to-Market pressures as the motivating factors in

this research. These factors must be addressed in order for EDA to move forward to new growth areas

and develop new methodologies for its continued success.

• Matched the design factors to the design solutions intended to resolve them (Heterogeneity to Mod-

ularity and Complexity to Abstraction).

• Identified the outcomes that are desired: Accuracy and Efficiency and the ability to meet Time-

to-Market demands. It is not enough to simply create abstract and modular designs without being

accurate and efficiency. It is clear that ESL adoption is dependent on the ability to ensure these

qualities.

• Introduced METROPOLIS and METRO II as the ESL, FPM, platform-based design approaches that

will be used to explore these concepts. In the event the one does not uses these frameworks, the

required constructs have been outlined as well.

• Identified that Programmable Platform Architectures Services are going to be the focus of the

architecture service modeling in the methodology to be described. Not only do these devices look

to address the same concerns as ESL, but they also possess key characteristics which make archi-

tecture modeling at the system level more accurate and efficient. Creating one set of programmable

components takes the place of creating a very large set of static components.

What now remains is to demonstrate how these contributions combine to create a design flow to

accomplish the desired outcomes. What will be presented next are two approaches.
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1.4.1 Naı̈ve Design Flow

Before presenting the approach to be elaborated on in this thesis, a naı̈ve approach will be pre-

sented as an example of how design is often done and to clearly illustrate the advantages of the proposed

approach.

A typical simulation and synthesis design flow which minimally attempts to use ESL ideas (ab-

straction and modularity) may proceed something like this (Figure 1.12).

1. Create an abstract and modular architecture service design in a system level design environment.

This will be accomplished in an environment supporting various models of computation and mapping

strategies in the best case.

2. Estimated data is used to annotate the simulation. This data may come from best practices, back of

the envelope calculations, data sheets, or area based timing information. It is from a set of simulations

based on this data whereby a final design is chosen.

3. Once a design decision is made during design space exploration, one creates a “C” model (or equiva-

lently a high level language description which is sequential in nature) manually which should represent

the abstract system. This is needed since the abstract system has no automated path to synthesis.

4. Create an RTL model manually from the “C model”. This is done since RTL has a path to synthesis

and industry expertise exists with designers who routinely perform this transformation.

5. Finally from the “golden” RTL model create an implementation.

As Figure 1.12 shows, just because the initial design is abstract and modular it does not guaran-

tee accuracy or efficiency! In fact, one must take explicit steps to ensure such characteristics. Weaknesses

are found in all areas of the naı̈ve design flow. This design flow is currently tolerated because the level of

complexity in today’s designs is such that the methodology gap can be overcome with the iterations seen

in this flow at a cost low enough to justify continuing this path. However, this will not be the case as the

iteration time will grow and design times will shrink. Additionally the “length” of the iterations in terms of

designer teams involved and processing steps will grow as well.

1.4.2 Proposed Design Flow

It is immediately clear that the naı̈ve approach is not acceptable and will not achieve the goals

desired by the work in this thesis. The proposed approach improves upon the naı̈ve approach in the following

ways:
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Figure 1.12: Naı̈ve Design Flow

1. The proposed flow replaces a generic, abstract modeling approach with a fundamentally solid, archi-

tecture service based modeling style. This is focused on programmable platforms and uses an FPM

based environment. Services are at the transactional modeling level using an underlying event based

semantics. (Chapter 2)

2. The proposed flow replaces estimated data in simulation with characterized data from real program-

mable platforms. (Chapter 3)

3. The proposed flow replaces manual translation from the more abstract design to implementation with

a “correct-by-construction” automatic method. (Chapter 2)

4. The proposed flow provides refinement verification techniques that close the implementation gap

while still allowing highly abstract design space exploration. (Chapter 4)
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These improvements are made possible by focusing on transaction level representations of pro-

grammable architectures and leveraging an event based simulation environment (i.e. the METROPOLIS

design environment). Figure 1.13 shows the techniques to be discussed in this thesis work and provides an

ordered step by step explanation of the process.

The contributions to EDA as a result of this thesis are outlined concisely in Table 1.6 and a sum-

mary of this thesis work can be found in [Dou06b].

Technique Contribution/Impact

Architecture Service Modeling 9 Xilinx CoreConnect IPs modeled (Programmable Architecture)

Chapters 2 and 5 8 Xilinx IP Quantity Managers modeled

SHIP and Switch Fabric modeled (FLEET Architecture)

Programmable configuration file (MHS) extraction automated

Fidelity shown to hold in case studies

Accuracy improved over naı̈ve estimation methods

H.264 deblocking filter case study provided

Characterization Process 1st precharacterization process for programmable platforms in SLD

Chapters 3 and 5 Patent filed regarding the process

400+ systems characterized

Permutation, extraction, and augmentation automatic

Motion-JPEG encoder case study provided

Refinement Verification Event based refinement methodologies developed (Vertical and Horizontal)

Chapters 4 and 5 Interface refinement method developed (Surface)

Compositional component based method developed (Depth)

FLEET communication architecture case study provided

SPI-5 packet processing case study provided

Table 1.6: Contributions of this Thesis

1.5 Thesis Outline

This thesis is presented as follows: Chapter 2 details the interface function level, transaction

modeling of preemptable programmable architecture services. Chapter 3 details the characterization of

programmable platforms for the annotation of architectural services during simulation. Chapter 4 examines

three refinement verification techniques for these types of architecture service models. Chapter 5 presents

the results of a number of case studies. These applications are MJPEG encoding, H.264 deblocking filter,

SPI-5 packet processing, and a novel communication structure of a highly concurrent architecture (FLEET).

Chapter 6 concludes this thesis with a discussion of lessons learned and provides future directions.
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Figure 1.13: Proposed Design Flow



25

Chapter 2

System Level Architecture Services

“Hardware: the part of the computer that can be kicked” - Jeff Pesis

Architecture service modeling is the process of creating an environment to represent and ex-

pose services that can be used to implement functionality. Services represent capabilities of the underlying

architecture upon which the design will be eventually implemented. These services are exposed to the de-

signer and a correspondence can be made between the functionality present in the application model and the

services exposed (this is a mapping). This service based environment is then used to investigate the perfor-

mances that potentially can be obtained by using collections of these systems. This methodology requires

the explicit separation of the functional model and the architecture model. This separation exists in the

Platform-Based Design methodology (described in Chapter 1) and is required throughout this thesis. This

chapter will detail the background and related work in creating architecture services of this type, provide

details of programmable service models that have been created, and outline the key features of this style of

design space exploration.

Traditionally architecture and functional models have been merged. For example, synthesizable

RTL design implicitly ties what the system does along with the physical structures that will implement it.

Other systems begin with a functional description and this description morphs into hardware and software

through a series of refinement steps. While this process can be automated, to some extent there does not exist

descriptions of the system which are purely functional or purely architectural. As a result, when a designer

wants to reuse the functional specification using a new architecture, either a new design must be written, or

minimally rolled back to the most abstract version. In any event, much design and verification work will be

lost. This thesis’ approach looks to eliminate this inefficient and potentially error prone process.

However, in the event that this functional/architecture separation does not exist, architecture mod-

eling is difficult to define, has a broad set of interpretations, and classically results in modeling structural
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or topological details of an electronic system. Examples of these alternate styles are covered in Section

2.2 (related work). There are a number of tradeoffs possible by using these alternate styles. For this thesis

however, it is assumed that such a separation exists and the ultimate goal of the modeling effort is for de-

sign space exploration via simulation. This chapter will demonstrate why this style was chosen, how it was

implemented, and how it ultimately achieved the architecture modeling goals outlined in Chapter 1.

This chapter will illustrate how to model architecture services at the transaction level so that modularity

and accuracy will be maintained. This requires support for a variety of architecture topologies, service

exposure levels, and extensions for mapping. This process is clearly illustrated in a platform-based design

environment.

A key question which must be answered in this thesis is: “what is a service?”. It is important to

remember that architecture modeling efforts can stretch many abstraction levels. For example a basic logic

operation “A AND B” can be implemented as a 2-input AND gate or it could also be implemented as a

N-input AND gate where two of the inputs are A and B and the other N − 2 inputs are tied to “logical 1”.

In either case an AND service would be exposed but each case may have a different cost associated with it.

Another example at the other end of the abstraction spectrum is a Discreet Cosine Transform (DCT). This

operation can be carried out on a model of a general purpose processor or a dedicated HW DCT. Again each

would be a DCT service but the former may have a higher execution time cost than a dedicated HW block.

There are many different ways of modeling architectures to this end. A model can be a single entity or a

collection of smaller entities that make up a larger system. Essentially a service has an interface and a cost.

Services will be defined formally in Section 2.1 and a high level picture is shown in Figure 2.4.

Tradeoffs can be made between architecture models based on information they provide regarding

the cost of their selection. These costs can be performance, power, area, etc. These costs need to be accurate

while allowing the architecture models to be abstract and modular. These are the challenges outlined in

Chapter 1 and will be addressed in this chapter. Figure 2.1 shows qualitatively how “this work” compares

with other architecture modeling styles in terms of relative accuracy (how simulation compares to actual

implementation) and relative efficiency (how easily complex systems can be captured). The other styles

compared are based on the classification given in [Ada04] regarding TLM modeling styles. This illustration

clearly places this thesis work in the context of the existing approaches.

While it is clear that architecture modeling is possible, naturally it is important to answer why

it should be done. Primarily architecture modeling at the system level is done so that system designers

can see the effect of design decisions prior to implementing the systems. This process is done primarily

through simulation. The more abstract this process can be, hopefully the faster simulation will be and the
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Figure 2.1: Proposed Service Style Versus Existing Service Styles

less designer effort that will be required. Hence abstraction must be maintained. Simulation must naturally

also be accurate or it is not a useful exercise as the implementations will not have a correspondence to the

simulation. Specifically this chapter will demonstrate how to do this in the design flow shown in Figure 2.2

taken from the larger “proposed flow” from Figure 1.13.

2.0.1 Chapter Organization

This chapter is organized as follows: Section 2.1 provides background and basic definitions re-

lated to system level architecture service modeling. This will be followed by related work in Section 2.2.

These two sections together will provide a solid foundation for the work presented later. Section 2.3 speaks

specifically about the process and requirements for creating system level event based service models. This

includes discussions of how to create an architecture in METROPOLIS (Section 2.3.1) and METRO II (Sec-

tion 2.3.2). Specific additions to handle preemption and provide mapping extensions are covered in Section

2.3.3. Sections 2.4 and 2.5 go into detail about two architecture platform models, Xilinx Virtex II Pro

and FLEET respectively. These sections provide information on how the models were constructed, code

examples, and sample architecture topologies. Finally Section 2.7 provides conclusions and future work.
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Figure 2.2: System Level Architecture Modeling in the Proposed Flow

2.1 Background and Basic Definitions

This chapter and this thesis work in general requires that many terms be defined. These terms

often have been used in other work using different language and in different contexts. This section is an

attempt to reduce ambiguity. The terms here are meant to highlight concepts developed and leveraged by

this thesis. The language used in these definitions is meant to strike a balance between being too generalized

but at the same time not forcing a formalism that does not exist.

Throughout this thesis the word “behavior” will be used. This is often an overloaded term. In this

case it means the following:

Definition 2.1.1 Behavior - a possible execution of a collection of services. How this execution is measured

varies from system to system. An architecture model can be viewed as a set of behaviors. These execution

sequences should be defined at an observable location such the memory contents, input and output ports, or

communication points (buses, switch, etc).

Abstraction and behaviors only make sense in the context of a model. The first idea of a model

is a platform. Generically we can think of architecture platforms with the following two definitions (from

[Fel05]):

Definition 2.1.2 An Architecture Platform consists of a set of elements, called the library elements, and

of composition rules that define their admissible topologies of connection.
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Definition 2.1.3 Given a set of library elements D0 and a composition operator ||, the platform closure is

the algebra with the domain D = {p : p ∈ D0}∪{p1||p2 : p1 ∈ D∧ p2 ∈ D} where p1 || p2 is defined if and

only if it can be obtained as a legal composition of agents in D0.
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Figure 2.3: Architecture Platform Composi-

tion and Creation
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Figure 2.4: Architecture Service Taxonomy

Figure 2.3 demonstrates the definitions related to platforms. This is especially important for the

work discussed here since the library of elements represent smaller architecture service IP models for pro-

grammable platforms and the collection of these elements creates a platform instance.

Definition 2.1.4 Architecture Model - an architecture platform instance. Of the possible platforms that

can result from a collection of library elements, one particular selection is an architecture model.

Definition 2.1.5 Service - a library element with a set of related interface functions and a cost. A service is

a tuple <f, c> where f is a set of interface functions and c is a set of costs. Services are the building blocks

of an architecture model. All services are library elements but not all library elements are services. Library

elements may provide infrastructure for creating an architecture model but not be visible to the functional

model through interfaces or may not have costs. These two aspects however are requirements of a service.

Definition 2.1.6 Interface - a set of operations included in a service which can be utilized externally. These

can be collections of functions (C style methods) or transactions.

For the sake of this thesis an architecture model has to perform the following tasks:
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• Capture the desired services for the given abstraction level. For example at the logic gate level of

abstraction, an architecture model must capture the number of inputs and outputs it is responsible for,

as well as potentially capturing the interactions within the component during calculation. For the DCT

example, it again must capture the inputs and outputs. The behavior internally during computation

will be much more complex however. Note that an architecture model DOES NOT have to capture

functionality. That is the job of the functional model. For example the architecture model of a logic

gate does not need to calculate the outcome of “A AND B”. It only needs to model the services

involved in such a computation.

• The second aspect of architecture modeling is providing a Cost associated with the service. This

cost will be associated at the granularity of the operations recognized in the architectural level. For

example, the AND logic gate model may simply be annotated with the information that the cost of

such an operation is 2 time units (whatever those units may be). However the DCT operation may not

have a fixed cost. Its overall cost will depend on the type, order, and number of internal operations

that are modeled within the DCT operation. This may depend on the state of the DCT, the types and

size of its operands, or even the temperature of the device if that is so modeled.

Definition 2.1.7 Cost is the consequence of using a service. Typically for embedded architecture models,

cost is thought of as power, execution time, area, etc. Typically this is a physical quantity. These physical

quantities are of interest during design space exploration. Cost can be a function of various variables or

conditions such as input type, count, size, state of the system, etc.

The ultimate goal of this thesis is to allow design space exploration through simulation. In order

to perform this simulation, mapping is required and the system must then be executed.

Definition 2.1.8 System - a complete mapping of functional model behaviors to architectural services.

Definition 2.1.9 Execution of a system is a set of architecture service interface functions invoked during

the process of simulating an application. This results in a collection of costs as well which can be deemed

the results of this execution. These costs are then used to evaluate the potential of the system model.

Definition 2.1.10 Event - logically an event instance denotes system activity. In this thesis, formally an

event is a tuple < p, T, V >. p is the process which generated the event and therefore the event is associated

with it. T is a set of tags. Tags are used to assign partial or total orders to events. Finally V is a set of

values of the event. Values can be used to hold information to evaluate the execution costs of a system using

events.
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Definition 2.1.11 Transaction - a collection of service interface calls. Transactions can also be one service

call which generates other service activity without explicitly calling their interfaces. This grouping is done

to add abstraction and redirection into designs.

Definition 2.1.12 Atomic Transaction a transaction which only explicitly calls a service interface. This

service must complete (the events generated are annotated and terminate) before another service can begin.

Definition 2.1.13 Annotation is the assignment of a value to an event. These annotations will typically

be considered together at the conclusion of architecture execution in order to determine various metrics by

which to evaluate the application running on a particular architecture.

2.2 Related Work

When discussing related work in system level architecture service modeling there are many com-

parisons and there are many approaches that can be examined. These approaches can be divided into those

which are industrially developed and those which are academic based. Additionally, these approaches can

be placed in a platform-based design flow. This placement allows them to be divided into those which just

allow a platform description (P) or a platform description plus mapping capabilities (PM). This is exactly

how the taxonomy in [Dou06c] is constructed. This section will present a brief overview of that work along

with providing other insights into how this thesis fits into the existing system level design landscape.

In the language development domain there is primarily SystemC [Ope07]. This is by far the most

recognized system level architecture development language. SystemC is a set of libraries built on top of

C++ which allows for concurrent module simulation, event synchronization, and a variety of elements which

facilitate architecture descriptions. The core is an event driven simulator using events and processes. The

extensions include providing for concurrent behavior, a notion of time sequenced operations, data types for

describing hardware, structure hierarchy, and simulation support. Accellera’s SystemVerilog [Acc07] is an

extension of verilog which adds system level features. For example it can co-simulate with C/C++/SystemC

code, includes support for assertion based verification (ABV), and provides extended data types and eases

restrictions on type usage. Unified Modeling Language (UML) [Uni07] is another well known language

which is in this space. UML allows for the abstract specification of a system using a graphical set of

diagrams. It is used to illustrate the system topology and the relationship between components.

In the industrial domain, tools which focus on platform descriptions (P) include such tools as

Prosilog’s Nepsys [Pro07]. This tool relies on IP libraries based on SystemC. It works at the component,

transaction level. Beach Solution’s EASI-Studio [Bea07] focuses on interconnection issues at the component
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level and provides solutions to package IP in a repeatable, reliable manner. The suite provides a collection

of tools which help to manage the design. These tools include data import features, graphical interface

capture, and IP watermarking. Of particular interest are its Specification Rule Checks (SRC) which ensure

adherence to naming conventions, name uniqueness, address space uniqueness, and that parameter values

are resolvable. Sonics’ Sonics Studio [Son07] works at the implementation level by using bus functional

models (BFM). This tool includes a graphical, drag and drop environment for configuring SoC designs. This

environment also provides monitor functions and simulation support for IP blocks.

Industrial domain tools for creating platform descriptions with mapping capabilities (PM) include

VaST Systems Technology’s Comet/Meteor [VaS07]. The Comet tool focuses on high performance proces-

sor and architecture models at the system level. This tool uses virtual processors, buses, and peripheral

devices. Meteor is an embedded software development environment. It also accepts virtual system proto-

types for cycle accurate simulation and parameter driven configuration. Finally Summit’s System Architect

[Sum07] looks at multi-core SoCs and large scale systems. This is a SystemC component based system.

Summit has been recently acquired by Mentor Graphics.

Finally, industrial tools with functional, platform, and mapping capabilities (FPM) include MLDe-

sign’s MLDesigner [MLD07]. This tool allows for discrete event, dynamic dataflow, and synchronous

dataflow model of computation to be described. It is intended to be used for a “top-down” design flow start-

ing from initial specification to final implementation. It includes an integrated development environment

(IDE) to integrate all aspects in one package. Mirabilis Design’s Visual Sim [Mir07] product family adds

continuous time and finite state machine (FSM) models of computation natively to this list of supported

MoCs (they are also available in the experimental library of MLDesigner but as of the time of the work, they

are in the beta stage). The design process in Visual Sim begins by constructing a model of the system using

the parameterizable library provided. This model can be augmented as well with C, C++, Java, SystemC,

Verilog, or VHDL blocks. The library blocks operate semantically using a wide variety of models of compu-

tation as listed. The design is then partitioning into software, middleware, or hardware. Finally the design is

optimized by running simulations and adjusting parameters of the library elements. The last industrial FPM

tool is Cofluent’s Systems Studio [CoF07]. It provides transaction level SystemC models which perform

design space exploration in the Y-chart modeling methodology. The functional description is a set of com-

municating processes executing concurrently. The platform model is a set of communicating processes and

shared memories linked by shared communication nodes. The platform model has performance attributes

associated with it as well. This approach is very similar to METROPOLIS but does not support as wide a

variety of models of computation or as rich a constraint verification infrastructure.

The academic domain has many offerings as well. An academic tool which captures the function-
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ality of a design (F) is ForSyDe [Ing04]. This tool is a product of the Royal Institute of Technology, Sweden.

It performs modeling, simulation, and design of concurrent, real-time, embedded systems. It has support for

a wide variety of synchronous MoCs. It uses transformation rules to proceed from a functional specification

to collections of process networks.

A tool which allows platform descriptions as well as mapping (PM) is Carnegie Mellon’s MESH

[And03]. MESH stands for Modeling Environment for Software and Hardware. This approach examines

heterogeneous system design at the component level through C input. MESH is an event based approach

in which its threads are ordered sets of N events. MESH is interested as well in the development of bench-

marks, called scenarios, which evaluate collections of heterogeneous programs. Stanford’s Rapide [Dav95]

is an Executable Architecture Definition Languages (EADL). It utilizes an event based execution model for

distributed, time sensitive systems. Rapide is a PM approach as well.

Tools which add the ability to specify functional descriptions as well (FPM) include Seoul Na-

tional University’s PEACE [Soo06]. This is codesign environment which is Ptolemy based [Jos02]. It touts

an open-source framework, a reconfigurable framework (design steps are decoupled so that users can intro-

duce their own steps), a separate Java based GUI (named Hae) from the kernel, an objected-oriented C++

kernel, support for multilingual system design (dataflow graphs for functional representations and FSMs for

control), and automatic hardware/software synthesis as its strengths. UC Berkeley’s MESCAL [And02] is an

approach for the programming of application specific programmable platforms. It has extended Ptolemy II

[Joh01] and has focused recently on network processors. Vanderbilt’s GME/GREAT/DESERT [Ako01] are

a set of tools for pruning the design space. Aspects of it are UML and XML based. It is focused on domain

specific modeling and program synthesis. Finally, Spade from Delft University of Technology [Pau01a] is

a kahn process network (KPN) based workbench. It also employs a Y-chart based approach to design with

functionality and architecture separated. In this case they are termed workload and resources respectively.

It employs trace driven simulation where time can be accounted for and performance data collected.

All of these academic and industrial tools work at the system level in terms of the level of abstrac-

tion employed.

As mentioned, each of these approaches are placed in a taxonomy in [Dou06c]. Without going

into all the details contained in that work, one can say that the following issues are investigated: model of

computation supported, support for quantity annotation, mapping support, specific device support (ASIC,

FPGA, etc), level of abstraction supported, and underlying semantics. The reader would be well served to

look at that work as it covers 90+ tools.

Table 2.1 has a small sample of the comparisons that can be made between METROPOLIS and

other academic (top half) and industrial (bottom half) approaches. The issues outlined, Event Based, Map-
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ping, Quantity Managers, and Pure Architecture model, were focused on since each one will be integral

to providing the outcomes outlined in Chapter 1. “Event based” refers to the fact that synchronization is

done via notification and wait statements using a unified concept such as an events. “Mapping” allows for

functionality to be assigned to services. “Quantity manager” support indicates that scheduling is explicitly

separate. Finally a “pure architecture model” indicates that there are two models (functional and architec-

tural) for each system kept explicitly separate. A “+” indicates that the tool supports this concept while a

“-” indicates that it does not explicitly support this. Naturally if two tools share the same markings, it does

not mean that they are equivalent in their other features.

Event Based Mapping Quantity Manager Pure Arch. Model

METROPOLIS + + + +

METRO II + + + +

ForSyDe [Ing04] + + - -

Rapide [Dav95] + + - +

Spade [Pau01a] - + - +

Nepsys [Pro07] - - - -

Comet/Meteor [VaS07] - + - +

Systems Studio [CoF07] - + - +

Table 2.1: Comparison of Architecture Service Modeling Approaches

These criteria were selected since mapping is going to be important to the work presented here. It

will allow the architecture model to be completely separate from the functional model. Quantity Managers

and Event Based Semantics are crucial to the characterization and annotation method to be presented. Know-

ing which approaches support which aspects illustrate which other design environments may be amenable

to the work presented here.

2.3 System Level Event Based Architecture Services

When creating an architecture service, there are two primary issues that must be resolved. The

first issue is at what level of abstraction the service should be created. This answers the question at what

level of granularity will the services be offered and how the components which compose the service can

interact. The second issue is what is the underlying semantics of the service. How will they synchronize?

How will they communicate? How are they scheduled? These questions are in regard to inter- and intra-

service relationships. In this section, these issues will be addressed specifically at the system level using an

event based semantics. In system level models, the level of abstraction is at the transaction level or higher.
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This answers the first question. The semantics that will be discussed here are those which use events during

simulation for a variety of issues including synchronization, annotation, and communication. The answers

the second question.

System level event based services are of particular interest for two reasons. First the level of ab-

straction directly attacks the level of complexity currently seen in designs today. Additionally, it allows rapid

design space exploration. Event based frameworks are useful since a wide variety of models of computation

can easily be framed using events. Events also have the ability to carry the service cost along with them in

the form of an event value. This makes such frameworks very flexible.

An event is the fundamental concept in the framework of solutions described. In METROPOLIS

for example, an event represents a transition in the action automata of an object under simulation. An event

is owned by the object that exports it and during simulation, generated events are termed as event instances.

Events can be annotated with any number of quantities (i.e. costs). In addition, events can partially expose

the state around them and constraints can then reference or influence this state.

A system level service is a collection of components (library elements). Each of the components

have interfaces which expose their capabilities to other components. A service requires that at least one of

the interfaces is exposed to the functional model or to other services. These interfaces are called provided

interfaces. Interfaces between components making up the service alone are called internal interfaces. A

service can be composed of a single or multiple components. If more than one component has a provided

interface, then it is considered having multiple interfaces. Multiple interfaces allow for a service to have

more than one cost model.

A service ultimately then corresponds to a set of event sequences generated by collections of

components with various sets of interfaces with various costs. This execution therefore represents one

possible behavior of a system. Here is the taxonomy of service types at the system level (as shown in Figure

2.4):

• Single Component, Single Interface (SCSI) - a service composed of a single component. The pro-

vided interface is the only interface provided to the functional description or other services. There is

only one cost model provided with this service which is accessed through the single interface.

• Multiple Component, Single Interface (MCSI) - a service composed of multiple components. Only

one of the components has a provided interface. The presence of multiple components allows for a

more complicated cost model, hierarchical composition of services, and hierarchical interfaces. Only

one cost model is provided to the functional description.
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• Multiple Component, Multiple Interface (MCMI) - a service composed of multiple components

with multiple provided interfaces. This configuration allows for multiple cost models along with the

advantages of a MCSI configuration.

Notice that single component, multiple interface (SCMI) services are not present because this

scenario does not make sense given the fact that there are no multiple interfaces to allow for various inter-

service component interactions (and hence generate different cost models). Note that SCSI services can

return different cost values based on the parameters provided to the interface. They are just restricted to one

cost model.

Services can also be active or passive. An active service is a service which can generate interface

calls. This can be thought of as a component which has an executing thread. A passive service is one which

responds to interface calls. Naturally this response could in turn cause it to trigger an interface call itself.

Architecture topologies can be formed as well using collections of these types of services. Ulti-

mately it is these topologies which form the architecture model. For example there are two primary styles.

The first is a branching structure. This allows for services that use all types of service categorizations. This

is illustrated in Figure 2.5 of the left. A branching structure is one in which services are connected in such

a way that a service may interact with any number of other services. For example a bus service can interact

with two or more computation services and a memory service. A ring structure on the other hand only allows

for single interface services (SCSI, MCSI). This is illustrated in Figure 2.5 on the right. A ring structure

can be useful for certain networking topologies. Also this structure often simplifies the scheduling problem

as well as an analysis of its execution. Of course it is possible to have mixed topologies in which various

aspects can be classified as either branching or ring.

Definition 2.3.1 System Level Architecture Modeling - a collection of services at the transaction level or

higher of abstraction. These services can be classified as SCSI, MCSI, or MCMI. Additionally the topology

of the system can be defined as branching, ring, or a hybrid of the two.

The next sections (2.3.1 and 2.3.2) will detail two system level event based environments, METROPO-

LIS and METRO II. These sections will detail the components in the framework and the ways in which

architecture models are created.

2.3.1 METROPOLIS Architecture Construction

The work presented here in this thesis is built heavily on METROPOLIS. This is a system level

design language with an event based semantics. This framework was described at a high level in Section 1.2.
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Figure 2.5: Composing Architectures Using Services

This section will describe in detail the process of creating an architecture service model. First the individual

pieces of METROPOLIS will be discussed. More about METROPOLIS construction and implementation

details can be found in [The04].

METROPOLIS’S design environment is called the Meta-Model. Its basic elements are called Ob-

jects. Architecture models are networks of Objects. There are five types of objects in the meta-model:

processes, media, quantity managers, state media, and netlists. Ports are used to access functions of inter-

faces implemented in other objects. What follows are definitions for each of these objects as well as example

meta-model code.

Definition 2.3.2 Process - A process represents communication. This is an active object (thread) and

groups of processes run concurrently. Processes cannot communicate to each other directly. Processes

can be synchronized by constraints or a special “await” statement.

In Figure 2.6, the process declaration (Cpu) is shown. Two ports are available (port0 and port1)

with access to CpuAPI and CpuAccess interfaces. A parameter is available to customize this process as well

as a constructor. The “meat” of this process would be provided in the section contained in the “thread()”

section. Processes have access to “await statements”. Their syntax is, await(guard, test list, set list). In

order for an await statement to be evoked, the “guard” must be true and no interface in the “test list” can

currently be in use. Once these conditions are true, the code within the await statement can execute and no
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process Cpu {

port CpuAPI port0;

port CpuAccess port1;

parameter int MODE;

Cpu(int mode) {MODE = mode;}

void thread() useport port0, port1 {...}

}

Figure 2.6: METROPOLIS Process Example Code

other process can use the interfaces in the “set list”.

The threads contained in METROPOLIS processes are scheduled to run by a manager with controls

the simulation flow. There are two phases in METROPOLIS. In the first phase, the threads run until each

is blocked. In the second phase the manager must decide which of these processes should be selected to

resume running. This process is described in much more detail in [Fel02b].

Definition 2.3.3 Medium - Media are the manner in which processes communicate to one another. Media

may also be connected to other media. Media are passive objects in that they do not have their own threads

of execution. They implement interfaces which are extended through the use of ports.

medium Bus implements CpuAPI {

parameter int BITWIDTH;

Bus(int size) {BITWIDTH = size;}

public eval void busRequest(int processID) {...}

public update void driveData(int addr, int data) {...}

}

Figure 2.7: METROPOLIS Medium Example Code

Figure 2.7 illustrates that media (in this case, a Bus) implement interfaces (CpuAPI). This medium

interface implements two methods. These methods can change values (as denoted by the keyword “update”)

or read values (as denoted by the keyword “eval”). As with processes, media can be parameterized as well.

Definition 2.3.4 Quantity Manager - Quantity managers act as schedulers. They are used to define

scheduling policies which are used to satisfy constraints. They are passive objects but run functions when

constraints need to be satisfied. Quantity managers control the execution of process. Quantity managers

have ports which are hooked to state media to communicate with the processes they schedule. Quantity

managers operate during the second phase of simulation separate from the processes and media.
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public interface QuantityManager extends port {

eval void request (event e, RequestClass rc);

update void resolve();

update void postcond();

eval boolean stable();

}

Figure 2.8: METROPOLIS Quantity Manager Example Code

As is shown in Figure 2.8 there are four functions which a quantity manager must implement. The

request() function generates a quantity request for a particular event. This function adds the event to a list of

“pending” events. As can be seen in the figure, two arguments are required. One is the event to request and

the other is a class object which will aid in that request by providing information about the system. resolve()

is used to resolve the existing quantity requests. This can be seen as the scheduling step. This pulls an event

from the “pending” queue. postcond() is used to clean up the state of the quantity and the quantity requests.

It is at this point that events are annotated. stable() indicates the success of the quantity resolution process

and is used to determine when the simulation can switch phases.

Definition 2.3.5 StateMedia - A special media type used for communication between processes and quan-

tity managers. It passes the state of the process to the quantity manager and returns to the process the results

of scheduling.

public interface StateMediumSched extends Port {

eval process getProcess();

eval ArrayList getCanDo();

.... (other support functions)

update boolean setMustDo(event e);

update boolean setMustNotDo(event e);

}

Figure 2.9: METROPOLIS State Media Example Code

Figure 2.9 shows the “setMustX” functions which enable or disable a particular event (and thus

control which processes can proceed). getCanDo() returns an array of events upon which to begin to sched-

ule. getProcess() returns the process associated with this state medium. There are other support functions

not shown here but are discusses in [The04].

Definition 2.3.6 Port - Ports are special interfaces which declare methods which can be used through ports.
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The methods themselves are implemented by media. In this way ports declare a set of function prototypes.

These functions are called by processes or other media connected to the implemented media via ports.

public interface CpuAPI extends Port{

public eval void busRequest(int processID);

public update void driveData(int addr, int data);

}

Figure 2.10: METROPOLIS Port Interface Example Code

Figure 2.10 illustrates that interfaces extending ports are simply the function prototypes which

will later be implemented in media.

Definition 2.3.7 Netlist - A netlist is a collection of meta-model objects, their ports, and the connections

between them. This is instantiated with a variety of mechanisms including, connect(SrcObject, SrcPortName,

DestObject) and addcomponent(NodeObject, Netlist Object).

Definition 2.3.8 Scheduled Netlist - A connection and parameterization of architecture elements in METROPO-

LIS. These include processes and media. Objects in this netlist generate events which need to be scheduled.

Definition 2.3.9 Scheduling Netlist - A connection and parameterization of quantity managers and state

media in METROPOLIS. These objects receive events from the scheduled netlist and perform the resolve()

function.

The scheduling netlist is the workhorse of the simulation engine. The scheduled netlist is where

the architecture services are located and indicates which components are actually going to be captured and

eventually used to create a description for a programmable platform.

Definition 2.3.10 Top Level Netlist - A netlist which is only composed of sub-netlists and is itself not part

of any higher level netlist. This is typically the combination of both the scheduled and scheduling netlist.

Figure 2.11 illustrates a METROPOLIS architecture model. In this case there are meta-model

processes which represent tasks (T1 to TN). These tasks will ultimately be mapped one-to-one with processes

in the functional model. These tasks trigger the use of services. In METROPOLIS, architecture services are

collections of media. In the scheduled netlist, the processes are squares (called mapping processes) and

the media are ovals. Shown are a CpuRtos service, Bus service, and Mem service. Examples are given

showing potential interface calls on ports. Each service has a corresponding quantity manager (diamond) in

the scheduling netlist which communicates to the process through a statemedia object (small circles). Also
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shown is global time. Global time manages the logical time of the simulation. This is a quantity manager

which manages the annotation of events with physical time quantities. If this model were to be simulated,

the result of simulation would be an estimate of the physical time that would be required. The quality of the

model is often measured as the accuracy between this estimate and the actual value of the implementation.
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Figure 2.11: METROPOLIS Architecture Netlists

Another view of a METROPOLIS architecture model is shown in Figure 2.12. This shows a graph-

ical representation of both the scheduled and scheduling netlists of a METROPOLIS architecture model. This

figure also includes a characterizer database which will be discussed in Chapter 3. On the left hand side

the scheduled netlist is shown and it illustrates how each MicroBlaze service (media) is connected to a task

(process). These tasks drive the simulation. It also shows media-to-media connections between MicroBlazes

and FIFO based communication channels.

2.3.2 METRO II Architecture Construction

METRO II is the successor to METROPOLIS. It is being developed as a response to user and

designer experiences with the METROPOLIS design framework. Primarily it is concerned with focusing on

three areas:

1. The ability to import pre-designed intellectual property (IP). This feature will require support for

a wide variety of design entry styles. IP will have to expose their interfaces and the users will have

the ability to define “wrappers” that will mediate between the IP and the METRO II framework. IP

must also have the ability to be connected to each other. This connection will require “adaptors” to

communicate between various Models of Computation (MoCs).
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Figure 2.12: Graphical METROPOLIS Architecture Representation

2. Behavior and cost must be completely orthogonal. In METROPOLIS, quantity managers are used

to both schedule events as well as annotate them. METRO II will introduce “annotators” which will

ensure a clean separation. In order to accomplish this, a three-phase execution will replace the current

two-phase execution semantics.

• First Phase: Base Model Execution. After each process has proposed at least one event it

will be blocked. Process have the ability to propose more than one event in order to support

non-determinism. Once all processes are blocked, the next phase is evoked.

• Second Phase: Quantity Annotation. Each of the proposed events from the first phase is anno-

tated with quantities (one or more potentially). New events cannot be proposed at this phase.

• Third Phase: Scheduling. A subset of the proposed events are enabled and permitted to execute.

The remainder of events are blocked. At most one event per process is permitted to execute.

Once again, new events can not be proposed in this phase. The simulation returns to the first

phase again and the process repeats.

3. Improve on and provide for a structured design space exploration process. Correct-by-construction
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techniques and streamlining the mapping process will be keys to this improvement.

The building blocks of METRO II are: components, ports, connections, constraints (and asser-

tions), adaptors, mappers, annotators, and schedulers. Each of these is described in detail in [Abh07]. This

thesis will not focus on describing these in more detail individually but will rather propose how to use them

to build services and hence an architecture model.

Figure 2.13 provides sample constructions of SCSI, MCSI, MCMI services built from METRO

II components. Each of the services are either composed of one or multiple METRO II components as

denoted by their classification. In addition, all components which constitute a service are encompassed by a

“wrapper”. This wrapper becomes the boundary of the service upon which the provided interfaces and the

cost of the service are defined. This wrapper will provide a consistent global interface to all other services

to facilitate their connection. These connections will create the architecture model itself. Additionally each

service is provided with a scheduler and annotator. The scheduler will be used in the third phase of the

service’s execution and the annotator provides the cost model for the service in the second phase. Service

“provided interfaces” of the wrapper are connected to METRO II “provided ports” of select components. One

set of METRO II “required ports” is visible at the wrapper interface to allow the service to take advantage

of other services if need be.

Each service classification (SCSI, MCSI, MCMI) differs in how many METRO II “view ports”

are provided to the wrapper. View ports can be used to observe the operation of the service. These ports

will be useful in creating structures to verify properties of the service (and hence architecture). In the case

of SCSI and MCSI, there will only be one view port provided. This port corresponds with the component

which connects its provided port to the wrapper’s provided interface. In the case of MCMI, each component

with provided ports serving as provided interfaces will have its view port present at the wrapper level.

Additionally in MCSI and MCMI, “rendezvous ports” are required to synchronize the components. In

MCSI, rendezvous ports between all components with provided/required port relationships are connected.

In MCMI, rendezvous ports are connected between components with provided/required port relationships

provided that at least one of the two components does not contribute to the provided interface.

Both branching and ring architecture styles can be created using these service types. Whereas

METROPOLIS required that active services have processes and passive services have media, METRO II does

not have this distinction. All services are only composed of components. This potentially leads to more

flexibility in specification or dual operating mode services (a switch that indicates if the service is passive or

active). METROPOLIS required that mapping tasks be provided with the architecture model as active objects

by which the functional model can be mapped to. This is not needed in METRO II. A provided interface
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Figure 2.13: Architecture Service Model Proposal in METRO II

itself can serve as this function using the interface of the METRO II component’s provided port.

2.3.3 Architecture Service Extensions

During the development of architecture service models in a system level design environment many

issues need to be addressed. Many of these issues are explicitly discussed in this chapter (transaction level

modeling, estimation techniques, event based simulation, etc). This section is going to focus on two issues

which were not natively supported in the METROPOLIS modeling environment and hence specific solutions

needed to be created. They are highlighted since their solutions are highly generic and easily supported to

other environments (SystemC [Ope07] for example). The first issue relates to preemption and the second to

mapping. The first issue is concerned with capturing the correct behavior of the architecture being modeled

and supporting the appearance of architecture task level concurrency and interruption. The second issue

looks to provide a more efficient path to automatic mapping of functional and architecture models. Implicitly

the first issue deals with accuracy and the second issue with efficiency.
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Preemption Extensions

In the course of creating an architecture it becomes clear that some services are naturally pre-

empted. Examples scenarios are a CPU context switch or Bus transactions. Preemption must allow for

one thread of execution (METROPOLIS process) to relinquish control of a service, the system must save the

state of that execution, and the the service must allow for the new thread to use the service. Additionally, the

simulation must make sure that the measured simulation time not only reflects the execution of the operation

but also the overhead that would be required to perform such a transaction.

In an event based architecture, there is no way to preempt a single event. Architectures services

which can be preempted therefore must be a series of events which are related together to form a transaction.

Some transactions can be preempted and others can not. Transactions should identify as to which group they

belong to. It becomes also clear that this will require the notion of Atomic Transactions. A atomic transaction

is one which cannot be preempted. In many cases this will be a single event but it is possible that it can be a

collection of events as well. Atomic transactions were defined in Section 2.1.

Preemption can be dealt with in METROPOLIS quite simply. Prior to dispatching events to a

quantity manager via the request() method, decompose transactions (using a “decoder”) in the scheduled

netlist into non-preemptable chunks (the atomic transactions). There must be infrastructure which maintains

the scheduling status with an FSM object (counter) and controller. Figure 2.14 illustrates the preemption

process.
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Figure 2.14: Architecture Extensions for Preemption
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Figure 2.14 illustrates the preemption process. There are several stages involved in the process:

1. A transaction is introduced into the architecture model. This is done by the mapping process which is

mapped to the tasks in the functional model. This is a single event generated by a task process in the

scheduled netlist.

2. The transaction proceeds to a decoder object (process) connected to the service media. This decoder

must perform several tasks:

• Identify if the transaction is atomic or not. This is done through a table lookup or by a transaction

argument detailing its status.

• In the event that it is not atomic, decompose it into atomic transactions (A, B, C in the figure).

Each atomic transaction is typically made up of transactions from SCSI services but it does not

have to be, it just will raise the notion of atomic to contain more components. Often atomic

transactions are defined around provided interfaces of services.

• Augment the atomic events with information regarding architecture execution. This is a coeffi-

cient which will be used to ensure that each atomic event takes a fraction of the total execution

time for the entire transaction. Coefficients can be created dynamically using simple floating

point operations.

• Introduce events to represent the overhead associated with the preemption type (1, 2, 3 in the

figure). These events will also have a coefficient value. How to generate these events, how many

of them, and their cost is determined by the decoder.

• Create a finite state machine. The number of states is a one-hot encoding based on the number

of atomic transactions. Each atomic transaction now has a partial ordering assigned to it. It is a

partial ordering since atomic transactions may issue nondeterministically.

3. Dispatch (request()) the atomic transactions as normal to the quantity manager. Here they will go

through the standard resolve(), postcond(), stable() iterations.

4. Update the FSM to track the state of the transaction as a whole. When no transition can be made, the

transaction is considered complete. In the event that a new FSM has been created by a preemptive

process, you should push the existing FSM requests on a stack and pop them off as other FSM finish.

This is assuming a LIFO preemption policy.

5. Use statemedia to communicate with processes using the setMustDo() and setMustNotDo() functions.

The preempted process will be blocked whereas the preempting process will be allowed to proceed.
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6. There is a decoder assigned to each service which supports preemption. In the event that preemption

occurs, the FSM and bundled atomic events are pushed onto a stack (LIFO object). Each decoder

(and hence services supporting preemption) has its own stack. Once the preemption is done, the stack

is popped and execution continues. Once the FSM reaches the final state, the information for that

transaction is discarded and the stack can be popped again.

This approach can be improved to some extent by a more compact FSM encoding but at the

level of abstraction required by transaction level modeling, there will rarely be more than ten states in any

transaction. In addition the time required for the overhead of a preemption is unique to each service and

must be provided by the designer.

Mapping Extensions

A unique aspect of programmable platforms is that they allow for both SW and HW implemen-

tations of a function. For example there may be a soft processor model (Xilinx MicroBlaze for example)

which can perform a SW routine for DCT. Additionally there may be a dedicated DCT block in the program-

mable logic fabric. At some point one may want to explore automated mapping of functionality to services.

A service which provides general purpose processing can handle a wide variety of functionality mappings

whereas a service for a specific HW component can only offer one type of functionality. In is not appro-

priate to map functionality to any architecture block. If this was done, services would not be available to

the functional netlist and minimally the simulation would halt, if not fail altogether. Not to mention that not

all architecture blocks can as efficiently perform operations. Not knowing the service capabilities severely

limits the ability to do intelligent mapping. Therefore there is the need to express which architecture compo-

nents can provide which services and with what affinity. Affinity refers to how well the service can provide

the desired operation. For example, an ASIC service providing an “ADD” service will have a high affinity to

provide this service if it has a lower cost (execution time perhaps) than a general purpose processor software

service “ADD”. This information is used for mapping of functionality to architecture models. Mapping can

employ greedy, task specific, or other strategies to maintain the best average affinity rating over all mapped

tasks. An example of the information provided to the mapping network is shown in Figure 2.15.

In Figure 2.15 there are two processes (tasks) connected each to their own media (service). The

service on the left is a HW Discreet Cosign Transform (DCT). The service on the right is a MicroBlaze

soft processor model (think of this a a general purpose computation service). The mapping processes are

equipped with two functions. One function can be queried to return all of the services that it has access to.

In this picture, the task on the right has access to a service which can provide execute (generically), DCT,
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Figure 2.15: Architecture Extensions for Mapping

or FFT services. The task on the left only has access to a DCT service. The tasks know this information

regarding available services since each service reports itself and its capabilities to the task. Additionally

the second function, assigns an affinity to each service. This is also reported to the task by the service.

This process is done statically initially but can be updated at runtime by the performance of the simulation.

Affinity is a relative value, but in the illustration it is shown as a score out of 100. As is shown, the task

on the left can only perform DCT (since it is tied to a dedicated HW block). In practice it would not even

have other task operations shown as available. However, the task on the right can do all three operations,

including DCT (albeit with a lower affinity).

The models developed in this work provide a service interface (getCapabilityList()) which returns

the affinity and operations of the service in a hash table. It is the responsibility of the mapping network to

use this information to efficiently map functionality to architecture. This work will not describe the many

ways in which this information can be used explicitly.

2.4 Xilinx Architecture Modeling Exploration

In order to put the ideas proposed in this chapter to test, system level architecture service models

were created based up the Xilinx Virtex II platform FPGA. An FPGA was selected since one set of services

can be arranged in a wide variety of configurations. Whereas a static architecture only has only configu-

ration, an FPGA has configurations only limited by the size of the configuration fabric and its topology.

Building a library of programmable components will allow a designer to express many systems with maxi-

mum flexibility. These are some of the reasons mentioned earlier in the introductory chapter. The services

(components) chosen were based upon those that could easily form embedded systems and that were well
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defined and characterized. To this end, the IBM CoreConnect [IBM99] based IP blocks were examined.

The architecture service models created can be categorized around the basic service type they

represent.

• Computation - PowerPC, MicroBlaze, Synthetic Master, and Synthetic Slave - (4 services total)

• Communication - Processor Local Bus (PLB), On-Chip Peripheral Bus (OPB), BRAM, Fast Simplex

Link (FSL) - (4 services total)

• Coordination - PowerPC Scheduler, MicroBlaze Scheduler, PLB Scheduler, OPB Scheduler, BRAM

Scheduler, Bridge Scheduler, FSL Scheduler, and a General Scheduler - (8 schedulers total)

• Hybrid Services - Mapping Process, OPB/PLB Bus Bridge - (1 process, 1 service total)

Each service listed behaves as the device is described in its datasheet specification. PowerPC

and MicroBlaze services are MCMI services. PLB and OPB are MCMI services. BRAM and FSL are

SCSI services. Synthetic master and slave devices are used to represent dedicated peripherals created in

the programmable fabric. For example if a designer wishes to create a dedicated hardware block, they

would create the functionality and encapsulate it with the appropriate synthetic component. The synthetic

components possess the interface of the PLB, OPB, and FSL and can be used with each if needed. Both

master and slave devices are MCMI services.

In addition to the core architecture modeling concepts outlined previously, two key aspects were

maintained:

• Transaction Level Interfaces - this required that the interfaces provided by the services (media) were

at the transaction level and that they corresponded syntactically to the methods that would be invoked

in the process of executing the functional model. Each service transaction was denoted as “complex”

or “atomic” as well. Each used event based semantics for synchronization.

• Netlist instantiation and parameterization identical to the implementation IP - the black box

model of the IP was identical to the parameters used to instantiate an architecture object in the sched-

uled netlist. This black box “signature” can be obtained from the Xilinx IP implementation and

generation tools such as CoreGen.

Transaction level interfaces not only are important to maintain the system level of abstraction, but

they were also very easy to map to the functional model. Examples of the transaction level interfaces are:

Task Before Mapping: These function prototypes are what the mapping process task will export

to the functional model. Additionally it will export the service functionality and affinity. The parameters the
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prototypes require should be assigned by the functional model and the method should correspond to one or

more internal interface functional calls.

Read (addr, offset, cnt, size)

Write(addr, offset, cnt, size)

Execute (operation, complexity)

A “Read”, ”Write”, or “Execute” service connected to the mapping process can be SCSI, MCSI,

or MCMI. In this thesis it is typically implemented as a MCSI. The interface itself is provided to tasks

through either an RTOS or CPU service. The services will make use of multiple components potentially

such as caches, buses, or memory elements.

Task After Mapping: This is the result of mapping when the parameters are provided from the

functional model. The “operation” field in the execute function is provided during mapping thanks to the

mapping process. Complexity of the execute function is provided by the functional model mapped to the

architecture service. Complexity itself is determined by the designer of the functional model.

Read (0x34, 8, 10, 4)

Write(0x68, 4, 1, 2)

Execute (add, 10)

Computation Interfaces - These interfaces are the same interfaces which are exposed to the

functional model through mapping tasks but their implementation will be much different. Whereas the

mapping tasks are concerned with determining the parameters of the interface calls, computation interfaces

actually have to implement the services and most importantly the cost models.

Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),

Execute (operation, complexity)

Computation services are MCMI type services in the majority of cases. Most computation services

at the system level are still composed of multiple components with multiple interfaces (and hence costs) for

those services. In the event that the model has a very coarse granularity they may be SCSI.

Communication Interfaces (Buses) - These interfaces will utilize services to translate read and

write requests into sequences of atomic transactions. The interfaces listed here can be combined in a variety

of ways to form a number of bus protocols.

addrTransfer(target, master)

addrReq(base, offset, transType, device)

addrAck(device)

dataTransfer(device, readSeq, writeSeq)

dataAck(device)
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Bus based communication services are MCSI services with the bus itself being the single interface

point often. They may be MCMI in the event that they represent a hierarchy of buses.

Communication Interfaces (FSL) - Unlike bus services, FSL interfaces only need read and write

capabilities since an FSL acts as a FIFO.

Read (cnt, size), Write(cnt, size)

FSL services are those which interact with buffer based communication. These are SCSI where the

component is a simple buffer and they only have a single interface. These are used often in ring topologies

as illustrated or in dataflow applications.

These interface prototypes are shown to give the reader a feeling for the types and level of abstrac-

tion provided by the services. In the following sections, the actual interfaces for the components modeled

will be shown.

Xilinx Vertex II Pro Execution Estimation

In order to begin to estimate the performance of the architecture service models in METROPOLIS,

performance numbers for various operations must be determined for particular architecture instances. These

operations should correspond to services that can be requested by the mapping process (task) in a given

architecture model. These estimates are the cost of the services. These services requiring estimates will be

described in the appropriate sections to follow.

The Xilinx Virtex II Pro was chosen due to its flexibility. It is the combination of FPGA fabric

along with embedded PowerPC units. This flexibility allows for static architecture configurations along with

custom implementations. This allows for one device to represent many architecture models for METROPO-

LIS. Using this platform will allow for rapid, meaningful performance estimation across many architecture

models. Additionally models can be quickly compared to their implementation counterparts.

There are many issues with this estimation method as will be demonstrated in Chapter 3. In

fact the following chapter will go to great lengths to show why this method is not desirable. However it is

included as it is important to show how such a process may be carried out. It is important that this estimation

process occur to see if the characterization method offers an advantage.

The services that must be annotated with an execution metric are in three areas and are as follows:

1. CPU services - these will ultimately be represented on the PowerPC embedded core and MicroBlaze

soft core which are available in the Virtex II Pro.



52

• The interfaces of interest are cpuRead(), cpuWrite(), execute(). These interfaces will result in

event based requests which potentially access the bus and then an external memory. Therefore

they should represent uncacheable loads and stores.

2. BUS services - these will be represented by CoreConnect Processor Local Bus (PLB) and On-Chip

Peripheral Bus (OPB) requests. In addition there are FSL write and read interfaces but will not be

discussed explicitly here.

• The interfaces of interest are busRead() and busWrite(). These are event based requests to the

PLB and OPB and will include both the address and data tenure phases.

3. Memory services - these are SelectRAM+ (BRAM) requests which will be characterized by Selec-

tRAM+ operations which are event based requests as well.

• The interfaces of interest are memRead() and memWrite(). These will be read and write

operations which are fully synchronous for the SelectRAM+. This information was used to

develop a general BRAM model since it is more robust, portable, and scalable than the static

estimation data available for more complex memory models such as DDR or other SDRAMs.

Also BRAM is very prevalent in Xilinx devices and very close to the configurable fabric which

aids in performance.

The following sections detail the various components modeled in METROPOLIS and each culmi-

nate with a performance estimation for each interface operation. The information for estimation is gathered

from [Xil03b], [IBM99], and [Xil02].

In future sections of the paper, “estimated” data will be referred to. The data being referred to is

that which is described in these sections.

PowerPC

The PowerPC core on the Xilinx Virtex II Pro is the PPC405 RISC CPU. This is a five stage

pipeline, 32 bit processor. There are several basic guidelines regarding instruction execution.

• Instructions execute in order

• Assuming cache hits, all instructions execute in one cycle

– With the exception of divide, branch, MAC, unaligned memory accesses, and cache control

instructions.



53

Figure 2.16 provides details on the PowerPC model created for METROPOLIS. Included in this

figure are the parameters, ports, and interfaces implemented by this object. This same style of illustration

will be shown for each of the services described in this chapter.
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Figure 2.16: METROPOLIS PowerPC Model

Since the load and store instructions do not “assume cache hits” they will take more than one cycle.

For the purposes of the initial architecture service models, the CPU functions that need to be estimated are

the read (load) and write (store) instructions. There are loads and store instruction for data in byte, halfword,

and word formats. The format desired is expressed as the “size” argument shown in the function prototype.

In addition, there are various addressing modes and side effects that can be associated with each data size

request. However, neither the size of data transferring, address mode, or side effect have any effect on the

cycle count within the load and store family of instructions (thanks to the strict RISC regularity). Tables 2.2

and 2.3 show the wide variety of loads and stores that need to be given performance numbers.

An uncacheable load instruction will incur penalty cycles for accessing memory over the PLB.

Assuming the PLB is at the same speed as the processor and that the address acknowledge is returned in the

same cycle that the data cache unit asserts the PLB (OPB), the number of penalty cycles will be 6 cycles

with operand forwarding and 7 cycles without operand forwarding. The architecture service models in

METROPOLIS do not explicitly include operand forwarding so a load will take 7 cycles.

The PowerPC data cache unit has a queue so that store instructions that miss in the data cache

appear to execute in a single cycle. These services are constructed assuming aligned memory access and no

usage of the stwcx (conditional store; takes 2 cycles). Therefore stores will take 1 cycle.
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stb sth stmw stw

stbu sthu stswi stwbrx

stbux sthbrx stswx stwcx

stbx sthux stwu stwux

sthx stwx

Table 2.2: PowerPC store instructions

lbz lha lmw

lbzu lhau lswi

lbzux lhaux lswx

lbzx lhax lwarx

lhbrx lwbrx

lhz lwz

lhzu lwzu

lhzux lwzux

lhzx lwzx

Table 2.3: PowerPC load instructions

Table 2.4 gives the final analysis of the interfaces’ estimated performance. All instructions assume

aligned accesses.

Interface Assumptions Cycle Count

cpuRead() Any load instruction without operand forwarding 7 cycles

cpuWrite() Any store but stwcx 1 cycle

execute(int inst, int comp) Valid inst field (1 * complexity) cycles

Table 2.4: PowerPC Service Performance Estimation Summary

MicroBlaze

In addition to the PowerPC processor, an architecture service model was created for the MicroB-

laze processor. The MicroBlaze is a soft processor core which is created in the FPGA fabric. Whereas there

are only 2 to 4 PowerPC cores available to Xilinx Virtex II Pro, one can fit a much larger set of MicroBlazes

on a die. This allows for interesting, highly concurrent architecture topologies. When the designer wishes to

construct a netlist using these components they are restricted only by the size of the overall device and not

a static number (as is the case with the PowerPC). Another way in which this device contrasts the PowerPC

is that it connects to the OPB bus and FSL units as well (not the PLB).

The MicroBlaze is a 32-bit Harvard architecture processor. Its base architecture has 32 registers,

ALU, shift unit, and two levels of interrupts. This is a DLX style microprocessor with a 5-stage pipeline in

which most instructions complete in one cycle. The processor can operate at speeds up to 210Mhz on the

Virtex 5. Optional configurations include a floating point unit, barrel shifter, divider, and multiplier. It also

interfaces with a high speed, local memory bus (LMB). The METROPOLIS model is shown in Figure 2.17.

Table 2.5 provides execution time estimates for the the MicroBlaze. Note that the function pro-
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Figure 2.17: METROPOLIS MicroBlaze Model

totypes here are pseudo and not what is actually provided in the actually meta-model code for the element.

Typically what differs is the list of arguments. These are left off in order to keep the table size manageable.

These include IDs, control arguments, or addresses typically.

Interface Assumptions Cycle Count

cpuRead(int bus) Bus Dependent 1(LMB), 7(OPB) cycle

cpuWrite(int bus) Bus Dependent 1(LMB), 2(OPB) cycle

fslRead(int size) Transfer Size (1 * size) cycles

fslWrite(int size) Transfer Size (1 * size) cycles

execute(int inst, int comp) Valid INST Field (1 * complexity) cycles

Table 2.5: MicroBlaze Service Performance Estimation Summary

Synthetic Masters and Slaves

Synthetic master and slave services are used to represent custom made programmable function-

ality created in the device fabric. The difference between a master and slave device is the way in which it

interacts with the bus (PLB or OPB) it is attached to. A slave can only respond to requests whereas a master

can generate requests. In the terms of the services in this thesis, a slave is a passive service and a master is

an active service. Figure 2.18 illustrates the METROPOLIS service model.

The estimated execution times for bus and FSL communication interfaces of a synthetic service
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Figure 2.18: METROPOLIS Synthetic Master/Slave Model

are the same as the MicroBlaze service costs. The PLB access time for a synthetic service is the same as

the PowerPC service. However, the execution time is a function of what function is being computed, its

complexity, and the port that it is being accessed from. The port being accessed has differing overhead

for a master device as opposed to a slave device. The equation for execution time is inst ∗ complexity +

PortAccessOverhead where 0 < inst ≤ 1,complexity ≥ 1, and 2 ≥ PortAccessOverhead ≥ 0.

CoreConnect Buses

The CoreConnect environment provides three buses. The Processor Local Bus (PLB), the On-

Chip Peripheral Bus (OPB), and the Device Control Register (DCR) Bus. This discussion begins with the

PLB which is where the PowerPC will reside in the majority of designs. The PLB is used to make requests

to memory elements or other peripherals. The OPB which is primarily used with the MicroBlaze, will be

discussed next. The DCR was not modeled because the investigations involved with this thesis did not

require it.

The PLB is the connection provided to the PowerPC cores giving them high speed access to

peripherals. It has separate 32-bit address and 64-bit data buses. It is a fully synchronous bus which supports

multiple master and slave devices. Read and write transfers between master and slave devices occur through

the use of PLB bus transfer signals. Each PLB master has its own address, read-data, and write-data buses.

Slaves have a shared but decoupled interface.
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Figure 2.19 illustrates aspects of the PLB bus model in METROPOLIS.
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Figure 2.19: METROPOLIS PLB Model

The PLB bus transactions consist of multiple address and data tenures. The address tenure has

request, transfer, and address phases. The data tenure has transfer and acknowledge phases. Begin by

assuming that there are only one master and one slave on the bus. In the event that a requesting master

is immediately granted the bus and the slave acknowledges the address in the same cycle, then all three

address tenure phases happen in 1 cycle for a total of 3 cycles. The data tenure phase requires n cycles for

the transfer phase where n is the number of 32-bit words transfered and then 1 cycle for the acknowledge

phase. This is a total of n+1. Combining the data and address tenures results in 4+n total cycles. It is

understood that one master and one slave is a gross oversimplification and it will be shown to have its

disadvantages when compared to the characterized process described in Chapter 3. The OPB has a more

sophisticated estimation scheme than the PLB but also its accuracy ultimately paled in comparison as well

to the characterized method.

Table 2.6 provides the final PLB bus estimation numbers. The “Size” argument in the functions is

translated to the number of 32-bit words transferred, n.

The OPB is a low speed interface for the PowerPC. It was modeled primarily however since it is

available to the MicroBlaze soft cores as a master interface (which the PLB is not for the ML310 board used
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Interface Assumptions Cycle Count

busRead(int size) Single Master, Single Slave on Bus 4+n cycles

busWrite(int size) Single Master, Single Slave on Bus 4+n cycles

Table 2.6: PLB Bus Service Performance Estimation Summary

in the experiments). It is a fully synchronous bus which is intended to work at a lower level of hierarchy

as compared to the PLB. It supports separate 32-bit address and data buses. It accesses slave peripherals

through the PLB-to-OPB bridge.

Figure 2.20 illustrates aspects of the OPB bus model in METROPOLIS. It is similar to the PLB in

most respects (ports for example) but implements different service interfaces on its ports and has different

parameters.
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Figure 2.20: METROPOLIS OPB Model

Based on IBM’s OPB Bus Functional Toolkit [IBM03], three various scenarios were supported

for OPB operation. These scenarios formed the basis of the performance estimation data. The first scenario

is a synchronized, unlocked, multiple master memory access (SUMMA). In this scenario, there are two or

more masters and one slave device. Each master wishes to access the this slave. It is assumed that one

master receives access to the slave first, completes its transaction, and then notifies the second master that it
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can now proceed. This notification is why this scenario is denoted “synchronized”. Since the masters work

together in this scenario, the transfer time is 2nm+nm (3nm) where n is the number of 32-bit data words

transfered and m is the number of masters which wish to transfer. 2nm is the set up (request and grant) for

each transfer of each master. nm is the transfer cycles themselves for each master.

The second scenario is a locked, multiple master memory access (LMMA). This assumes that

once a master obtains the bus it is “locked” which will prevent other masters with higher priority from

accessing the bus. This is a less cooperative scenario as compared to SUMMA. This increases the overhead

of obtaining the bus from 2 to 4 cycles (assuming an additional request and grant phase). Therefore, the

transfer time is 4nm+nm (5nm). Again n is the number of 32-bit words and m is the number of master

devices involved in the transaction. 4nm is the set up (request and grant times two) for each transfer of each

master. nm is the transfer cycles themselves for each master.

The third scenario is a burst read or write using bus lock and sequential addresses (BRWLSA).

This scenario is for a single master and slave with bus parking disabled, round robin arbitration, and the

bus locked for the entire transfer. Since the addresses of the burst are sequential, the OPB can work more

efficiently. It does not need to go through a request and grant addressing phase for each transfer. Since the

bus is locked, it does not need to worry about multiple masters interrupting the transfer. Since bus parking is

disabled and round robin arbitration is assumed, other masters should have access to the bus in such a way

that fairness is preserved and starvation avoided. The transaction time is 2 + n where n is simply the number

of 32-bit words transfered during the burst along with the two extra cycles for the initial request and grant

phases.

Table 2.7 provides the final OPB bus estimation numbers.

Scenario Assumptions Cycle Count

SUMMA m Masters, Single Slave, Synchronization, n words 3nm cycles

LMMA m Masters, Single Slave, Locked bus, n words 5nm cycles

BRWLSA Single Masters, Single Slave, Locked, Burst, Seq. Addr. 2+n cycles

Table 2.7: OPB Bus Service Performance Estimation Summary

SelectRAM+ (BRAM)

The memory chosen to profile for performance estimation is the SelectRAM+ memory which is

prevalent on the Virtex II Pro device. This is a dual port RAM which comes in 18Kb blocks. Each of its

two ports can be independently configured as a read port, write port, or read/write port. Depending on its

configuration as single port or dual port, various different memory partitions are available. In order to access



60

the memory, there is one read operation and three write operations (write first, read first, and no change).

Operation is synchronous and behaves like a register in that address and data inputs need to be valid during

a set up time and hold time window prior to a rising edge of a clock edge. Data output changes as a result of

that same clock edge. SelectRAM+ was chosen since it is very easy to profile, prevalent on the device, and

easy to model.

SelectRAM+ is often called block RAM or BRAM because of how it is available in cascaded

blocks along the FPGA configurable logic blocks (CLBs). This makes them available to implement deeper

or wider single- or dual-port memory elements. In the largest Xilinx Virtex II Pro device (XC2VP125) there

are 18 columns of BRAM for a total of 10,008 Kbits.

BRAM interfaces were exported up to the functional model to simplify the creation of basic sys-

tems. Parameters required are the enable (EN), write enable (WE), and Set/Reset (SSR) signals. Also

BRAM was very easy to use in creating actual implementations for comparison with the simulations. Often

times, simple communication with BRAMs made for very effective dataflow systems based on the MicroB-

laze and FSL components.

Figure 2.19 illustrates the BRAM bus model in METROPOLIS.
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Figure 2.21: METROPOLIS BRAM Model

The read operation for BRAM uses only one clock edge. If the read address is provided by that

clock edge the stored data is loaded into the output latches after the RAM access interval has elapsed.

The write operation as mentioned could be in one of three forms. The default mode is write first

where the data is written to the memory then that data is stored on the data output (as opposed to read first

where the “old data” is sent to the output while the new data is stored). No change maintains the content of

the output register throughout the the new operation.

In order to get the latency estimates of the memory, one can use estimates from the application
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note [Xil03a] in which FIFO units are created using SelectRAM+ blocks and operate at 200Mhz or with a

latency of 5ns.

Table 2.8 summarizes the memory interfaces used. These estimates are for each 32-bit read or

write. memWrite accepts a integer mode argument between 1 and 3 which indicates its operating mode.

Interface Assumptions Cycle Count

memRead() 200Mhz System Clock 1 cycle initiate and˜5ns of latency

memWrite(int mode) 200Mhz System Clock 1 cycle initiate and˜5ns of latency

Table 2.8: Memory Service Performance Estimation Summary

CoreConnect Quantity Managers

Each of the services mentioned have a corresponding quantity manager (scheduler) associated

with them. Each of these quantity managers implements the request, resolve, postcond, stable functions

and their operational semantics as described. The resolve function is specific to each quantity manager and

reflects the device it is intended to interact with.

Figure 2.22 illustrates some aspects of the Quantity Manager models in METROPOLIS. This figure

differs from the earlier figures in this chapter in that instead of showing the parameters of the model, the

interfaces are shown. Parameters belong to models in the scheduled netlist. Not only will those parameters

be used to configure the simulation, they will also be used to create a programmable device description to

be used during synthesis (this is shown in Section 2.6). To this end parameters are not of importance for

scheduling netlist components. However, what is of interest are the interfaces which are called to schedule

components.

The first set of interfaces are the request(), resolve(), postcond(), and stable() functions discussed.

Notice that request requires two arguments. One is the event that is scheduling is requested for. The second

is a request class. A request class consists of a separate set of interfaces and variables.

The request class’ set of interfaces shown are: getRequestEvent(), getserviceType(), getTaskId(),

getComplexity(), setTaskId(int id), getFlag(), setFlag(int flag), getDeviceId(). These are “getter” and “set-

ter” style functions that allow information to be gathered regarding the service to be scheduled. These inter-

faces involve access to the generated event, type of service, complexity of requested service, id information,

and synchronization flags.
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Figure 2.22: METROPOLIS Quantity Manager Model

2.5 FLEET Architecture Modeling Exploration

In addition to programmable architectures, highly concurrent system architectures are excellent

candidates for this design flow. The reason being that the individually executing processes are very separated

from the asynchronous switch fabric by which they communicate. This forces a natural separation of the

computation and communication models. In addition, each computation engine operates using its own

scheduling mechanism. The specific highly concurrent system architecture this thesis chose to explore is

the FLEET architecture. FLEET is developed at U.C. Berkeley and Sun Microsystems. Another reason

for examining this architecture is that it does not have a strict specification on the amount of concurrent

communication or computation and many aspects of its design are unspecified in general giving the model a

lot of flexibility in terms of its implementation. FLEET is a class of architectures, not one specific instance.

It is this underspecification which will allow a microarchitectural exploration of design changes in future

chapters and investigate the role that refinement can play in the design process.

The simplest description of FLEET is as a collection of SHIPs. SHIPs can specify almost any

functionality and at the time of writing this thesis, the set of SHIPs is quite unspecified (Adder SHIPs and

MemoryAccess SHIPs are some examples). SHIPs have an input and output interface. FLEET executes

only one instruction, the MOV. A MOV specifies a source and destination. The “source” specifies a SHIP

output address and the “destination” specifies a SHIP input address. The data transfers move throughout

an asynchronous fabric categorized as the instruction horn, source funnel, and destination horn. This fabric
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makes no guarantees which MOV instruction will reach a particular shared destination first. However, it

does guarantee that instructions issued to a shared source receive data from the SHIP in strict program order

(this is called the “source sequence guarantee”). MOV instructions are held in code bags and fetched by

a dedicated Fetch SHIP. The coordination of data through the switch fabric is controlled by special units

called InBoxes and OutBoxes. For more information please see [Iva06] and [Wil01].

Figure 2.23 illustrates a high level view of a SHIP model. In the center of the figure a SHIP is

shown. The SHIP type is denoted with an “ID”. This ship will perform some type of computation (add,

multiply, etc). In order to perform this operation, it will read data from its inputs (on its right side). This

read be a destructive or non-destructive read. The results of computation are presented on its outputs (left

side). Boolean values indicate when the input can be consumed and when the output has been produced.

MOV instructions propagating through the switch fabric (“instruction horn”) will remove the output data

from the SHIP. Again, this can be a destructive or non-destructive read operation. This removed data enters

the “source funnel”. This SHIP is denoted as the “source” since it is the “source” of the MOV instruction.

MOVs to the same source are executed in strict program order. The removed data then enters the “destination

horn” where it will reach the input of another SHIP. Data sent from two different sources to the same

destination make no guarantees on the order on which they arrives. In order to remedy this situation, explicit

coordination SHIPs are used.
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Figure 2.23: FLEET SHIP Architecture
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The switch fabric can be thought of at the system level as a collection of source and destination

queues (one for each SHIP). In order to replicate its asynchronous nature, a series of handshakes occur in

which local variables are manipulated using “set” and “get” type functions. An example of these functions

are shown in Figure 2.23 as check data(), get data(), change flag(), and put data(obj). The MOV instruction

is an object which begins with the following information: source, destination, copy/move (non-destructive

or not). When it reaches the source, the data is appended and all that is kept is the destination information.

The fact that the switch fabric can be thought of as a set of buffers will be important later in this thesis where

various implementations of these buffers are presented.

Not shown in Figure 2.23 are objects which coordinate the interaction between the switch fabric

and the SHIP. These interfaces are called “inboxes” and “outboxes”. Inboxes and outboxes deal with latching

data as it reaches the ship. These are used to provide a consistent interface to the switch fabric.

For this thesis, SystemC models of FLEET services were created. Specifically the following

services were produced: Fetch SHIP, Adder SHIP, RecordStore SHIP (intermediate storage) , Literal SHIP

(provides static values), and Instruction Memory. Inboxes, Outboxes, and switch fabric (instruction horn,

destination horn, and source funnel) were also created but are not strictly considered services since they are

not exporting their services in such a way that they can be mapped to functional descriptions. This collection

of services is shown in Figure 2.24. In this figure, the interfaces for each service are shown along with what

type of data they operate on.

2.6 Synthesis Path for Architecture Services

One of the goals of the proposed flow presented in this thesis is to find a way to take architecture

service models and produce output which can be used in various synthesis flows. This process has been

termed, “narrowing the gap”. A desirable outcome of the Xilinx modeling effort is the production of a file

for the programmable tool flow which does not suffer from the translation gaps present in the naı̈ve flow.

This process will ensure that the the architecture topology created not only matches that of the model used

in METROPOLIS simulation but also that it has the same parameters which effect the simulation.

Because of the enforcement of parameterized IP like service construction, Xilinx Microprocessor

Hardware Specification (MHS) file generation is automatic. It consists of the following steps which are

illustrated in Figure 2.25:

1. Assemble the scheduled netlist - This step consists of making the connections between architecture

elements the designer is interested in simulating. This is naturally part of the design process and is re-
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Figure 2.24: FLEET Services Created

quired for simulation. The elements in this netlist should be selected from the provided METROPOLIS

library of Xilinx elements.

2. Provide parameters for the architecture component instance - These are required by the construc-

tors of the architecture elements themselves. Examples of these are shown in Figures 2.16, 2.19, and

2.21.

3. Simulate the architecture - This step requires running the parameterized architecture model mapped

to a functional model. This is the design space exploration process.

4. Decide on the architecture model which meets your goals - This is the outcome of the design space

exploration method. The rest of this process will use the model chosen in this step.

5. Run “Structure Extractor” script - This script works by traversing the scheduled netlist. It identifies

components, their parameters, and their connections. The final result is the production of a MHS file.

6. Take resultant file and feed to Xilinx EDK - This process will produce an FPGA with the specified

components, topology, and parameterization. All that need be done now is to provide the FPGA with

the software aspects captured only in the functional model.
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Figure 2.25: Automatic Xilinx MHS Extraction

2.7 Conclusions

This chapter has outlined how a modular architecture modeling style can leverage event based

simulation and still remain efficient and accurate. A major manifestation of this thesis is a methodology

for the design and classification of architecture services. This can be achieved in the METROPOLIS design

environment as described. The realization of this process results in a library of METROPOLIS Xilinx Virtex

II Pro components. This design flow includes automatic structural extraction for programmable platform

tool synthesis and provides a rough estimation methodology for IBM CoreConnect elements. This chapter

indicates how estimations can be given for architectural services. The subsequent chapter will demonstrate

how a characterization method can add accuracy to this data with very little extra effort.
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Chapter 3

Architecture Service Characterization

“The first rule of any technology used in a business is that automation applied to an efficient

operation will magnify the efficiency. The second is that automation applied to an inefficient

operation will magnify the inefficiency.” - Bill Gates, Microsoft Co-Founder

In [Ada04], the relative importance of ESL design tasks was explored for a variety of product

scenarios. The design tasks identified are “early software development”, “functional verification”, “perfor-

mance analysis”, and “design space exploration”. Crossing the “methodology gap” introduced in Chapter

1 requires a suitable ESL technology be in place for each of these design tasks. Furthermore, ESL tools

must address the design tasks in a way that matches the designer’s specific product scenario. An ESL solu-

tion for application specific standard products (ASSPs) will differ from the solution for structured ASICs.

Figure 3.1 formulates, as an example, an ESL roadmap to support the transition of RTL designers to ESL.

This illustration is based on Figure 1.2 which illustrated the productivity progress required for ESL adop-

tion. The exact number and sequence of steps varies according to the priorities of a given market segment.

Each technology that is in place is a step up from RTL to ESL and a complete set of steps is required for a

smooth transition. If one or more of the steps are missing, the risk of migration will deter designers that are

not close to their “maximum tolerable design gap”. Designers that reach their maximum tolerance before

the ESL steps are available are in a pathological scenario because their product is no longer cost effective

to develop. Naturally, the steps must also occur in a timely manner or system complexity will overtake

productivity again.

Chapter 2 and this thesis in general deal with the design space exploration step. However this

chapter focuses on one specific step in the transition from RTL to ESL, ESL performance characteriza-

tion (and analysis). ESL performance characterization allows designers to predict whether a given system

architecture can meet a requested level of performance. For this process to be truly useful, performance



68

��������	
����

������	�	���������

��������	
����

������	�	���������
�

�
�
	


�
��

�
�

�
��

�
	�
�
��
�
��

��
�
�
	�

��
��

 

�	�������

��������!�"����

�����������

#����	�����

$��	!	���	��

��!��������

�%�������	&��	��

�%	���%����� ���	
��������

��������	��

�%�������'()(*

���	
��������

Figure 3.1: Transcending RTL Effort with ESL Design Technologies

characterization must be integrated with architecture service modeling. It is in this integration that lies

this thesis’ contribution.

This chapter will provide a methodology for characterizing architecture services for performance analysis.

This methodology produces results that are highly accurate while maintaining modularity.

Today, the two most common performance metrics are computational throughput and power con-

sumption. In some markets, computational throughput is the dominant metric whilst, in others, power

consumption takes pole position. In this thesis, computational throughput will be focused on. As with all

ESL design tasks, performance characterization relies on simulation or analysis of abstract system models

to derive system performance in a given situation. Abstraction allows the system to be described early and at

a reasonable cost but it also casts a shadow of doubt over the accuracy of performance characterization data.

Since the data guide the selection of one system architecture over another, the veracity of data recovered

from ESL performance characterization techniques must be weighed carefully by the designer. Accuracy is

paramount for ESL acceptance and legitimacy.

Fear of inaccuracy in ESL performance characterization is a major impediment to the transition

from RTL to ESL. However it is not the only impediment. Beyond the fundamental abstraction accuracy

tradeoff, current ESL methods and tools lack a coherent set of performance modeling guidelines. These

guidelines are important because they allow a single system model to be reused over multiple ESL design

tasks: the same basic model must be instrumented for performance characterization without significant com-

promise to its usefulness in early software development. Clear guidelines and coding standards also allow

analytical data to flow out from a model into multiple ESL vendor tools. Close coupling of an instrumen-
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tation interface to a single ESL vendor is generally perceived as a bad thing unless the ESL vendor’s tools

precisely complement the designer’s target market segment. Modularity is paramount for ESL accep-

tance and legitimacy.

As seen in the naı̈ve flow in Figure 1.12 in Chapter 1, typically, average and worst case cost esti-

mates for system features are often used today in ESL performance models. The estimated cost model for

Xilinx Virtex II Pro architecture services was described in Chapter 2. As will be shown, the inaccuracy of

these measures quickly accumulates in the data recovered from ESL performance analysis tools and restricts

the designer to measure only the relative performance of two systems. In this chapter, a novel technique is

described that combines very accurate performance characterizations of a target platform with abstract ar-

chitecture service models in an ESL design environment. This process is an enhancement present in the flow

proposed in Figure 1.13 and Figure 3.2 highlights and expands this. It is proposed that characterization data

recovered an from actual target device can be gathered easily and can be annotated into ESL architecture ser-

vice models to enhance the accuracy of performance estimates. In the prototype of this approach, a specific

modeling environment (METROPOLIS) is selected. One set of target characterizations can be exchanged for

the estimated data to aid in the selection of a specific instance of the target architecture. All of this effort

specifically looks to address accuracy as required by the overarching goals of this thesis while maintaining

modularity.
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Figure 3.2: Characterization of Architecture Services in the Proposed Design Flow
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3.0.1 Chapter Organization

The remainder of this chapter is organized as follows: first in Section 3.1, the technique’s general

process is discussed along with its set of requirements and assumptions. The next section (3.2) offers more

details on the pre-characterization process by discussing the automatic generation of the group of target

systems. An important part of this discussion is how to automate the extraction of reusable performance

data from the target system’s physical design flow. Section 3.3 provides an example of the characterization

data that can be obtained with this automated method. Storage, organization, and categorization of this data

are discussed next in Sections 3.4 and 3.5. A Motion-JPEG encoder example of pre-characterizing processor

systems on Xilinx Virtex Platform FPGAs is contained in Chapter 5 (along with all design examples). This

chapter concludes by summarizing the results and discussing potential future work.

3.1 Platform Characterization

Platform characterization is the process of systematically measuring a set of properties of a phys-

ical platform or its components. Ultimately, this measurement data will be annotated to ESL architecture

service models of the platform’s components. Subsequent simulations of the now annotated model yield

performance estimates that are correlated to the actual target platform. As such, they are more accurate

than equivalent models annotated with “ballpark” performance metrics. In short, platform characterization

extracts a relevant group of performance measures from the physical implementation of a platform.

For characterization to be applicable to a system design, an appropriate, measurable implemen-

tation of the target platform must already exist. Clearly, ASIC designs are less amenable to this approach

because a suitable implementation of the implementation target is not available early enough in the design

process. Fortunately, programmable platforms based on FPGA technology and ASSP based systems are

common targets for new design starts [Gar08]. Both technologies are amenable to the proposed approach.

In the case of an ASSP, its physical properties and system architecture are fixed at fabrication. For FPGAs,

the physical properties of the platform are fixed at fabrication, but the system architecture is flexible. Clearly

one cannot apply this technique to the designer’s final platform: the system architecture for the designer’s

product has not yet been determined. Instead, it is necessary to pre-characterize a broad set of potential

system architectures that the designer may use. Systems destined for this kind of target require the de-

signer to choose the characterization data that is most representative of the system architecture they intend

to create. Additionally, the designer can explore the effect of different system architectures through their

characterizations.
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Systematically characterizing a target platform and integrating the data into the platform model is

a three way tradeoff between the following factors:

• Characterization effort (code size, maintenance, run time);

• Portability of characterization data (system agnostic design); and

• Characterization accuracy (correspondence to real systems).

The more accurate a characterization, the more effort it will take to extract and the less portable

it will be to other system models. Alternatively, a highly portable characterization may not be accurate

enough to base a design decision on. This process must offer more accuracy than standard transaction level

approaches [Ada04], require less effort than an RTL approach, and have more portability than an ASIC

(static architecture) based target. Table 3.1 relates this approach (platform characterization) to RTL and

transaction level modeling (TLM) with regards to the three main tradeoffs. Each column is an approach and

each row is a design description. “Low”, “Medium”, and “High” are just used to show the relative ranking

of each approach in the context of the others.

Tradeoff TLM RTL Platform Characterization

Effort Medium High Medium-Low

Portability Medium Low High

Accuracy Medium-Low High Medium-High

Table 3.1: Performance Characterization Tradeoffs

3.1.1 Characterization Requirements

In order to develop a robust environment for platform characterization processes there are several

requirements:

• Direct correlation between platform metrics characterized and architecture service models - the

designer must make sure that the service models developed can be easily paired with characterization

data and that the models have the essential behaviors which reflect the aspects captured by character-

ization.

• IP standardization and reuse - in order to make characterization scalable, designs must use similar

components. If each design is totally unique and customized there will not be existing information

regarding its characterization. For example, Xilinx FPGAs accomplish this by employing the IBM
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CoreConnect bus and the CoreConnect interfaces on the IPs in their Xilinx Embedded Development

Kit (EDK). These are industry standard IP used in embedded system design. This requirement will be

expanded in the next section when extraction is discussed.

• Tool flow for measuring target performance - whichever platform one chooses to model, the actual

target device must have a method and tool flow to gather measures of the characterization metrics.

• System Level Design environment with support for quantity measurements - the framework that

the characterization data is integrated with must support the measurement of quantities (execution

time, power, etc). In addition it must allow for the data used to calculate these quantities come from

an external source.

This chapter will not focus on the details of each requirement. The discussion in this chapter will

describe characterization in the context of the METROPOLIS design environment [Fel03] and Xilinx Virtex

II Pro FPGAs. Other design environments and platform types that meet the requirements above may also be

characterized with this approach.

The next section will discuss how to begin the process of gathering data for use in the characteri-

zation process.

3.2 Extraction of Platform Characterization Data

Extraction of data from the target platform’s physical tool flow is at the heart of this characteriza-

tion methodology. Extraction is a multiphase process concerned with:

• Selecting a programmable platform family - by selecting a family of products in a programmable

product line, one increases the opportunity that the extraction will be portable to other systems. Ide-

ally, the selection of a platform family is done without regard to application domain but, in practice,

this will influence the designer’s decision. An example of a programmable platform family is the

Xilinx Virtex-4 family of platform FPGAs.

• Selecting programmable platform components - the properties of the components will vary de-

pending on the granularity and type of the programmable platform. For example an FPGA could

consist of IP blocks, embedded processing elements, or custom made logic blocks.

• Selecting systems for pre-characterization - from the selected components, assemble a template

system architecture. From this template architecture create many other permutations of this template.

In many cases the permutation of the template architecture is automatic.
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– Permutations can be made incrementally using various heuristics regarding the desired number

and types of components. For example, one might want to constrain the number and type of

embedded processors instantiated or the number of bus masters/slaves. The entire permutation

space does NOT need to be generated.

• Independently synthesize and implement each system permutation - the ability to quickly syn-

thesize the created architecture instances is what differentiates programmable platforms from static,

ASIC like architectures. Each of the systems should be pushed through the entire synthesis and phys-

ical implementation flow (place, route, etc).

• Extracting desired information from the synthesis process and its associated analysis - the con-

clusion of the synthesis process will give information about each system. Such information includes

(but is not limited to) various clock cycle values, longest path signal analysis, critical path informa-

tion, signal dependency information, and resource utilization. Standard report processing tools like

PERL [O’R07] can be used to automatically extract the appropriate information from the platform

tool reports.

Figure 3.3 illustrates the pre-characterization process. This is a sequence of six steps as shown.

These steps roughly correspond to the steps just outlined (Section 3.2).

3.2.1 Data Extraction Requirements

The issues that need to be observed during the extraction of characterized data are Modularity,

Flexibility, and Scalability. These are important aspects of steps 5 and 6 in Figure 3.3:

• Modularity - After the initial selection of components and the architecture template, the rest of the

extraction can be performed by many independent extraction processes. These processes can be dis-

tributed over multiple workstations. This reduces the time to generate N permutations and characterize

them to a constant time M where M is the duration of the longest permutation.

• Flexibility - Ultimately the extracted characterization data must be correlated to designs during sim-

ulation. Therefore the closer the permutated templates are to the actual designs the better. In most

cases they will be identical but it is possible that some architecture service model designs will have

parameters that differ from the characterized system. In the event that the differences do not affect the

performance under test, the characterization data already obtained can be used.
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Figure 3.3: A Design Flow for Pre-characterizing Programmable Platforms

• Scalability - The extraction process is independent of the storage mechanism for the data so it in

no way limits the amount of characterization data that can be extracted. Constraints can be added

or relaxed on the permutations of the initial template. Theoretically, all permutations of the target’s

component library are candidates for characterization. Even though the characterizations can happen

at the platform vendor well in advance of the designer using the data, the set of permutations will

be constrained. This is necessary to maintain a reasonable total runtime for the overall extraction

process initially. This method does support incremental addition of permutations later if the need

arises however.
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3.3 Example Platform Characterization

To exemplify this process (Sections 3.1 and 3.2), a set of typical FPGA embedded system topolo-

gies was pre-characterized [Dou06a]. Each topology was generated from a template to create a micro-

processor hardware specification (MHS) file for the Xilinx embedded system tool flow. Architectures were

generated with permutations of the IPs listed in Table 3.2. The table also shows the range in the number of

IP instances that can be present in each system permutation along with the potential quantities of each. In

addition to varying the number of these devices, also permuted were design strategies and IP parameters.

For example, the system’s address decoding strategy was influenced by specifying tight (T) and loose (L)

ranges in the peripheral memory map. A loose range in the memory map means the base and high addresses

assigned to the peripheral’s address decoder are wider than the actual number of registers in the peripheral.

For a tight range, the converse is true. Also permuted was the arbitration policy (registered or combina-

torial) for systems that contained an On-Chip Peripheral Bus (OPB). These axes of exploration were used

to investigate the relationship between peripherals and the overall system timing behavior. These design

factors are not usually considered in system characterization. This is due to the fact that they are not tra-

ditionally considered in influencing the system size. System size is a heuristic often used since it has the

ability to influence system performance (e.g. system clock speed). These often overlooked feature’s affects

on performance will be of particular interest.

Component MicroBlaze PPC Combo

PowerPC (P) - 1-2 1-2

MicroBlaze (M) 1-4 - 1-4

BRAM (B) 1-4 1-4 1-2 (per bus)

UART (U) 1-2 1-2 1-2 (per bus)

Loose vs. Tight Addressing Yes Yes Yes

Registered or Combinational Arbitration Yes N/A Yes

Total Systems 128 32 256

Table 3.2: Example CoreConnect Based System Permutations for Characterization

The columns of Table 3.2 show three permutation “classes” that were used. The implementation

target was always a Xilinx XC2VP30 (Virtex II Pro) device. The first class (column MicroBlaze), refers

to designs where MicroBlaze and OPB were the main processor and bus IPs respectively. The second

class (column PowerPC) represents PowerPC and Processor Local Bus (PLB) systems. The third class

(Combo) contain both MicroBlaze and PowerPC. The number of systems generated is significant (but not

unnecessarily exhaustive) and demonstrates the potential of this method. Note each system permutation can
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be characterized independently and hence, each job can be farmed out to a network of workstations. For

reference, the total runtime to characterize the largest “Combo” system with Xilinx Platform Studio 6.2i on

a 3GHz Xeon Windows machine with 1 GB of memory was 15 minutes. The physical design tools were run

with the “high effort” option and a User Constraint File (UCF) that attempts to maximize the system clock

frequency. An observation of the characterization data shows that as resource usage increases (measured

by FPGA slice count; a slice contains two 4-input function generators, carry logic, arithmetic logic gates,

muxes, and two storage elements) the overall system clock frequency decreases. Figure 3.4 shows a graph of

sample Combo systems, their size, and reported performance. Nested loops of each IP were used to generate

the system permutations, giving the systems generated predictable increases in area and complexity. The

major, periodic increase in area is as anticipated and indicates that a MicroBlaze processor was added to

the system topology and all other peripheral IPs were reset to their lowest number. Note that the graph’s

performance trace is neither linear nor monotonic. Often area is constant while frequency changes

drastically. This phenomenon prevents area based frequency estimations. The relationship between the

system’s area utilization and performance is complex, showing that building a static model is difficult, if at

all possible, and confirming the hypothesis that actual characterization can provide more accurate results.
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Figure 3.4: Combo Systems Resource Usage and Performance

Table 3.3 highlights an interesting portion of the data collected in the PowerPC class. Each row is

a PPC system instance: the leftmost columns show the specific IP configuration for the system ((P)owerPC,

(B)RAM, and (U)ART) and the remaining columns show area usage (slice count), max frequency, and the

% change (∆) between the previous system configuration (representing potentially a small change to the

system). This thesis contends that a difference of 10% is noteworthy and 15% is equivalent to a device
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speed-grade. Note that there are large frequency swings (14%+) even when there are small (<1%) changes

in area. This is not intuitive, but seems to correspond to changes in addressing policy (T vs. L) and indicates

that data gathered in pre-characterization is easy to obtain, not intuitive, and more accurate than analytical

cost models. The data shown here is not what would be estimated in an area based approach. As a result

systems using area based techniques would not be nearly as accurate.

P B U Addr. Area f(MHz) MHz ∆ Area ∆

1 2 1 T 1611 119 16.17% 39.7%

1 2 1 L 1613 102 -14.07% 0.12%

1 3 0 T 1334 117 14.56% -17.29%

1 3 0 L 1337 95 -18.57% 0.22%

1 3 1 T 1787 120 26.04% 33.65%

Table 3.3: Non-linear Performance Observed in PPC Systems

Figure 3.5 illustrates Table 3.3 and shows area and separate performance traces for PPC systems

in two addressing range styles (one tight and one loose). One set of data points correspond to area measure-

ments and the other reflect frequency measurements. The graph demonstrates that whilst area is essentially

equivalent (the area curves overlap visually), there are clear points in each performance trace with deviations

greater than 10%.
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Figure 3.5: PowerPC System Performance Analysis
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3.4 Organization of Platform Characterization Data

The organization of the raw, extracted data is the process of categorizing the information in such

a way that system simulation remains efficient, data remains portable, and flexible data interactions can be

explored. This is a very important part of the characterization process and if a poor job is done in this stage,

many of the benefits of the previous efforts will be lost. This is an aspect of step 6 in Figure 3.3. More

concisely the goals are thus:

• Maintain system efficiency - if the simulation performance of the system using estimated data (a

naı̈ve method) is PE and the performance of the system using characterized data (the proposed method)

is PC, the following relation must hold, PC ≥ PE . Performance in this case is a measure of simula-

tion effort or cycles consumed which directly affect the execution time of the simulation or runtime

memory requirement (higher performance results in lower execution time or lower runtime memory

requirement).

• Portable Data - in order to reuse data, it must be stored in such a way that it is maximally portable

amongst various models. This requires three things: 1) A standard interface for accessing the stored

data 2) A common data format for the stored data and 3) The ability for the data set to grow over time.

• Flexible Data Interaction - data interaction refers to the ability to allow many ways in which data

can interact in order to give information regarding the performance of the simulation. For example

if data regarding transactions per instruction can be combined with information regarding cycles per

transaction one can determine the cycles per instruction. Another example is that if Transaction1 can

use signals S1 or S2 and it is known that S1 resides along a longer path than S2, Transaction1 can

utilize S2 for greater performance. It is best to place no restriction on data interaction in so much as it

does not conflict with any of the other characterization goals.

3.4.1 Data Categorization

With the goals defined for “characterization data organization” the second aspect that must be

determined is how data is categorized. Data can be categorized in many ways depending on what is be-

ing modeled. For the sake of this discussion, it will be in the context of what is required typically for

programmable architecture service models of embedded systems. To this end there are three categories:

• Physical Timing - this information details the physical time for signals to propagate through a sys-

tem. Typically this information is gathered via techniques such as static timing analysis or other
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combinational or sequential logic design techniques to determine clock cycle or other signal delays.

• Transaction Timing - this information is a unit of measure which details the latency or stages of

a transaction. A transaction is an interaction between computational units in point to point manner

or through other communication mechanisms (buses, switches, etc). This could be a cycle count in

reference to a particular global clock which determines the overall speed of the system. Or it could

alternatively be an asynchronous measure.

• Computation Timing - this information is regarding the computation time taken by a specific com-

putation unit. This could be both HW and/or SW based routines. For example it could be a cycle

count given by the time a HW unit (Adder, Shifter, etc) takes to complete its operation. Alternately

it could be the cycle time taken by a particular software routine (Discreet Cosine Transform perhaps)

running on a particular embedded processor.

These three areas interact to give estimated performance for a system under simulation. The

following example (Table 3.4) shows how all three areas can be used along with their ability to flexibility

interact to provide performance analysis:

Instruction Timing Categorization Performance Implication

read(0x64, 10B) Transaction - 1 cycle/Byte 10 cycles

execute(FFT) Computation - FFT 5 Cycles 5 cycles

write(0x78, 20B) Transaction - 2 cycles/Byte 40 cycles

Total Cycles Physical - 1cycle/10ns 550ns

Table 3.4: Sample Simulation Using Characterization Data

The leftmost column provides three different instructions. The center column gives the charac-

terization of each instruction and what category it falls under. The rightmost column gives the resultant

performance implication given the instruction and its characterization. The final row illustrates the execu-

tion time of this sequence of instructions given the physical time of one execution cycle.

3.4.2 Data Storage Structure

Finally, it must be decided what actual structure will hold the now categorized, characterized data.

The primary concerns are related to the goals initially mentioned in this chapter regarding portability and

efficiency. This should be a structure that can grow to accommodate more entries. Ultimately what structure

will be used is determined by which system level design environments are intended to be used. However the

follow issues should be considered:
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• What is the overhead associated with accessing (reading) the data?

• What is the overhead associated with storing (writing) the data? Both this and the reading overhead

are affected by code size and complexity and ultimately affect simulation speed.

• Can data be reorganized incrementally? This is of use if new data is added or the categorization

mechanism changes.

• Can data be quickly sorted? Searched? This can increase the speed of access and allows exotic

relationships between data elements and their use.

More specifics on data structures for characterization data will be touched on in the next section

when specific example executions are discussed. For now this thesis leaves the reader with an illustration of

an abstract structure in Figure 3.6. The left hand side of the illustration shows the data categorization and in

which stage of the design flow that data is generated. Shown are the three types of data categories as well

as where that data is collected. Notice that each element is connected to the others, illustrating that they

should be flexible in their interaction. Also there should be an input interface (to enter data), as well as an

output interface to retrieve the data. The right hand side shows a sample entry in the data storage structure

where each system categorized has its own index and may have independent or shared entries in the storage

structure. With each index there is associated physical timing, computation timing, and transaction timing

data. This data can be shared or be unique to a particular index. Additionally each index is not required to

have an explicit entry for each category and can utilize a globally stored default value.

3.5 Integration of Platform Characterization and Architectural Services

Once the data has been extracted and organized it now must be integrated into a system level

design environment for simulation. The following discussion will highlight the key issues associated with

this integration and provide an example of each in the METROPOLIS environment.

• Separation of architecture models and their scheduling - this requirement allows for the data struc-

ture containing the extracted data to be independently added and modified apart from the actual sys-

tem.

– In METROPOLIS, architecture models are a combination of two netlists (as described in Chapter

2). The first netlist is called the scheduled netlist and contains the topology and components

that make the architecture instance (CPUs, BUS, etc). The other netlist is the scheduling netlist
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Figure 3.6: Characterized Data Organization Proposal

and contains schedulers for each of the components in the scheduled netlist. When multiple

requests for a resource are made in the scheduled netlist, it is the other netlist which resolves the

conflict (according to any number of algorithms). The schedulers themselves are called quantity

managers since the effect of scheduling is access to update a quantity (time, power, etc) of the

simulation. See [Abh04] for more information on METROPOLIS architecture modeling.

• Ability to differentiate concurrent and sequential requests for resources - the simulation must be

able to determine if requests for architecture resources occur simultaneously and are allowed to be

concurrent or if they should be sequential and if so what is the ordering. This is important since each

request will be accessing characterization data and accumulating simulation performance information

which may be order dependent.

– In METROPOLIS there is a resolve() phase during simulation. This is the portion of simulation

where scheduling occurs. This scheduling selects from multiple requests for shared resources.

This is done by quantity managers in METROPOLIS.

• Simulation step to annotate data - during simulation there should be a distinct and discernible time

(simulation step) where data is annotated with characterized data
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– METROPOLIS is an event based framework which generates events in response to functional

stimulus. These events are easily isolated and augmented with information from characterization

during scheduling (with the request() interface). This annotated data is stored in the event’s

“value” set. Events are defined as demonstrated by the tagged-signal model of [Edw98].

The overall message of this integration discussion is that once the data is ready to be integrated

into the design environment 1) it must be able to be added non-destructively 2) it must be able to augment

existing simulation information detailing performance 3) the simulation must be able to correctly recognize

concurrent and sequential interactions/requests for the characterized data.

3.5.1 Sample Annotation Semantics

This final section will demonstrate an example execution of a system integrated with the charac-

terized data. This will be based on the METROPOLIS design environment. In this case, the structure holding

the data is a hash table-like structure indexed by information regarding the topology of the system. Figure

3.7 illustrates these steps in METROPOLIS. Each step in the figure corresponds to a step below.

1. An active METROPOLIS architecture thread generates an event, e. This event represents a request

for a service. This event will have been generated by a functional model mapped to this architecture

needing a service (CPU, BUS, etc). This event can represent a transaction or computation request. In

the case of the figure, the event is generated by a thread.serviceRead() interface call.

2. The service will make a request to its scheduler, with the request(e) method. This passes the request

from the scheduled netlist to the scheduling netlist where e joins a list of pending events. While this

event is waiting scheduling, the task that generated it remains blocked (unable to proceed). In the

figure this is the serviceScheduler.request(e) call.

3. Once all events that can be generated for this simulation step have been generated, the simulation

proceeds to a resolve() phase where scheduling decisions (algorithms vary depending on the service

they schedule) are made which remove select events from the pending lists. The figure illustrates this

in the scheduling netlist’s serviceScheduler.resolve(e) object call.

4. serviceScheduler.Annotate(e) selects events by indexing the characterized database according to event

information. In practice more than just the event is passed. In addition a “request class” is passed also

to provide information for indexing the database. This allows access to simulation quantities (like

simulation global time) which can now be influenced by annotated events. Note that this requires no
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more impact on simulation performance as compared to estimated data (a requirement of our

methodology; PC ≥ PE).

5. Report back to the task that it can now continue (unblock the thread). This is the communication

between the scheduler and the thread, unBlock(e) in the figure. This process is actually communicating

to the process through a statemedia using the setMustDo() function.

6. The process can occur recursively when transactions like read() use CPU, BUS, and MEM ser-

vices. These calls would generate their own sets of events. The figure illustrates a potential nextSer-

vice.serviceRead() call by the existing service which would initiate a similar sequence once again

further down the netlist.
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Figure 3.7: METROPOLIS Sample Annotation Semantics Using Characterized Data

3.6 Conclusions

Before the gap between designer productivity and design complexity becomes an impassible

chasm, architects must complete a transition from RTL to ESL design methods. However, a complete

path from RTL to ESL has not yet been established. The reasons for the ESL methodology gap include the
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difficulty of isolating a set of design technologies that solve ESL design problems for the diverse range of

system types. Designers desirous of ESL performance analysis tools are also wary of the accuracy of the

data they can recover from existing tools and models.

In this chapter, an ESL performance analysis technology for programmable platforms was pre-

sented. This approach united characterizations of actual platforms with abstract designer model simula-

tions. The result is an integrated approach to ESL performance modeling that increases the accuracy of

performance estimates. This use of METROPOLIS quantity managers also eases design space exploration by

separating the architectural models of a system from the specific timing model used during system simula-

tion.

Future efforts with system level pre-characterization will begin with a deeper exploration of the

tradeoff between accuracy and a given system model’s level of abstraction. Additionally, formal techniques

can be applied to analyze the bounds of our approach which is currently simulation based.

With both the modeling and characterization of programmable architecture models described. The

next chapter will explore how one can verify properties of these models as they are successively refined from

abstract specifications to actual implementations.
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Chapter 4

System Level Service Refinement

“Program construction consists of a sequence of refinement steps.” - Niklaus Wirth, Designer

of Pascal

Increasing abstraction as shown in Chapters 1 and 2 is a powerful tool in the fight against in-

creased complexity. Platform-Based design explicitly accommodates various levels of abstraction in what

has been termed, “the fractal nature” of the design process [Kur00]. This technique is particularly useful

for architectural servicesand the platforms that result when functional descriptions are mapped to those ser-

vices. Working at various levels of abstraction is useful also in various synthesis situations. For example,

one may want to work at various abstraction levels for the purposes of optimization. Logic minimization

of a gate level netlist as opposed to a more structural netlist is an opportunity for optimization. Analysis of

design decisions during design space exploration, design transformation from one model of computation to

another, or the introduction of physical and implementation concerns, such as wire delays, are all additional

reasons for abstraction. When deciding upon the initial abstraction level or the move to another abstraction

level, it becomes critical that one can ensure that newly introduced models correspond to their more or less

abstract counterparts. Therefore three issues become paramount:

1. What is the behavior that should be required to correspond between the abstract and refined systems?

2. How can that behavior be captured efficiently and formally?

3. How can behaviors once captured be compared?

This chapter will identify three strategies to classify, capture, and verify the behavior of system level

architecture service model. The verification process will be involved in demonstrating that two systems at
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various levels of abstraction can be safely used in place of each other during simulation without damaging

the functionality of the overall design.

Figure 4.1 highlights how refinement plays a part in the proposed design flow first outlined in

Chapter 1. In this picture, one can see that refinement is intended to be coupled with the design space ex-

ploration process. It is used to ensure that as the design moves down abstraction levels, successively refined

models maintain particular properties important to correct system level operation. Specifically structural

modifications as well as component modifications should be verified.
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Figure 4.1: System Level Service Refinement in the Proposed Design Flow

In order to clarify refinement’s place in the design flow, consider this example scenario. A designer

using the METROPOLIS design methodology wishes to provide various architectural service instances upon

which to map a functional description. These services could represent new processing elements (such as a

CPU) or storage elements (such as memory). These architecture services may each be unique or each may

be incremental additions to existing services as well. Those falling into the latter category are considered

refined services. The system composed of both new and incrementally modified services is a refined archi-

tecture. This refinement is of interest since these changes represent a variety of intentions on the part of

the designer. Refinement attempts to either preserve or introduce new properties to the architecture, raise

or lower the abstraction level, or introduce or remove elements bringing it either closer or further from the
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requirements of synthesis. Due to the effort often associated with creating entirely new models, refinements

are often the most common architecture service modifications. Target architectures tend to be a family of

architectures as opposed to entirely new designs. Additionally, testing effort is very valuable and it is desir-

able to repeat as little of this as possible when designing new systems. It is with all these factors in mind

that this thesis examines three methodologies in which to introduce, categorize, create, and test architecture

service refinements. Ultimately I will provide the results of these methodologies in Chapter 5.

4.0.1 Chapter Organization

Before beginning any discussion, Section 4.1 will provide the required background and definitions.

This section is followed by an overview and classification of related work in Section 4.2

The remaining organization of this chapter is such that the reader is introduced to the three re-

finement methods in order of ascending specificity. In Section 4.3 an event based structure for refinement

in illustrated. This method uses events to define system behavior and demonstrates how properties can be

defined over these events. Section 4.4 builds on the previous section by demonstrating how traditional in-

terface based refinement techniques used in the formal verification community can be utilized in a design

environment such as METROPOLIS using events. Finally Section 4.5 shows how a very specific structure

(labeled fair transition systems) can be effectively used to represent communication structures in systems

by using events as well in compositional component based refinement. Finally, conclusions are provided in

Section 4.6.

4.1 Background and Basic Definitions

While it is impossible to make this thesis completely self contained, it is the goal of this section

to at least provide the intended audience with the necessary definitions to understand the majority of this

chapter. When the definitions are not unique to this thesis (which is the case regarding much of the un-

derlying theory) citations are given. It is important that the reader also examine the background and basic

definitions provided in Chapters 1, 2, and 3 since they will not be repeated here and their understanding is

often assumed.

To start any conversation which attempts to relate two or more systems to each other, the concept

of equivalence versus refinement is critical.

Definition 4.1.1 Equivalence - The property describing two systems which cannot be distinguished from

one another when each is provided the same input stimulus or operating environment. For example two



88

combination circuits such as AB or AB + ABC are equivalent since they have the same truth table. Two

states in a FSM are equivalent if for any input sequence the set of observable output values which result as

the FSM transitions does not differ.

Definition 4.1.2 Refinement - The process of of removing behaviors of a system through the introduction

or removal of components. Typically this process is removing over specification or nondeterminism in a

design as it proceeds to implementation. An example is developing a USB device from the USB spec.

This difference between the refinement and equivalence definitions is important and should not

be discounted. This thesis will be involved in verifying refinement (not equivalence) between two or more

platforms. A system is refined by the existence of a refined architecture model (and its refined services) as

defined:

Definition 4.1.3 Refined Service - A service which provides a subset of the interface methods provided

by its more abstract counterpart. This subset will result in fewer possible behaviors. This service may be

composed of more or less components than the more abstract service.

Definition 4.1.4 Refined Architecture - An architecture model having one or more refined services.

These definitions provide a sufficient starting point for the discussion to follow. Terms such as

architecture, service , and system have been defined earlier as mentioned.

4.1.1 State Equivalence

State equivalence is a well defined concept. It is often applied to finite state machine optimization.

The general notion is that two states are equivalent (indistinguishable) if upon applying any input sequence

of any length to one state, the output sequence produced is the same as having started from the other state

using the same input sequence. Groups of equivalence states are called equivalence classes. More formally:

Definition 4.1.5 State Equivalence - Two states S1 and S2 are equivalent if for every possible input se-

quence X: 1) the corresponding output sequence Z1 = Z2 and 2) the corresponding next states S+
1 = S+

2 .

State equivalence is important because, certain refinements can be defined loosely as requiring

that every state in the refined model, having an equivalent state in the abstract model.
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4.1.2 Trace Containment

Trace containment is a more specific refinement definition requiring that behaviors be captured as

trace sequences. This process will be used in the discussion of interface based refinement. Formally it can

be described in the following manner taken from [Raj03].

A model is generically defined as an object which can generate a set of finite sequences of behav-

iors, B. One of these possible finite sequences, B, is considered a trace, a. Given a model X and a model

Y, X refines the model Y, denoted X �Re f Y if given a trace a of X then the projection a[ObsY] is a trace

of Y. A trace, a is considered a sequenced set of observable values for a finite execution of the module. A

projection of a trace, a[ObsY], is the trace produced on Module Y for the execution which created a over the

observable variables of Y. An observable variable is one which can be read by the surrounding environment

or other objects. The two modules X and Y are trace equivalent, X ≃Re f Y, if X �Re f Y and Y �Re f X.

The answer to this particular refinement problem (X,Y) is YES if X refines Y and otherwise NO.

4.1.3 Synchronized Parallel Composition

Synchronized Parallel Composition is a concept used to create systems specified using sets of fi-

nite state machine based descriptions. The operation of these composed systems is described using what is

called synchronization. Synchronization is the process of explicitly denoting the requirements for individual

component state transitions based on the state of other components in the system. For example, a pedes-

trian walk signal can be activated if another component (traffic light) is in the “red” state. The advantage

of this approach is that each individual component is relatively simple but the composition of the systems

and corresponding synchronization can be quite sophisticated. Ideally the small component operation can

be shown to be sound and therefore composition itself is sound if created following a set of requirements.

These concepts will be useful for the third method proposed (compositional component based refinement)

in Section 4.5. The definitions in this section are reproduced almost verbatim from [Olg03a].

Let Var = {X1...,Xn} be a finite set of variables with their respective domains D1,...,Dn. Let AP be

a set of atomic propositions ap
de f
= (Xi = v) with Xi ∈ Var and v ∈ Di. Let SP be a set of state propositions

sp defined by the following grammar: sp1, sp2 ::= ap | ¬ sp1 | sp1 ∨ sp2.

Definition 4.1.6 Interpreted Labeled Transition Systems (LTS) - A interpreted labeled transition system

S over Var is a tuple <Q, Q0, E, T, l > where:

- Q is a set of states,
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- Q0 ⊆ Q is a set of initial states,

- E is a finite set of transition labels or actions,

- T ⊆ Q × E × Q is a labeled transition relation, and

- l : Q → SP is an interpretation of each state on the system variables.

Definition 4.1.7 Sum of Two LTSs - Let S1 = <Q1, Q01, E1, T1, l1> and S2 = <Q2, Q02, E2, T2, l2> be

two transition systems over Var. The sum of S1 and S2, written S1 ⊎ S2 is <Q1 ∪ Q2, Q01 ∪ Q02, E1 ∪ E2,

T1 ∪ T2, l12> where l12 is defined by:

l12(q) =











l1(q)if q ∈ Q1,

l2(q)if q ∈ Q2,

Moreover, ∀q1. q1 ∈ Q1, ∀q2. q2 ∈ Q2 . (l1(q1) = l2(q2) ⇔ q1 = q2).

Definition 4.1.8 Synchronization of n Components - Let S1,...,Sn be n components. A synchronization

Synch is a set of elements (α when p) where:

- α = (e1,...,en) ∈ ∏n
i=1 (Ei ∪ {-}), where - is a fictive action “skip”

- p is a state proposition on the component variables.

Definition 4.1.9 Context-in Component - Let S1,...,Sn be n components. Let Synch be their synchroniza-

tion. A context-in component Sc
i is defined by the tuple <Qc

i , Qc
0i, Ec

i , Tc
i , lci > where:

- Qc
i ⊆ Q1 × ... × Qn with (q1,...qn) ∈ Qc

i ,

- Qc
0i ⊆ Q01 × ... × Q0n,

- Ec
i = {(e1,...,ei,...,en) | (((e1,...,ei,...,en) when p) ∈ Synch)

❱
(ei ∈ Ei)},

- lci ((q1,...,qn)) = l1(q1)
❱

...
❱

ln(qn)

- Tc
i ⊆ Qc

i × Ec
i × Qc

i with

((q1,...,qn), (e1,...,en), (q
′

1,...,q
′

n)) in Tc
i iff:

- ((e1,...,en) when p) ∈ Synch,

- lci ((q1,...,qn)) ⇒ p, and

- ∀k.(k ∈ {1,...,n} ⇒ ((ek = -
❱

qk = q
′

k)
❲

(ek 6= -
❱

(qk, ek, q
′

k) ∈ Tk))).

Definition 4.1.10 Synchronized Composition of n Components - Let S1,...,Sn be n components and Synch

their synchronization. Let Sc
1,...,Sc

n be their respective context-in components. The synchronized parallel

composition of S1,...,Sn under Synch is defined by:

‖Synch(S1,...,Sn)
de f
= ⊎n

i=1(Sc
i )
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Definition 4.1.11 Gluing Relation - Let GI be a gluing invariant between SR and SA. The states qR ∈ QR

and qA ∈ QA are glued, written qR µ qA, iff lR(qR)
❱

GI ⇒ lA(qA).

4.2 Related Work

The idea of refinement and its verification is not new and is not limited to the notion of archi-

tectural services. In fact, much of the work in refinement verification is concerned with software design.

While software design focuses on program correctness, this thesis is more focused on system functionality.

Correctness assumes a desired result where functionality assumes the validity of several outcomes. This

is a subtle difference but can be seen as two similar problems. The former wants to ensure that the sys-

tem arrives at a particular state(s) whereas the later wants to avoid a particular state(s). Aspects of this

are built upon the fact that there are “don’t care” states and nondeterminism in architecture models. This

section will provide an overview of the existing work regarding refinement verification of architectural ser-

vices at the system level. This section will be used to highlight the unique contributions of my proposed

approach and clearly define which aspects of this problem have been addressed. It should naturally be

mentioned that there are many types of verification methods related to electronic system design. These in-

clude simulation based approaches, model checking [Edm93], symbolic simulation [Ran91], combinational

equivalence checking, sequential equivalence checking [Mah05], statecharts [Dav87], and process algebras

(CSP)[Cha78], (ACP)[Jan85], and Robin Milner’s (CCS) for example. The work below in many cases uses

concepts from these areas as a foundation.

Refinement verification work has been proposed in a number of forms. From these forms, re-

finement verification can be broadly categorized as style/pattern based, event based, and interface based.

Additionally, in work by Gong et. al. [Jie97], there is a discussion of refinements as control related, data

related, or architecture related. The first classification (control related) denotes that execution sequence is to

be preserved when the design is refined over multiple components. The second classification (data related)

denotes that data accesses must be updated appropriately when the design is refined. The final classifica-

tion (architecture related) denotes the ability to perform changes to the communication structures between

components (buses for example) which facilitate communication during the refinement process.

Table 4.1 uses these two groups of classification schemes to organize the approaches discussed in

this section as well. Firstly each approach is grouped according to its place in the first categorization (style,

event, interface, other). Then each approach is assigned a “+” (focused on), “-” (not focused on), or “?” (not

applicable or known) in each area of the later classification regarding control, data, and architecture. The

lack of support for these constructs does not indicate a particular weakness but rather serves to illustrate the
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intended purpose and scope of each tool. Additionally a very brief description is provided as well for each

tool.

Control Data Architecture Description

Style/Pattern Based

ForSyDe [Ing04] + - + Transformation Rules

METROPOLIS + - + TTL vs. Yapi

Model Algebra [Sam06] + + + Algebraic Rules

Moriconi [Mar95] + - - Six Design Patterns

Virtual Prototyping [Pav05] + + + Parameter and Data Streams

Event Based

METROPOLIS + ? + Tagged Signal Model

Rapide [Dav95] + - + Event Pattern Based EADL

Interface Based

METROPOLIS + ? + Function Calls on Ports

METRO II + + + Required and Provided Services

Reactive Modules [Raj99] + - - Hierarchical Verification

Signal [Jea03] + + ? Polychrony/Flow Equivalence

SPADE [Pau01a]/Sesame [And06] + + + Kahn Process Network Based

SynCo [Olg03b] + - ? Compositional Components/LTS

Others

Obj. Orient. in C2 [Nen96] ? - + Explicit Subtype Relationships

Table 4.1: Refinement Verification Related Work Classification

Style Based Refinement Related Work

Style based refinement requires that rules be developed a priori defining what is considered refine-

ment. Each style has associated with it a set of rules. Once those rules have been shown to be sound on one

set of component style instances, the components can then be reused or substituted for many other compo-

nents which use that same style. Often rules can be used to convert components in one style to another style.

Styles which can undergo this transformation are often called substyles. Style based refinement is often

called pattern based refinement as it categorizes styles as groups of compositional patterns. Valid composi-

tion of these patterns introduces corresponding compositional rules. A style based approach is shown in the

work of Moriconi [Mar95]. In this work, six patterns are proposed for classifying the refinement of compo-

nents, connectors, and interfaces. These patterns are batch sequential, control transfer, dataflow, functional,

process pipeline, and shared memory. Example applications of these rules are restrictions placed on the

architectures regarding variable types, access to variables, and ordering of variable access. A drawback of

this approach is that all system instances may not fall into a given style thus limiting the types of systems

expressed. Another pattern based approach is called “Virtual Prototypes” [Pav05]. This work creates ver-
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ification patterns from an algorithmic level description (considered their highest level of abstraction) and

automatically applies these patterns to lower level models. These patterns can be viewed as streams. There

are both data-in and data-out streams as well as parameter-in and parameter-out streams. The parameter-in

streams set up the device under test and the data-in streams stimulate it. The “out” patterns detail what

results are expected for each verification “in ” pattern. A drawback of this method is that an algorithmic pat-

tern must be created potentially for each device under verification. While some devices may share patterns,

this process is potentially very user intensive. Finally Sander and Jantsch present ForSyDe [Ing04] which

uses what it calls Transformation Rules in order to perform refinement. These rules denote specifically how

one process network (the model of computation in ForSyDe) maps to another process network. It requires

that they have the same input input signals and the same number of output signals. These transformations

can be either semantic preserving which do not change the meaning of the model, or “design decisions”

which do. All of these transformations form a transformation library. While not necessarily a drawback,

this work does not make an explicit separation of architectural services from the functionality of the system.

For an overall assessment of style and pattern based approaches see [Dav96] which explains in more detail

these types of systems. In general it states that style and pattern based approaches need to accommodate a

large set of system instances to be useful, that style classification is useful if the styles are chosen carefully,

and that refinement can be made more flexible if styles are accompanied by a set of properties of interest

(those which should be maintained during refinement). While style/pattern approaches are discussed to give

a complete survey of the field, a style/pattern based approach will not be presented in detail in this thesis

but is possible in METROPOLIS as shown in Figure 4.2 using the REFINE keyword. This is a very sim-

ple re-routing of the connections in a netlists. This re-routing requires that the port configurations of the

components being swapped match.

There are naturally attempts to prove equivalence (not refinement) between models at various lev-

els of abstraction. Algebraic approaches [Sam06] appear promising. This is ultimately also a pattern type

approach. This work describes systems in an algebra which consists of behaviors, channels, variables, in-

terfaces, ports, and labels. From a set of roughly 7 rules, transformations can be made on models composed

of those components. These rules themselves have been shown to be sound and thus the transformations

made by these rules are sounds. Our methodology is amenable to such an approach as we can describe

the architecture model (or a functional model) in this algebra. Work is currently being done in METRO

II which will facilitate this process by creating libraries of the required components corresponding to the

algebraic rules. Drawbacks of this approach are that it requires models to be described in one model of com-

putation (dataflow), use specific components, and there is not a canonical representation for two equivalent

architectures (i.e. there exist false negatives regarding two equivalent models).
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An example of METROPOLIS style refinement involves the YAPI (Y-Chart API) [E. 00] and the

TTL (Task Transaction Level) libraries which are provided as part of its distribution. These are both process

network based FIFO libraries. In METROPOLIS, the YAPI library has unbounded FIFO-like elements while

the TTL library attempts to be a refined version with boundedfifo, yapi2TTL, TTL2yapi, and rdwrthreshold

elements. The boundedfifo simply is the storage mechanism now with a fixed size. The rdwrthreshold

element acts as the coordination for access to this element. Finally, yapi2TTL and TTL2yapi are used for

the refinement interface in the refined netlist similar to the example in Figure 4.2.

During the use of these elements in a multi-media application exercise in METROPOLIS, several

bugs in the design were discovered. This drew attention to the fact that refinement checking is a crucial

element as the design process becomes more complex and specifications are adhered to in an ad hoc manner.

//In Metropolis Netlist

/*Introduce to the netlist(this),

an object for refinement(ref_obj)*/

refine(ref_obj,this);

/*Redefine the connections

so that the refinement input

and outputs map to the abstracts ports*/

//‘‘ref_obj’’ is TTL, ‘‘abs_X’’ ports are YAPI’s

refineconnect(this,src_connect(ref_obj,out),

port(ref_obj,out),abs_out);

refineconnect(this,src_connect(ref_obj,in),

port(ref_obj,in),abs_in);

Figure 4.2: METROPOLIS Style Refinement Example

Event Based Refinement Related Work

Event based refinement use events to define how architectures are related to each other. While this

idea could be used to mimic a style or pattern based approach (one which uses event patterns for instance),

in practice event based approaches allow a much wider variety of systems to be related. For example, an

architecture at a high level of abstraction may require just one of its events to be related to a set of events

in a model created at a lower level of abstraction. A bus read event in the abstract model may correlate to

a request, ack, and read set of events in the refinement. Events also are typically part of the operational

semantics of the architectures they are part of. Therefore, event based refinement can also be used to specify
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a specific operation or a restriction on system operation. For example a particular refinement may require the

notification of an event which triggers one behavior of many possible behaviors. The abstract model would

relax that notification requirement allowing more behaviors. An event based approach is shown in Rapide

[Dav95]. Rapide is an executable architecture definition language (EADL). Rapide uses “event patterns”

to relate architectures together during mapping. This should not be confused with patterns as previously

defined however, as Rapide uses these patterns or maps to trigger events or generate events. The event based

approach proposed in this work uses events to define properties. These properties could be seen as patterns

defined over a set of events. These properties use events specifically belonging to components depending on

their role in the simulation (either part of the scheduling or scheduled mechanism). This is different from

Rapide which does not make such a distinction. One can not directly make a comparison between the two

approaches outside of the fact that both require the notion of an event object defined as a tuple containing

more than one field of data.

Interface Based Refinement Related Work

Interface based refinement is premised on the fact that most modeling systems encapsulate services

through the use of interfaces. These interfaces often are a function of the language that the system is

described in. SystemC and Java for instance have the idea of interface functions for classes. Often times

however, the term interface denotes the legal interaction points between models and other models or models

and their environment. Refinement which focuses on these points is interface refinement. Typically changes

to the model which cannot be observed at the interface are not considered in this refinement style. Therefore

interface based refinement introduces a notion of observability not necessarily implied in the other styles.

The observability can be exploited in the event that a designer does not wish to have subsequent models be

viewed differently (e.g. keep the same interface) while at the same time this observability can be an issue

when design differences are desirable but difficult to push to the interfaces.

Interface based refinement methodologies are illustrated in the Reactive Modeling Language (RML)

[Raj99] and SPADE (System level Performance Analysis and Design space Exploration) [Pau01a]. In RML

a concept called hierarchical verification is employed. RML uses an object called a reactive model. These

reactive models can be composed to form composite objects. Hierarchical verification requires that every

finite sequence of observations resulting from the detailed module also be possible from the abstract model.

This work is directly relevant to the proposed methods in this chapter and will be discussed in more de-

tail. SPADE on the other hand uses Kahn Process Networks to describe functional models and a library

of architectural building blocks. The functional model creates traces. These traces can be “accepted” by
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the architecture and contain information detailing which operation the architecture should perform. Trace

transformation is the process by which functionality is assigned to available architecture resources. This

transformation equates to forcing refinement traces to change to meet available architecture resources and

topologies. This style of work has also been used in Sesame [And06] which builds on the SPADE frame-

work. Refinement for these tools is a means to achieve a mapping. While mainly methodological in nature

the difference between this approach and a tool like METROPOLIS is that SPADE starts with a functional

description and works top down. METROPOLIS works both bottom up and top down, refining both architec-

tural services and functional descriptions independently.

Two other interface approaches are SynCo [Olg03b] and Signal [Jea03]. SynCo is based upon

the work of [Olg03a] which is a compositional component based methodology. Transitions systems for

both refined and abstraction systems are specified. States in those systems are then “glued” indicating which

states are required to correspond to each other (this is a many to one mapping from refined to abstract model).

Also synchronization mechanisms can be defined as well in order to create larger systems from individual

LTS. SynCo will be used in this thesis. Signal on the other hand is a polychronous (i.e. multiclocked)

design language. This language has the notion of flow equivalence between behaviors. This means that for

two behaviors their signals hold the same values for the same order. This leads to flow invariance where an

asynchronous implementation preserves flow equivalence.

Other approaches exist which can not be placed into one of the three previous classifications.

These often consist of ad hoc or brute strength style approaches. For example in [Nen96] the authors demon-

strate that object oriented (OO) subtype hierarchy type checking can be used to identify refinement. They

investigate how concepts in OO programming languages can be used in C2, a component and message based

system specification style. They find that by making subtyping explicit, identifying component substitution

is possible. Also extending type checking mechanisms allows a richer set of architectural relationships to

be expressed.

The proposed design flows in this thesis are a combination of event and interface based ap-

proaches. Specifically they most closely resemble the work of [Raj99] and [Olg03a] (both interface based).

For example they incorporate concepts such as trace containment, labeled transition systems or control

flow automata, and trace transformations. In fact the tools Mocha and SynCo are used in Chapter 5 on

several cases studies to actually implement the methodologies presented. This thesis could be extended

to style/pattern based approaches as well assuming a set of rules were created. Aspects of this process

were performed in early METROPOLIS related projects using both TTL and Yapi channels as proposed by

[Pau01b].
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4.3 Event Based Service Refinement

Event based service refinement will be presented first. The presentation ordering was selected

because of the approaches presented here, event based is the most general. Events can be leveraged to

perform both interface and compositional component based verification as well (to be discussed). Event

oriented frameworks have become popular with the increased interest in exploring design frameworks which

allow specifying concurrent computation models. Lee and Sangiovanni in [Edw98] introduced the tagged

signal model which demonstrated how an event based framework can be used to express a variety of models

of computation. This characteristic has made them very flexible and gives them the ability to realize a wide

variety of systems. Also event based models are portable because often they only assume the presence of

events and do not make other assumptions about the framework which is implementing the events. Event

based platform refinement is prefaced upon the following ideas:

• The design framework uses events to denote system activity and provide synchronization mechanisms.

For example, imagine a basic producer and consumer example. The producer writes to a shared

storage location. Upon doing so, it produces an event (production) signaling this. It then waits for

the presence of another event (consumption). The consumer will use this notification (production) to

realize that it it can now consume the data. Upon consumption it will signal this operation with an

event (consumption) as well. This notifies the producer that it can safely produce again. This process

continues indefinitely.

• Sequences of events (traces) can be captured to recreate or represent system behavior. For example

a bus transaction has a fixed sequence of events as dictated by the protocol. A request event must

proceed a grant event for example. If this sequence is not maintained then the system behavior has

been violated.

• Event sequences can restrict or enforce behavior. For example often times a system has to make

choices. A control statement (if, while, for, etc) often has conditions which allow the system to make

a decision. Those conditions can use events as part of their evaluation. Allowing or restricting event

appearance can be an effective mechanism to enforce behavior without changing the model explicitly.

• This enforcement or restriction has the ability to be a well defined, methodological refinement as will

be shown in this thesis. Specifically examples will be shown in the METROPOLIS design environment

in Chapter 5.
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4.3.1 Proposed Methodology

In order to systematically refine a platform there must be a methodology in place which demon-

strates the procedure for a designer to follow in order to perform various refinements. In following such

a procedure, ideally one can enforce by construction which properties will hold between the abstract and

refined model. In the event that the construction can not be provably correct, such a method will allow

a property checking system to perform verification. One can therefore follow various procedures depend-

ing on which properties are of interest. Each section regarding a refinement style will begin with such a

proposed methodology.

Within this section there are three refinement methodology proposals for event based service re-

finement. These three proposals will examine how event based platform refinement can be performed for

two scenarios/goals:

1. Refinements between and within systems with changing component-to-component relationships.

For example an architecture designer may wish to introduce a new bus, memory hierarchy, or process-

ing component. These introductions will manifest themselves as new components. Alternately, one

may wish to collapse services into a single component. This will result in the removal of components

and existing components will therefore offer more services.

2. Refinements between systems with changing component-to-scheduler/annotator relationships. For

example, it may become necessary to introduce components which act as arbitrators or controllers

which do not offer services directly to functional model components but rather only restrict the oper-

ation of existing components.

The initial refinement methodologies to be described are what this thesis terms vertical or horizon-

tal refinement. These are both topological refinement techniques (the topology of the system is affected).

Vertical refinement refers to the process of transforming relationships between components (scenario 1).

For example in METROPOLIS this occurs in the scheduled netlist. This typically is done by targeting one

particular process or media element and decomposing it into multiple media and process elements and then

replacing that decomposed structure back into the model. This is geared toward changing the nature of the

services and the interaction between those services the architecture provides.

Horizontal refinement refers to refinement which converts aspects of the model’s scheduling mech-

anisms into components themselves in the scheduled mechanism (scenario 2). In METROPOLIS this requires

that quantity managers from the METROPOLIS scheduling netlist move into the scheduled netlist. This rep-

resents refinements geared toward physical implementation.
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Figure 4.3 illustrates a high level view of the various event based refinement styles to be discussed.

This picture demonstrates that it is important to clearly separate the components in the model which provide

services from the components which schedule these services. The number, type, origin, and order of events

are the aspects which are modified by the refinement styles.

����������

	
��
���

����������

���������

����������

	
��
���

����������

���������

����������

�����
������

������������

����������

�
��
��

���������

���
����

����������

�
��
�����

����������
���
��

����������������

��������

���������

��������

�
���
����

��������

 !
���"!��#

 $
���"$
�
#

 ���"%
��
#

 !
���"!
��
&�$

�
&�
��%

��
#

 $
���"!
��
&�$

�
&�
��%

��
#

 %
���"!
��
&�$

�
&�
��%

��
#

'���������(���


�������)��

*���������(���


�����������

	!

	$

	%

	+

	$

�!

�$

�!

�$

�%
	%

�����

�����

�
�
��
��
�
�

�
���
���

Figure 4.3: Event Based Refinement Proposal

For the rest of these sections let α be a set of components (objects which provide or use services).

These are often processes in a METROPOLIS scheduled netlist. γ is a set of annotators or schedulers. For

example quantity managers in a METROPOLIS scheduling netlist. Finally β is the overall behavior of the

platform. β will mean something unique to each system. In this thesis β is a event trace.

Vertical Refinement

Vertical refinement is the notion that component-to-component relationship changes (scenario 1)

are performed for three reasons.

• Increase service interaction sequentially. For example adding a cache hierarchy to a microprocessor

model by physically stringing out a first and second level cache with main memory. This modification

is often done to reduce the number of processing elements (PEs) needed since the services can map

to the same element.

• Increase service interaction concurrently. For example adding processing cores to a many-core

architecture. This modification is done to provide performance gains over sequential execution. Also

this can be done to expose parallelism for functional models to take advantage of during mapping.

• Create coarser or more granular services. While it could be said that these changes could be clas-

sified as one of the previous two reasons, this classification specifically occurs when the abstraction
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level changes. For example, migrating from task level modeling to transaction level modeling.

Definition 4.3.1 Vertical Refinement - A manipulation to the scheduled component structure (netlist) to

introduce or remove the number or origin of events as seen by the scheduling components (netlist).

The term vertical comes from that fact that these changes are within the same domain (METROPO-

LIS scheduled netlist for example). It is not swapping aspects between netlists but rather moving within a

particular netlist. Naturally this contrasts with horizontal refinement. Vertical refinement of an platform can

be seen as a whole spectrum of refinement with the abstraction levels being defined as to what elements are

passive (media for examples) and which are active (processes for example). One can change the number and

types of processes in the scheduled netlist or one can change the number and type of media in the scheduled

netlist. The primary method of vertical refinement is the addition of service media. This ultimately is the

addition of architecture services at a different level of granularity compared to the abstract services provided

initially. Other system design methodologies such as [Ing04] term this a design decision refinement since

the behavior of the architecture will change.

Formally a vertical refinement is a transformation in the set of components (α) and annota-

tors/schedulers (γ). Additionally behavior (β) may change:

(V1) αre f inement = αabstract ∪ αadditional

(V2) αabstract ⊂ αre f inement

(V3) | γre f inement | ≥ | γabstract |

(V4) βre f inement ⊂ βabstract

V1 requires that the refined system have all the components of the more abstract system and allows

for additional components if needed. V2 requires that the abstract components are a subset of the refined

component set. V3 requires that the number of annotators/schedulers in the refinement is greater or equal

to the number in the abstract model. Finally, as with all refinements, V4 requires that the behaviors of the

refinement are a subset of the abstract model.

Figure 4.4 is an illustration of how vertical refinement is carried out in METROPOLIS. An addi-

tional explanation of this vertical refinement is shown in Table 4.2. This example illustrates that the two

subtypes of vertical refinement, sequential and concurrent, change the event traces. This change can be in

the number/origin of events seen but not the overall ordering. In the left most column (labeled original),

the sequence of events seen by the METROPOLIS scheduling netlist is shown. In a sequential, vertical re-

finement (second column) an RTOS is added. This introduces the new event RTOSREAD but the order

amongst the events also in the original sequence is unchanged. The “concurrent 1” trace (third column)

adds a cache. This adds an interleaved CACHEREAD but the order in which the other original events are
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Figure 4.4: Vertical Refinement Illustration in METROPOLIS

seen is still unchanged. The same number of events do not appear since a cache hit is assumed. The final

column (concurrent II) is a cache miss which causes interleaving but does not eliminate the appearance of

other events or change the organization amongst them. The events to notice are italicized throughout the

table.

Original Sequential Concurrent 1 Concurrent II

E1 (CPURead) E1 (RTOSRead) E1 (CPURead) E1 (CPURead)

E2 (BusRead) E2 (CPURead) E2 (CacheRead) E2 (CacheRead)

E3 (MemRead) E3 (BusRead) E3 (BusRead)

E4 (MemRead) E4 (MemRead)

Table 4.2: Potential Vertical Refinement Event Traces

The vertical refinement methodology is explicitly shown in Algorithm 1.

Horizontal Refinement

Horizontal refinement is the transformation of scheduling (quantity managers in METROPOLIS

for example) functionality into a scheduled component (a METROPOLIS process or media the scheduled

netlist for example). This is the second scenario mentioned earlier. The spectrum of different horizontal
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Algorithm 1 Vertical Refinement Process

1: Select service, S, to refine vertically {This decision is made based on DSE results and performance

desired}

2: if S = MCSI or MCMI then

3: Add new component, CN

4: for all Components, Ci in S do

5: if Ci interacts with CN then

6: Add internal interfaces to Ci to accommodate, CN

7: end if

8: end for

9: else if S = SCSI then

10: Add new component, CN

11: Add one internal interface to accommodate, CN

12: Reclassify component as MCSI

13: else

14: Add new component, CN

15: Add quantity manager, QMNew {CN is a new stand alone component}

16: Classify the component as SCSI

17: Register the service with the mapping process

18: end if

19: Reconnect the new topology

20: for all Events, E, between Netlistsched and Netlistscheduling do

21: Capture new behavior, BNew

22: end for

23: RETURN BNew
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refinements results from how many of the schedulers one moves and what portion/aspects of the schedulers

are moved. Horizontal refinement is done in for two primary reasons:

• In order to reduce the number of elements resolving quantities. This potentially represents a way

to speed up simulation. This can be accomplished by removing the number of events that need to be

evaluated by the simulation manager.

• Focus the scheduling effort more locally which reflects a more implementation based view. This

can be done in the event that the design environment can be targeted for synthesis.

Definition 4.3.2 Horizontal Refinement - A manipulation of both the scheduled and scheduling compo-

nents (netlists) which changes the possible ordering of events as seen by the scheduling components (netlist).

The term horizontal comes from the fact that the changes made are from different domains. Ob-

jects once concerned with controlling the scheduling of components now become actual components which

enforce that schedule through their behavior as components. In METROPOLIS this is a swapping of items

from the scheduling to the scheduled netlist. [Ing04] terms this a Semantic Preserving Transformation

refinement since it retains the overall behavior of the model.

Formally a horizontal refinement is a transformation in the set of components (α) and annota-

tors/schedulers (γ). Additionally behavior (β) may change:

(H1) αre f inement 6= αabstract

(H2) αabstract ⊂ αre f inement

(H3) | γre f inement | < | γabstract |

(H4) βre f inement ⊂ βabstract

H1 requires that the number and types of components in the refined model and the abstract model

not be equal. H2 requires that the abstract components be a subset of the refinement. This is also a require-

ment of vertical refinement. The number of annotators/schedulers must be greater in the abstract model as

shown in H3. H4 requires the behaviors of the refined model to be a subset of the abstract.

Figure 4.5 is an illustration of how horizontal refinement is carried out in METROPOLIS. This

shows the migration of a bus scheduler which manifests itself as an arbiter component. The affect of this

refinement on event traces is shown in Table 4.3. The left column shows the original trace (the event

and which component generated it). The right column shows a possible trace of the refinement. Notice

the second and third rows. Event E2 and E3 now are generated in a different order than in the original.

This is a change which would not have been possible in solely vertical refinement. Horizontal refinement

verification will require that the extent to which this re-ordering can occur be specified by the designer. This
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Figure 4.5: Horizontal Refinement Illustration in METROPOLIS

specification can be done typically by stating explicitly which sequences can not occur (a smaller set than

allowed sequences). Typically boundary events are also specified denoting when this deviation can begin

and when it should end.

Original * Refined (Interleaved)

E1 (BusRead) → From CPU1 E1 (BusRead) → From CPU1

E2 (BusRead) → From CPU1 E3 (BusRead) → From CPU2

E3 (BusRead) → From CPU2 E2 (BusRead) → From CPU1

E4 (BusRead) → From CPU2 E4 (BusRead) → From CPU2

Table 4.3: Potential Horizontal Refinement Event Traces

The horizontal refinement methodology is explicitly shown in Algorithm 2.

Diagonal (Hybrid) Refinement

Diagonal refinement is a combination of vertical and horizontal refinement methods. The goal of

any of these refinement methods is to determine a set of properties that are held or not held depending on

the refinement style. Ultimately these properties will determine which refinement methodology is employed.

One potential drawback of a diagonal refinement approach is that as more changes are made in parallel to
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Algorithm 2 Horizontal Refinement Process

1: Select service, S, to refine horizontally {This decision is made to affect scheduling of services}

2: QMOld → creation of new component, CN which is SCSI

3: if S = MCSI or MCMI then

4: for all Components, Ci in S do

5: if Ci is required to interact with CN then

6: Add one external interface to Ci to accommodate, CN

7: end if

8: end for

9: else if S = SCSI then

10: Add one external interface to C to accommodate, CN

11: end if

12: Remove QMOld {S no longer requires a quantity manager}

13: Add quantity manager, QMNew {This is for CN}

14: if S = NULL then

15: Add quantity manager, QMNew {This is a new stand alone component}

16: Classify the component CN as SCSI

17: Register the service with the mapping process

18: end if

19: Reconnect the new topology

20: for all Events, E, between Netlistsched and Netlistscheduling do

21: Capture new behavior, BNew

22: end for

23: RETURN BNew
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a design, the more difficult (or impossible) it may become to determine the effects of the changes. The

methodological recommendation is that for any one refinement, each stage only consist of a vertical or

horizontal change followed by a verification of the relevant aspects before making any additional changes.

Event Based Properties

In order to make use of event based refinement methods, it is important to illustrate that properties

can be defined over events. These events will be of use in describing architectural services. The ability to

specify properties (event sequences) and verify these sequences is a key part of refinement. In Table 4.4 a

simple set of event traces demonstrates how to represent resource utilization. The table is first broken into

two sections. The left shows a “bad” resolve() function. The function resolve() is used in METROPOLIS

during the scheduling phase which enables events. The other side shows a “good” resolve(). In this case a

“good” resolve makes maximum use of the resources by scheduling events in such a way that resources are

not idle. For example assuming events E1, E2, and E3 only use the CPU whereas event E4 uses the CPU,

Bus, and Memory, it is ideal to let the Bus and Memory process the event E4 as soon as possible assuming

that the events are independent. In the “bad” resolve() scenario the events are scheduled E1, E2, E3, E4. The

P’s represent phases at which the elements are idle. The italicized Ps in the “bad” resolve() illustrate phases

in which resources are available but are not used. The difference can be seen in the “good” resolve which

schedules E4 first on the CPU thereby enabling this event to be seen earlier in the other components. This

property can be expressed later in such a way that allows the scheduling of events using the most resources

first in the event that events are independent.

Bad Resolve() Good Resolve ()

CPU E1, E2, E3, E4 E4, E1, E2, E3

Bus P4, P3, P2, P1, E4 P1, E4

Mem P5, P4, P3, P2, P1, E4 P2, P1, E4

Table 4.4: Resource Utilization Event Analysis

In Table 4.5 the latency of two different simulations are shown. Again one side illustrates a “bad”

resolve() and the other side a “better” resolve(). Each resolve() side has two columns. The leftmost of

these columns shows the events to be scheduled. The rightmost of these columns shows the event selected.

In this case, “better” means that the average latency of events (time from generation to annotation of a

particular event) is minimized. Each element is labeled with a number in parenthesis which illustrates

which scheduling phase number is currently being evaluated. The italicized events illustrate key decision

points in the table. Starting with the “bad” resolve() side a description of the table is thus: initially the CPU
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can choose between event E1 and E2. E1 is selected. In the next phase E3 enters the system so that E3 and

the left over E2 can be selected. E2 is selected. The bus now can select E1 (what the CPU just passed on)

or from an existing EX. EX is selected. In phase 2 the CPU can only chose E3. The bus now can select

between the older E1 or E2. As shown by the italics, E2 is chosen. Then in the last stage, again E1 is passed

over for E3. In this case E1 waits two phases longer than necessary. In the “good” resolve() trace this is not

the case. It initially proceeds in the same way, but in phase 2 E1 is scheduled instead of E2 and in the final

phase E2 selected ahead of E3. This scheduling would minimize the latency for each event.

Bad Resolve() Good Resolve ()

Choices Selected Choices Selected

CPU (0) E1, E2 E1 E1, E2 E1

CPU (1) E2, E3 E2 E2, E3 E2

Bus (1) E1, EX EX E1, EX EX

CPU (2) E3 E3 E3 E3

Bus (2) E1, E2 E2 E1, E2 E1

CPU (3)

Bus (3) E1, E3 E3 E2, E3 E2

Table 4.5: Latency Event Analysis

The key issue for event based refinement is resolving what are the properties that are required to

hold between the abstract and the refined model. The first question is how do those properties manifest

themselves as attributes of a model? For example if one is interested in the resulting latency of a process,

what are the observable behaviors of the process which give them insight into this property? The second

question is how do I capture and specify the properties? The third question is how are those attributes to be

related between the two models? To begin to answer these three questions I introduce two definitions of a

property.

Definition 4.3.3 MicroProperty - The combination of one or more attributes (quantities) and an event

relation defined with these attributes.

Definition 4.3.4 MacroProperty - A property which implies a set of MicroProperties. Defined by the prop-

erty which ensures the other properties’ adherence (dominator property). The satisfaction (i.e. the property

holds or is true) of the MacroProperty ensures all MicroProperties covered by this MacroProperty are also

satisfied. Since the the implication does not commute there are MacroProperties which share MicroProp-

erties but they are not themselves the same. MacroProperties are also assigned a level (1 to ∞). The level
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indicates the length of the longest chain of implications the MacroProperty is responsible for. MicroProper-

ties are by definition level 0.

Event Based Property Classification

This section will begin to discuss which properties can be specified during event based refinement.

Right now the list is very sparse and high level. The majority of effort will now go into identifying these

properties, their relationships, and how to check them.

One can categorize the properties as structural, functional, and performance. Platform-Based

design dictates that these be kept explicitly separate.

Examples of performance properties are:

• Latency - time for a task to complete. Given an appearance (start) time and a disappearance (end)

time of an event, the latency is the positive difference between the two.

• Throughput - number of tasks completed per unit time. Given a period of time (t) and a number of

completed tasks (TA), throughput is TA/t.

• CPI - cycles per instruction (request). This is simply an average to indicate system performance. For

example, the goal of a basic pipelined microprocessor is CPI=1. In the superscalar microprocessor

era, typically the inverse, IPC, is a more relevant metric.

• Jitter - random variation in a signal. For example given a periodic signal, the variation in the period

or amplitude is an example of jitter.

Performance properties typically have to do with specifications regarding the desire for a certain

level of performance. However sometimes these properties can actually be required for the correctness of a

system. This is often true of safety critical or real time systems. In many cases performance properties are

related to one another.

Examples of functional properties are:

• Mutex - mutual exclusion of a resource. This property can be realized by semaphores or shared

memory/variables. In many model languages such as SystemC events are used to accomplish this.

• Data Consistency/Coherence - global data set contents must match and reading and writing ordering

must be preserved. This property commonly is of interest in memory systems. Cache consistency and

coherency are often maintained by such protocols like MESI (Modified, Exclusive, Shared, Invalid).



109

Functional properties typically have to do with maintaining the correctness of a system. Often

they implicitly affect the performance properties of a system as well.

Examples of structural properties are:

• Memory Size - size of memory elements such as FIFOs. There exists both the physical memory as

well as the virtual memory. These can be distributed or shared memories.

• ALU operand size - the size of the ALU operands (i.e. bits). In addition to operand size, operation

type can also be important (floating point vs. integer).

• Datapath width - the size of the instruction and addressing datapaths. Datapath width may need to

change in the presence of instruction level parallelism such as VLIW machines or the adoption of a

new ISA.

Structural properties typically have to do with both the performance and the correctness of a

system. They will interact with other structural properties as well as with functional and performance

properties.

What will be of key importance is the way in which properties are related and categorized so that

one can:

• Determine which properties are related and how. This can be defined over sets of Micro and Macro

properties.

• Determine which refinements relate to which properties. These can be defined both explicitly (i.e. a

list of required properties), construction (i.e. certain refinements automatically preserve properties),

or implicitly (i.e. one property preservation requires the adherence of another).

In terms of grouping properties an initial attempt I have seen is in [Rat98] which describes a

method which uses the following terminology:

• Rule of Computation (CMP) - dictates how variable (stored) values are computed based on their old

values as well other variables.

• Rule of Read Order (RO) - for any pair of read events x and y in a process, if x comes before y in

program order, then x occurs before y.

• Rule of Write Order (WO) - for any pair of write events a and b in a process, if a comes before b in

program order, then a occurs before b.
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• Rule of Write Atomicity (WA) - writes become instantly visible to all processes instantaneously.

One can group properties by this method. For example the “mutex” functional property is a WA

property. While Data consistency is a RO and WO property. This method can be used to examine Macro

and Micro properties relationships.

Event Based Property Relationships

This section will describe how property relationships can be established. This is a key to the Micro

and Macro properties discussed earlier. These relationships will be needed to check event based refinement

in an efficient manner both in terms of its specification as well is its execution time. Here are several

examples indicating the relationship and hierarchy of Micro and Macro properties. Future work outside of

this thesis will be devoted to establishing these relationships more formally.

1. Data Consistency → Sufficient Space, Read Access, Write Access

In the case of this relationship, if the MacroProperty “Data Consistency” (DC) is proven, it then

implies the MicroProperties “Sufficient Space” (SS), “Read Access” (RA), and “Write Access” (WA).

SS indicates that the data storage device itself has enough space. RA indicates that the storage device

is allowing reads. WA indicates that the storage device is allowing writes. Notice that proving the

MicroProperties SS, RA, or WA does not imply anything else at this point. However, assume that WA

and RA were transformed into a MacroProperties such that:

• Write Access → SS

• Read Access → Data Valid

In this case, SS is the same MicroProperty as described previously and “Data Valid” (DV) indicates

that the data is marked as being valid in the storage device (i.e. during a cache or snooping update).

If these MacroProperties are proposed and proven, then “Data Consistency” actually implies DV as

well in addition to the other MicroProperties mentioned previously. It also will imply SS transitively

through MacroProperty hierarchies and would not have to imply it explicitly. “Data Consistency” is

a RO and WO property in terms of its grouping as well as a performance property in terms of its

classification.

2. Data Coherency → Data Valid, Snoop Complete

Notice that “Data Coherency” (DCo) implies DV. RA implies this MicroProperty as well and RA is

implied by DC. However simply because DCo and RA share a MicroProperty they do not imply each
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other. Implication is a one way assignment. “Snoop Complete” (SC) indicates that the snoop process

by the memory controller is complete as part of the coherency protocol. DCo is a WA property by its

grouping and performance property by its classification.

3. Data Precision → Sufficient Bits, SS

“Data Precision” (DP) implies that there are “Sufficient Bits” (SB) to hold the results. SB in turn

implies that “No Overflow” (NO) is detected, and therefore the data is valid as well (property DV).

Also required of DP is that there is sufficient space (property SS). DP is an example of a CMP group

property and yet again it is a performance based property like the other properties discussed.

• Sufficient Bits → No Overflow

• No Overflow → Data Valid

The keys to these property relationships are: (1) There must be a method to prove the relationship,

(2) the MacroProperties cannot be more expensive to check then the sum of their implied MicroProperty

checking costs, and (3) the MicroProperties must be non-trivial. The relationships between the properties

outlined are illustrated in Figure 4.6. Arrows from left to right indicate implications. The “leaves” (proper-

ties with no outgoing arrows) are MicroProperties while the others can be considered MacroProperties. This

illustrates that properties can be classified as to which “level” they belong to. All MicroProperties are level 0

while MacroProperties are a level ≥ 1. Larger numbers imply more property implications and indicate how

far each property is from the true MicroProperties. One possible heuristic selection as to which properties

are proven first could be a “greedy” selection by level as to cover as many properties as possible. Another

view is similar to logic minimization where MicroProperties are seen as minterms and MacroProperties as

cubes.

���������	��
�������

��������
�
��������

��	�
����
������

�
������
������

����	�	
�������
����

��������	�����

����	�	
����	������
�����
���������

�������� ��
�
����

�����!�
�	�	����!�

Figure 4.6: Macro and MicroProperty Relationships
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Event Petri Net

Many systems (METROPOLIS and METRO II for example) progress through simulation in a series

of phases. In each phase, simulation proceeds by enabling or disabling events. This enabling and disabling

determines which active components (threads) will be allowed to make progress in the next phase. This

scheduling behavior (which decisions can be made) can be captured formally. Capturing the behavior for-

mally allows one to reason about the system and enforce system operation. These same structures will also

be used to define Macro and MicroProperties relationships. Once both structures exist (one for the service

behavior and one for the property relationships) they can be augmented together to either enforce or check

adherence of the service to the property. A structure capturing this execution is presented here as an event

petri net. Formally an event petri net is:

Definition 4.3.5 Event Petri Net (EPN) - is a tuple <P, T, A, ω, x0 > where:

- P is a finite set of places,

- T is a finite set of transitions,

- A is a set of arcs, A ⊆ (P × T) ∪ (T × P)

- ω is a weight function, ω: A → N

- x0 is a an initial marking vector, x0 ∈ N
|P|

The event petri net is defined as any normal petri net. The event petri net developed for the model

(ModelEPN) requires that each service event of interest has a corresponding transition, tEN . The firing of that

transition denotes the occurrence (enabling) of that event. The event petri net developed for the properties

(PropEPN) requires that each property have a place, p<Prop>. The property is satisfied when a token is present

in its corresponding place. PropEPN also is constructed in such a way that it is required that all transitions

only fire once. PropEPN begins with an empty initial marking vector. It is connected to the the ModelEPN in

such a way that when specific tEN fire, they will produce the needed tokens eventually in PropEPN’s p<Prop>

places.

For example, in Figure 4.7 the top half illustrates a sample ModelEPN . This model is for a basic

CPU, Bus, and Memory system. The leftmost section corresponds to the CPU, the center to the Bus, and

the rightmost to the Memory. The transitions are labeled with a name describing the function call which

will cause the transition to fire (the initial transitions in this case) or as tEN for the transitions indicating

the enabling of specific events. ModelEPN basically illustrates a producer/consumer structure. The CPU

“execute” transitions are contained within the CPU petri net itself. However the other functions in the CPU

interact with the Bus and Memory petri nets.
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The lower half of Figure 4.7 is the PropEPN . The transitions are labeled numerically (for simple

identification) and the places are labeled with the acronym used previously for each Micro and MacroProp-

erty. PropEPN is augmented with a set of transitions, tCN , and a set of places, pCN . Each transition tCN

produces the exact number of tokens needed such that each of the numeric transitions in PropEPN fires ex-

actly once. There are three property places, pDCo, pDP, and pDC (from left to right at the bottom of the

figure). Places “start1”, “start2”, “start3” receive the tokens from tC1, tC2, tC3 respectively.

The arcs into tCN from pCN are defined by the requirement of each property. In this case, they are

defined by which enabling of events should constitute the satisfaction of a property. In Figure 4.7, tC1 which

will generate property DCo is attached to the places related to the write transitions (pC1, pC2, pC3). tC2 (DP)

is only related to the “execute” function, tE3 through pC4. The third and final property DC, is associated with

tC3. This transition requires bus read and memory read events tE3 and tE5 and places pC5 and pC6. These

scenarios are a simplified set of events to indicate the properties but should give the reader some indication

of how this process occurs.

Event based refinement has introduced both vertical and horizontal refinement methodologies

as well as an infrastructure to support those methodologies (Macro and MicoProperties and Event Petri

Nets). Together these pieces will be used to reason about refinement. The next section will propose another

methodology which will focus less on changing the structural interaction between scheduled services and

their scheduling mechanisms and more on inter-component structural changes within the scheduled services

themselves.

4.4 Interface Based Service Refinement

Interface based refinement denotes a method of verifying relationships between systems based

on how they interact with other systems or the environment in which they are placed. These interactions

occur at interfaces. This definition clearly defines which aspects of the system are required to be related.

Interfaces become the only point at which system behavior is visible. Interfaces themselves in practice may

be function calls, ports, visible variables, or any number of language dependent constructs. What makes this

approach attractive is that it reduces the space of all possible behaviors to a fixed set and often requires no

modification to the existing model. A drawback is that the designer often has to specify very clearly what

the interfaces are and which interfaces require correspondence between two models. This section will detail

how this work can be done at a high level followed by an explicit methodology in the METROPOLIS design

environment.
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Figure 4.7: Event Petri Net Example

4.4.1 Proposed Methodology

Thus far both vertical and horizontal refinement have been explained. Next surface refinement

will be introduced. This term denotes system level refinement using interface based refinement. Figure 4.8

illustrates a proposal for this in an environment similar to METROPOLIS. This approach is called “surface”

since interfaces can be viewed as the surface of potentially black-box components. All that can be assumed

about the component is the number, name, and types of interfaces. The behaviors of interest therefore are

the sequences in which these interfaces operate. This behavior may be the sequence of function calls made

on or to these ports (as is the case in METROPOLIS), events generated on these ports, or even restrictions

on what other components are attached to these ports. Interfaces which require services will be considered

active interfaces whereas provided services are passive. What is of chief concern is how to capture interface
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activity.
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Figure 4.8: Interface Based Refinement Proposal

Syntactic Conditions

In order to automate the task of interface refinement verification, interfaces must be easily iden-

tified. Additionally, two models being compared need to have interfaces which are easily and correctly

identified as corresponding. This process can be facilitated by syntactic conditions in the modeling envi-

ronment. These can include keywords, hierarchy, type checking, etc. While not a requirement explicitly of

the modeling framework, there must be some way of indicating which interfaces are to play a role in the

behavior of the system or component.

An example of syntactic conditions are given in [Raj03]. This frames the refinement conditions

in terms of the reactive modules [Raj99] syntax and puts requirements on their variable structures for each

model to be compared. These are the same types of syntactic conditions which will be used in this thesis.

The similar syntactic conditions for METROPOLIS models are, given X �Re f Y, that Yinputs ⊆ Xinputs and

Yout puts ⊆ Xout puts. Essentially this simply requires that X have all of Y’s inputs and outputs (if not more).

This requirement could be viewed as simply a naming issue if one requires the same order and number of

corresponding inputs and outputs for each model. In the methodology to be presented this requirement is

the case (maintaining a strict order and naming style).

Trace Definition

As mentioned previously in the background and definitions, Section 4.1.2, a trace a is considered

a sequenced set of observable values for a finite execution of the module. In the case of METROPOLIS, the

key observable values that we are concerned with are function calls to media. This thesis will refer to a
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trace consisting of function calls to media as a TraceM, where the “M” stands for “Metropolis”. Due to the

semantics of METROPOLIS, processes must communicate strictly via media. This restriction could exist in

METRO II as well but since media are not present in this environment, it would be component-to-component

connections. Ultimately the behavior of a process/component can be characterized by the sequence by which

it makes these calls. Syntactically this results in an interface call attached to a particular port.

Definition 4.4.1 METROPOLIS Interface Behavior - a sequenced set of observable values for a finite

execution of the model, TraceM. This sequence results from function calls on ports requesting (requiring)

services.

In order to characterize the METROPOLIS TRACE, TraceM, the key structure needed to be obtained

from the model is the control flow automata (CFA) concerning the ways in which these sets of observable

events can occur. Once this structure is created State Equivalence concepts such as Bisimilarity and Simi-

larity [Raj03] can be used to determine refinement. A TraceM can be obtained by traversing this structure.

This structure is described in Section 4.4.1. Before describing this structure however, one must select which

set of interfaces should be considered for this structure. These sets are defined by what this thesis calls,

refinement domains.

Refinement Domains

Naturally in a design there are many interfaces. However during refinement it may not be neces-

sary or appropriate to consider all of these interfaces during refinement verification. Often components are

composed in such a way that there is a single set of interfaces which capture the behavior sufficiently of the

set of the components. These collections of components are termed, refinement domains, specifically:

Definition 4.4.2 Refinement Domain - a collection of components C, ports P, and observed ports OP.

Typically organized by component service. <C, P, OP> where OP ⊆ P.

The refinement domain definition illustrates that only a subset of ports are involved in the inter-

faces to be verified. The components are typically organized into domains such as computation, communi-

cation, and storage. These organizations are constructed in such a way to minimize the number of observed

ports needed.

Computation domains collect components involved in computation such as adders, multipliers,

processing elements, etc. Interfaces typically have to do with the execution of specific services. An example

of a refinement domain specifying interactions of interest in computation is when one changes from using
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an adder to multiply values to a dedicated multiplier. All that matters is the input and output interfaces, not

the interfaces between the various adder or multiplier blocks.

Communication domains contain components such as buses, bridges, switch fabric, and buffers.

Interfaces have to do with reading, writing, synchronization, or data movement. For example, two buses

may be connected with a bridge. The interaction of interest is not between the buses and the bridge but

rather that the end to end behavior is maintained. Hence bridge interfaces may be ignored.

Finally storage domains contain main memory, cache, or scratch pad storage. Interfaces have to

do with loading and storing. Often with memory hierarchy one may add a new component (i.e. a cache).

One is not interested in the cache’s relationship with main memory but rather with the boundary between

the memory system and the components which need the data stored there. One can restrict refinement only

to those interfaces.

An example of refinement domains is clearly illustrated in Figure 4.9. This is an example based on

a FLEET style dataflow system. The left hand side shows the original system. This system consists of two

computation refinement domains (Adder and Producer based) and one communication refinement domain

(Switch Fabric based). One unique component is assigned to each of the three domains. One can see which

function calls each component can make next to the component itself. These include, “move.source.Adder”,

“prodLit()”, and “Add(input1, input2)” for example. What is illustrated is a potential graph showing function

interaction in each system. A graph is composed of locations and arcs. The locations are states of the system

as it proceeds through its execution. The transitions occur as function calls are made in each refinement

domain. In the original system, the adder has two states. The first state waits for data. When data arrives, it

can perform the addition and transition to the next state. The adder can then move the result to the switch

fabric. The switch fabric can move the data back into the adder through a series of move instructions. The

producer on the other hand waits to produce a literal value. Once this occurs, it transitions to its second

state. From this state the produced literal can be passed through the switch fabric to the adder or back into

the producer and used as a seed to produce another literal.

On the right hand side of the figure, the second system is shown. In this case a memory component

is added to the system. This is an newly introduced storage refinement domain. Also a new computation

domain is defined combining both the adder and the producer. These additions can be seen as refinements.

Restrictions have been made regarding the source and destination behavior as well. For example, the pro-

ducer can only be addressed through the adder now. The computation refinement domain now waits to

“add” and then proceeds to the next state after the “Add(input1, input2)” function execution. This system

now will transition to a state in which a literal value based on the addition operation is produced through

the “prodLit()” function. The switch fabric now can route data to the memory component, or to the states
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concerned with adding. Notice that after the “add” function, the switch fabric can be reached directly. This

effectively bypasses the producer states if desired.

As is shown, only the function calls which interact between domains (through observable ports;

not within a domain) are part of the interface and will be used for refinement verification. This is illustrated

as arcs cross refinement domain boundaries. These arcs are colored differently from the inter-domain arcs.

The point of this example and figure is to show how refinement domain definitions can change which func-

tion calls can be seen through observable ports (OP). The function calls which pass between domains are

placed in the figure between the domains (as opposed to within the domain) for clarity.
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Figure 4.9: Refinement Domains in Interface Based Refinement

With refinement domains, interface traces, and the idea of syntactic conditions defined, a more

detailed discussion of the actual surface refinement procedure can now be discussed.

Control Flow Automata in Metropolis

The key structure in this investigation is the Control Flow Automaton (CFA) representation of a

METROPOLIS model. METROPOLIS has an Action Automata specification underlying it [Fel02a] but this

automata provides much more information than is required here and its structure is not suited to use in this

refinement scenario. A CFA is defined as a very much like in [Tho02]. It is a tuple <Q, q0, X, Op, →>.
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Q is a finite set of control locations. These locations will be determined by the METROPOLIS

model structure. q0 is the initial control location, X is a set of variables, and Op are operations which

denote: (1) function calls to media (2) a basic block of instructions starting (3) a basic block of instructions

ending. This “ending” and “beginning” symmetry is taken from the Action Automata semantics. A basic

block is defined in the traditional sense, meaning a section of code in which there is no conditional execution

which could result in a different execution sequence. A basic block simply could be viewed abstractly as a

function call assuming no conditional execution occurs within the function. It is for this reason that the start

and end are denoted. This way, the CFA could be augmented with the body of the function call if desired,

inserted inside the beginning and end portions.

An edge (q, Op, q’) is a member of a finite set of edges and the transition relationship, →, is

defined as (Q × Op × Q). A edge makes a transition based on the evaluated Op present, q →Op q’.

Ideally a CFA is created which represents the model and corresponding automata are created

which represent the state of variables in the automata. These variable automata are used when decisions in

the CFA depend on these variables. For example a model may have a loop which is checking the value of

a particular variable. The CFA would have a variable, v ∈ X, which has its own automata which can be

queried as to the value of that variable to determine what edges can be transitioned. For the purposes of this

thesis, these automata are not formally defined nor are they automatically generated. Figure 4.11 shows one

possible representation that could be used to capture the incrementing of an integer with a functional range

of 0 to 2.

Figures 4.10 and 4.11 demonstrate a code snippet and the resulting METROPOLIS CFA respec-

tively as defined in this thesis. In Figure 4.11 there are two automata. The first automata is simply a

hypothetical automata for the variable X. This automata is not actually created but it demonstrates what it

would look like. This simply illustrates that X will begin in a state representing its value of 0 and proceed

until it equals 2. It is even further simplified by not illustrating all the states (control locations) and edges

which would result from begin and end events. The main automata has 10 control locations. Next to each

control location is a description which indicates the number of the control location, the type of node which

lead to its creation as it would be defined by the METROPOLIS abstract syntax tree (AST), and/or a descrip-

tion of the node in the event that it is not explicitly defined in the AST. The edge labels are as described with

“+” or “-” indicating a start and end of a basic block.

Once a CFA is defined, a TraceM is nonempty word a1...n over the alphabet of Q control locations

such that ai → ai+1 for all 1 ≤ i ≤ n.

Naturally the potential for a CFA to be quite large is a concern. As will be illustrated in the

description of the METROPOLIS backend (which generates CFAs) it is bounded by the nodes in the Abstract
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Figure 4.10: METROPOLIS Code

Example
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Figure 4.11: Resulting CFA for Code Example

Syntax Tree (AST) created by METROPOLIS compilation which could be very large. However this can be

reduced further by heuristic grouping of nodes to create control locations as will be shown in the section to

follow.

CFA METROPOLIS Backend

The METROPOLIS design environment is designed around the concept of a meta-model as men-

tioned previously (Section 1.2). This allows for the initial model to be decomposed into an intermediate

representation and then fed to a number of different tools called backends. This is demonstrated roughly in

the structure shown in Chapter 1, Figure 1.10. As one can see, the model is parsed into an Abstract Syntax

Tree (AST) and that AST is interpreted by the backends to generate another representation with semantics

for another tool while maintaining some relationship to the original model. The creation of a backend to

generate a CFA as described earlier (Section 4.4.1) was the primary tool flow of “surface” refinement as it

currently functions in METROPOLIS.
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The CFA backend traverses the AST and identifies the nodes of the AST. It is composed of two

files:

• CFABACKEND.JAVA - top level METROPOLIS backend interface with file input/output functionality.

This code interacts with the user and the METROPOLIS infrastructure.

• CFACODEGENVISITOR.JAVA - AST visitor functions and CFA construction mechanism. This code

is the core of the tool and where 90% of its work is done.

CFABACKEND.JAVA is called when the backend is invoked and actually writes to various files

the results of the AST node visitor functions. The file CFACODEGENVISITOR.JAVA actually contains the

visitor functions. The visitor functions traverse the AST and determine what should happen at each type of

node. There are over 160 different node types that can make up an AST. It is in these functions that the CFA

structure is determined. In particular this is true when visiting what this thesis introduces as Grouping Node

Types (GNT). Each AST node generates its own location structure, L. Groups of these structures belong to

a group location structure, {L1...LN}. Each group location structure each contains exactly one node which

is a member of the GNTs. These sets of group location structures with one unique node of the GNTs are

what constitute a control location, Q, in the CFA. All of this information is stored in an internal list structure

which can be traversed itself. It is this heuristic grouping which prevents the size of the CFA from being

O(AN) (where AN is the number of AST nodes in the model) and rather O(GNT) (where GNT are the

grouping node types in the model) which is substantially smaller in practice. In order to have this reduction,

the GNTs are currently defined as:

• Structure Nodes - these include ProcessDeclNode, CompileUnitNode. These nodes capture the struc-

ture of the process description.

• Control Nodes - these include AwaitStatementNode, AwaitGuardNode, LoopNode. These represent

control decisions which frequently result in branches in the CFA.

• Variable Nodes - these include ThisPortAccessNode. These nodes will be very important as these

are the source of the interface function calls which ultimately define the behavior of a METROPOLIS

system.

Also worthy of note is that the CFA internal structure can be created in one pass through the

METROPOLIS model code. Therefore the running time it is O(NV) (where NV is the number the nodes
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traversed by AST visitor functions) where |visitor f unctions| ≤ AST nodes types in code. There are restric-

tions currently on the types of METROPOLIS systems that can be handled by this backend. For example all

processes much be single threaded with deterministic behavior.

CFA Visual Representation

The first and most trivial result of the CFA backend is a simple visual representation as shown in

Figure 4.12.

Group: 3

Parents: 2

Types: 12

Inputs: in1

Outputs: #can be blank

Misc: #can be blank

Names: LoopNode

Cond Codes: 1

| |

V V

Figure 4.12: CFA Visual Representation

The visual representation is simply for debugging purposes and allows the user to see not only

what the structure of the CFA is but also examine what individual AST nodes compose a control location.

This information can be used to redefine any heuristics used to define what a GNT is and then observe the

effects of the different heuristic choices for grouping. The Group field is an integer identification of what

group this object is. In turn this corresponds to a control location, Q in the CFA. The Parents field is a

collection of integers which define which groups are the parents of this group. Types is a set of integers

which are associated with each node to identify its composition of individual AST nodes (as defined by the

AST node types). Each AST node type has a unique integer “Type” value which makes up this list. The

Inputs field denotes what input variables must be required to transition from this group. The Outputs field

denotes which output variables will be present (i.e. go “high”) when you transition from this node. Misc is

used to hold such information as the occurrence of arithmetic nodes being visited (i.e. a PlusNode denoting

a possible incrementing of a variable) or other information used to build the CFA. Names is simply a list

of strings which indicate what types of nodes make up this group location (corresponding to the type field;

easier for human debugging). And finally the Cond Code field indicates which type of conditional node was

visited for the group (i.e. LoopNodes, AwaitStatementNodes, etc) and is internally defined to identify the
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branching structure of the CFA. The “arrow” like symbols are used where there are multiple children. This

can be produced in one pass of the internal list structure of the CFA or O(Q) (where Q is the set CFA control

locations).

Finite State Machine Representation

The second more functional result of the CFA backend, is that it produces a Finite State Machine

(FSM) representation of the CFA. The inputs to the finite state machine represent information provided by

other automata to the CFA model (such as the variable automata) and the outputs are the function calls to

media. This is formatted as a KISS representation. An example of KISS is shown in Figure 4.13.

#KISS File

.i 3 #input count

.o 4 #output count

.s 2 #state count

.p 2 #next state equations

#inputs current_state next_state outputs

010 s1 s2 0101

000 s2 s1 1010

.e

Figure 4.13: CFA FSM Representation

This format was chosen for two reasons: (1) It is easily produced from the internal list structure

which also created the visual representation (2) it can be read by various tools such as SIS [Ell92]. SIS in

turn can produce other formats such as BLIF, PLA, EQN, etc. Of particular interest is BLIF (Berkeley Logic

Interchange Format) whose close relative EXLIF can be read by FORTE [Nir03] as will be described in in a

later section. Once the initial data structure is created by the backend, the algorithm to create a KISS file is

as shown in Algorithm 3.

The running time of this algorithm is O(2*(GL*IV + GL*OV)). GL stands for Group Locations

which are the CFA Structure Groups. IV and OV are input and output variable list sizes respectively. This

computation is captured by the “for all” loop behaviors in Algorithm 3. Essentially one has to traverse the

structure once to create the lists of inputs and outputs. Then you must traverse it again to actually generate

the KISS file based on that information. Each line of KISS requires that you examine the input and output

lists completely to see if they contain input or output at that location as well.
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Algorithm 3 KISS Construction from CFA

1: Input: CFA Data Structure, D

2: Output: KISS File, K

{Create unique list of inputs (step 1)}

3: for all Group Locations, i ∈ D do

4: for all Input Values j ∈ i do

5: if j /∈ Unique Input List, UIL then

6: Add j

7: end if

8: end for

9: end for

{Same procedure as step 1: Add Output Values → Unique Output List (UOL) (step 2)}

10: {...}

{Create the declarations section (step 3)}

11: printf(“.i %d”, sizeof(UIL))

12: printf(“.o %d”, sizeof(UOL))

13: printf(“.s %d”, sizeof(D))

14: printf(“.p %d”, nstate count) {nstate count = lines processed making the body (back annotated)}

{Create the body (step 4)}

{Input portion of KISS}

15: for all i ∈ D do

16: for all elements, e ∈ UIL do

17: if e ∈ i then

18: printf(“1”)

19: else

20: printf(“0”)

21: end if

22: end for

23: end for

{Print information to describe the transition (step 5)}

24: sprintf(current group, child group)

{Same procedure as step 4: Output portion of KISS using UOL (step 6)}

25: {...}

26: Return K;
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Reactive Module Representation

The third and final result of the CFA backend is a reactive module [Raj99] file. This is a modeling

language for describing the behavior of hardware and software systems. This file is produced as an additional

benefit of the backend for three reasons: (1) It is very inexpensive to create a reactive module which models

an FSM. (2) It allows for non-deterministic behavior which is not allowed by KISS models provided to

SIS. (3) It can be read by tools such as MOCHA [Raj98]. MOCHA allows a rich set of model checking

algorithms to be run on the CFA model that are useful both for refinement and other verification tasks.

The first point mentioned for making this representation was that it was inexpensive to do from

the FSM representation. Algorithms 4 and 5 give the algorithm to do so.

The process of creating a reactive module file can be done in one pass of the KISS file. The

variable declaration initializations for the module are simply from the KISS input (.i), output (.o), and state

(.s) declarations. The init command is simply another listing of the variables. The largest part of the file, the

update commands, correspond one-to-one with each line in the KISS body. The running time of this process

is naturally O(L) (where L is the number of KISS Lines).

The second reason for using this representation, non-determinism, is inherent in the fact that

multiple guards in a METROPOLIS await statement may be true. Also inherent is that the union of all guard

commands does not have to equal the entire space of the inputs (i.e. a reactive module can be partially

specified). Naturally, KISS currently has deterministic behavior so it will result in a reactive module with

deterministic behavior. However, there is nothing preventing a reactive module from being produced from a

KISS file which would not run in SIS. A CFA could be produced that has non-deterministic behavior simply

with a modification to the backend.

The third and final reason, the verification tool MOCHA, will be discussed in its own section to

follow.

FORTE Accommodations

Prior to the integration of Reactive Modules into the CFA Backend, this thesis was targeting a tool

called FORTE. FORTE [Nir03] is a tool provided by Intel Corporation which is a collection of several tools.

These are Functional Language (FL), Symbolic Trajectory Evaluation (STE), FSM Logic Data Model, and

some circuit drawing tools. FORTE works on circuit descriptions of models. This is was a major factor in

influencing the decision to reduce the CFA into a FSM representation originally.

Once a model has been created as a KISS file, that KISS file is given to the SIS tool. SIS is used

to create a BLIF file with the SIS script shown in Figure 4.14. BLIF representation is very similar to the
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Algorithm 4 Reactive Module Construction from KISS Description Part 1

1: Input: KISS File, K

2: Output: Reactive Module File, R

3: RM R = new RM (<filename>);

{Lists of the external, interface, and private variables (step 1)}

4: for all i ∈ UOL do

5: ivar[index1] = new interface variable iv; index1++;

6: end for

7: for all i ∈ UIL do

8: evar[index2] = new external variable ev; index2++;

9: end for

{D is the collection of FSM states}

10: for all i ∈ D do

11: pvar[index3] = new private variable pv; index3++;

12: end for

{Create new atom CFA (step 2)}

13: printf(“atom cfa”); printf(“ controls ”); {Control declaration}

14: for j=0 to j < index1 do

15: printf(ivar[j]); {each interface variable}

16: end for

17: for k=0 to k < index3 do

18: printf(pvar[k]); {each private variable}

19: end for

20: printf(“ reads ”) {Read Declaration}

21: for j=0 to j < index2 do

22: printf(evar[j]); {each external variable}

23: end for

24: for k=0 to k < index3 do

25: printf(pvar[k]); {each private variable}

26: end for



127

Algorithm 5 Reactive Module Construction from KISS Description Part 2

1: INPUT: Variable lists and atom CFA from part 1

2: OUTPUT: Reactive Module File, R

{The continuation starting from line 26 of part 1}

{Initialize Module (step 3)}

3: printf(“ init ”)

{All interface and private variables = false except first state variable}

4: printf(pvar[0] = true);

5: for k=1 to k < index3 do

6: printf(pvar[k] = false);

7: end for

8: for j=0 to j < index1 do

9: printf(ivar[j] = false);

10: end for

{Update Behavior (step 4)}

11: printf(“ update ”);

{Pseudo Description}

12: <For each line of the KISS representation, the guard is the appropriate input = true and that current

state = true. The result is the next state variable = true and the appropriate outputs = true>

13: Return R;
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EXLIF file format used by FORTE. EXLIF is an extension of the LIF format in general. The EXLIF holds,

in addition to combinational circuit truth tables, constructs to model sequential elements, like transparent

latches and master slave flip-flops. It has constructs for describing structural hierarchy, tri-state drivers,

various kinds of assertions, etc. Some simple modifications allowed BLIF to be converted to EXLIF and in

turn read by FORTE also shown in Figure 4.14. These manual edits could be worked into a Perl script very

easily.

//sis commands

read_kiss <filename>

state_minimize

state_assign <nova> or <jedi>

source script.rugged

write_blif <filename>

BLIF to EXLIF Manual Edits:

• Remove start kiss, end kiss, and kiss code embedded in file

• Remove external don’t care section (.exdc)

• Add to the .latch definitions a clk signal and the type of flop it is (rising, falling)

• Remove the .latch order and .code portions

Figure 4.14: SIS Commands and EXLIF Requirements for FORTE Flow

Once the models are converted to EXLIF files, FORTE can begin to process them for refinement.

The algorithm which FORTE uses to prove refinement between to EXLIF files is in Algorithm 6.

The running time for such an algorithm is approximately O(m * n) where n is the number of states

and m is the number of transitions. This algorithm (6) and corresponding implementation code was not

created as part of this thesis but supplied by Intel.

MOCHA Accommodations

Since the CFA backend produces a Reactive Module, MOCHA can be used to do refinement

checking as well. However, this process requires some manual preparation of the file produced by the

backend. [Raj98] describes refinement as a trace inclusion problem. To check that X �Re f Y requires:

1. For every initial state, s of X, the projection of s to the variables of Y is an initial state of Y. Basically

they need the same initial state.
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Algorithm 6 FORTE Refinement Check for EXLIF Files

1: Input: Two EXLIF Models, A and R with State Space ΣA and ΣR

2: Output: Answer to the Refinement Question (R, A)

3: Let qA ∈ ΣA and qR ∈ ΣR

4: Given a set of states, the set S, SC is (ΣA ∪ΣR) \ S

5: Let~x be a vector of inputs common to both A and R

6: Let~yA(qA,~x) be a vector of outputs for A given the state qA and the inputs~x

7: Let~yR(qR,~x) be a vector of outputs for R given the state qR and the inputs~x

8: Let En be a set of sets of states reachable in n input sequences

9: Let σ be a set of sets {(qA, qR) | qA ∈ ΣA, qR ∈ ΣR}

10: Let Tr(qA,~x, qA’) = true if there is a transition from qA to qA’ under input~x

11: Let pre(σ) = {(qA, qR)| ∃~x : Tr(qA,~x, qA’) ∩ Tr(qR,~x, qR’) ∩ (qA’, qR’) ∈ σ}

{Start of Algorithm}

12: E0 = Ø

13: E1(qA, qR) = ∀~x,~yA(qA,~x)
❏

~yR(qR,~x)

14: k = 0

15: repeat

16: k = k + 1

17: Ek+1(qA, qR) = Ek(qA, qR) \ preEC
k (qA, qR)

18: until Ek+1 = Ek

19: if ∀ qR ∈ ΣR, ∃ qA such that (qA, qR) ∈ Ek then

20: Return YES

21: end if

22: Return NO
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2. For every reachable state of s of X, if X has a transition from s to t then Y has a matching transition.

The search can be done symbolically or enumerated with MOCHA. In the case that the test fails, it generates

a counterexample of a trace on X which is not a trace of Y. This may be computationally complex. Therefore

some restrictions are placed on the modules, to verify X �Re f Y.

1. The module Y has no private variables - This requirement has to do with observability.

2. Every interface variable of Y is an interface variable of X - This requirement is a syntactic issue

issue which allows the tool to function without the user explicitly providing a list detailing variable

correspondence.

3. Every external variable of Y is an external variable of X - This requirement is also a syntactic issue.

Recalling the requirements for refinement, the 2nd and 3rd conditions are already met. However,

a module created with the CFA Backend will have private variables representing states. The solution for

this is to create a Witness Module, W. This is a module whose interface variables are the private variables of

Y. Also, W should not contain any of the external variables of X. In turn a module, Y’, will be created with

the original Y’s private variables declared as interface variables. Once this process has been performed then

X||W �Re f Y’ as shown in [Raj99]. The procedure is naturally:

1. Create a module Y’ from Y by changing private variables to interface.

2. Define a Witness Module, W, whose interface variables are the private variables of Y but exclude the

observable (external) variables of X.

3. Check X||W �Re f Y’ with MOCHA

Since this process is not automatic it represents a potential bottleneck in the flow. The creation of a

Witness Module requires creativity on the part of the user since the variable reassignment may be nontrivial

in order to maintain correct functionality. In addition the parallel composition is also manual. There is

much information required to fully understand the MOCHA tool which is not described here. The reader is

referred to the references provided for more information.

Composite Design Flow

In conclusion, in order to demonstrate a proof of concept for this surface refinement methodology,

this thesis assembled the previously described components into a complete flow as shown in Figure 4.15.
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Figure 4.15: Surface Refinement Flows for METROPOLIS

As one can see from Figure 4.15, the process begins with a METROPOLIS model. Using the

METROPOLIS compilation engine one can simply run it through the CFA backend automatically. This will

return a reactive module file, a KISS file, and a visual representation. The reactive module will be fed to

MOCHA but first it must be augmented with a witness module, W, manually to do refinement checking on

it. This was described previously. The visual representation is simply for viewing and debugging. The main

trunk of the flow requires that you submit the KISS file to SIS. The script shown previously in Figure 4.14 is

run to assign state encoding and logic to the symbolic states in the KISS file. This information can then be

written out in BLIF format. Then the slight manual edits as described previously must be done to the BLIF

file to convert it to EXLIF for FORTE. Finally one runs NEXLIF2EXE (provided by FORTE) to convert the

EXLIF to an executable format for FORTE. Both the FORTE and MOCHA trunks of this flow assume the

presence of another file previously created will represent the more abstract model to be compared. These

files will be inserted in the flow at the appropriate locations as shown. Aspects of this methodology as

applied to METROPOLIS have been shown in [Dou04]. The asymptotic analysis of various aspects of this

flow (as detailed previously) is collected in Table 4.6. Further results of this design flow will be shown in

Chapter 5 on an industrial case study.
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Description Analysis Comments

CFA Overall Size O(GNT) GNT = |Grouping Node Types|
CFA Creation Time O(NV) NV = |Nodes Traversed by Visitor Functions|
CFA Visual Rep. Creation Time O(Q) Q = |CFA Control Locations|
KISS File Creation Time O(2*(GL*IV + GL*OV)) |Group Locations| and |Input|, |Out put| Vars.

Reactive Module Creation Time O(L) L = KISS Lines

Forte Running Time O(m * n) N = |States| and M = |Transitions|

Table 4.6: Asymptotic Analysis of Surface Refinement Flows

4.5 Compositional Component Based Service Refinement

Finally, compositional component based refinement will discuss the how changes internally made

to a component can be related. Whereas the previous approaches examined relationships between com-

ponents (event based), and changes to observable at the periphery (interface based), this approach allows

changes to be related at the “lowest” level. Very frequently designers want to change protocols offered by

services, size of storage elements, memory access or dequeuing polices, or add more service functionality

(modes, operands, etc). This approach allows for the designer to specify each individual service as a small

component. A change to this component can be modeled as an individual component as well. Refinement

verification is then performed against these two small relatively simple components. Once this has been

performed, large systems can be composed from these smaller systems. The two verified components can

then be swapped in and out of the two designs without performing additional refinement verification. The

refinement problem is greatly simplified in this way since the refinement effort to check the small individual

components is much more manageable than verifying the larger, composed system. Also the modular nature

of this approach allows for easy system modification. The bulk of this section is based directly on work

from [Olg03a]. Therefore, in this section, new contributions unique to this thesis will be denoted with ♠ to

avoid confusion between new and established work.

4.5.1 Proposed Methodology

The methodology for this approach uses the work of [Olg03a] and their tool SynCo [Olg03b]. The

approach overall is termed Depth Refinement. The contribution of the methodology contained here is a set of

extensions for system level design (METROPOLIS, METRO II and SystemC for example). These extensions

include how to represent events, refinement domains (subsystems), relations between subsystems, gluing

relations between subsystems, visible events, and visible properties. These are defined similarly to the

definitions in Section 4.1.3. The reader needs to begin this discussion by reviewing the LTS foundations
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mentioned in this chapter’s background section.

Definition 4.5.1 Event ♠ - Events, EN
E , in LTS S are a set of transition labels such that: EN

E ⊆ E.

Events are essentially a subset of the labels on transitions. All events are labels but not all labels

are events. When LTSs are created from an environment such as METROPOLIS they should be created such

that events are captured when they cause a change in the state of the system or are involved in a property of

interest.

Definition 4.5.2 Refinement Subsystem ♠ - Let SR be a refined component, < QR, Q0R, ER, TR, lR >. A

refinement subsystem is a collection of states in the refined component, QRS
Rn defined:

1. QRS
Rn ⊆ QR,

2. QR = QRS
R1 ∪...∪ QRS

Rn, and

3. for all pairs of QRS
R1 and QRS

R2, QRS
R1 ∩ QRS

R2 = 0.

The first requirement is that the states in the refinement subsystem are a subset of the states in

the refined component. Basically this means refinement subsystems can’t introduce new states. The second

rule is that the union of all the refinement subsystems equals the state space of the refined component. This

means that when all subsystems are considered, the state space is the refined component. Finally the third

requirement is that refined subsystems do not include states from other refined subsystems.

Definition 4.5.3 Subsystem Refinement Relation ♠ - Let SRR be a relation between SR (refined compo-

nent) and SA (abstract component). The states qRS
Rn ∈ QRS

Rn and qAn ∈ QA are related when written qRS
Rn ν

qAn.

This is a simple way of stating which states in the refined model correspond to those in the abstract

model.

Definition 4.5.4 Subsystem Gluing Relation ♠ - Let GI be a gluing invariant between SR and SA. The

states qRS
Rn ∈ QRS

Rn and qAn ∈ QA, ∀ qRS
Rn ν qAn are glued, written qRS

Rn µ qAn, lR(qRS
Rn) ⇒ lA(qA).

This is the same style of gluing relation which was discussed previously in Section 4.1.3.
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Definition 4.5.5 Visible Event ♠ - For a system S, a visible event set,EN
EV , is defined as:

1. EN
EV ⊆ EN

E ,

2. for all pairs QRS
R1 and QRS

R2 where QRS
R1 and QRS

R2 ⊆ Q and qRS
R1 ∈ QRS

R1 and qRS
R2 ∈ QRS

R2, ei ∈ EN
EV iff ∃ ti ∈

qRS
R1 × ei × qRS

R2.

The first requirement is that the visible events are a subset of the events. The second requirement

is that for each pair of refinement subsystems, where the subsystems are part of the same component, the

events are visible if they are labels between the two different refinement subsystems (i.e. not labels inside

the refinement subsystem).

SystemC, METROPOLIS, or METRO II models can be used to automatically extract EN
E . Refine-

ment subsystems and subsystem refinement relations are then defined by the designer. The subsystem gluing

relation now is produced automatically as a result (whereas GI was defined manually before). Refinement

properties can then be defined over EN
EV (which also fall out of the proposed definitions). These properties

can be used for verification purposes (such as refinement).

Definition 4.5.6 Visible Property ♠ - For a system S with set EN
EV , a visible property is the set of variables,

Var = {X1, ...,Xn} with the respective domain, D assigned to a path of states along a set of transitions

assigned visible events.

For each of the LTS based service components one can correlate them to existing SystemC,

METROPOLIS, or METRO II code through EN
E since the code uses its own notion of events to do synchro-

nization. We can use each METROPOLIS/METRO II/SystemC notify(en) call (or METROPOLIS request() or

await()) as an Ei
E in LTS. State variable sets will be defined for each SystemC module, METROPOLIS media

or process, of METRO II component (l : Q → SP). This process is shown in the pseudo-algorithm 7.

In addition to identifying refinement opportunities and definitions in order to formalize depth

refinement, naturally refinement itself for LTS systems must be formally defined. Since this thesis will

describe services as LTS, compositional component based weak refinement from [Olg03a] will be used.

This specifies the following rules for refinement, where η is the refinement relation :

1. Strict transition refinement - (qR η qA ∧qR
e
→ q′R ∈ TR) ⇒∃q′A(qA

e
→ q′A ∈ TA ∧q′R η q′A)

2. Stuttering transition refinement - (qR η qA ∧qR
τ
→ q′R ∈ TR) ⇒ (q′R η qA)
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Algorithm 7 LTS USE IN SYSTEM LEVEL ARCHITECTURE SERVICE REFINEMENT ♠

Require: M is a set of SystemC modules, {m1,...,mN} or

Require: C is a set of METRO II components, {c1,...,cN} or

Require: P is a set of METROPOLIS media, {p1,...,pN}

Ensure: X = M∪P∪C

1: S is a set of LTS where s : xn → sn.

2: Q for sn is defined by l : Q → SP {SP is defined manually}

3: Synchronization ((α when p) is defined manually for S

4: S
c
i (Context-in Component) is produced automatically

5: QRS
Rn is defined manually

6: qRS
Rn ν qAn is defined manually

7: Subsystem Gluing Relation is produced automatically

8: EN
EV is produced automatically

9: LTL/CTL/Refinement properties verified automatically over visible events in LTS

3. Lack of old or new deadlocks - (qR η f qA∧qR →/ R)⇒ ((qA →/ A)∨((qA
e
→ q′A ∈ TA)⇒ (qR ∈ D)))

4. Lack of τ-divergence - (qR η qA) ⇒¬ (qR
τ
→ q′R

τ
→ q′′R

τ
→ . . .

τ
→ . . .)

5. External non-determinism preservation - (qA
e
→ q′A ∈ TA ∧qR η qA)

⇒∃q′R,q′′R,q′′A (q′R η qA ∧q′R
e
→ q′′R ∈ TR ∧qA

e
→ q′′A ∈ TA ∧q′′R η q′′A)

We note q →/ when ∀q′ (q′ ∈ Q∧ e ∈ E ⇒ (q
e
→ q′) /∈ T )

The first rule essentially states that if there is a transition in the refined LTS from one state to

another, then there must be the same transition in the abstract LTS. There are also syntactic restrictions that

the transitions have the same label. The second rule states if there is a new (τ) transition in the refined

LTS, then its beginning state and ending state must correspond to the same state in the abstract LTS (this

correspondence must be defined in the gluing relation). The third rule states if there is a deadlock in the

refined LTS, then there is either a deadlock in the abstract LTS or the refinement LTS introduced a new

deadlock. This allows that individual components can deadlock in the refinement as long as the composition

of components still makes progress. The fourth rule is that there are no new transitions in the refinement that

go on forever (τ loops for example). The fifth and final rule is if there is a transition in the abstract LTS and

the corresponding (glued) refined LTS state does not have any transition then two conditions must be true:

1) there must be another refined state, qR’, that corresponds (is glued) to the abstract state, qA, 2) qR’ must

take a transition to another refined state, qR”, and in the abstract LTS there must exist a state, qA”, which is
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glued to to the refined state, qR”. Illustrations of rules 1, 2, 4 and 5 are shown in Figures 4.16, 4.17, 4.18,

and 4.19. In the Figures, qR refers to a state in the refined model whereas qA is a state in the abstract. Each

state is grouped into abstract or refined groups. Arcs between the two groups indicate gluing relations.
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Figure 4.16: Strict Transition Refinement
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Figure 4.17: Stuttering Transition Refinement
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Figure 4.18: Lack of τ-Divergence
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Figure 4.19: External Non-Determinism

Preservation

The design flow for depth refinement verification now consists of the following three steps. These

are based upon a design flow using SynCo. The results of such a design flow on specific communication

structures of the FLEET architecture are shown in Chapter 5.

1. The first step is to create a .fts file for each component. This file defines LTS transitions and states

for each service. This creation has the potential for automation but is not currently. An automation

scheme would involve capturing the states where the combination of each event’s presence is unique

(enabled or disabled) and when events are involved in a service interface or when they are commu-

nicated between services using, wait() or notify() (in SystemC for example). This process would be

similar to the CFA creation process outlined for depth refinement. A sample set of .fts files for a

consumer LTS (part of a larger producer/consumer example) are shown in Figures 4.20 and 4.21. The

abstract consumer is either waiting to consume or consuming. The refined consumer allows for a

“clean up” procedure (a purging of sorts) after waiting but before it begins to consume again.
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Transition System

//Two state values

type SIGNAL = {consume, wait}

local con : SIGNAL

//Can only be in one state

Invariant

(con = consume) \/ (con = wait)

//Initial state

Initially (con = wait)

//Transition to consume (‘‘get’’ event)

Transition get :

enable (con = wait) ;

assign con := consume

//Transition to wait (‘‘stallC’’ event)

Transition stallC :

enable (con = consume) ;

assign con := wait

Figure 4.20: .fts for Abstract Consumer LTS

Transition System

//Three state values (added clean)

type SIGNAL = {consume, wait, clean}

local conR : SIGNAL

Invariant

(conR = consume) \/ (conR = wait)

\/ (conR = clean)

//Initial state

Initially (conR = wait)

//Transition to consume (‘‘get’’ event)

Transition get :

enable (conR = clean) ;

assign conR := consume

//Transition to wait (‘‘stallC’’ event)

Transition stallC :

enable (conR = consume) ;

assign conR := wait

//Transition to cleanup (‘‘cl’’ event)

Transition cl :

enable (conR = wait) ;

assign conR := clean

Figure 4.21: .fts for Refined Consumer LTS

2. The second step is to create a .inv file for each set of components (the abstract and refined versions).

This file defines the gluing invariants between abstract and refined states. In Figure 4.22 the two

“consume” states are glued. The abstract consumer’s “wait” state is glued to the refined consumer’s

“wait” and “clean” states.

3. The third step is to create a .sync file for the whole system. This file defines synchronization and in-

teractions between LTS components. There should be a .sync file for the refined and abstract systems.

One file for the abstract LTSs’ interaction and one for the refined LTSs’ interaction. When composing

modules together, the total number of states in the system is less than the product of number of states

in each component. This is one of the strengths of synchronization and its partial specification. In

Figure 4.23 the .sync file for the abstract producer and consumer example system is shown. Each
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((con = consume) <--> (conR = consume))

/\((con = wait) <--> ((conR = wait) \/ (conR = clean)))

Figure 4.22: .inv for Consumer LTSs

event of the LTSs is enabled depending on the state of the collection of LTSs.

These three sets of files are provided to SynCo for both the abstract and refined systems. SynCo

will then check the validity of the refinement rules outline previously. This design flow can be automated

partially. As mentioned, the .fts file creation can be automated starting from a METROPOLIS or SystemC

description. The .inv file creation can be automatic but must start from some designer specification. The

state correspondence must either be explicitly described by the designer in a separate file or implicitly via

a state naming conventions. The .sync file must be manually created. In large systems this can be done

hierarchically to make the process more manageable. This type of automation is potential future work.

4.6 Conclusions

This chapter has introduced three approaches to architecture service refinement and its verifica-

tion. These are: event based (vertical, horizontal, diagonal), interface based (surface), and compositional

component based (depth) refinements. Each is a potential tool in a system level architecture service devel-

opment design flow. Each has their own unique strengths and weaknesses. For example it has been shown

that an event based approach is scalable and allows two distinct system level design exploration scenarios.

However, event properties may be difficult to specify and capture. Interface behavior capture allows for IP

integration and relies on a very nice formalism which is currently verified by existing (free) tools. However,

it can be time consuming and requires certain syntactic conditions and manual steps which may require

more effort and knowledge on the part of the designer. Finally compositional component verification also

employs a clean formalism and allows specific changes to be made in the granularity of individual service

offerings. However, it requires that a manual correspondence between states be made in a gluing relation

and also requires that the overall behavior of the system (synchronization) be specified manually. In imple-

menting a design flow, one should use each of these techniques in particular situations to maximize their

strengths while minimizing their weaknesses. In Chapter 5 specific examples of each of these techniques

will illustrate their potential uses.
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//Buffer Events (reads and writes)

//‘‘write1’’ event is enabled when the LTSs are in the following states

(write1) when

((prod = produce) /\ (buf = empty) /\ (con != consume)),

(write3) when

((prod = produce) /\ (buf = notempty) /\ (con != consume)),

(read1) when

((prod != produce) /\ (buf = notempty) /\ (con = consume)),

(read3) when

((prod != produce) /\ (buf = full) /\ (con = consume)),

//Producer Events

make when

(prod = wait),

stall when

(prod = produce),

//Consumer Events

get when

(con = wait),

stallC when

(con = consume)

Figure 4.23: .sync for Producer/Consumer LTSs
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Chapter 5

Design Flow Examples

“Results! Why, man I have gotten a lot of results. I know several thousand things that won’t

work.” - Thomas Edison, Inventor

Earlier in the description of this thesis’ goals, claims were made regarding the accuracy and

efficiency of the proposed design flow. Previous chapters have gone into great detail regarding the design

flow. Particularly the development of system level architecture services has been described (Chapter 2), their

characterization (Chapter 3), and finally their refinement (Chapter 4). These chapters have shown the level

of abstraction possible as well as this design flow’s modularity. This chapter will now specifically show

how each of those approaches maintained the accuracy and efficiency needed by ESL tools for adoption by

the larger EDA industry. This demonstration will be done through a series of case studies each designed to

highlight a particular aspect of the design flow outlined.

Accuracy and Efficiency Interpretations

Before discussing the case studies, it is important to understand what the is meant both by accuracy

as well as efficiency. Formally accuracy is defined [Mer07] as: “degree of conformity of a measure to a

standard or a true value”. In the case of design space exploration of embedded systems, the “standard or

true value” is the value that would be obtained by the actual implementation of the design. For example, if

one where to create a model of an image processing system, an accurate model would be one in which the

predicted execution time obtained by simulation was close to the actual value of the existing system. How

close is “acceptable” depends on a variety of factors. One factor is the domain of the design. For example,

safety critical systems such as avionics or medical systems may require very little deviation. Another factor

is what quantity is being measured. For some systems, memory usage may need to be very exact (small

embedded devices for example) while for others it may not be as important (super computer systems for
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example). A 1% error may be a large deviation for some measurements, while 30% acceptable for others.

Finally, acceptable accuracy will depend on the level of abstraction. More abstract systems typically require

less accuracy because they are usually concerned with making broad system level decisions and increasing

accuracy is not only not required (design simulation speed is more desirable) but also potentialy not possible.

Since accuracy is such a contextual concept, this work requires accuracy to the extent that

fidelity holds. Fidelity was defined in Chapter 1 as a required ordering of measurements. This property

does not mean more accurate measurements necessarily. For example consider three systems A, B, and C.

Assume the actual execution time for A is 3 seconds, B 2 seconds, and C 5 seconds. Therefore the ordering

from fastest to slowest is B, A, C. Consider a very accurate simulation which reports A as 2.7 seconds,

B as 2.8 seconds, and C as 5.1 seconds. This ordering would be A, B, C. While the average error of the

measurements is 0.4 seconds, fidelity does not hold. Contrast this with a highly inaccurate system which

predicts A as 100 seconds, B as 50 seconds, and C as 200 seconds. The average error is much higher (113

seconds) but the system ordering is correctly B, A, C. In the case studies to follow, this ordering or fidelity

is maintained in all cases. In addition average accuracy is quite good as well which is also desirable since

for the systems that do require accuracy, the designer will have a good feel for the viability of the design.

The second concern, efficiency, again has many various meanings when discussing tool devel-

opment. Primarily it has two interpretations. The first refers to how easily a designer can express his/her

desires. For example, a system defined more efficiently by this definition may result in less lines of code,

more library functions, or a larger design library. The result of being more efficient in this space will result

in a design being completed faster (although not necessarily correctly which is why efficiency is only one

part of the proposed design flow). The second interpretation of efficiency has to do with the running time of

the tool. A more efficient tool will take less time to simulate a design. This is accomplished by using careful

programming techniques and algorithms with low asymptotic running times. In this work, the second inter-

pretation is what is of importance. In all cases, the running time of the design flow implemented is as fast or

no more than 20% slower than competing approachs.

The contribution of the four case studies presented in this chapter is a demonstration of the proposed

design flow’s use of specific modeling techniques, characterization of programmable platforms, and

refinement verification to ensure design point fidelity while maintaining a simulation running time no more

than 20% slower than competing approaches.
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5.0.1 Chapter Organization

This chapter is organized around four case studies. The first case study presented in Section 5.1 is

an exploration of four potential Motion-JPEG (MJPEG) encoder implementations. This example is provided

to show how the characterization process from Chapter 3 is superior than using area based estimations (the

naı̈ve method). The second exploration in Section 5.2 models an H.264 deblocking filter and is meant to

demonstrate the modularity in which the architecture service were created allows for a variety of mapping

scenarios for various functional models. The third exploration in Section 5.3 demonstrates how the topology

of an architecture model can be changed, remapped and the resulting behavior of the system still be verified

to be a refinement of the previous, more abstract mapped instance. This is a combination of “vertical” and

“surface” refinement discussed in Chapter 4. The final demonstration in Section 5.4 contrasts the previous

section by performing refinement without changing the topology but by simply replacing services with other

services. The services being replaced are more abstract while the service being used in the replacement are

more refined. This requires that the overall system behavior be preserved after the change. This process was

described as “depth” refinement in Chapter 4.

5.1 Characterization Aided Fidelity Example: Motion-JPEG

To demonstrate how a programmable platform performance characterization method can be used

to make correct decisions during design space exploration, the following multimedia example is provided.

This example deals with evaluating various architecture topologies and illustrates the importance of accu-

racy in characterization and exemplifies the fidelity achieved with the proposed design flow’s method. In

an exploration like this one, the designer is interested in choosing the design with the best performance.

Therefore it is not as important that the exact performance be known, but rather that the ordering of the

performances amongst the candidates is correct (hence the emphasis on fidelity). Without the methods cov-

ered in this thesis, estimated values would be used to inform the designer of the predicted performance.

These values may come from datasheets, previous simulations, or even best guesses (techniques described

in Chapter 2, Section 2.4). None of these are preferable to actual characterization as will be shown.

The application chosen was Motion-JPEG (MJPEG) [Gre91] encoding and both the functional

model and architectural service models were created in the METROPOLIS design environment. Investigated

are four MJPEG architectural service models. A single functional model was created in METROPOLIS which

isolated various levels of task concurrency between the DCT, Quantization, and Huffman processes present

in the application. These aspects of the functional model were then mapped to the architectural model. The
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topologies are shown in Figure 5.1. Each of the topologies represents a different level of concurrency and

task grouping. A key is provided to show what functionality is mapped to which aspect of the architectural

model. The diagrams show the architecture topologies after the mapping process. This was a one-to-one

mapping where each computational unit was assigned a particular aspect of MJPEG functionality. The

computation elements were MicroBlaze soft processor models realized by METROPOLIS media and the

communication links were Fast Simplex Link (FSL) queues also realized as METROPOLIS media. In order

to facilitate the mapping, METROPOLIS mapping processes were provided one-to-one with the MicroBlaze

service models. In addition to the METROPOLIS simulation, actual Xilinx Virtex II Pro systems running

on the Xilinx ML310 development platforms were created. The goal was to compare how closely the

simulations reflected the actual implementations and to demonstrate that the simulations were only truly

useful when using our characterization approach.
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Figure 5.1: MJPEG Architecture Topologies in METROPOLIS

The results of a 32x32 pixel image MJPEG encoding simulation are shown in Table 5.1. The

table contains the results of METROPOLIS simulation and the results of the actual implementation. The first
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column denotes which architectural model was examined. This column corresponds to Figure 5.1. The

second column shows the results of simulation in which estimations based on design area and assembly

code execution were used. The third column shows the simulation results using the characterization method

described previously. Provided with the results is the percent deviation from the real cycle values. Notice

that the estimated results have an average difference of 35.5% with a max of 52% while the characterized

results have an average difference of 8.3%. This is a significant indication of the importance of the proposed

method. In addition, the fifth column shows the rank ordering for the real, characterized, and estimated cycle

results respectively. Ideally all three values would be the same. Draw your attention to the rankings for Arch

2 and Arch 3. Notice that the estimated ranking does not match that of the real ordering! Even though

the accuracy discrepancy is significant, it is equally (if not more) significant that the overall fidelity of

the estimated systems is different. Finally the maximum frequency according to the synthesis reports, the

execution time (cycles * period), and area (slice) values of the implementation are shown. It is important

to notice several trends may not have been taken into account using an estimated method. One is that the

largest area design (Arch 4) requires the fewest cycles. However, it also has the lowest clock frequency. This

confirms that while one might be tempted to evaluate only the cycle counts, it is important to understand the

physical constraints of the system only available with characterized information.

System Est. Cycles Char. Cycles Real Ranking Max Execution Area

Cycles (Real, Char, Est) Mhz Time (Secs) (Slices)

Arch 1 145282 (52%) 228356 (25%) 304585 4, 4, 4 101.5 0.0030 4306

Arch 2 103812 (33%) 145659 (6%) 154217 3, 3, 2 72.3 0.0021 4927

Arch 3 103935 (29%) 145414 (1.2%) 147036 2, 2, 3 56.7 0.0026 7035

Arch 4 103320 (28%) 144432 (< +1%) 143335 1, 1, 1 46.3 0.0031 9278

Table 5.1: MJPEG Encoding Simulation Performance Analysis

When discussing the efficiency of this method in terms of simulation time, the two points of

interest are the simulation times for the simulations using estimated data versus those using characterized

data. In this case, due to the unique METROPOLIS execution semantics described earlier, the simulation

times are the same for each method. The increased fidelity therefore comes at no extra “cost” to the design.

5.2 Service Aided Mapping Modularity Example: H.264 Deblocking Filter

The proposed design flow in this work does not specifically address functional modeling. However

it is clear that the more architecture topologies that can be created from service models, the larger the

potential design space exploration. Therefore the more modular the individual services, the more unique
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interactions that can be explored and hence more topologies can be created. This section will demonstrate

the advantages of this modularity and show how unique design points can be analyzed with a high level of

accuracy.

The first stage of this process is the functional modeling of an application. Functional model

exploration is twofold. The first stage is behavior capture. This is the process of examining the various

ways to express the behavior of an application. An important area of exploration is the examination of the

various levels of concurrency which can be present in an application. This process is covered in [Shi06]

using an algebraic representation. This process will not be discussed in depth here and the reader is directed

to read the provided reference for more information. For this work it is sufficient to understand that certain

aspects of an application can occur in parallel. These parallel aspects can then also be sequentialized. Given

all the operations in a design, each can be classified as sequential or parallel in relation to each other. The

design space then becomes the manipulation of these relationships and the partitioning of the sets in which

these relationships are considered. Sequential operations can be executed on one service while parallelism

requires a service for each parallel operation.

The second stage is to take one of the candidate functional representations and assigned aspects

of the functionality to architectural services which compose a architecture instance. This is mapping in

METROPOLIS. This requires a methodology to partition the functional model (this is the first stage [Shi06])

as well as a set of architecture components (as shown in Chapter 2). The METROPOLIS framework then

evaluates potential performance by mapping the functional model onto an architectural model for simulation.

The architecture models for this flow are based on the Xilinx Virtex II Pro FPGA platform [Xil02] created

in METROPOLIS. These models were described in Chapter 2. Specifically this thesis will be examining

architectures based on MicroBlaze soft-microprocessor cores and Fast Simplex Links (FSLs). An FSL is

a FIFO-like communication channel, which connects two MicroBlazes in a point-to-point manner. These

components were selected because they can easily correspond to dataflow applications like the one to be

presented. Because of the way in which these models were created, this section will demonstrate that any

functional model that could be created using the algebraic methods, can be presented with a corresponding

architecture model for a one-to-one mapping.

What will follow is a discussion of the application details, how mapping is performed, and an

analysis of the results obtained.
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5.2.1 Application Details

This thesis chose to explore the H.264 deblocking filter algorithm since it is responsible for a sig-

nificant percentage (approx. 33%) of the total computational complexity of H.264 [Mic03]. The deblocking

filter function is applied to a block (4×4 pixels) border of an image for the luminance and chrominance

components separately, except for the block borders at the boundary of the image. Note that the deblocking

filter function is performed on a macroblock basis after the completion of the image construction function.

The filtering is applied to a set of eight samples across a block border as shown in Figure 5.2.

When block border V 0 is selected, eight pixels denoted as ai and bi with i = 0, · · · ,3 are filtered. The other

fifteen rows along V 0 are also filtered. Likewise when block border H1 is selected, eight pixels denoted as

ci and di with i = 0, · · · ,3 are filtered as well as the other fifteen pixel set along H1. Vertical block borders

are selected first from left to right on the macroblock (in the order of V 0, V 1, V 2, and V 3 in Figure 5.2)

followed by horizontal block borders from top to bottom of the macroblock (in the order of H0, H1, H2,

and H3 in Figure 5.2).

Figure 5.2: Macroblock and Block Border Illustration for H.264 Deblocking Filter

The filter function can be roughly divided into two parts. The first function is a derivation function
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of boundary filtering strength and the second function is a filtering function for samples across the block

border.

Figure 5.3 is the pseudo code for the deblocking filter derived from H.264 reference software

[Tho03], [MPE]. DeblockMB checks whether neighbor macroblocks (16× 16 pixels) are available for a

target macroblock. GetStrength outputs a boundary strength (stri, j,k) for the filter, and EdgeLoop does

filtering for the eight samples depending on the boundary strength. The boundary strength is in the range

of 0 and 4 (integer number) and the number is determined depending on slice type, reference pictures, the

number of reference pictures, and the transform coefficient level of every block according to the encoding

profile. This exploration is carried out for the worst case among five boundary strengths. It was observed

that the total cycle count is the worst (largest) when the boundary filtering strength is one. GetStrength and

EdgeLoop function transactions will be the system level units of granularity for this exploration.

D : DeblockMB();

for i=0,1 do

Ii :

for j=0,· · ·,3 do

J j :

for k=0,· · ·,15 do

Pk : stri, j,k = GetStrength(i, j,k);

end for

for k=0,· · ·,15 do

Qk : EdgeLoop(i, j,k,stri, j,k);

end for

end for

end for

Figure 5.3: Deblocking Filter Pseudo Code

5.2.2 Mapping Details

Once the functional model topology has been created, one must transform this into a METROPOLIS

functional model. This case study ultimately is interested in investigating potential clock cycle counts

when the functionality is mapped and simulated with an METROPOLIS architecture model. Therefore it
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is important that functional model actions have consequences in the architecture model. METROPOLIS’

higher abstraction level allows functional model statements to be classified into three primitive functions:

read, write, and execute as previously described. The MicroBlaze elements have corresponding functions.

Mapping amounts to correlating these functions to each other so that the appearance of a call in the functional

model triggers its corresponding call in the architecture model. The total number of clock cycles required is

found by accumulating cycles for read, write, and execute functions triggered in the architecture services.

Figures 5.4 and 5.5 show how GetStrength and EdgeLoop in the functional model are composed of these

primitive functions, where an argument type in execute is the the type of execution operation being carried

out and arguments of read and write are the amount of transfered data in bytes. The arguments to read,

write, and execute are translated by the METROPOLIS characterizer databases. This process translates into

a cycle count for each operation (Chapter 3 details this process). This work will refer to a process with

GetStrength and EdgeLoop functionality as a “filter process” henceforth.

GetStrength(){

execute(type1);

mem read(2wd);

execute(type2);

mem read(8wd);

· · ·

execute(type3);

write(strength);

}

Figure 5.4: Decomposition of GetStrength Function

EdgeLoop(){

execute(type4);

mem read(8wd);

· · ·

read(strength);

mem read(8wd);

execute(type5);

mem write(8wd);

}

Figure 5.5: Decomposition of EdgeLoop

Function

The mapping in this exercise is carried out in such a way that a filter process and a communi-

cation channel in the functional model are mapped onto a MicroBlaze and an FSL in one-to-one manner

respectively as shown in Figure 5.6. The left hand side of this illustration is the functional model and the

right hand side is the architectural model. The functional model is partition into sequential and parallel

operations. Shaded areas indicate how many services are required (some services may be supporting more

operations depending on how many circles are in each shaded area). P indicates GetStrength and Q indi-

cates EdgeLoop activities. These shaded areas are each given a process identification number (PID). Arcs

between each side indicate how the mapping was performed. Only two examples are shown here. These are
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topologies H and C. All the topologies will be shown in Figure 5.7.

In this thesis, a source process in the functional model is defined as follows: A “source process”

(SRC) is a storage element with stream data and baseband data. A source process communicates with “filter

processes” in such a way that a filter process sends 32-bit wide data (a read/write flag, a target address, and

a target data length in this order) and afterwords a source process sends or receives data in a burst transfer

manner. The source process has in/out ports connected to all filter processes as shown in Figure 5.6 and

receives requests from the filter processes in a first-come-first-served basis with non-blocking reads.

The source process is also mapped onto a MicroBlaze. The length of a FIFO connected between

the source process and filter processes is large enough so that processes are not blocked on write operations.

For this case study, the source process FIFOs have a depth of 16. The length of a FIFO between filter

processes changes in this case study, and is represented by N in Figure 5.6.
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Figure 5.6: Mapping a Functional Model onto an Architectural Model for H.264

Provided that the number of MicroBlazes is three and under, 14 functional topology candidates

are obtained and shown in Figure 5.7. As in Figure 5.6 a gray zone represents what will be executed on

each MicroBlaze (a “partition”; called a “mapping” in this thesis) and resource ID is denoted by PID once

again in the figure. For example, (C) in Figure 5.7 implies that resource 1 (PID1) has computational block P

(GetStrength) and resource 2 (PID2) has computational block Q (EdgeLoop). Another example is topology

(F) which illustrates two processes as well. PID2 contains Q functionality. PID1 has a collection of P and

Q functionality. These candidates will form the basis for the design space exploration to follow.



150

����� ����� �����

� �

���

� �

� �

�	�

� �

� �

�
�

� �

� �

���

� �

� �

���

� �

� �

��

��
�

� �

���

�����������

�����������

� �

� �

���

� �

� �

���

� �

� �

���

� �

� �

���

� �

� �

���

� �

� �

���

� �

� �

���
�����������

�� ��

��������

�� ��

��������

�� ��

��������

��
�

��
�

��
� ��
�

��
�

����

��
�

��
�

��
�

��
�

��
�

��
�

��
� ��
�

��
�

��
� ��
�

��
�

��
� ��
�

��
�

��
� ��
�

��
�

��
�

��
�

��
�

��
� ��
�

��
� ��
�

��
� ��
�

Figure 5.7: H.264 Functional Topology Mapping Candidates

5.2.3 Design Space Exploration Results

The results detailing execution cycle counts for the functional topology candidates explored in

Figure 5.7 are discussed in this section first. Figure 5.8 shows the total execution cycle count breakdown

(computation cycles, communication cycles with a source process, and waiting cycles) when the length of a

FIFO between filter processes (N denoted in Figure 5.6) is size one. The waiting cycles accumulate in two

following cases: when a filter process waits for other filter processes to finish their transaction with a source

process and when a filter process waits for data to come to a FIFO from other filter process.

The vertical axis in Figure 5.8 is the number of clock cycles required and horizontal axis shows

topologies (A through N) as shown in Figure 5.7. B through G have two bars, where the first bar corresponds

to process 1 denoted by PID1 in Figure 5.7 and the second is process 2 denoted by PID2. H to N have three

bars, where the first bar corresponds to process 1 denoted by PID1 and the second and third bars are results
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of process 2 and process 3 denoted by PID2 and PID3 each.

The simulation results demonstrate that workload balance has a strong effect on execution time

for a multiprocessor system. Case H is the best case in terms of workload balance and as a result, the total

amount of cycles is the smallest. Compare case J with case L. L has more communication channels than case

J. Nonetheless process 3 in L spends less time waiting than process 3 in J, which implies that the memory

traffic of L is lighter than that of J due to synchronization between process 1 and process 3. Compare K with

L. Their topologies are the same, but the process execution order differs. As a result, the completion times

are different. Similar conclusions can be drawn for topologies M and N.

There are several broad conclusions that can be drawn from these results. First, apparently small

changes in the functional topology can actually have dramatic effects on execution time. Secondly, the

breakdown of overall execution time is important to examine for these types of applications in order to

better understand how communication bottlenecks play a role in each topology. Finally, METROPOLIS was

able to perform efficient functional design space exploration with ease and with only minor changes to

the functional and mapping models. Fourteen topologies were able to be explored with very few changes

to the architectural model. In fact, only the top level architectural netlist needs to be changed since the

the structures are very regular and modular. This modification process could be automated and even more

topologies explored if the 4 MicroBlaze restriction was relaxed.

�

�����

�����

�����

�����

�����

�����

�����

	����


����

������

� �  � � � � � � � � � � �

��������� �!"�##

��������� �!"�##�#

��������� �!"�##�#

�
$
�
"
%
��
!
&
�
'
"
��
�
!
%
&
�#

�%&"��!&(��)! !�!*'�(&+�+(��#

�����

����	�
����

���

������	��

������������

,(���&* !--%&�"(��!& !- %�(��!&

�����	������	��������

.�!��!-/.�&���/.)! /

Figure 5.8: METROPOLIS H.264 Simulation Results for All Candidate Topologies
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Optimal FIFO Size

In the second set of experiments, the effect of FIFO length between filter processes was examined.

Figure 5.9 shows execution cycle counts of three topologies: C, F and I when the length of a FIFO between

filter processes changes (N in Figure 5.6). The results show the optimal length in terms of achieving mini-

mum cycle counts. Changing the length of a FIFO does not have an effect on the total cycle count, but rather

on the cycle counts of individual processes.

Let process P be a producer process and process Q be a consumer process, and FIFO F connect P

to Q. As it turns out, when process P takes more time than process Q for its computation and communication

time (with a source process), the length of F does not matter. Meanwhile, when process P takes less time

than process Q, the length of F has an effect on waiting time of P, not on Q. However, the total cycle counts

do not change. Therefore, this illustrates that FIFO length exploration is less important in terms of the total

amount of execution clock cycle counts.
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Figure 5.9: METROPOLIS H.264 Simulation Results for Various FIFO Sizes

Table 5.2 breaks down the performance of all the topologies further. Total execution time in clock

cycle counts (second column), the optimal FIFO length (third column), and topology decomposition (fourth,

fifth, and sixth columns) are shown. Optimal FIFO length is the smallest length which maintains the lowest

clock cycle count. Resource cost is given as program binary code size below the table. The 4th, 5th and 6th

columns then can be interpreted as how much memory is consumed for program memory on each process.

PQ is the result given by combining P and Q computational blocks on the same architectural resource. In
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the case where FIFO length does not make any difference for the counts, the optimal length is set to 1.

Table 5.2: H.264 Performance and Cost Results for All Topologies

Topology Counts Length Proc1 Proc2 Proc3

A 94021 1 PQ - -

B 50188 1 PQ PQ -

C 58839 5 P Q -

D 54505 1 PQ PQ -

E 60124 1 PQ PQ -

F 67981 1 PQ Q -

G 76182 6 PQ P -

H 43932 1 P Q Q

I 60215 5 P Q P

J 52031 3 P Q PQ

K 52971 1 P Q PQ

L 50780 1 P Q PQ

M 58941 6 P Q PQ

N 61190 6 P Q PQ
Binary Data Size PQ: 47.9KB; P: 47.0KB; Q: 45.9KB

This simulation demonstrates that users can make a decision regarding the optimal functional

model based on parameters related to performance and costs such as total execution cycle counts (work-

load balance), communication overhead, memory traffic, FIFO length, shared memory size, the number of

processors, program code size, context switching overhead, register, cache, dedicated hardware logic size,

and so forth. Again, METROPOLIS provides a easy-to-use framework for this type of functional exploration

thanks in no small part to the modular and flexible architecture construction.

Simulation Accuracy

All of the previous results are meaningless unless METROPOLIS simulation accurately correlates

to the actual implementation. Figure 5.10 illustrates how closely METROPOLIS’ simulation compares to

experimental results. Six of the more interesting topologies were selected. Each design was implemented on

a Xilinx ML310 design board and the execution time was measured. Shown in the figure are the percentage

differences between simulation and implementation. The maximum difference between implementation

and simulation is 7.3%. This is a high correlation while maintaining a high level of abstraction in the

METROPOLIS models. In addition, it confirms that H has the lowest cycle count of any design and

demonstrates that making an absolute design decision based on METROPOLIS simulation would have been

the correct choice.
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Figure 5.10: METROPOLIS H.264 Accuracy Versus FPGA Implementation

5.3 Architecture Platform Refinement Example: SPI5 Packet Processing

The previous two case studies illustrated aspects of characterization and architecture service mod-

eling modularity. These examples demonstrated the benefits of the modeling style and characterization

presented in previous chapters. Efficiency and accuracy were demonstrated while maintaining modularity.

This section will discuss refinement verification’s role in the design process. This work is an expansion of

work produced in [Dou04]. Abstraction possibilities will be demonstrated here with an architectural design

topology that goes through a number of transformations while still being shown to be a valid refinement to

the initial specification.

The goal of this exercise was to analyze the architecture of an interface unit for a very high band-

width Optical Internetworking Forum (OIF) standard, e.g., System Packet Interface Level-4 (SPI-4), Level-5

(SPI-5) [K. 01] with the following requirements:

• The interface must provide the maximum bandwidth as required by the specification.

• There can be no loss of data with minimum backpressure; backpressure reduces upstream traffic flow.

The architecture can generate backpressure only if the downstream system requires it.

• Determine optimally sized standard embedded memory elements. Optimal is defined as the lower

bound size while functioning with no packet loss.
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• The interface must support multiple input channels.

• The insertion of idles cycles (no activity) when packets are of different size must be minimized.

For this work a simple SPI-5 data generator model was designed that generates packet data every

clock cycle for given number of channels. Two types of parameters are considered: architecture and appli-

cation. Architecture parameters help to determine the microarchitecture parameters for various application

parameters. One should choose a set of architecture parameters that match all application parameters for a

given specification to ease the mapping process. Custom architecture services were created which could be

parameterized to do this investigation. Additionally the architecture services were composed in a variety of

ways to create a set of platforms (each at a different abstraction level) as will be described.

5.3.1 Application Parameters

Application parameters are defined as part of the functional specification. Given the specification

they were the aspects we felt captured the system level decisions that needed to be made.

• Number of Channels (NP) - Number of PHY units. A PHY unit is a physical layer device that

converts the serial optical signal to an electrical signal.

• Data Rate/Channel (BP) - What configuration of PHY units can be used. The electrical signals from

the PHY units are typically in a byte or multiples of bytes format.

The application parameters define what different types of PHY units the design could interface

with. This is a tradeoff between flexibility and clock frequency. A smaller NP will deliver data at a higher

clock frequency, BP, since the bandwidth must be maximized.

5.3.2 Architecture Parameters

The objective of architecture service design and development was to devise a robust architecture

that will allow the application design to interface with different types of systems. To evaluate the various

architectures, following two parameters were defined:

• Number of channels/bus (NB) - Number of channels that can simultaneously deliver data at the same

time.

• Bytes of data/bus (BB) - Number of bytes delivered from each channel.
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In the simplest case NP = NB and BP = BB, i.e., the system is configured to accept and deliver the

data when all channels are equivalent. However, each channel can deliver data at a different rate. The only

characteristic known is that the aggregate data from all the channels will be no more than 40 Gb/sec.

This work supports up to 16 channels. For 16 channels, each channel must be 2.5 Gb/sec, to get

an aggregate of 40 Gb/sec rate (2.5∗16). Alternatively, 4 channels can each be 10 Gb/sec. This is aggregate

data rate is a function of the SPI-5 specification.

The various parameters also control the internal bus width and internal clock frequency. For

example:

• Bus Width (BW ) = NB ∗ BB - The bus width is the number of channels times the number of bytes of

data for each channel.

• NP∗BP∗CSY S/BW → (Ideally small as possible); where CSY S, is the system clock frequency. This

indicates the backpressure needed. Values greater than 1 indicate the bus capacity has been exceeded.

An interface unit that can interact with the PHY units and deliver data to the downstream modules

can now be designed. However, the effect of the decisions at this level will impact the operation and storage

requirements of the design.

Example: Consider NB = 8 (channels per bus) and BB = 4 (bytes per channel), then BW = 32

(Bytes). Then when BP = 4 (data rate per channel) and NP = 16 (number of channels), the data sequence is

produced as shown in Table 5.3. For the first clock cycle, the 1st byte from the selected channels appears on

the bus. In the second clock cycle, the 1st byte from the remaining channels is delivered.

Data Transfer Byte (BP = 4)

1st SOP Byte 2nd 3rd 4th EOP Byte

Channels using Bus (Nb = 8 and Np = 16)

0-7 8-F 0-7 8-F 0-7 8-F 0-7 8-F

Clock Cycle

C = 0 C = 1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7

Table 5.3: Example of SPI-5 Data Generation Using the Architecture and Application Parameters

For this system configuration, it will take 8 clock cycles to send 256 bytes of data over an 8

channel wide bus (16 total channels) with packets of 4 data units each. This is a simplified scenario. A more

constrained implementation has been described in [San03].

The purpose of this study was to use METROPOLIS to quickly evaluate the impact of various

parameters on the entire design while minimizing the verification effort. The data generator described
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allows the system conditions to be quickly changed to test how modifications to the architecture topology

affect the overall system performance.

5.3.3 Refinement Based Design Flow

The goal of the design flow for this case study was to (1) observe if METROPOLIS could effectively

aid in the process of microarchitecture design and verification as compared to other approaches and (2)

derive the architecture and application parameters described in Sections 5.3.1 and 5.3.2. The proposed

design flow will simplify the microarchitecture development and help to determine which portions of the

design need to be further refined with formal analysis methods.

The notion of successive platform refinement was essential in this flow. Each METROPOLIS model

represented a specific platform instance. Each subsequent platformi+1, kept a reusable abstract specification

with correct behavior and equally importantly, each successive platform held the refinement relationship

required with its parent platform. Theoretically any microarchitecture is a candidate for refinement. In this

case, the presence of observable communication involving computation elements was required.

Platform abstraction was driven by the separation of concerns as mentioned. Beginning with the

initial specification each subsequent platform would address previous platform constraints and application

and architecture parameters. At each step, refinement verification was performed. If the refinement relation-

ship held, a set of data points concerning various metrics relevant to the design was collected. Figure 5.11

illustrates the refinement based design flow.

This methodology produced several different platforms, which exposed different aspects of the

application to mapping possibilities. These platforms are referred to sequentially; they drove the microarchi-

tecture design by revealing designs that did not meet the constraints implied by the application parameters.

Simulation performance analysis drove refinement to the next platform.

5.3.4 Platform Development

The goal of platform development is to address and transform some of constraints of the previous

platform and develop the optimal architecture and application parameters outlined previously. This creates a

hierarchy of platforms with their corresponding successors and parents. Platforms naturally address changes

to computation, communication, or coordination structure. This was natural for this application but can be

more ambiguous for other applications. METROPOLIS semantics make this relatively easy. Figure 5.12 is

an illustration of all the proposed platforms.
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Figure 5.11: Successive Platform Refinement Methodology

Platform 0

Platform 0 represents the minimally constrained functionality of the initial specification. This pro-

vides the initial platform in Figure 5.12. This is a buffered producer/consumer where there is a data source

(producer), some internal storage (buffer) and a packet processor (consumer). There is communication (A,

B) but no notion of what architectural form they take (i.e. bus, shared memory, etc). There is only the notion

of direction (read or write) and that A and B can only be accessed by one element per unit time. The initial

system presents what is we term “constraint 0”:

Constraint 0 - Only complete packets can be delivered to the packet processors. Partial packets

have to remain in the internal storage or dropped based on other system requirements.

Inherent constraints (1-3) are reflected by the application topology (where DS = Data Source; IS

= Internal Storage; PP = Packet Processor):
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Figure 5.12: Platform Development for SPI-5

• MaxRateProduction(DS) ≤ MinRateConsumption(IS) (1)

• MaxCapacity(IS) ≥ MaxProduction(DS) - MinConsumption(PP) at any instant t (2)

• DataFormat(DS) = DataFormat(IS) = DataFormat(PP) (3)

Equations (1) and (2) ensure that this is a lossless communication mechanism while (3) captures

the fact that these are primitive communication mechanisms in which data is merely transferred not trans-

formed. The next platform should look to transform some of these constraints. This transformation needs to

occur to move the platform to a level which not only is closer to a real implementation but also one in which

simulation performance results will be meaningful.
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Platform 1

The internal storage for each channel depends on the data rate of the channel. A simple imple-

mentation due to this constraint can be stated as a set of refined constraints on the internal storage.

Constraint 1 - BP is an application parameter; hence the internal memory must allow storage

space for each channel to be dynamically adjusted. Aggregate data rate of 40Gb/sec must be preserved. The

number of divisions (NM) must equal the number of PHY units, i.e., NM = NP.

With the aggregate data rate and different data rate per PHY units, application parameters were

combined as in Table 5.4.

Data Rate/Phy, BP Number of Channels, NP

40 GB/Sec 1

10 GB/Sec 4

2.5 GB/Sec 16

1.25 GB/Sec 64

625 MB/Sec 256

Table 5.4: SPI-5 Application Parameter Interaction

METROPOLIS simulations indicated that for large number of channels the current bus architecture

would not be sufficient. Therefore it was decided to restrict NP to 1, 4 and 16.

As with the previous platform (platform 1) there are still constraints but now they generate a

relationship between platforms. These constraints can be derived from the topology as before as shown in

number (5) or from Metropolis semantics as shown in number (4).

• Coordination (Platform1) > Coordination (Platform 0) (4)

• Services (Platform 1) = Services (Platform 0) (5)

The fact that number (5) requires that the platform have the same number of services coupled with

number (4)’s observation of increased coordination, manifests itself as a change in to the IS service. Initially

it was a SCSI service. It will now become a MCSI service with each component now becoming a segmented

aspect of the internal storage. This relation indicates that platform 1 will require more explicit coordination

with equal processes. This will restrict behaviors, which hold a refinement relationship.

Platform 2 and Platform 3

Analysis using the above set of constraints imposes strict timing based on the clock frequency.

For a large memory this will be a difficult constraint to meet. The constraint of platform 1 needs to be
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further refined or implemented differently. As the constraint based, successive refinement process proceeds,

implementation related considerations dominate. The refined constraint can now be stated as:

Constraint 2 -The data rate and number of channel based internal storage should have pipelined

writes.

The implementation with this constraint leads to:

• Using a mux-based logic organization as shown in platform 3. This scheme was not implemented due

to lack of formal refinement relationship (as discovered by the refinement verification process).

• Using an external buffer to intermediately store incoming packets (read transaction) and then pass

them to the internal storage (write transaction), as shown in platform 2.

The coordination introduced in platform 1 manifests itself as control logic as shown platform 3.

This makes the coordination explicit but does not ensure refinement due to the addition of a component

whose behavior is outside of the specification. Communication refinement was needed and to revert to a

previous communication refinement of the internal storage (IS) as in platform 2.

As Figure 5.12 shows, if communication (A) is actually refined into buffers as in platform 2

then there is no need for platform 3. As hoped, this will prevent the continued growth of the coordination

overhead introduced in platform 1 and the refinement of the IS into internal memory does not change the

platform properties in platform 0. The design will now proceed from platform 2.

Platform 2.1

Subsequent METROPOLIS simulation analysis indicated that during peak times the read transac-

tions dominated the system. Therefore in progressing to the next platform a constraint should be developed

which will improve on this situation:

Constraint 3 - The pipelined write transaction should be independent to the read transaction.

Platform 2.1 recognizes that coordination must be added in order to manage buffers and for con-

straint 3 to be realized. This coordination will require two units of control introducing added coordination.

This coordination will further constrain the behavior into the refinement relationship. Figure 5.12 shows

this refinement became the two additional component objects added in order to provide buffer management.

These are new components which are added to the buffer service. This transforms the buffer service from a

MCSI service to a MCMI service.

At this point, few architecture parameters are changing, but the refinement is proceeding more

closely to a final implementation.
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Platform 2.2

The “final” constraint on the system was added to have independently operating PHY units. This

is important because it was desirable to ensure that there were no assumptions built into the data generation

and internal bus organization. The final constraint can be stated as:

Constraint 4 - Packet generation from various channels should be independent activities.

This refinement is performed on the data source and implements the application parameters, that

is:

• Number of DS = NP (6)

• Size of DS = BP (7)

Ultimately this is simply an addition of components to an already MCMI service. Platform 2.2

shows a final refinement of the microarchitecture for this investigation. This computation refinement requires

a coordination refinement in order to process this data properly. Therefore additional METROPOLIS quantity

managers will be needed as well.

Notice that the DS block now is made up of multiple blocks. This requires a similar transformation

for the FIFO Control (FC) and the memory control (MC). This final refinement will be by design a refinement

of all previous platforms before it and was verified as such by the refinement verification process used

throughout this section.

5.3.5 METROPOLIS Models

For the purposes of simplicity, a one-to-one mapping between functional processes and architec-

tural services was carried out. This mapping required the construction of architectural model for each of the

platforms presented. METROPOLIS architecture service models were derived to represent platforms 2, 2.1

and 2.2. Figure 5.13 shows a diagram of the “final” model, platform 2.2. METROPOLIS mapping processes

are provided for the DS, FC, MC, and the FIFO scheduler (FS) processes in the functional model. Parame-

terized, custom made architecture service were created to provide computation services (DS, FC, MC, FS)

in platform 2.2. Also METROPOLIS media reflect memory elements (buffers). Also provided in the figure

are the quantity managers for each of the services. This illustrates how the scheduled and scheduling netlist

are partitioned.



163

���

������	�


�����

���

������	�


�����

���

������	�


�����

���

������	�


�����

����

�����

����

�����
�������

�����

�������

�����

��������

�����

�����
�������

�������

�������

�������

������� ���������

������

���������������������
�����������

��������	�������������
�����������

�� �� �� ��

��� ���

!���

�� �� �� ��

�����

���� ���

���"��������

����	��

���"��������

����	��
���"��������

����	��

���"��������

����	��

Figure 5.13: METROPOLIS Architecture Model for Platform 2.2

5.3.6 Results

After the creation of a subsequent platformi+1, the second step to continue the development

process was refinement verification. The procedure, in keeping with the successive platform refinement

methodology, was concurrent with each subsequent platform development. The platformi+1 is considered

only if the answer to the refinement question, (Platformi+1, Platformi) was YES.

Refinement verification required the creation of a control flow automata (CFA) for both the ab-

stract and the refined model to capture the behaviors, B, of each model. The CFA creation can be done via

a backend service in METROPOLIS that extracts this information automatically (Figure 5.11). This process

was covered in detail in Chapter 4, Section 4.4.

A trace, a, is determined by the traversal the CFA. This represents a potential execution of the

model. Once the set of traces, B, for each model is determined, the refinement verification stage is simply

ensuring that the behavior of the refined model is a subset of the abstract behavior.

Refinement verification via the CFA creation process is, for each process, P, in the model, M :

1. Create a CFA with the Metropolis Backend for Platformi (Ab) and Platformi+1 (Ref).
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2. Identify a cycle in the CFA, this is a trace a.

3. Add, a, to the set of behaviors, B.

4. Continue until all cycles are identified. Do this for each CFA in the abstract and refined models.

5. Compare the behaviors Bre f to the abstract behavior Bab for the corresponding CFAs.

6. If Bre f ⊆ Bab return YES; Else return NO.
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Figure 5.14: Sample Control Flow Automata for Abstract and Refined FIFO Scheduler

Figure 5.14 shows the control flow automata for two particular architecture services in platform

2.1 (abstract) and 2.2 (refined). FIFO scheduler is just one example of the 4 architecture service models

shown in Figure 5.13. The circles are the control locations, Q. Control location 1 is the initial location, q0.

The operations, Op, on each transition, →, are specific function calls used in the model (denoted by “()”) or

boolean predicates. The cycles in these CFAs represent possible execution traces of the model and are show

in Table 5.5.

Naturally since these are cyclic graphs there must be some notion that each cycle may be subse-

quently followed by any other cycle in the set infinitely often. This work uses ω to denote this. Therefore,
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Trace FIFO Scheduler Traces (Function Calls)

T1 Terminated()

T2 Terminated() wRnd()ω

T3 Terminated() wRnd()ω wRnd()ω

T4 Terminated() wRnd()ω Terminated()ω qData ()ω

T4 cont. putPolicy() PR1S()ω

Bre f = {T1, T3, T4} ⊆ Bab = {T1, T2, T3, T4} → Refinement!

Table 5.5: Traces from FIFO Scheduler CFAs

the abstract FIFO scheduler behavior, BAb, is {T1, T2, T3, T4}ω and the refinement behavior, Bre f , is {T1,

T3, T4}ω. Notice that the FIFO scheduler trace has a function call, qData(), which also is denoted with a ω.

This is due to the loop shown in the graph containing finitely many calls to this function. This demonstrates

the nested use of ω. The creation of the CFA is automatic and the evaluation of the traces via graph traversal

is automated as well as discussed in Chapter 4. This demonstrates refinement verification in the design flow

prior to creating another platform and gathering data.
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Figure 5.15: FIFO Occupancy Data for Platform 2.1 and 2.2

Figure 5.15 provides a sample of the data analysis possible in the design. This figure shows FIFO

occupancy between subsequent platforms (2.1 on the left side and 2.2 on the right side) in combination with

changes in both architecture (NB) and application (BP) parameters. The number of channels (x-axis) varies

in increments of 1, 4, or 8. Each channel size count was coupled with 4 data rate/channel values (1, 2, 3, 4).

Notice that the FIFO occupancy (y-axis) in the refined model (2.2) is bounded by the worst case (highest

occupancy) in the abstract model. The data in the refined model actually indicates that FIFO occupancy is
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unaffected by BP and that for all 4 settings the occupancy is the same as BP = 1 in the abstract model. This

type of data analysis will drive the platform development in the future and demonstrates the usefulness of

design exploration.

5.4 Communication Subsystem Refinement Example: FLEET Communica-

tion Structure

This section and final case study will demonstrate another refinement technique discussed previ-

ously, “depth” refinement. The purpose of the example presented here is to explore how various communi-

cation structures can be replaced in a design without changing the surrounding components. These changes

are verified before the substitution using the techniques discussed in Chapter 4, Section 4.5. This substitu-

tion then becomes “correct-by-construction”. This differs from the example shown in Section 5.3 because

the topologies of the architecture models in this section remain the same but the operations internally in

the components are changed. This case study example is performed on a model of the FLEET architecture

(described in Section 2.5). Specifically it is a manipulation of its communication structure where there exists

a great deal of underspecification.

5.4.1 Communication Library

The first step in developing a refinement framework is the creation of library of communication

services. These services which are created first in METROPOLIS or SystemC are then transformed into LTS

and have a corresponding architecture service interface. E for each LTS system S corresponds to events in the

architecture service model, EE . Events have been described in the context of the METROPOLIS environment

previously. The concept of event synchronization can exist as well in a SystemC model. This section will

detail those architecture services in terms of their LTS representations. In all descriptions, the when an event

is described as “emitted” it refers to the generation of a visible event, EEV .

• Abstract Buffer (AB): An abstract buffer is defined to buffer data. It contains states that are repre-

sentative of an nplace buffer: Q = {empty, not empty, full}. Qo = empty, and upon receiving a write

event, it will transition to not empty while emitting an event to signal a successful write. Similarly a

transition occurs from not empty to full. Read events from a consumer cause transitions to empty and

not empty states. This process also emits an event signaling a successful read. Events are not emitted

when in the full or empty states for write and read request respectively. This buffer provides blocking

semantics.
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• Copy Buffer (CB): This architecture service structure allows consumers to copy data out of the channel

without actually removing it from the channel. This requires a copy event emitted from the consumer.

A channel transitions from full or not empty states to full copy or not empty copy and emits an event

back to consumer containing the data. In the copy states, the channel behavior is the same as the

behavior at its respective not empty and full states.

• Random Buffer (RB): The two previous architecture service structures assume that data organization

is FIFO. This component transitions differently when there is an read event at Q = full. The LTS

transitions to Q = read choose, where it consumes an event from an external source (i.e. random

number generator), and transitions Q = read1 or read2.

Figures 5.16(a) and 5.16(b) show both the LTS for CB and RB. In each of the figures the abstract

buffer (AB) is shown on the left hand side.
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(a) Copy Buffer (CB) Communication Service

�����

���
�����

�	



����

����

����

����

����

�����

���
�����

�	



����

����

����

����

����

����

����

����
������

���
������

���
������

����������

����� �����

�
	�����
����

�
	�����
����

�
	�����
����

�
	���

��
����

�
	���

��
����

(b) Random Buffer (RB) Communication Service

Figure 5.16: LTS Communication Example #1 for FLEET

• Delay Buffer (DB): This service models the delay of the read and write transitions in a buffer. This

is helpful in simplifying the cost model for this service as compared to the other buffers. Instead
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of transitioning to Q = not empty when the service channel receives a write event or Q = empty, it

will transit to Q = writing1, and only transition to Q = not empty when it receives an end write event

(potentially modeled by a timer). This occurs symmetrically for read events as well.

• Non-Blocking Buffer (NB): AB is a blocking buffer, whereas the NB service allows a non-blocking

read or write. When Q = empty, a read event causes a transition to Q = nb empty, and it emits

read Done event to the consumer without data. It will take a retr transition back to Q = empty.

Similarly, the service channel emits a write done event when a write event is received and Q = full

and transitions to Q = nb full.

Figures 5.17(a) and 5.17(b) show both the LTS for DB and NB. In each of the figures AB is shown

on the left hand side.
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(a) Delay Buffer (DB) Communication Service
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(b) Non-Blocking Buffer (NB) Communica-

tion Service

Figure 5.17: LTS Communication Example #2 for FLEET

• Larger Buffer (LB): Currently the architectural service buffers created have an implied capacity of 2.

States not empty and full can be viewed as having 1 and 2 items respectively. It may be advantageous
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to have other “not empty” states. For example two states (or more) such as not empty1 and not empty2

can be introduced. When Q0 = empty and as write events occur, the LTS proceeds through these states

to full. This path can not proceed back “up” the LTS since this will lead to violations of various

refinement rules (see Section 4.5.1, lack of τ-divergence). Therefore there is an alternate path when

a read event occurs in Q = not empty2. This has limited functionality since a return to empty is not

possible from arbitrarily any state along this alternate path. While this is a limitation, it does allow

sizing of buffers.

• Drain Buffer (DrB): This buffer service models the ability of a buffer to instantly fill itself or drain

itself. When Q = empty writes can transition as expected to Q = not empty followed by Q = full.

Alternately when Q = empty the LTS can transition to an intermediate delay state, d2, which transitions

immediately to Q =full. This is true of read events as well where Q = full proceeds to not empty

followed by empty as normal. The drain operation proceeds from Q = full to d1 and finally to empty.

LB and DrB are shown in Figures 5.18(a) and 5.18(b). Note that Figure 5.18(b) is shown with a

modified AB. DrB is not related to the native AB buffer through refinement.

�����

���
�����

�	



����

�����

����

�����

�����

���
�����

�	



����

�������

����

�������

�����

����

����

����

����

����

����

����

�
	���

��
����

�
	���

��
����

�
	���

��
����

�
	���

��
����

�
	���

��
����

����

�������

�����

�
	�����
����

(a) Larger Buffer (LB) Communication Service

�����

���
�����

�	



����

����

����

����

�����

���
�����

�	



��

��

�����

�����

��������

��������

����

����

����

����

�
	���

��
����

�
	���

��
����

�
	���

��
����

�
	���

��
����

�
	���

��
����

(b) Drain Buffer (DrB) Communication Service

Figure 5.18: LTS Communication Example #3 for FLEET
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5.4.2 Verification Process

With the architecture communication service library complete, one must identify where there are

opportunities to introduce refinement into the system. The topology of the system will not change but rather

the components in the topology. This requires that the interfaces remain the same. Figure 5.19 highlights in

bold where these opportunities exist in the FLEET architecture.
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Figure 5.19: FLEET System Architecture Service Refinement Opportunities

Since the FLEET architecture is largely underspecified, there exists freedom in how to implement

its communication structures. Figure 5.19 identifies the locations in FLEET where there exists the freedom

to change the communication. Specifically these locations and classifications are: the Fetch SHIP , the

OutBoxes , and the output of the SHIP where there are single-writer / single-reader structures. The first

classification, the Fetch SHIP, acts as a producer that produces instructions to the instruction communication

mechanisms and the OutBoxes consume those instructions. The second classification, the Switch Fabric,

represents a multiple-writer/single-reader structure. This thesis’ goal is to explore different ways to replace

the buffers between ships, outboxes, and switch fabric. The communication service libraries developed will

be used. What must be done now is demonstrate that the modified buffers are still refinement of the original.

The refinement process for verifying architecture communication service refinement for FLEET

is that which was described in Chapter 4. Using the steps outlined in Section 4.5.1, it was formally verified

that each communication services in Figures 5.16(a), 5.16(b), 5.17(a), 5.17(b), and 5.18(a) are refinements

of service AB given the gluing relations illustrated in the figures by the arrows from each service model



171

to AB. The service in Figure 5.18(b) is a refinement of a slightly modified AB service. This process is

a verification that the communication services are a correct refinement of the abstract service in terms of

control flow not data, since LTS does not infer any information on data of the system.

With the library verified, an LTS description of the entire FLEET system was created consisting

of components from several smaller LTSs including the communication library just described. The FLEET

system was broken into two parts for more modular and faster refinement verification (component based

refinement allows for the reduction of overall transitions and states crucial in the running time of the algo-

rithm). The chosen division of the entire fleet system was:

1. The individual SHIPs with their input and output communication services (Figure 5.20(a)). A

SHIP is an LTS service component composed of Q = {consumer, producer}. It will transition from

Q = consume to Q = produce once it receives the read done event from the communication service

LTS. It will then transition from produce to consume once it receives a write done event from the

communication service. These components are illustrated within the dotted line of the figure. This

is the SHIP itself. Also within this space is the SHIP specific computation LTS which varies from

model to model. The communication mechanisms at the producer interface and consumer interface of

the SHIP each buffer the output and input data for the remaining SHIPs. These components actually

represent aspects of the switch fabric. They are connected on the other interface of a producer and a

consumer respectively, (integrated in the InBox and OutBox services to be described).

2. The Fetch SHIP with all the InBoxes and OutBoxes for additional SHIPs (Figure 5.20(b)). This

part of the FLEET system consists of N InBoxes and OutBoxes (one for each SHIP input and output

in the system), a instruction communication service for each InBox (a buffer service), and one Fetch

SHIP. A InBox/OutBox combination (IOC) is enclosed in dotted lines in the figure and consists of two

consumers and one producer LTS. Each IOC will consume an instruction from the instruction com-

munication service (the buffer), and then according to the instruction, it consumes from its SHIP’s

output communication service (source of a MOV) producing data at one of the SHIP input com-

munication services (destination of a MOV). Because LTS have no notion of data, and are only event

based, it is not specified which SHIP the IOC moves data from and to. Therefore a choice LTS models

the decision of moving from a particular SHIP output communication service to another SHIP input

communication service. This choice LTS will model the information contained in a MOV instruc-

tion. The Fetch SHIP consists of N producer LTSs (one for each IOC) and one consumer LTS. The

consumer LTS will consume instructions from the memory communication service and, depending

on the instruction, decide which producer should receive the data and produce data to its instruction
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communication service.

In order to illustrate more clearly how the SHIP, Fetch SHIP, and IOCs are connected, numbers are

provided in Figure 5.20. To connect the the systems together to form the entire FLEET model, the numbered

components should be viewed as corresponding between the two images. Also in the figure, the buffers are

labeled also with the initials of the components which can be used during the refinement process and still

maintain a behavior within the specification.

Note that SynCo syntax defines when an LTS can take a transition in its .sync files. This is the

point at which one can define that a transition is enabled when certain LTS are in certain states. Therefore,

in the situations in which the system has to decide which transitions to take or which LTS’s transitions to

enable, a separate component was used that generates information on what choice the should system make.
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(a) Generic SHIP Service
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(b) FETCH SHIP Service

Figure 5.20: LTS for Entire FLEET System Level Service Models

LTS composition allowed the creation small systems initially. Specifically a producer, AB, and

consumer services were created as LTS objects. The producer LTS service will produce as much as the

buffer allows it to, the consumer service will consume as much as the buffer allows. The buffer LTS service

begins as AB and will be substituted accordingly with those library services defined earlier in the chapter.
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This substitution is allowed as it was verified that all refined buffer services were refinements as defined

previously. Copy buffer, delay buffer, non-blocking buffer and random buffer can replace AB. However, the

larger buffer (LB) was a successful refinement of a slightly modified AB. When all services were composed,

this small FLEET system was shown to be a refinement (by definition the larger composed FLEET parts will

also be refinements). Compositional refinement verification additionally proves that one can replace AB

with any of the other communication services and maintain the refinement conditions. Table 5.6 contains a

summary of the number of states and transitions in each system. The product value given is the upper bound

for the total number of states existing in the system. Composition of LTS is defined in such a way that the

resultant state count is considerably less than the product. The running time of SynCo is advertised as O|SR|

where |SR| = |QR| + |TR|. QR is the number of refined states and TR is the number of transitions in the refined

system. The refined models have at most 30 states in the fetch SHIP and as few as 13 in the the delay buffer.

This number is approximately double that of the abstract system but the number is still much lower than the

product values. The transitions in the refined models vary between 16 and and 44. Overall these number are

extremely manageable by a system with a linear run time.

Abstract Refined

States Transitions States Transitions

Sum Product Sum Product

Fetch SHIP 19 648 21 30 22500 43

SHIP 16 144 18 28 8400 44

Random 8 12 11 14 108 19

Copy 8 12 11 14 120 22

Delayed 7 12 10 13 63 16

Non-Blocking 8 12 13 15 160 21

Table 5.6: FLEET LTS States and Transitions

This example has illustrated that by creating very small individual LTS models (buffers, producers,

consumers) of a much larger system (FLEET) an entire system can be verified. Abstract and refined models

can then be interchanged freely once various state correspondences (gluing) relations have been made. The

size of these systems are quite manageable and are tied to system level services by capturing the event

behavior of the system level models within the individual components themselves. This process is part of a

design flow which would follow the steps shown in Algorithm 7.
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Chapter 6

Conclusions and Contributions

“A conclusion is the place where you got tired thinking.” - Martin Henry Fischer

This thesis began with the proposition that ESL adoption was important for the EDA commu-

nity’s growth and for the continued viability of embedded electronic system design. ESL’s transition into

mainstream adoption would require that the design of system level architecture services be modular and

abstract while maintaining accuracy and efficiency. The “methodology gap” had to be crossed. This set of

requirements lead to the abandonment of a naı̈ve design flow and to the adoption of a proposed design flow

which encompasses the following concepts:

• The introduction of “architecture services” as a means to implement behavior captured by a functional

description. Services provide interfaces which can be used to implement functionality. Additionally

services have costs associated with their usage.

• Transaction level, preemptable architecture services of parameterizable programmable platforms.

These specifically included METROPOLIS models of Xilinx’s Virtex II architecture and the FLEET

architecture. This construction allows a large design space exploration process with only one set of

library services.

• Automatic extraction of programmable system descriptions for synthesis. An architecture structure

extraction process creates the topology as a Microprocessor Hardware Specification (MHS) file for

Xilinx tool flows directly. This automation removes error prone manual techniques.

• Characterization flow for programmable platforms to be used during system simulation. This charac-

terization is captured in a METROPOLIS object located in the scheduling netlist which allows for zero
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overhead, run-time annotation of events. This process allows for incremental addition of models as

well as being completely scalable and portable.

• Four refinement techniques (Vertical, Horizontal, Surface, Depth) based on three refinement verifica-

tion concepts (Event Based, Interface Based, Compositional Component Based) were illustrated for

unique refinement activities needed during the design space exploration process.

The contributions of this thesis were summarized in Table 1.6 in Chapter 1. The primary contri-

bution is the way in which programmable tool flows and devices were leveraged to explore a large design

space more accurately then previous approaches while using formal refinement techniques to proceed to-

ward implementations. While this flow can be extended to static architecture platforms, its strengths are

severely hindered by doing so.

Chapter 5 brought these techniques together with a set of four case studies (MJPEG encoding,

H.264 Deblocking Filter, SPI-5 packet processing, and FLEET communication subsystems) which demon-

strated the viability of various aspects of the proposed design flow. The summary of results could best be

stated by saying the property of design fidelity was maintained in all case studies and the infrastructure and

design techniques to ensure this fidelity did not reduce the efficiency of the design as compared to more

traditional methods.

This chapter will serve as a reflection on the successes and failures of the work presented throughout this

thesis as well as provide future directions upon which the work could be expanded on or improved.

6.0.3 Chapter Organization

This chapter is broken into two parts. The first part primarily summarizes the benefits (Section

6.1) and disadvantages (Section 6.2) of the design flow proposed throughout throughout this thesis. The

second part is a discussion of a future work (Section 6.3) in the areas of integrating all the techniques more

closely, formalizing them so that stronger claims can be made regarding the design process, and finally areas

for expansion.

6.1 Benefits

This section discusses three benefits in this thesis’ approach which were not expected a priori.

For an overview of the obvious benefits, the reader is directed to the introduction of the method presented

earlier in Section 1.4.2.
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The first unexpected benefit was the power and usefulness of METROPOLIS events. For example,

events could be captured easily to produce structures used in verifying the refinement of architecture ser-

vices. Since METROPOLIS uses events to signify both the start and end of an action, it is very convenient

to observe both the termination of an action as well as the nesting of actions. For example begin func1,

begin func2, end func2, begin func1 is a trace demonstrating a nested function call. Communication both

between services and within the service itself is explicitly scheduled using events and therefore, it became

very easy to extract the both CFAs and LTS structures from event sequences in the models. Event schedul-

ing can be enforced as well to add determinism to the CFAs and LTSs. Additionally, events were a very

efficient mechanism for the annotation of simulation performance and made the the characterization process

described not only easy but almost “free” from a simulation overhead standpoint.

The second unexpected benefit was the scalability of the characterization process. The charac-

terization process presented was not only able to be almost fully parallelized in its creation but also it was

agnostic to the system that the tools were a part of (Unix or Windows for example). This occurs since each

permutation of a design instance is independent from the last. Secondly, the way in which the Xilinx tools

are created, the design template has no notion of operating system or hardware platform. The description

also allows itself to be updated to new IP instances and device targets with a few simple changes to instance

version declarations which can be accomplished with a simple SED unix script command. In this way, the

thousands of permutation instances created in this thesis can be updated for future tool releases or device

revisions with a simple script run only once.

The third benefit was how easily the composition of architecture instances from collections of

METROPOLIS media was. Initially, it might have been assumed that METROPOLIS processes were the

natural object of choice for services. However, the proposed method of only using processes as mapping

tasks for the functional model, and composing services (SCSI, MCSI, MCMI) from media worked extremely

well. This was due to the fact that (1) media can communicate directly to each other (processes can not) and

(2) media implement interfaces (which then are extended directly by ports).

6.2 Disadvantages

The disadvantages in this thesis grew from some of the issues related to the tools used to implement

the design flow (i.e. METROPOLIS) more than being inherent in the actual flow. Many of those unique to

METROPOLIS will be addressed in METRO II. For example, the confusing design process that resulted from

METROPOLIS quantity managers being overburdened with the tasks of both scheduling and annotation has

been resolved in METRO II. Additionally, the mapping effort was extremely high in METROPOLIS due to the
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fact that specific event relations between functional and architectural models had to be specified manually.

This process will be improved in the future. However there are two sets of disadvantages which will continue

across design tools.

The first set of disadvantages is the lack of possible automation in the refinement verification flow.

There are two very obvious places in which designer expertise is needed and automation is not easy (if at all

possible). The first example is in the creation of the witness module required during “surface” refinement.

This module is required by the interface based tools and requires that the designer be aware of the operation

of both the abstract and refined models. The issue arises since the designer must “convert” all the private

variables of the abstract reactive module to interface variables. This conversion can be non-trivial (it is much

more than a syntactic change) and may require a great deal of designer effort and thought. For large designs

the effort may quickly outweigh the benefits. This is one of the reasons a separate ELIF based KISS flow

was provided. The second refinement automation difficulty is in the specification of refinement properties

for “vertical” refinement (event based flow). Each property described will work for a family of refined

architectures but will need to be recreated to reflect the components and interfaces in the event that other

objects are used in other designs. It is also not clear how to rank the MacroProperties in terms of which

require less effort to prove a-priori in relation to each other. This ranking will be required by any heuristic

algorithm wishing the prove them in an efficient manner. It also needs to be clearly shown that a generated

MacroProperty requires less effort than the sum of its implied MicroProperties to prove.

The second set of disadvantages is in the characterization flow. Recall that the database is com-

posed of three portions. Two of these, “execution time for processing sequential code” and “physical tim-

ing”, can be obtained by automation. For example instruction set simulators can obtain the former and the

flow described in this work the latter. However, the third category, “transaction timing” is typically obtained

by understanding the bus protocol of the architecture being created. In the case of this thesis, the CoreCon-

nect bus numbers were added manually after a careful examination of the protocol. In the event that another

bus or switch mechanism was used, as similar manual analysis would have to be performed.

6.3 Future Work

This section discusses future work in the areas of integration (making the process more cohesive

and automatic), formalism (making the process more rigorous), and extensions (making the process more

powerful). I fully expect to tackle some of these issues in future research projects and would expect future

publications to spring from these areas.
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6.3.1 Integration

An area particularly ripe for future work is in the integration of the techniques in the proposed

design flow. As it currently stands there are large portions which are automated but this process is not com-

plete. The compositional component refinement flow is not even tied together with a set of rudimentary

scripts much less a presented as an automatic solution. In order to do this, LTS (.fts file), gluing relations

(.inv file), and synchronization (.sync file) generation would have to be automated. The first of these should

be tied more closely with the model directly to ensure that it is correct-by-construction. This transformation

could be done by transversing the models to collect system variables to represent system states and events

as labels for transitions. The other two files could minimally be generated by reading from a system spec-

ification. This information could generate the syntax used for the tool being employed (in this thesis it is

SynCo).

It would be ideal as well to populated the characterizer database used to increase accuracy with

computation timing data directly taken from an instruction set simulator (ISS) after running a set of bench-

mark applications. Currently only a few applications have been profiled (H.264 and MJPEG). This set

should be significantly expanded if this work is to be of future use. Additionally, the transaction timing in-

formation only includes a small set of bus transactions for the PLB and OPB. Again this should be expanded

in the face of additional applications.

6.3.2 Formalism

As with any design flow, the more the process can be formalized the more it can be analyzed

and automated. One area which I am interested in formalizing is the selection of which MacroProperties

to verify. Within any given design there will be provided a set of MacroProperties which must be proven

between an abstract model and its refined counterpart. Since MicroProperty implication can overlap in the

top level MacroProperties and other lower level MacroProperties that they imply, the question that remains is

what is the smallest set of top level MacroProperties that are required. This can be formulated as a covering

problem similar to two level logic minimization. Minterms correspond to MicroProperties. Cubes are

MacroProperties. Once the problem has been captured this could be provided to a heuristic PLA minimizer

such as Espresso [Ric87].

Cost model specification for the services currently is static. This information comes primarily

from the characterization process. It would be ideal to provide a more formal declarative specification

mechanism on top of this. For example, bus transactions execution time is currently a function of (1/bus

clock speed) * bus cycles. A declarative constraint such as execution time < 50ns would imply a number
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of bus cycles (given a clock speed) or a clock speed (given a cycle count). This constraint could be used

to enforce a specific performance given the fact that the designer wishes to build that enforcement in the

scheduling mechanism as opposed to the model itself. This may be of use when the component being

characterized is very abstract (early in the design process perhaps) or if the component is part of a testbench

which is only being used to simulate the environment and not actually targeted for synthesis.

Additionally, I am well aware that a great number of definitions used throughout this thesis could

benefit from a more mathematical formalism to make them not only less ambiguous but also make them

more accessible to the international community. This will be done as this thesis is carved up for publication

in smaller journals. What is provided currently is worded at such a level to make the design flow concepts

accessible to the widest possible audience.

6.3.3 Extensions

Finally, there are a number of natural extensions for this thesis which would make it more ap-

plicable to other design flows and scenarios. One such extension that I am interested in is the expression

of MicroProperties and MacroProperties as assertions in a language such as SystemVerilog [Acc07]. The

assertions would be created in such a way that if an assertion is generated it reveals the fact that a property

has not been held. Assertion based verification could be a powerful way to introduce a more efficient event

based verification scheme into the design flow.

Currently, this flow is also very heavily targeting FPGAs. It would be nice to extend this to

FPAAs as well as ASIPs. This extension would require more library services to be built and augmenting the

characterization flow to work with the tools used to program those devices.

Synthesis of the architectural services to traditional VHDL or Verilog IP would also be of interest.

This transformation would involve beginning with small synthesizable constructs and building services from

these. Aspects of this work have been started with researchers at UCLA as part of the Xpilot work [Jas06].

Finally, as with any design flow of this size, the most important extension that can be done is

more and more testing. As more designs are created with this flow and compared to their implementations,

the better the entire process will become. It is my hope that eventually modeling takes the place of rapid

prototyping and EDA reaches the point at which modeling data is the primary contributor to the design

exploration process. It is in the push to realize this goal that this thesis’ contribution can most clearly be

seen.
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