
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

A Design for Testability Technique for RTL Circuits Using Control/Data Flow
Extraction ∗

Indradeep Ghosh, Anand Raghunathan, and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ 08544

Abstract

In this paper, we present a technique for extracting func-
tional (control/data flow) information from register trans-
fer level (RTL) controller/data path circuits and illustrate
its use in design for hierarchical testability of these cir-
cuits. This testing procedure and design for testability
(DFT) technique is general enough to handle RTL con-
trol flow intensive circuits like protocol handlers as well as
data flow intensive circuits like digital filters. It makes the
combined controller-data path highly testable and does not
require any external behavioral information. This scheme
has the advantages of low area/delay/power overheads
(average of 3.2%, 0.9% and 4.1%, respectively, for bench-
marks), high fault coverage (over 99% for most cases),
very low test generation times (because it is independent
of bit-width), and the advantage of at-speed testing. Ex-
periments show a 2-to-4 (1-to-3) orders of magnitude test
generation time advantage over an efficient gate-level se-
quential test generator (combinational test generator that
assumes full scan).

1 Introduction
Due to the ever-increasing complexity of integrated cir-
cuits, the problem of sequential test pattern generation has
remained a difficult one in spite of good automatic test pat-
tern generation (ATPG) techniques. The classical testing
methods [1] target the problem at the gate level and might
require huge amounts of computing time and resources to
generate tests of modestly sized sequential circuits. By
modeling circuits at a higher level, the number of primitive
elements in the circuit is reduced, thus making the problem
size more tractable.

In recent years, various behavioral and architectural
schemes have been proposed to generate easily testable se-
quential circuits. These techniques may target BIST, scan
or sequential ATPG [2]. However, while targeting a cir-
cuit for testing, the behavioral description is not available
in many cases. Solving the problem at the gate level suffers
from the problems mentioned above. Hence, in order to get
the testability advantages of a higher level of abstraction,
the RTL merits attention. Due to the popularity of macro-
cell based designs, an RTL description is frequently avail-
able. Also, most of the above work has targeted data flow
intensive designs and work on control flow intensive de-
signs is limited. At the RTL, some schemes have also been
proposed which target scan [3, 4] or non-scan DFT tech-
niques [5]. Precomputed test sets have been used to test

∗Acknowledgments: This work was supported by NSF under Grant
No. MIP-9319269.

acyclic RTL circuits in [6]. In related previous work [7],
RTL circuits obtained through behavioral synthesis have
been targeted for hierarchical testability.

In this work, we propose a new methodology for mak-
ing RTL circuits hierarchically testable using very little test
hardware and without assuming they are obtained through
behavioral synthesis. The only restriction imposed on the
circuits is that they should have a separate data path and
controller, and the controller should have a reset state.
This scheme works by extracting a test control-data flow
(TCDF) from the data path/controller circuitry and uses it
to justify precomputed module test sets from the system in-
puts to module inputs and propagate error responses from
module outputs to system outputs. When this is not pos-
sible, test multiplexers are added to the data path to in-
crease its controllability and observability. A TCDF may
not exactly correspond to the full control-data flow graph
(CDFG) that the RTL circuit emulates. However, the test
set derived with its help is also valid for the RTL circuit.
The advantage of this scheme is that it is applicable to all
RTL circuits conforming to the above assumptions whether
it be data or control flow intensive. Based on experiments
with benchmarks, the incurred area/delay/power overheads
are very low. The fault coverage is very high for all the
circuits. Due to the use of symbolic test generation in
our scheme, the test generation time is independent of bit-
width. This gives us several orders of magnitude advan-
tage in ATPG time over efficient gate-level test generators.
This scheme does not assume any scan at the controller-
data path interface and the testing is actually done by us-
ing the data flow dictated by the controller. Finally, this
scheme allows at-speed testing of the circuit.

2 Extracting TCDF information
In this section, we illustrate the extraction of functional in-
formation from RTL implementations and its application
to test generation and DFT through several examples. We
then discuss the DFT architecture.

2.1 A data flow intensive circuit
Figure 1 shows an RTL circuit obtained by synthesizing
the CDFG of benchmarkPaulinwhich has been popularly
used in the literature. This particular RTL implementa-
tion was synthesized from a behavioral description using
the HYPER [8] high-level synthesis system. However, as
stated earlier, we will not be making use of the behavioral
information available. The first step in the process is to
extract the controller behavior from the controller circuit.
This can be done by a state machine extraction program
starting from the reset state. We used SIS [9] for this pur-
pose. The controller part of the circuit is typically quite

ONE MUL2

MUL2

MULT1 MULT2

ADDER SUB

load1 load2

load3

load5 load4

m1
m2

m3 m4m5

m6
m7

m8 m9
m10

m11

IN−PORT1 IN−PORT2

OUT−PORT1 OUT−PORT2

REG1 REG2

REG3 REG4REG5

LATCH1 LATCH2

CONTROL LOGIC

Control Signals

ONE ONE

DATA PATH

00

00

0

0

0 0

0

0

1

1

1

11

11

1

11

0 1

RESET

Figure 1: RTL circuit of Paulin.

small and this method is fast and efficient. Figure 2 shows
the state table obtained from the controller circuit as well
as the state transition graph. In the absence of condition-
als, the state machine takes the form of a counter.

To obtain the TCDF, the basic idea is to extract oper-
ations executed in each cycle and keep track of variables
that are present in each register or latch. We, in general, al-
low chaining, multicycling and structural pipelining. How-
ever, for simplicity, we omit discussions of these features
here. We start with the input variables created in the first
cycle. We identify all registers that load in the first cycle by
analyzing the load signals in the state transition table. For
our example, in cycle 1, all load signals are 1 and all regis-
ters load. Also, all latches load by default in all cycles. We
next analyze the multiplexer tree that feedseach of these
registers or latches and check if any input port is connected
to the register/latch input in the first cycle. The multiplexer
tree configuration in any cycle can be obtained by look-
ing at their select signal values in the state table. We find
that IN-PORT2 and IN-PORT1 are connected to REG4 and
REG5, respectively, in cycle 1. Hence, two variables are
born in these two registers. We call themi1 andi2, respec-
tively. A variable is live until its register loads again. Thus,
some type of binding information is developed in each cy-
cle and the variables bound to a particular register noted.
We find that in cycle 1, REG1, REG2, REG3 are connected
to hardwired constants. We name thesec1, c2andc3, re-
spectively, and their values are noted. The latches do not
have any input ports or constants at their inputs. So they
are ignored for now.

In cycle 2, we would like to identify the operations
that take place. So we find the operand selected at each
module’s input ports by analyzing the multiplexer tree
at its inputs. For example, in cycle 2, the left input
of the adder is connected to REG1 and the right input
to REG5. We check if both these registers have some
live variables in them. Here, they do (c1 and i2, re-
spectively). We also check which registers (there may
be many due to fanout), if any, at the module output
load at the end of cycle 2, and if the input multiplexer
configuration of these registers is such that this module
output is selected. In case of the adder, REG1 indeed
loads at the end of cycle 2. Moreover, its input mul-
tiplexer selects the adder’s output. Hence, we create a

new variabler1 in REG1, and an operation in the TCDF,
c1 + i2 = r1. We label this operation as+1. Sim-
ilarly, we analyze all other modules to obtain the
set of operations in cycle 2, as shown in Figure
3. The constant variables are shown with their ac-
tual values in brackets beside them. If there are no
live variables in some register at a module input or
if the module output is not loaded anywhere, then
the operation is void and not added to the TCDF.
For example, the subtracter does not have a valid
operation associated with it in cycle 2, as the in-
put latch associated with its right input (LATCH1)
does not yet have a live variable. The binding in-
formation of operations to modules is also main-
tained. This procedure is repeated for each cycle
until we reach a predefinedlimit on the number of
states visited in the controller state machine as ex-
plained in Section 3.

There might exist operations in the generated TCDF
which are not part of the original data flow. This is be-
cause latches will load by default in every cycle. So if there
are live variables at a module input whose output goes to a
latch, an operation will be created as well as a new vari-
able in the latch. However, before this variable is ever used
in the next cycle, it might be overwritten by another vari-
able. For example, at the end of cycle 5, LATCH1 and
LATCH2 load and this creates two multiplication opera-
tions in this cycle. However, these values are never uti-
lized and the latches load new values at the beginning of
the next iteration. Hence, these operations are spurious and
the TCDF graph needs to be pruned. Sometimes, even a
chain of spurious operations may be created. The prun-
ing is performed by starting at the output variables in the
TCDF and performing a backward traversal of the graph
until all operations which are not in the support (i.e. tran-
sitive fanin) of these variables are deleted. The TCDF ob-
tained for this circuit, after traversing five states, is shown
in Figure 4. Symbolic justification and propagation of test
vectors is performed using the TCDF in order to test the
whole circuit hierarchically. Sometimes test multiplexers
have to be added in order to facilitate this justification and
propagation. This method is explained in detail in [7] and
briefly described in Section 2.3.

2.2 A control flow intensive circuit
We next show how the procedure can be applied to
a control flow intensive RTL circuit given in Figure
5. This circuit computes thegreatest common divisor

State transition
 Graph

reset = 1

reset

S0 S1 S2 S3 S4 S5

(GCD) of two numbers. The
numbers are input at ports
XIN andYIN, and the GCD
is written to registerREGO
which is connected to the

State Transition Table

INPUT OUTPUTSSTATE
reset PS NS load1 load2 load3 load4 load5 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

 1 Any S0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 0 S0 S1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
 0 S1 S2 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0
 0 S2 S3 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1
 0 S3 S4 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 S4 S5 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
 0 S5 S1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

Figure 2: The controller of Paulin.

+1**1 2

Cycle 1

Cycle 2

c2(1) i2 i1 c3(1) c1(1)

r3 r2 r1

Figure 3: Partial TCDF obtained after analyzing cycle 2.

*

*

**

*

+

−

−

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

1 2

3 4

5

1

1

2

c2(1) i2 i1 c3(1) c1(1)

r3 r2

r1

o2

r6

o1

r4 r5

Inputs : i1, i2
Outputs : o1, o2
REG1 : c1, r1, o2
REG2 : c2, o1, r6
REG3 : c3
REG4 : i1, r5

REG5 : i2
LATCH1 : r2, r7
LATCH2 : r3, r4
ADDER : +1
MULT1 : *2, *4, *5
MULT2 : *1, *3,
SUB : −1, −2

r7

 Binding information:

Figure 4: Final TCDF for Paulin.

output port. Since the number of cycles required to com-
pute the GCD will vary according to the input values pro-
vided, the controller has an output signalRDYwhich spec-
ifies that the output is valid. There are three status signals
going out from the data path to the controller, namelyC9,
C10, C15.

The problem in extending the approach of Section 2.1
to control flow intensive designs lies in the nature of the
controller. A look at the state transition graph of the GCD
controller given in Figure 6, shows that the state sequence
depends heavily on the status signals generated. A fixed
data flow consisting of a fixed number of cycles per itera-
tion (as in the case ofPaulin) is impossible to achieve here
because the data flow depends on the inputs specified. For
example, for one set of inputs, the subtracter may execute
several operations before the output is ready. In some other
case, the subtracter may not be exercised at all. One prob-
lem here is that the state machine is a Mealy machine. This
means that in a particular state, the output signals might
vary depending on the input status signals. Consequently,
the set of operations executed in a particular state of this
machine is not unique. This makes it more difficult to gen-
erate the TCDF information as outlined earlier. To solve
this problem, we convert the Mealy machine into an equiv-
alent Moore machine as shown in Figure 7 which can al-
ways be done (this conversion is only done for analysis
purposes). In the Moore machine a state is associated with
a fixed set of output values. Now we can proceed with the
generation of the TCDF by analyzing this Moore machine.

SUB

REGX REGY

XIN YIN

<

C10C9 C15

RESET

RDY

OUTPUT

CONTROL LOGIC

loadx loady

REGO
loado

ZERO ZERO

ZERO

m1

m2 m3

m4

0

0

0

1

1

1

1 0

DATA PATH

C
o

n
tr

o
l S

ig
n

a
ls

== ==

Figure 5: RTL circuit for GCD.

Note that the TCDF obtained from the Moore machine will
also be valid for the Mealy machine, as the behavior of the
two machines are equivalent. In the Moore machine the
output of a particular row in the state table of Figure 6 is
associated with the corresponding next state. Rows 1, (3,4)
and 9 in the figure correspond to stateS0, S00, andS000, re-
spectively. The other states are as before.

As stated before, there is no fixed sequence of states in
a particular iteration in this case. Hence, in order to test
a module in the RTL circuit, we need to find out a pos-
sible state sequence which will provide us with a TCDF
to test that module. The first step is to identify thein-
put stateswhere input registers get loaded from primary
input ports. HereS1 is such a state. This is determined
as before. Next, we find theoutput stateswhere an out-
put register is loaded with a value (not a constant). For
example, output register REGO is loaded with a constant
ZERO in stateS1 and S00, but gets loaded with a data
path value only in stateS000. Loading a constant into
an output register is useless from TCDF point of view.

State Transition Graph

S2

S0 S1

S3

Reset

Reset

C9 + C10

C10

C15

 C10.C15 C10.C15

C9.C10.C15

C15

C9.C10.C15

Reset arcs from S1, S2, S3 to S0
not shown to keep diagram simple.Reset

Therefore, onlyS000 is an
output state by our defini-
tion. Finally, we defineop-
eration statesto be states
where the module under test
is exercised. This can be
found by checking when
the module output is getting

State Table
INPUTS STATE OUTPUTS

Reset C9 C10 C15 PS NS loadx loady loado m1 m2 m3 m4 Rdy

 1 x x x ANY S0 0 0 0 0 0 0 0 0
 0 x x x S0 S1 1 1 1 0 0 0 1 0
 0 1 x x S1 S0 0 0 1 0 0 0 1 1
 0 0 1 x S1 S0 0 0 1 0 0 0 1 1
 0 0 0 0 S1 S2 1 0 0 1 0 0 0 0
 0 0 0 1 S1 S3 1 1 0 0 1 1 0 0
 0 x x 0 S2 S2 1 0 0 1 0 0 0 0
 0 x x 1 S2 S3 1 1 0 0 1 1 0 0
 0 x 1 x S3 S0 0 0 1 0 0 0 0 1
 0 x 0 0 S3 S3 1 1 0 0 1 1 0 0
 0 x 0 1 S3 S2 1 0 0 1 0 0 0 0

Figure 6: The Controller of GCD.

loaded into a register. For example, for the subtracter in
GCD, the output is loaded into REGX in stateS2 which is
its operation state.

To get a TCDF for a module, we can obtain the sequence
of states by going from an input state to an output state
through an operation state, while traversing the state transi-
tion graph. For example, for the subtracter, we would like
to go fromS1 to S000 throughS2. We also need to figure
out a path from the reset state to the input state,i.e. in this
case fromS0 toS1. If we want to keep the test application
time as small as possible, we should immediately choose
the shortest path between any two states and just concate-
nate them to get the complete path. For example, we find
the shortest path betweenS0 andS1, thenS1 andS2 finally
S2 andS000. To do this, any efficient shortest path algo-
rithm may be used,e.g. Dijkstra’s algorithm. One can ar-
gue that the sequence of states that the state machine will
take will depend on the input values provided and it may
not always be possible to traverse the shortest path. How-
ever, the test architecture that we present later gives us full
controllability of the status signals during testing. Hence,
we can actually dictate the path that the state machine will
take during testing by controlling the external inputs.

Just finding the state sequence mentioned above may
not be sufficient. There is an additional problem of data
flow. For instance, in the above case, the shortest path is
S0! S1! S2!S3! S000. However, if we take the state
machine through this path we obtain a TCDF which does
not have a subtract operation. Hence, this is not a valid se-
quence from the point of view of testing the subtracter. In
order to get a valid sequence, we need to backtrack along
the path, do some loop unrolling, and explore another path
which may not be the shortest path. For example, con-
sider the sequenceS0! S1 ! S2 ! S3 ! S3 ! S000.

S0

S0’

S0’’

S1

S2

S3

ResetReset

Reset

Reset

Reset

Reset

Reset C9 + C10

C10

C9.C10.C15

C15

C10.C15

C10.C15

C9.C10.C15

C15

Not all reset arcs shown
to keep diagram simple.

Figure 7: Moore machine for the
GCD controller.

This is ob-
tained by
backtracking
one state
from the
previous path
and unrolling
the self-loop
on S3 once.
The TCDF
that we obtain
now is shown
in Figure 8.
The register-
to-register

transfers are shown by the assignment (:=) operator and
the dashed lines and nodes are pruned from the TCDF as
their outcome does not affect the final output. This TCDF
is valid for testing the subtracter. During the TCDF gen-
eration, the status inputs that we need to dictate the flow
is recorded, as shown in the figure. These inputs as well
as the test vectors are fed into the test architecture from
the primary input port, as explained later. In this manner,
a TCDF is generated for each module in the circuit. For
example, the TCDF obtained for testing the comparators is
shown is Figure 9. During testing, the status outputs of the
data path become observable at primary outputs because
of the test architecture used. Hence, the comparison
operations have outputs which become primary output

cycle 1

cycle 2

cycle 3

y

Inputs

1 x x x

x

out

0 x x x

0 0 0 0

0 x x 1

0 x 0 0

0 x 1 x

cycle 5

cycle 6

−

x1

y1 x2

x3 y2

c1(0)

1

(the comparison operations are not shown)

:=

:=

:=

:=

:=

cycle 4 REGX : x, x1, x2, x3
REGY : y, y1, y2
REGO : c1, out
SUB : −1

Binding Information :

Figure 8: Successful TCDF for the subtracter.

cycle 2

cycle 3

y

Inputs

1 x x x

0 0 0 1

0 x 1 x

x

x1

out

0 x x x

y1

cycle 4

cycle 1

<

c1(0) c2(0)

== ==

o1 o2 o3

c3(0)

11 2:= :=

:=

REGX : x, x1; REGY : y, y1; REGO : c3, out;
EQU1 : ==1; EQU2 : ==2; LSTHAN : <1;

Binding Information :

Figure 9: TCDF for testing the comparators.
variables. Test sequences are generated from each TCDF
by using the method explained in [7]. A TCDF is not
generated for testing registers or multiplexers separately.
However, for each TCDF, the registers and multiplexers
that are exercised in its path are targeted for testing.

Sometimes the RTL circuit might be such that
no matter which sequence of states is taken, the

0 1

0 1

0 1

0 1

zero

zero

one

In−Port

test−multiplexer

REGA REGBloada loadb

m1

m2 m3

ADDER

m4

Figure 10: Part of RTL cir-
cuit Barcodeshowing the ne-
cessity of a test multiplexer.

required TCDF is
never obtained. Con-
sider the example of
the barcode reader
circuit - Barcode. A
portion of the circuit
is shown in Figure
10. Here the left input
of the adder is never
connected to a primary
input. Hence, in order
to get controllability
over this input we add
a test multiplexer as
shown in the diagram.
If the input to a mod-
ule is a constant, as

is the right input of the adder in this case, it is assumed

Data−Path
circuitry

a
test−mux

Load

0

Original
data−path
input.

Test
configuration
input.

Controller

State Reg.

CLOCK

RESET

TEST PIN

1

01

Register (TCR)
Test−configuration

01

To register
loads.

S
1

S
0

S
1

S0

data path
status
signals

d

d

n

n

m

(n+m)

d(n + 6)

6

S
0

status register

control signals
Testing : S

0
S1
0 0 − normal operation
0 1 − testing datapath comparators
1 0 − testing other datapath modules
1 1 − testing controller

S
0

S
1

d > (n + m)

Assuming four test multiplexers in the data path :

M s

mux for
testing
controller

Input−port 1 Input−port 2

Output−port

Figure 11: Test architecture used in the scheme.
to be swept away during logic synthesis. Hence, in this
case, controlling one port and providing the test vectors
corresponding to the swept adder is sufficient. Finally,
we must point out that though we use a certain degree
of backtracking here, the search never explodes. This
is because each loop is allowed to be unrolled a limited
number of times, and the number of states in the controller
is typically not large. If we cannot find a valid TCDF, then
we always have the option of adding a test multiplexer
to create the required flow. During system-level test set
creation, we also target the test multiplexers that we add
for testability. The select input of the test multiplexer and
one input (output) port is fully controllable (observable),
as explained later. We just need a set of four vectors to test
a multiplexer. Hence, the test multiplexers are inherently
quite testable.

2.3 The test architecture
Various claims regarding the properties of the test architec-
ture have been made earlier. We explain this architecture
next. A low overhead solution is shown in Figure 11 where
the added DFT hardware is shaded grey. (We assume one
extra input pin that provides theTestmode signal.) The
controller outputs are multiplexed with a data-path output-
port to facilitate testing of the controller [7]. In case of cir-
cuits with conditionals, the status signals are made directly
observable by multiplexing them with an output-port, and
made directly controllable by feeding the status register
input from an input-port. The DFT algorithm may have
added test multiplexers to the data path in order to attain
complete hierarchical testability. These multiplexers have
to be configured while testing the data path components.
For this, aTest Configuration Register(TCR) is added to
the RTL circuit. The input of TCR is connected to the low-
order bits of an input port. Theloadsignal of TCR is con-

ProcedureTestRTL(RTL circuit R, limit)
f

TestSet= NULL;
L = extractcontrollerFSM(R);
DP = data path of R;
Lm = Mealy to Moore(L);
for (each moduleM in DP) f

TCDF = ExtractTCDF(DP, Lm, M, limit);
if (TCDF == NULL)

TCDF = ShortestPath(Lm, M);
DP0 = DFHT(DP, TCDF, Testset);
DP = DP0; /* Update DP by adding

g test MUXs if any */
g

Figure 12: Procedure for testing the RTL circuit.

nected to theTestpin. Its resetsignal is connected to the
controller reset. TCR feeds: (i) theselectsignals of the
test multiplexers that are added to the circuit, (ii) two bits
S0 andS1, that control the loading of the controller state
register and selecting of the output multiplexer. Theload
enablesof the data path and controller registers are qual-
ified with the invertedTest signal to ensure that the data
path and controller registers freeze their state while TCR
and the status register are being loaded. Writing into TCR
results in the circuit being reconfigured to provide control-
lability and/or observability as required. When we reset
TCR, all the test-multiplexer select lines are 0. Hence, the
normal data-path configuration exists. TheTestsignal and
signalsS0 andS1 should also be 0 for normal operation.
While testing the controller, theTestsignal,S0 andS1 are
all set to 1. Then the controller inputs are controlled from
primary inputs and its outputs observed at primary outputs.
While testing the data path modules that generate the sta-
tus signals,S0 andS1 are set to 1 and 0, respectively. Only
at certain cycles when we want to reconfigure the test mul-
tiplexers or dictate the control flow do we assert theTest
pin to load TCR and status register (default values should
be fed to the register that we do not want to load). Simi-
larly, while testing the other data path modules, we setS0
andS1 to 0 and 1, respectively. Since control chaining is
assumed in the original design, the status register is shown
as an overhead here. In designs where control chaining is
not used, the status register is not an overhead.

Though the above discussion assumed edge-triggered
flip-flops and a single-phase clock, similar arguments can
be shown to hold for multi-phase and level-triggered clock-
ing schemes as well. Also, in our method, unlike most pre-
vious high-level synthesis for testability methods, we do
not assume any scan at the controller/data-path interface.
Since all the tests can be fed at the normal clock speed of
the circuit, at-speed testability is also made possible.

3 The DFT procedure
Figure 12 shows the top-level pseudocode that we use to
generate the system-level test set of an RTL circuit. The
procedure takes as input an RTL circuitR and an integer
limit which specifies that while searching for a TCDF, the
number of states in the search tree is not to exceedlimit .
How to find a suitable number forlimit is discussed later
on. We first extract the state transition information from
the RTL circuit controller. If it is a circuit without condi-

ProcedureExtractTCDF(DP, Lm, M, limit)
f

Statestack= NULL;
Push(Sr , Statestack); /* Sr = controller reset state */
TCDF = NULL;
TCDF = ExtractTCDF recurse(Statestack,

1, TCDF,Lm, M, DP, limit);
returnTCDF;

g

Figure 13: Main procedure for extracting TCDF.

ProcedureExtractTCDF recurse(Statestack, depth, TCDF, Lm, M, DP, limit)
f

if (depth> limit)
returnNULL; /* attempt failed */

Scurrent = get top ofStatestack;
UpdateTCDF(Scurrent, TCDF);
if (checknecessarycondition(TCDF))

returnTCDF; /* attempt succeeded */
else
f

for each neighboring stateSnext of Scurrent in Lm f
Push(Snext, Statestack);

if(ExtractTCDF recurse(Statestack, depth+1,TCDF, Lm, M, DP)6=NULL)
f
return TCDF ; /* attempt succeeded */
g

else/* attempt failed */
f
Undo UpdateTCDF(Snext, TCDF);
Pop(Statestack);
g

g
return NULL;

g
g

Figure 14: Recursive function for extracting TCDF.
tionals, the state machine is already in the form of a Moore
machine. Else, we convert the state machine to an equiva-
lent Moore machine. Well-known algorithms exist for this
purpose. Next, for each module in the data path (DP) of
the RTL circuit, we try to generate a TCDF which contains
an operation mapped to that module from the Moore ma-
chineLm andDP. ProcedureExtract TCDF, which is ex-
plained later, is used to find such a TCDF. It is possible that
even after a long search with the help of the state machine,
such a valid TCDF is not found as shown in theBarcode
example (Fig. 10). In such cases we use the shortest path
algorithm to get the shortest path from aninput stateto an
output statethrough someoperation state. We extract the
TCDF generated while traversing this shortest path. In this
TCDF, operations are not pruned as otherwise the opera-
tion under test will not appear at all.

After TCDF extraction, it is used in thede-
sign for hierarchical testability (DFHT) procedure to
add test multiplexers to the RTL circuit in such a way that
the TCDF generated in the modified RTL circuit while
traversing the specified path has the necessary hierarchical
controllability and observability for the operation under
test (hence, the module to which it is mapped). The DFHT

procedure takes as input an RTL circuit and a TCDF. It
identifies variables mapped to registers in the RTL circuit
which are bad from hierarchical controllability or observ-
ability point of view by doing a hierarchical testability
analysis on the TCDF. This analysis is done symbolically.
Hierarchical controllability and observability of a variable
are Boolean parameters,i.e. they only take the values 0
and 1. When hierarchical controllability (observability)
is 1, it implies that it is possible to control the variable
to any arbitrary value from system inputs (observe any
error response on it at system outputs). The hierarchi-
cal controllability (observability) of a “bad” register

can be made 1 by multiplexing it with a hierar-
chically controllable (observable) variable using
a test multiplexer. This procedure is explained in
detail in [7].

In the case of a circuit without conditionals,
it is possible to construct the whole data flow
graph and test all modules in the circuit using
it, as in examplePaulin. For such cases, we
generate a single global TCDF by traversing the
whole state machine and apply DFHT to it. The
system-level test set is a byproduct of the DFHT
procedure and for each module the test set gen-
erated is appended to the global test set. The
test multiplexer added to the RTL circuit gives
it some additional data flow. This information
may be useful while testing other modules be-
cause one test multiplexer may solve the hierar-
chical controllability or observability problems
of many variables simultaneously. Hence, the
data path is updated ineach iteration after a test
multiplexer is added.

TheExtract TCDF procedure shown in Fig-
ure 13 takes as inputLm, DP, limit and the mod-
ule under test. From the procedure a recur-
sive search procedure (Extract TCDF recurse)
is called whose pseudocode is given in Figure
14. In the recursion, a stack of states is main-

tained. States are pushed onto the stack in the order they
are visited. The search starts from the reset state. The
search continues until a valid TCDF for moduleM is found
or if all possible paths of lengthlimit have been exhausted
without finding aTCDF. This is a type of depth-first
search where the same state here might be visited mul-
tiple times until the search stops. This helps us to un-
roll loops in the Moore machine which might be neces-
sary, as shown in theGCD example. In each step of
the search, a partial TCDF is maintained, as described in
Section 2.2, and augmented in each step with the help
of procedureUpdateTCDF. When we reach an output
state, we see if any operation mapped to moduleM is
in the support of that output. This is done in procedure
checknecessarycondition. If such an operation exists in
the TCDF, then we have found a successful TCDF for test-
ing M. Otherwise we backtrack and explore other paths.
In such cases, the procedureUndo UpdateTCDF is used
to undo the changes made earlier during the search.

The above search procedure is exhaustive and its worst-
case complexity is exponential in the numberlimit . How-
ever, the number of states in a state machine controller is
typically small. Hence, the search space in practice is gen-
erally quite small. Thelimit that was used in experimental

Table 1: Circuit size and DFT hardware statistics.

Circuit. Bit- # lits # flip # test CPU time
width -flops MUXs (sec.)

Paulin 32 24562 260 1 3.5
Elliptic 16 22265 229 6 93.9
Tseng 32 15053 197 2 27.5
Chemical 16 20924 246 5 236.5
Dct lee 8 9354 111 2 156.3
Pr1 8 11203 100 4 720.1
GCD 16 1267 51 0 0.0
Barcode 16 1881 118 3 1.3
X25 16 2421 116 2 2.2

results was twice the number of states in the Moore ma-
chine. This allowed for at least one unrolling of any loop
and was sufficient for all benchmarks. If TCDF generation
fails with this limit, then it may be better to add test mul-
tiplexers to the data path rather than waste test generation
and application time by increasinglimit . Also, we devel-
oped a few heuristics to guide the search for a particular
module. We calculated the length of the shortest path from
a state to anoperation state. Let this belop. We also calcu-
lated the shortest path length from anoperation stateto any
output state. Let this belou. The lop andlou values can be
found by an all-pairs-of-shortest-path algorithm. When de-
veloping the TCDF, our aim was to guide the search from
a reset state to anoperation stateand then from theoper-
ation stateto anoutput state. Hence, during the recursive
procedure, until we reach anoperation state, the next state
among a lot of possible states is chosen as the one which
has the leastlop value. Once anoperation stateis reached
the next state is chosen as the one which has the leastlou
value.
4 Experimental results

Table 2: DFT hardware placement overheads.

Area Delay Power
Circuit. Orig. Mod. Ovhd. Orig. Mod. Ovhd. Orig. Mod. Ovhd.

(%) (ns) (ns) (%) (mW) (mW) (%)
Paulin 294332 296312 0.7 231.4 231.8 0.2 137.2 138.0 0.6
Elliptic 260554 274213 5.2 177.4 178.8 0.8 114.5 120.3 5.1
Tseng 176932 178321 0.8 23.8 23.8 0.0 71.3 75.8 6.3
Chemical 241974 252644 4.4 41.6 42.1 1.2 95.2 100.3 5.4
Dct lee 98176 101736 3.6 23.1 23.1 0.0 43.4 45.7 5.3
Pr1 118272 123251 4.2 28.3 28.3 0.0 14.2 14.8 4.2
GCD 15520 16436 5.9 55.4 57.0 2.9 2.9 3.0 3.1
Barcode 30368 32497 7.1 33.6 35.1 4.5 8.2 8.7 6.1
X25 33952 35950 5.9 87.2 88.2 1.2 9.4 9.9 5.6

In this section we present experimental results based on the
application of our DFT procedure to nine example RTL cir-
cuits. Among these,Paulin is as shown before.Elliptic is
a fifth-order elliptic wave filter.Tsengis a well-known ex-
ample from the literature.Chemicalis a type of IIR filter
used in a chemical plant controller.Dct leeperforms dis-
crete cosine transform.Pr1 implements a rotation-based
discrete cosine transform. All these examples are data flow
intensive. Of these examples,PaulinandElliptic are area-
optimized circuits synthesized by HYPER [8].Tsengand
Chemicalare synthesized by SCALP(delay) [10] and are
optimized for delay.Dct leeandPr1 are power-optimized
circuits synthesized by SCALP(power). The remaining
three examples are control flow intensive.GCD andBar-
codeare as discussed before.X25 is a memory protocol

handler. These circuits were obtained from the industry.
The area, delay and power results were obtained after tech-
nology mapping the gate-level implementation of the RTL
circuits using thestdcell22.genlibcell library in SIS[9]
logic synthesis system.

Table 1 shows the characteristics and specifications of
these circuits. The DFT overheads are reported in Table
2 and the test generation results are shown in Table 3. In
Table 1, in Columns 2, 3 and 4, the bit-width, the literal-
counts of the original technology-mapped circuit and the
number of flip-flops are given, respectively. The number of
test multiplexers added to the circuit by the DFT procedure
is given in Column 5. This number does not include the
multiplexers in the test architecture which are added by de-
fault to all circuits, and which have been taken into account
while calculating the overheads in Table 2. In Column 6,
the CPU time required to extract the TCDF and place the
DFT hardware is given. All CPU times are measured on
a SPARCstation 20 with 128 MB memory. In Column 2
of Table 2 the original area of the circuits after technol-
ogy mapping is given. This is a relative figure obtained
from the layouts of the standard cells used and hence has
no units. Column 3 shows the area after the circuits have
been modified by the test architecture and hardware. The
percentage overhead is given in Column 4. In Columns 5,
6 and 7, the corresponding figures for delay are provided.
The delay represents the clock period innanoseconds. The
delay overheads are small, even for delay-optimized cir-
cuits (TsengandChemical), because the test multiplexers
can frequently be placed off the critical path. The cor-
responding power figures are given in Columns 8, 9 and
10. The power consumption is measured in milliwatts
and is determined through SIS at the logic level using the
mapped capacitance and zero delay model. More accu-
rate power estimation could not be done due to the size
of some of the circuits used. The average area, delay and

power overheads are only 3.2%,
0.9%, and 4.1%, respectively
(the average is calculated based
on total area/delay/power of all
the examples for the original
and modified cases).

In Table 3, the testability
results for the circuits aug-
mented by our DFT method
is shown. We compare our
method of hierarchical testing
against HITEC [11], an efficient

gate-level sequential test pattern generator. Columns 2 and
3 show the fault coverage and test generation times ob-
tained by running HITEC on the original circuits not mod-
ified by our DFT hardware. Columns 4 and 5 give the
fault coverage and test generation times obtained by run-
ning HITEC on the circuits modified by our DFT scheme.
Columns 6 and 7 show the corresponding numbers ob-
tained by our method of hierarchical testing of the modi-
fied circuits. The fault coverage for our scheme was ob-
tained by fault simulating the gate-level implementation of
the controller/data path with our system-level test set using
PROOFS [11]. The fault coverage obtained by our method
is higher in all the cases and roughly 99% or above for
nearly all the examples. Whereas our method was used
to generate the data path test set, HITEC was used to de-

rive the controller test set from its gate-level description.
Then the two test sets were concatenated to derive our
system-level test set. This is valid because the inputs (out-
puts) of the controller are directly controllable (observable)
through the extra multiplexers added for this purpose. As
the controller is a small fraction of the total circuit, the
ATPG on the controller alone takes a very small amount
of time. However, the test generation time reported for
our scheme includes the test generation times for both the
controller and data path. It is 2-to-4 orders of magnitude
smaller than HITEC. By comparing the experimental re-
sults on the original and modified circuits it is clear that
even gate-level sequential test pattern generation benefits
from our scheme in terms of both fault coverage and test
generation times.

Table 3: Testability results.
HITEC Our Method

Orig. Ckt. Mod. Ckt. Mod. Ckt.
Circuit. Fault Cov. Test Gen. Fault Cov. Test Gen. Fault Cov. Test Gen.

(%) (sec) (%) (sec) (%) (sec)
Paulin 89.62 66412 95.92 66432 99.70 12.1
Elliptic 57.56 80304 98.96 60517 99.61 85.6
Tseng 78.48 59646 97.07 51347 99.02 26.4
Chemical 54.31 76543 97.53 65876 99.16 56.3
Dct lee 71.32 61392 99.35 40525 99.45 72.3
Pr1 90.62 60188 99.39 40576 99.41 56.2
GCD 86.42 6752 98.81 32 98.89 0.3
Barcode 31.01 56813 98.78 1402 98.88 6.2
X25 50.70 18762 93.96 6716 98.72 5.9

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Data path bit-width

HITEC

TRAN

Our Method

lo
g

 (
T

es
t g

en
er

at
io

n
tim

e)
10

Figure 15: Log-linear plot of test gen. timevsbit-width

We also performed some experiments in which we in-
vestigated how the test generation time for our scheme
would compare against the full scan method which just re-
quires gate-level combinational test generation. We used
an efficient combinational test generator, TRAN [12], for
this purpose. Since the combinational test generator as-
sumes full scan, such testable circuits would incur sig-
nificant additional overheads as compared to our method.
We found that our test generation times were 1-to-3 or-
ders of magnitude smaller than those for TRAN. In or-
der to examine how different methods scale with the data
path bit-width, we performed experiments for various con-
troller/data path examples and different bit-widths. Fig-
ure 15 shows log-linear plots of the test generation time for
the controller-data path by our method, HITEC and TRAN
versusthe bit-width of the data path for theElliptic exam-
ple synthesized by HYPER and augmented by our method.
The x-axis is the bit-width, and they-axis is log10(CPU
seconds taken for test generation). These plots indicate
that the CPU time required for test generation by HITEC

and TRAN increases drastically with bit-width. However,
the test generation time for our method remains practically
constant with increasing bit-width. At a bit-width of 32,
our scheme can be seen to have a two (four) orders of
magnitude advantage in test generation time over TRAN
(HITEC).

5 Conclusions
In this paper we introduced an effective and practical DFT
scheme that can be applied to data path-controller type of
RTL circuits. The key feature of this technique is that it
analyzes the data path and controller of an RTL circuit and
extracts a test data and control flow graph. This graph
is then used to test the circuit hierarchically by justify-
ing and propagating precomputed test sets of modules in
the circuit from system inputs and propagating the output

responses to system outputs. If it is
not possible to do so then test multi-
plexers are added at suitable places to
increase the hierarchical controllabil-
ity and observability of the circuit dur-
ing the test mode. To ease the task
of TCDF generation we have defined
several techniques to be applied to the
controller state machine and data path
and defined a test architecture which
is necessary for the process. The ad-
vantages of this technique are: (i) low
area, delay and power overheads, (ii)
high fault coverage, (iii) several orders

of magnitude of reduction in test generation time over gate-
level ATPG, and (iv) at-speed testability.

References
[1] M. Abramovici, M.A. Breuer, and A.D. Friedman,Digital System

Testing and Testable Design, IEEE Press, New York, 1990.
[2] K.D. Wagner and S. Dey, “High-level synthesis for testability: A

survey and perspective,” inProc. Design Automation Conf., pp.
131-136, June 1996.

[3] J. Steensma, F. Catthoor, and H. De Man, “Partial scan at the regis-
ter transfer level,” inProc. Int. Test Conf., pp. 488-497, Sept. 1993.

[4] S. Bhattacharya and S. Dey “H-Scan: A high level alternative to
full-scan testing with reduced area and test application overheads,”
in Proc. VLSI Test Symp., pp. 74-80, Apr. 1996.

[5] S. Dey and M. Potkonjak, “Non-scan design-for-testability of RT-
level data paths,” inProc. Int. Conf. Computer-Aided Design, pp.
640-645, Nov. 1994.

[6] B.T. Murray and J.P. Hayes, “Hierarchical test generation using
precomputed tests for modules,”IEEE Trans. Computer-Aided De-
sign, vol. 9, pp. 594-603, June 1990.

[7] I. Ghosh, A. Raghunathan, and N.K. Jha, “Design for hierarchi-
cal testability of RTL circuits obtained by behavioral synthesis,” in
Proc. Int. Conf. Computer Design, pp. 173-179, Oct. 1995.

[8] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast prototyping
of data path intensive architectures,”IEEE Design and Test., vol. 8,
pp. 40-51, June 1992.

[9] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis
and optimization,” inProc. Int. Conf. Computer Design, pp. 328-
333, Oct. 1992.

[10] A. Raghunathan and N.K. Jha, “An iterative improvement algo-
rithm for low power data path synthesis,” inProc. Int. Conf.
Computer-Aided Design., pp. 597-602, Nov. 1995.

[11] T.M. Niermann and J.H. Patel. “HITEC: A test generation pack-
age for sequential circuits,” inProc. European Design Automation
Conf., pp. 214-218, Feb. 1991.

[12] S.T. Chakradhar, V.D. Agrawal, and S.G. Rothweiler, “A transi-
tive closure algorithm for test generation,”IEEE Trans. Computer-
Aided Design, vol. 17, pp. 1015-1028, July 1993.

