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Abstract

In recent years, the use of multiprocessor systems has become increasingly common. Even in the embedded domain,

the development of platforms based on multiprocessor systems or the porting of legacy single-core applications are

frequent needs. However, such designs are often complicated, as embedded systems are characterized by numerous

non-functional requirements and a tight hardware/software integration. This work proposes a methodology for the

development and validation of an embedded multiprocessor system. Specifically, the proposed method assumes the

use of a portable, open source API to support the parallelization and the possibility of prototyping the system on a

field-programmable gate array. On this basis, the proposed flow allows an early exploration of the hardware

configuration space, a preliminary estimate of performance, and the rapid development of a system able to satisfy the

design specifications. An accurate assessment of the actual performance of the system is then enforced by the use of

an hardware-based profiling subsystem. The proposed design flow is described, and a version specifically designed for

LEON3 processor is presented and validated. The application of the proposed methodology in a real case of industrial

study is then presented and analyzed.

Keywords: Multicore architectures, Performance evaluation, Embedded systems, Parallelization framework,

Reconfigurable logics

1 Introduction
In the embedded systems domain, a proper tailoring of

platform resources is always more frequently required in

order to better exploit the whole system. For example,

with the right mapping of tasks (i.e., processes or threads)

onto a customized number, type, and configuration of

processing cores, performance can be pushed to the the-

oretical limit. However, an application parallelization task

is explicitly required to the programmer, so they have to

take care of platform details. To facilitate this operation,

different libraries have been proposed in the market, such

as OpenMP [1], OpenCL [2], and OpenMPI [3]. OpenMP
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is widely adopted both at industrial and research levels

and supports a wide range of programming languages,

processing architectures, and operating systems. More-

over, reconfigurable logics have gained a wide diffusion

in the embedded systems domain, due to the possibility

to perform a quick system customization. In particular,

nowadays, field-programmable gate arrays (FPGAs) are

widely diffused both as prototypal elements, due to their

lower non-recurring engineering costs, and as support

for application execution, since they can be used to real-

ize ad hoc accelerators for time-critical functionalities.

In this context, the possibility of building multiproces-

sor systems by exploiting soft-cores increases the range

of the applications that can be implemented on FPGAs.

Soft-cores can be intended as general-purpose processors

(i.e., soft-processors) or co-processors. Specifically, the

use of a soft-processor allows to exploit a programmable

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-016-0051-9-x&domain=pdf
mailto: vittoriano.muttillo@graduate.univaq.it
http://creativecommons.org/licenses/by/4.0/


Muttillo et al. EURASIP Journal on Embedded Systems  (2016) 2016:15 Page 2 of 14

component with customized peripherals, inserting only

necessary parts. For this, various FPGA vendors provide

soft-processors optimized for their reconfigurable logic:

for example, Xilinx offers MicroBlaze [4] and PicoBlaze

[5], and Altera has Nios-II [6]. Moreover, third party ven-

dors offer soft-processors targeting specific domains. For

example, Gaisler Research provides the LEON family [7]

for avionic systems.

With the increment of logic andmemory elements avail-

able on FPGAs, complex multiprocessor architectures

can be developed (e.g., uniform memory architecture

(UMA); not uniform memory architecture (NUMA);

network-on-chip (NOC)) by exploiting also proper

operating systems. On UMA architectures, symmetric

multiprocessing (SMP) Linux-based operating systems

can be adopted to exploit shared-memory multicore

architectures on FPGA. Then, given a multicore archi-

tecture, by splitting the workload on various cores, it is

possible to obtain a relevant speed-up for multi-threaded

applications. However, to easily perform this task, a par-

allel programming model should be used. Unfortunately,

the support to several parallel programming models have

been provided to a lot of embedded ASIC architectures,

but working in reconfigurable logic area, this kind of

support is still not well mature. In particular, as described

later, in the context of this work it has been needed to

explicitly port the well-known OpenMP library to the

proposed execution environment.

In such a scenario, the main contribution of this work

is the definition of a design flow to support a designer

that needs to improve performance of its embedded appli-

cation when implemented on a reconfigurable platform

(i.e., FPGA). It is assumed that such an application already

runs on a single-core platform on FPGA. Starting from

this entry point, the flow allows the designer to eval-

uate the speed-up reachable by parallelizing the appli-

cation (by means of OpenMP) and by running it on a

shared-memory multicore architecture (based on multi-

ple instances of the same starting soft-core). Then, the

flow allows the designer to realize such a multicore plat-

form on FPGA by providing also an SMP Linux with

OpenMP support. Moreover, the flow allows the designer

to integrate in the platform a distributed HW profil-

ing system, tailored for the multicore scenario on FPGA,

that does not introduce software overhead. Such a pro-

filing system allows to further monitor, both at design

time and run time, system performances and to consider

possible run-time reconfigurations. The presented design

flow has been used to support the development of the

multicore platform in the context of CRAFTERS project

[8]. In particular, in the first design phases, it has been

customized for LEON3 processor, but it can be easily

extended to other soft-processors, as described in the final

considerations.

This paper is organized as follows. Section 2 describes

the state of art related to frameworks for paralleliza-

tion, multicore platforms based on soft-processors, and

HW/SW profiling approaches for multicore embedded

systems. Section 3 describes the proposed design flow,

and Section 4 presents the customization of the proposed

flow for a LEON3-based multicore system. Section 5

presents the validation of the customized design flow

while Section 6 shows its exploitation to develop a real-

world industrial use case. Finally, Section 7 reports some

conclusive considerations and presents future activities on

the topic.

2 Related work
As stated before, this work presents a design flow tar-

geting multicore hardware on FPGA for speeding up

execution of embedded applications. A profiling system

is also integrated in the final platform. So, this section

reviews and analyzes some relevant examples of frame-

works that allow to adapt an application to work on multi-

/many core system (parallelization). The second subsec-

tion reports some existing multicore platforms based on

soft-processors. Finally, some relevant profiling system

mechanisms existing in the literature are reported.

2.1 Frameworks for parallelization

Multicore architectures are increasingly used in an

embedded system, in order to speed up the execution of

an application and to perform energy saving. Aldinucci

et al. [9] presented a porting of a decision tree algorithm

implementation to a multicore platform using FastFlow

[10]. The focus was, by using high-level programming lay-

ers, to exploit parallelization of a server computer using

different strategies. Our work differs because it targets

embedded system domain and allows to model the hard-

ware to tailor platforms to the real needs. A framework

called PEMAP [11] allows to estimate performance of

serial application when parallelized to work on a graphics

processing unit (GPU). Our work differs because it targets

multiprocessor systems but assuming that hardware can

be configured. The advantages of such a hypothesis will be

shown in the following sections.

2.2 Multicore platforms based on soft-cores

The advantage to exploit a multicore platform on FPGA is

given by the possibility to configure exactly what is needed

for the execution of an application. Caches, MMU, and

ALU parameters can be customized to better match the

requirements, especially the non-functional ones. In fact,

different multicore platforms based on soft-processors

have been developed up to now. For example, Poly-

Blaze [12] is a multicore MicroBlaze-based system with

SMP Linux support on FPGA. Huerta et al. described

another work related to MicroBlaze in SMP configuration
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[13]: the system consists of 4 MicroBlaze soft-cores,

shared block-ram through on-chip peripheral bus (OPB),

local memory for each processor and a hardware syn-

chronization mechanism. David et al. analyzed different

systems on chip (SoC) based on multiprocessor architec-

tures [14]. They focus on two reference architectures:

one with shared memory used only for task migration,

that requests a complex programmingmodel, and another

one with shared memory connected through a multiport

memory controller that allows reading and writing mem-

ory locations simultaneously. Serres et al. [15] presented

a reconfigurable multicore scenario based on LEON3

soft-processor and proposed a co-processor interface for

each core.

2.3 Software- and hardware-based profiling approaches

One of the goals of profiling is the measurements of time

intervals related to the running code, such as response

time (i.e., the elapsed time between the start of the appli-

cation execution and its end, including also the time

needed to serve interrupts and context switches time)

or execution time (i.e., the time needed to the proces-

sor to execute the application, without considering inter-

rupts and context switches) of an application [16], at

various levels of granularity (i.e., task level, instruction

level, etc.). In general, profiling approaches can be based

on software techniques or can rely on direct hardware

support. Software-based solutions usually follow the gen-

eral approach of classic profiling tools, like GPROF [17],

the GNU statistical profiler able to estimate the execu-

tion time of functions that compose an application and

to count the number of times they have been called.

In the case of GPROF, instrumentation of source code

allows to generate interrupts and it samples the program

counter, obtaining various statistics about software exe-

cution. Software profiling necessarily introduces some

overhead on occupied area in memory (due to applica-

tion instrumentation), and some overhead on execution

time (because the sampling is done in an interrupt ser-

vice routine executed by the processor). Moreover, in the

case of GPROF, there is a grade of statistical inaccuracy

essentially due to the sampling frequency.

Hardware profilers are instead based on dedicated hard-

ware resources able to carry on the profiling action. This

means that no (or very limited) source code instrumen-

tation is needed, and the software execution by the cen-

tral processing unit is not altered. Thus, no overhead

on execution time is introduced. For the same reason,

hardware solutions can guarantee the best accuracy in

performance analysis. However, these solutions require a

larger silicon area occupation for system implementation.

Other possible disadvantages are the difficulty to corre-

late low-level measurements to source code performance

metrics and the limited number of available hardware

resources that often force to collect desired performance

metrics by means of multiple tests. Various examples of

hardware-based profiling approaches have been presented

in literature. For example, SnoopP [18] and Airwolf [19]

are two function-level profilers for software applications

running on soft-core processors. In a multicore scenario,

Shannon et al. [20] adapted the ABACUS profiling sys-

tem to work on heterogeneous platforms composed of

multiple cores and accelerators, while Nam Ho et al. [21]

proposed an infrastructure for performancemonitoring of

LEON3 in multicore configuration. Considerations on the

use of such solutions in the proposed flow are presented

in Section 3.

3 Design flow
As reported in Section 2, there exist various implemen-

tations of multicore platforms based on soft-core proces-

sors. Instead, this work does not focus only on a specific

implementation but it also defines a design flow that

addresses the problem to implement a multicore plat-

form on FPGA able to support the OpenMP library and

that can be also analyzed by means of a distributed HW

profiling system. In particular, the main goal is to sup-

port a designer that needs to improve performance of its

embedded application. So, starting from functional and

non-functional (i.e., in this case, the required execution

speed-up) requirements, the main steps of such a flow are

shown in Fig. 1.

Fig. 1 Reference system design flow
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The entry point is a target application (e.g., a program

written in C/C++ code), running on a single core on FPGA

and already able to satisfy functional requirements. The

first step is related to evaluate if, by means of OpenMP

parallelization (over a variable number of cores), it is

possible to satisfy the (non-functional) speed-up require-

ment. Strictly related to this analysis is the identification of

the architectural parameters (e.g., cache organization, bus

bandwidth) that could have effects on the same require-

ment. Finally, once such parameters are identified, the last

action is related to evaluate their optimal values. All this

can be performed by means of a proper system-level sim-

ulator. In other words, this step allows to perform a design

space exploration with respect to several ways to exploit

OpenMP features and different architectural parameters.

The second step is related to the effective implementa-

tion of the identified multicore architecture on FPGA:

starting from the results of the first step (i.e., the multi-

core architecture and its parameters), all the elements are

instantiated and connected on FPGA. The third step is

related to the selection and the integration of amonitoring

solution able to measure parameters useful to evaluate at

run-time actual speed-up of execution on the target sys-

tem. The fourth step is related to the integration of an

operating system and the components needed to provide

the support to OpenMP-based applications. The last step

is related to requirement validation on the final target. In

the next subsections, each step of the design flow is better

explained.

3.1 Modeling and simulation

The first step is the modeling and simulation one. It con-

sists of the modeling of the target architecture in order

to estimate system performance in the execution of the

target application by means of simulation. For this pur-

pose, the modeling of HW/SW elements can be done

at different abstraction levels by using block diagrams,

UML, SystemC, or other modeling languages. Normally,

the accuracy of the results depends on such abstrac-

tion level that, unfortunately, can also have effects on

simulation time. Moreover, this one depends on the sim-

ulator itself and the features of the machine (the host)

used to perform the simulations. In the context of this

work, VIrtual Parallel platform for Performance Analysis

(VIPPE) simulator [22] has been selected. It is an elec-

tronic design automation tool for HW/SW simulation

that provides a library of multicore platforms that can be

extended and allows the simulation of an operating sys-

tem and the simulation of applications that use OpenMP.

It provides run-time simulation statistics such as execu-

tion time, cache behavior, and power dissipation. VIPPE

relies on platform modeling based on UML/MARTE. By

means of this modeling language, it is possible to model

the platform, the mapping between tasks and processing

cores. Moreover, it is also possible to model an operat-

ing system and specific libraries (such as OpenMP). From

an operative point of view, after the modeling phase is

completed, the target application is compiled by means

of LLVM [23] (or a different source compiler, depending

on what is supported by the target processor) in order

to obtain related assembly instructions. Then, for each

assembly instruction, VIPPE considers a cost from the

point of view of execution time and energy consumption.

Such costs depend on another modeling file that describes

the processor under simulation. It contains the list of

instructions and the associated costs.

The design space exploration that can be performed

by using the simulator is illustrated in Fig. 2. Starting

from the speed-up requirement for the target application,

it is possible to identify the number of cores, the cache

parameters, and the OpenMP clauses needed to satisfy

the requirement. Considering also the simulation time, it

is worth nothing that VIPPE allows to fully exploit the

(hopefully multicore) host machine by making a host-

based simulation [24]. In this type of simulation, each

target thread is mapped on a host thread. VIPPE adds

another thread, called kernel, that communicates with

other threads managing the simulation and collecting per-

formance of execution [22]. In conclusion, VIPPE can be

used to analyze the correctness of the target application

while executed on a multicore platform, to make a design

space exploration with respect to architectural parame-

ters, and to evaluate the impact of different choices in the

use of OpenMP.

Fig. 2 Simulation-driven design space exploration
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3.2 FPGA implementation

After the modeling and simulation step, it is then possi-

ble to implement the platform on FPGA by considering

the identified parameters about the multicore architec-

ture. The actual process and the toolchain to be used are

strictly dependent on target technologies.

3.3 Monitoring system

Starting from the multicore platform developed in the

previous step, in order to evaluate the system speed-up,

response time on the real target has to be measured.

For this, a run-time monitoring system should be inte-

grated in the final system. As described in Section 2,

several options are available. In order to avoid as much

as possible introducing overhead in the software execu-

tion, the proposed flow is based on a hardware solution.

In fact, it exploits a fully customizable and portable dis-

tributed HW solution based on the library called AIPHS

([25, 26]): specifically, it is a library of elements to be

used to realize a monitoring solution. In fact, it allows to

consider architectures based on different soft-processors

while changing only few hardware components. Such a

choice allows to overcome some limitations of existing

approaches. For example, the solution proposed in [21]

lacks portability among different soft-processors, while

ABACUS, a profiling solution adapted in multicore sce-

nario [20], although represents a smart profiling solution

portable among different architectures, presented high

area occupation because it is intended to be used during

development phases. In this work, the monitoring system

to be added in the final multicore architecture is intended

to be left in the final platform: so, the hardware overhead

has to be kept into account, as will be shown in the next

sections.

The customization of a monitoring solution for the pro-

posed LEON3-based implementation is shown in the next

section.

3.4 OS and OpenMP support

Once the HW multicore architecture is implemented,

by customizing and interconnecting soft-processors as

suggested by the simulation results, and the hardware

monitoring mechanism is inserted, there is the need to

customize an SMP Linux operating system. Such an OS

is needed to support OpenMP application: OpenMP is

a specification for a set of compiler directives, library

routines, and environment variables that can be used to

specify high-level parallelism in FORTRAN and C/C++

programs. It instructs the compiler to organize parallel

sections of code in a specific manner, and helps to paral-

lelize execution of an application. It is based on a fork-join

model. The implementation of OpenMP based on GCC,

called libgomp [27], has been selected to provide support

to the execution of parallelized applications that use this

library. This motivates the need of an SMP Linux dis-

tribution. In order to provide libgomp on the target, the

porting of the required SW components has to be done

by cross-compiling source files and inserting results in the

kernel.

4 LEON3-oriented design flow specification
In this section, the design flow defined in Section 3 is

furtherly specified to target a multicore LEON3 archi-

tecture. It is worth noting that the flow can be easily

Fig. 3 Typical implementation of the LEON3 processor [35]
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Fig. 4 Internal architecture of S1 and S2

applied to other soft-processors, as discussed in the final

considerations.

LEON3 [7] is a 32-bit synthesizable soft-processor that

is compatible with SPARC V8 architecture: it has a seven-

stage pipeline and Harvard architecture. It uses sepa-

rate instruction and data cache memories and supports

multiprocessor configurations: in particular, an SMP-

aware configuration is well supported thanks to available

memory management unit and snooping unit for cache

coherence. It represents a soft-processor for aerospace

applications. LEON3 is described by means of an open-

source VHDL model and provides full configurability by

means of the Gaisler Research IP Library (GRLIB).

LEON3 is also diffused as ASIC implementation. The

proposed flow targeting LEON3 is intended to be used

during the prototyping phases, where FPGAs give great

effort because of their lower non-recurring engineering

(NRE) costs. The first step is to configure the simulator

to work with LEON3-based multicore platform. So the

related UML/MARTE model has been created. Then, to

associate costs to the whole LEON3 instruction set, it has

been considered an ideal pipelined execution (LEON3 is

a RISC processor). This leads to consider a cost of one

clock cycle for each assembly instructions. In the context

of early design space exploration (as the one considered in

the presented flow), such an hypothesis leads to an accu-

racy good enough to perform meaningful comparisons

among different design choices (as will be shown in the

validation section). A different option could be to refer

to some average metrics (e.g., MIPS, CPI). However, such

values would be dependent on the benchmarks used to

evaluate them, so, in the context of this work, it has been

preferred the ideal approach. Then, among the options

provided by VIPPE, it has been considered the model of

an SMP Linux operating system running on the multi-

core platform while providing also support to OpenMP.

Fig. 5 General view of monitoring operation



Muttillo et al. EURASIP Journal on Embedded Systems  (2016) 2016:15 Page 7 of 14

Fig. 6 SMP LEON3-based final platform architecture

After the modeling and simulation step, it is possible to

implement the platform on FPGA. A typical single-core

implementation of the LEON3 processor is reported in

Fig. 3.

The LEON3 processor, together with some periph-

erals (USB, JTAG, Ethernet controllers), is connected

on a system bus, the advanced high-performance bus

(AHB) [28]. Since AHB is a high-performance bus,

for low-speed peripherals, another bus is used: the

advanced peripheral bus (APB) [28] that is connected to

the system bus using an AHB/APB Bridge. In order to

obtain a multicore platform, other LEON3 processors can

be connected to the AHB, acting asmulti-masters. Indeed,

AHB has a controller (the AHB controller in Fig. 3)

that contains an arbiter to manage multiple masters. The

multicore implementation proposed by the simulator is

then implemented to FPGA by extending the scheme

on Fig. 3.

Starting from such a multicore platform, a monitoring

system has been designed for the proposed LEON3-based

implementation considering elements of AIPHS library. It

is composed of two subsystems: a bus analysis subsystem

(constituted by various dedicated hardware sniffers) and

a global monitor subsystem (GMS). Each sniffer detects

and collects selected events and notifies them to GMS.

Each sniffer is able to monitor a specific system intercon-

nection (e.g., the memory bus, the communication bus

between two processing elements). In order to measure

response time, a proper sniffer (named S1) monitors the

system bus and identifies the start of application execu-

tion and its end. In fact, S1 is able to measure elapsed time

between two triggering conditions. Other sniffers are not

strictly needed, but another one (S2) has been inserted

in the platform to consider a parameter that can be very

useful at run time: a sniffer that measures the number of

bus accesses allowing also to monitor effective bus band-

width. This parameter provides information on whether

the bus can accept more processing cores without becom-

ing a bottleneck. The internal architectures of S1 and S2

are reported in Fig. 4. The target system bus is the AHB

and it is connected to a target bus adapter section that

gives necessary signals for the timemonitor, that measures

the time elapsed between two occurred events, and the

event monitor, that counts the number of events.

Finally, a control logic block, named Nucleus, controls

a counter and the whole sniffer behavior. It is worth not-

ing that, in the proposed configuration, the role of GMS

is considered to be played by one of the LEON3 proces-

sors already existing in the architecture. GMS carries out

the start-up sniffer configuration before the execution of

the monitored application and collects results at the end.

Although one of the LEON3 is used as GMS, this does

not cause overhead during the monitoring action, since

the startup and the collection of results are done outside

from the monitored application execution. Communica-

tion between LEON3 and sniffers is done by means of the

APB; therefore, also an APB interface exists in the sniffer

architecture. A general view of the monitoring operations

is given in Fig. 5. The black part represents, respectively,

the initialization phase (from t1 to t2) and collection of

results (from t4 to t5) of the sniffers done by GMS, in this

case the LEON3 processor. The gray part is the application

execution, where response time (from t2 to t4) and band-

width are measured by means of the monitoring system.

The dotted lines represent the time execution of other

Table 1 DSE 1st benchmark

Tag
#Cores Sets/WS/LS/CS

OMP
DC Rat #Instr.

SU
IC DC

C1 1 1-1-16-1 2-4-16-8 – 1 % 240000034 –

C2 1 1-1-16-1 2-4-16-8 Reduction 1 % 310000178 0.8×

C3 2 1-1-16-1 2-4-16-8 Reduction 1 % 155000175 1.5×

C4 3 1-1-16-1 2-4-16-8 Reduction 1 % 103333447 2.3×

C5 4 1-1-16-1 2-4-16-8 Reduction 1 % 77500112 3.1×

C6 4 1-1-16-1 2-4-16-8 SPMD/FS 1 % 77500152 3.1×

C7 4 1-1-16-1 2-4-16-8 SPMD/NFS 1 % 62500061 3.8×
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Table 2 Configuration parameters for LEON3

Parameter Attribute Value

Clock generation System clock frequency 75 MHz

Processor Number of processors 4

Integer unit SPARC register windows 8

FPU Enable FPU Yes

I-cache Sets/WS/LS/CS 1 1 16 1

D-cache Sets/WS/LS/CS 2 4 16 8

applications (with higher priority than themonitored one)

and include even the context switch overhead. Once the

HW multicore architecture is finalized, there is the need

to customize an SMP Linux operating system and port the

libgomp (needed to support OpenMP) to this distribution.

In this case, a Linux distribution has been built starting

from LEON LINUX Kernel 3.10.

The kernel is customized to work with the multicore

platform in SMP mode and has been developed using

Buildroot Tool [29] and the cross-compiler toolchain [30]

provided by Cobham Gaisler. In order to implement

libgomp for the target, the needed libraries have been

cross-compiled and integrated into the selected Linux

distribution.

Finally, in order to allow the applications to interact

with the monitoring system by means of both kernel and

user space Linux processes, a proper Middleware API

and related drivers have been defined and developed.

With this API, it is possible to initialize the sniffers and

retrieve information on response time (during the black

slots in Fig. 5). The final platform architecture appears in

Fig. 6.

5 Validation
In order to validate the LEON3 customized design flow,

some benchmarks (e.g., PI calculation, matrix multiplica-

tion, and FFT) have been selected and used as an entry

point. Specifically, during this test, the speed-up obtained

inserting OpenMP clauses in the original code (to par-

allelize it among a certain number of cores) has been

firstly estimated with VIPPE and then, by means of the

unobtrusive monitoring system, accurately evaluated in

the final platform. The comparison between the estimated

and real values of speed-up aims to demonstrate the effec-

tiveness of the proposed approach. In this section, the

PI benchmark and the results obtained by running it on

the proposed LEON3 multicore platform implemented

on a Xilinx Virtex 6 FPGA (ML605 Dev. Board) [31] are

described.

The benchmark is constituted of an algorithm that per-

forms a numerical integration able to calculate the PI

value [1]. The algorithm was highly parallelizable, and it

was selected to perform a first basic test of the entire

flow. The initial value of response time for the applica-

tion on single LEON3 core was 8394 ms. Supposing a

speed-up of 3× is required, by using a multicore platform

based on LEON3 and OpenMP, the proposed flow has

been applied. Simulation with VIPPE has been performed

on the model of LEON3 processor described in the pre-

vious section, and results of the design space exploration

(DSE) are reported in Table 1. In Table 1, #Cores indicates

Fig. 7 Final implemented architecture for PI benchmark
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Table 3 Response time of implemented architecture

Configuration Response time Speed-up

C1 8394 ms –

C2 9322 ms 0.9×

C3 4751 ms 1.7×

C4 3198 ms 2.6×

C5 2474 ms 3.4×

C7 2257 ms 3.7×

the number of cores, while the third column reports cache

parameters: itSets is number of sets, itWS is the way

size, itLS is the line size, and itCS is the cache size, that

are reported for itIC and itDC (respectively itinstruction

cache and itdata cache). itOMP indicates the paralleliza-

tion technique used, itDC Rat is the ratio between data

cache misses and total accesses on data cache. it#Instr

is the number of executed instructions and itSU is the

speed-up. Since first VIPPE results on one core (i.e., C1)

shows that the ratio of data cache misses is not high

(1 %), cache configuration has not been changed. Then,

OpenMP has been used to modify the source code. The

simulation of the application with OpenMP on one core,

that represents the C2 configuration, estimates a speed-

up of 0.8×. This is worse than the serial execution but

it is justified by the growing of the number of instruc-

tions (numinstructions) to be executed on the same core.

Then, while increasing the number of cores (i.e., C3), also

the speed-up starts to improve (i.e., 1.5× with two cores).

OpenMP has been used with the reduction clause, that

allows to organize the operation to be done in a loop (in

this case it acts on multiple sums). At C5 configuration,

four cores provide a speed-up of 3.1×: this value satisfied

the requirement of speed-up equal or greater of 3×; how-

ever the value was near to this threshold and, due to a

not completely detailed model of the processor, a stronger

band guard has been searched. Specifically, another way

to work with OpenMP has been exploited, i.e., the Sin-

gle Process Multiple Data (SPMD) technique that allows

a better control of the parallelization process of the main

application loop program. This technique has led to a

speed-up still equal to 3.1×, as indicated in C6 configura-

tion, but, when removing also the false sharing problem in

C7, the speed-up has reached its max equal to 3.8× and

very close to the ideal one. The false sharing problem is

a performance degradation caused by a repetitive cache

flush, due to the fact that threads read and write data

contained on the same cache line. We forced, in C7, the

concurrent threads to work with separate cache lines. The

total invested time to perform the Design Space Explo-

ration has been about 3 h, also considering the study of the

source code in order to identify sections suitable for paral-

lelization. So, this is the configuration to be implemented

on FPGA, that satisfies the speed-up requirement of 3×

with a sufficient guard band. The parameters identified for

LEON3, following the suggestions obtained by the simula-

tion and the naming convention proposed by GRLIB, are

reported in Table 2.

The final multicore architecture is shown in Fig. 7. Each

core has one cache level (for data and instructions) and a

memory management unit, as required from the selected

Fig. 8 Speed-up predicted and actual
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Fig. 9Main steps of industrial application

Linux distribution. A shared Ethernet controller has been

added too, to be used as input/output link for data pro-

cessing and to make debugging of user-space code. For

each core, there is a dedicated floating point unit (FPU):

this has been inserted because the considered benchmark

involves floating point operations. The monitoring system

has been inserted in the architecture (i.e., the shaded S1

and S2 components). The area occupation on Virtex6 on

ML605 Dev. Board is equal to 37,000 slice registers (12 %)

and 88,000 slice LUTs (58 %). This conduced, after imple-

mentation, to a total number of occupied slices equal to

80 %. In order to show the validity of the model used

during the simulation to understand the speed-up trend,

some of the tests done during simulation have been per-

formed also on the final target (other than the final test to

verify the final speed-up of response time). Cache dimen-

sion is fixed in the final hardware, so the tests have been

done only changing the number of threads and the use

of OpenMP. Results on response time have been col-

lected using hardware profiling API. They are illustrated

in Table 3.

The comparison between the speed-up predicted by

simulation and the real trend is reported in Fig. 8.

The trend is the same, while there is a slight difference

in the values. This is due to the model of the processor

that has been loaded on VIPPE and to the approximation

of the cost of each instruction equal to one clock cycle.

The important thing is that, by using the proposed flow,

in only one implementation step on FPGA, a suitable plat-

form able to provide better performance on multicore has

been obtained. Finally, by tailoring the multicore platform

parameters to the value predicted by the simulation, using

OpenMP and removing the false sharing phenomena, a

speed-up equal to 3.7× has been reached, that provided a

response time equal to 2257 ms.

6 Real-world industrial application
This section presents the proposed flow applied to an

industrial application (that is called benchmark in the

following). Specifications to run this benchmark have

been provided in the context of CRAFTERS project [8].

It is represented by an algorithm that supports a real-

time location system (RTLS) in an indoor scenario. More

specifically, the algorithm is related to an indoor posi-

tioning system, for anchor-free (i.e., infrastructure less)

localization in a mobile ad hoc network (MANET). It

is worth noting that in an anchor-free scenario, there is

more demanding for computational power, so it is a good

use case for the proposed flow. Moreover, the prototyp-

ing phase applied to LEON3-oriented design flow had the

purpose to test the algorithm on a multicore architecture

able to provide certain response times. Future works have

been planned in order to realize a SoC starting from the

multicore prototyping platform identified by applying the

proposed flow. The use of LEON3 in this case has mul-

tiple advantages: it is a processor that implements the

SPARCv8 architecture, and OS targeting this architecture

are stable. Another focus point was the fact that LEON3

is available under GPL license and it is well tested. In the

proposed embedded application, the execution platform is

Table 4 DSE for industrial application for 50 nodes localization

Tag # Cores
Sets/WS/LS/CS

IC Rat. DC Rat SU
IC DC

C1 1 1 1 16 1 1 1 16 1 1 % 23 % –

C2 1 2 4 32 8 1 1 16 1 1 % 21 % 1.042445467

C3 1 2 8 32 16 1 1 16 1 – 21 % 1.029811464

C4 1 2 8 32 16 2 8 32 16 – 17 % 0.909814107

C5 1 2 8 32 16 2 4 32 8 – 19 % 1.101375597

C6 2 2 8 32 16 2 4 32 8 – 19 % per core 1.39721928

C7 3 2 8 32 16 2 4 32 8 – 21 % per core 1.132754151

C8 4 2 8 32 16 2 4 32 8 – 18.6 % per core 1.853288014

C9 4 2 8 32 16 4 8 32 32 – 1.8 % per core 4.945024246

C10 4 2 8 32 16 4 4 32 16 – 2 % per core 2.311683089
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Fig. 10 Parallelization of industrial application

considered to be the node of a MANET in an indoor sce-

nario, called itmaster node, that has some neighbor nodes.

Themain phases of the application are shown in Fig. 9 and

described in the following steps:

1. Receive data input : the node receives a distance pairs
matrix, obtained by UWB ranging. In this case, data

are provided from a host computer connected to a

database of measures.

2. Localize patch : starting from the distance pairs

matrix, a Multi-Dimensional Scaling (MDS-MAP)

algorithm [32–34] is executed on the node to obtain

a local map of the neighbor nodes. Next, a least

square minimization is performed using a technique

called Scaling by MAjorizing a COmplicated

Function (SMACOF).

3. Build the map : each node evaluates a first global map

of the scenario.

4. Stich patches : each node refines the global map using

an As Affine As Possible (AAAP) algorithm.

Table 5 Simulation results for different nodes

Nodes Configuration Speed-up

50 C1 –

50 C10 2.3×

80 C1 –

80 C10 3.26×

100 C1 –

100 C10 4.67×

5. Send results : the nodes send data back to the host

computer.

In the source code of the application, there are different

parameters to be changed in order to model different sce-

narios. One of these is the number of nodes viewed by the

node (that is executing the algorithm). The initial value of

response time for the application on single LEON3 core

was 1644 ms for a scenario with 50 nodes. Given the

requirement of a speed-up of 2× for 50 nodes by using

a multicore platform based on LEON3 and OpenMP, the

proposed flow has been applied. Simulations with VIPPE

have been performed on the LEON3 processor model

described in the previous section, with results indicated in

Table 4.

Table 4 columns have the same meaning as those of

Table 1 in the previous subsection. In this case, IC Rat

and DC Rat indicate the ratio between cache miss and

total number of cache accesses for, respectively, instruc-

tion cache and data cache. Starting from C1, in C2 and C3

a modification of the instruction cache organization has

Table 6 Configuration parameters for LEON3

Parameter Attribute Value

Clock generation System clock frequency 75 MHz

Processor Number of processors 4

Integer unit SPARC register windows 8

FPU Enable FPU Yes

I-Cache Sets/WS/LS/CS 2 8 32 16

D-Cache Sets/WS/LS/CS 4 4 32 16
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Table 7 Response time on the target

Nodes Configuration RT Threads Speed-up

20 C10 57 ms 4 –

30 C10 100 ms 4 –

40 C10 166 ms 4 –

50 C1 1644 ms – –

50 C10 839 ms 2 –

50 C10 634 ms 4 2.6×

60 C10 1046 ms 4 –

70 C10 1263 ms 4 –

80 C1 10,279 ms – –

80 C10 2989 ms 4 3.4×

90 C10 4319 ms 4 –

100 C1 8100 ms – –

100 C10 1838 ms 4 4.4×

been considered, that conduced to a lower IC Rat value,

that did not cause a speed-up on performance. In C4 and

C5, also data cache has been reorganized, so obtaining a

performance speed-up in the latter. Then, the number of

cores has been raised: in C8we can see a speed-up of 1.8×.

The requirement was to try to have a speed-up 2× for 50

nodes. To do this, we changed the data cache organization

inserting an associativity of 4. This conduced, initially, to

a C9, that unfortunately resulted infeasible: the problem

was due to a toolchain limitation. In fact, it supports only

operating systems with page size of 4 kB. This conduces to

amaximum data cache dimension of 16 kB, while in C9 we

exceeded this value (CS = 32 kB). In C10, we solved reduc-

ing the way size. We obtained a speed-up of 2.3×, that

satisfies the requirement. Figure 10 shows how the appli-

cation has been parallelized using OpenMP. The first and

last phases are intrinsically serial. The second and fourth

have been parallelized using OpenMP.

The third has been left serial: this is because in this part

of the algorithm there are operations on sparse matrices,

and, after a depth analysis, we stated that the implemen-

tation, in this phase, was not parallelizable.

Finally, for evaluation purposes, some simulations have

been performed using the configuration C10 also for sce-

narios with 80 nodes and 100 nodes. Results are reported

in Table 5. The total invested time to perform the design

space exploration has been about 2 h, not considering the

study of the source code in order to identify sections suit-

able for parallelization. The configuration parameters of

LEON3, following the suggestion obtained from the sim-

ulation and the naming convention proposed by GRLIB,

are reported in Table 6.

The complete multicore architecture is similar to that

shown in Fig. 7. The area occupation onVirtex6 onML605

Dev. Board is equal to 38,000 slice registers (12 %) and

91,000 slice LUTs (60 %). This conduced, after imple-

mentation, to a total number of occupied slices equal to

80 %. Results on response time have been collected using

hardware profiling API. They are illustrated in Table 7.

Tests on the final target have been done for differ-

ent number of nodes. The speed-up requirement for 50

nodes is satisfied on the target, showing the validity of the

Fig. 11 Speed-up predicted and actual
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Table 8 Bandwidth of system bus

Nodes Bandwidth (b/s)

80 619,923,284

100 562,312,437

proposed flow tomake a first design space exploration and

to implement a multicore platform on FPGA. Speed-up

for 80 nodes and 100 tends to be higher, this is due to the

fact that the parallel sections of the algorithm (shown in

Fig. 10) grow in percentage while number of nodes grow.

The comparison between the speed-up predicted by

simulation and the real trend is reported in Fig. 11. The

trend is the same, while there is a small difference in the

values. This is mainly due to the model of the processor

that has been loaded on VIPPE and to the approxima-

tion of the cost of each instruction equal to one clock

cycle. The important thing is that by using the proposed

flow, in only one implementation step on FPGA, a suit-

able platform for having better performance on multicore

has been obtained. Specifically, by tailoring the multicore

platform parameters to the values predicted by the simu-

lation and using OpenMP, a speed-up equal to 2.6× has

been reached, that provided a response time equal to 822

ms.

By using the sniffer S2 of the monitoring system, the

bandwidth of the system bus has been measured during

application execution. This is a useful measure that allows

to provide traffic information on the bus for the arbiter.

Indeed, in the next step of the work, an integration in

the proposed flow will be the possibility to add dedicated

IP cores at run time by using dynamic partial reconfigu-

ration. In this context, the bandwidth measure allows to

understand if the system bus could represent a bottleneck.

Results of bandwidth measure are reported in Table 8.

7 Conclusions
This work has defined a design flow to support the

development of a system for performance speed-up using

OpenMP on a shared memory multicore architectures.

The system is intended to be implemented on FPGA.

An assumption that the application already worked on a

single-core platform on FPGA has been done. Integrated

in the final platform, a hardware monitoring system to

measure response time without software overhead and

to provide other useful metrics has been proposed. The

entire flow has been customized for LEON3-based mul-

ticore system. The application of the proposed flow to

two useful benchmarks, one from OpenMP website and

another from a real industrial application, have been pro-

posed.

The application of the flow to other soft-processors

can be considered: in order to allow a symmetric

multiprocessing with soft-processors, there are hardware

and software considerations to be done. From the hard-

ware point of view, there is the need of a system bus that

can accept multiple masters. Then, each CPUmust have a

unique ID. Atomic accesses must be provided from CPUs

and cache coherency has to be guaranteed. Also IPI has to

be guaranteed in hardware. Each CPU has to be provided

with 1 reset signal. These things are required, in general,

by a Linux SMP distribution. From the software point

of view, there are modifications to be done in hardware

dependent source files, to match the hardware modifica-

tions, and there is the need of a toolchain to cross-compile

applications. Future developments of this work are the

refinement of the model of the LEON3 processor in order

to have higher precision on the simulation results (in par-

ticular, in the execution time) and the porting of the flow

to the Nios2 processor.
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