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Abstract: In the actual industrial production process, the method of adaptively tuning proportional–
integral–derivative (PID) parameters online by neural network can adapt to different characteristics
of different controlled objects better than the controller with PID. However, the commonly used
microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability.
Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN)
PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In
the design of the controller, it is divided into several sub-modules according to the modular design
idea. The forward propagation module is used to complete the forward propagation operation from
the input layer to the output layer. The PID module implements the mapping of PID arithmetic to
register transfer level (RTL) and is responsible for completing the output of control amount. The
main state machine module generates enable signals that control the sequential execution of each
sub-module. The error backpropagation and weight update module completes the update of the
weights of each layer of the network. The peripheral modules of the control system are divided
into two main parts. The speed measurement module completes the acquisition of the output pulse
signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM)
signal generation module generates PWM waves with different duty cycles to control the rotation
speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the
system, and a test analysis is also performed on the development platform. The results show that the
proposed system can realize the self-tuning of PID control parameters, and also has the characteristics
of reliable performance, high real-time performance, and strong anti-interference. Compared with
MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.

Keywords: BPNN; PID; adaptive control; PWM; co-simulation; speed measurement; DC motor; FPGA

1. Introduction

The PID control algorithm is widely used in practical engineering [1], but when facing
the nonlinear and time-varying characteristics of the controlled object, it has the problems of
tedious parameter adjustment and poor nonlinear adaptability. Therefore, the limitations of
conventional PID in engineering applications are becoming more and more obvious [2–4].
The boom in artificial intelligence has led to an increasing focus on neural network control.
Neural network has the characteristics of self-learning, self-adaptive and good robustness,
etc. Combining PID controller with neural network can meet the actual demand for
response speed and stability in the control process. Therefore, it plays an increasingly
important role in the field of practical intelligent control [5–8].

The traditional method of implementing control algorithms in MCU has been suf-
fering from slow convergence and poor real-time performance. In [9], a DC motor speed
regulation system based on incremental PID algorithm is proposed with the microcontroller
AT89S52 as the control core to achieve stable speed regulation of the DC motor. In [10],
the parameters of the fuzzy controller are adjusted using a particle swarm optimization
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algorithm, and a digital speed control system for DC motors based on the STM32 microcon-
troller is completed. The results show that the system has the advantages of high reliability
and high control accuracy. In [11], a self-driving precision compass based on BP neural
network and PID control is designed, and the precision control of the micro DC motor is
realized on the STM32F103C8T6 microcontroller. In [12], Using MCU-STM32F1-3 as the
main controller, the cascade PID is used to control the flight attitude and can meet the
control requirements of take-off, hovering, and landing flight modes. In [9–12], accurate
and stable control of a DC motor is accomplished, but it is deficient for some applications
where real-time performance is more demanding.

With the development of integrated circuits and computer technology, the hardware
implementation of control algorithms has become possible. In [13], a PID-based motion
controller was designed and then implemented on a Basys3 FPGA with higher perfor-
mance compared to microcontroller and DSP. In [14], a neural network PID controller
was designed by Verilog language and applied to the motion control of a service robot to
achieve control stability and accuracy. In [15], the neural network sliding mode control
algorithm is implemented based on FPGA and a signal monitoring platform is built to
collect and display the main control law and PWM control signals. The final experimen-
tal results show the feasibility of neural network sliding mode control implemented by
FPGA. FPGA can complete multiple operations in one cycle through parallel computing,
and the programmability and reconfigurability greatly shorten the design cycle, enabling
perfect mapping of neural networks on FPGA [16–19]. In addition, compared with the
microcomputer serial processing method, FPGA has the characteristics of fast speed, low
power consumption, and high reliability. Therefore, it is a good idea to implement a neural
network PID closed-loop control system based on FPGA.

In view of the most demand for real-time performance and high reliability, this paper
proposes, for the first time, a closed-loop motion control system based on a BPNN PID
controller by using a Xilinx FPGA solution. The proposed system is structurally divided
into two parts: BPNN PID control algorithm design part and the closed-loop control system
peripheral module design part. The first part consists of modules such as forward propaga-
tion module, PID module, main state machine module, error backpropagation, and weight
update module. The forward propagation module consists of several neurons in different
layers, which are responsible for completing the forward propagation operations from the
input layer to the output layer. The PID module implements the mapping of the incremen-
tal PID algorithm to the RTL, which is divided into three sub-modules designed separately
according to the structure of the arithmetic, and is responsible for completing the output of
the control amount. The main state machine module is responsible for generating enable
control signals for each module, and then controlling the operation of each sub-module
according to the execution sequence of the algorithm. The error backpropagation and
weight update module is designed and implemented with the gradient descent principle as
the theoretical basis, which is used to update the weights of each layer of neural network.
The second part is divided into two parts: the motor speed measurement module design
part and the PWM signal generation module design part. In the design of the motor speed
measurement module, the quadruple frequency interface circuit was completed using
the frequency doubling technology principle of the encoder, and the actual speed of the
motor was measured using the frequency method. The PWM signal generation module is
responsible for generating PWM waves with different duty cycles to control the rotation
speed of the motor. A co-simulation vertifcation platform of Simulink and Modelsim is built
to improve the verification efficiency. The simulation and experiment results show that
the designed system can play an effective control of the motor, and has the characteristics
of reliable performance, high real-time performance, and strong anti-interference, which
shows the validity and the superiority of the proposed system.
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2. Neural Network PID Controller System

PID control is also known as proportional (kp), integral (ki), and derivative (kd) con-
trol [20]. It is widely used in industrial control processes as a mature and effective control
algorithm [21]. Its principle is that the system error e(k) between the desired value r(k) and
the actual output value y(k) is fed back to the controlled object after the combination of pro-
portional, integral, and differential, so that the actual output value y(k) is constantly close
to the desired value r(k), and the tracking control of the controlled object is finally realized.
In the actual motion control process, due to the complex control environment and the exis-
tence of nonlinear and time-varying characteristics of the controlled object, conventional
PID control cannot perform adaptive parameter tuning to achieve good adaptability [22].
Theoretically, BPNN has the dynamic characteristics of self-learning and adaptability, and
is not only capable of approximating arbitrary nonlinear function, but also has a simple
and clear structure. Therefore, the combination of BPNN and PID control algorithm to
achieve the online self-tuning of PID control parameters can achieve the optimal motion
control effects. The schematic diagram of the neural network self-tuning PID closed-loop
control system is shown in Figure 1.

BP Neural Network

Incremental PID

kp kp kp

DC Motor 

Output 

y(k)

Encoder

 
PWMe(k)Input r(k)

-

∑

Figure 1. Structure diagram of PID controller system based on BP neural network.

In Figure 1, the servo motor is the controlled object, while the encoder is responsible
for measuring the actual motor speed. The motion state quantity xi = [r(k), e(k), y(k)] of
the system is fed into the BPNN to learn and train, and then an optimal control law is found
to finally achieve the actual output value y(k) of the motor to quickly and accurately track
the desired value r(k). Among them, the control equation of the incremental digital PID in
the adaptive closed-loop control system is shown below:

u(k) = u(k− 1) + ∆u(k)
∆u(k) = kp[e(k)− e(k− 1)] + kie(k) + kd[e(k)− 2e(k− 1) + e(k− 2)]

= kp∆e(k) + kie(k) + kd[∆e(k)− ∆e(k− 1)]
(1)

The proportional, integral, and derivative of Equation (1) represent the three PID
control parameters, while e(k) = r(k)− y(k), e(k− 1), and e(k− 2) represent the current
moment error, upper moment error, and upper upper moment error, respectively. From
Equation (1), it can be seen that the incremental digital PID algorithm is only related to the
previous three sampling values. Compared with the disadvantages of the positional digital
PID, such as large computation and ease of causing integral saturation, this algorithm has
the characteristics of low computation and high real-time performance. In the BPNN PID
closed-loop control system, kp, ki, and kd of the incremental PID are adjustable coefficients
with the system motion state, so the PID output of the above equation can be described
as follows:

u(k) = f [u(k− 1), kp, ki, kd, e(k), e(k− 1), e(k− 2)] (2)
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In Equation (2), f (x) is a nonlinear function related to u(k − 1), kp, ki, kd, e(k), etc.
The controller parameters are adjusted to achieve the optimal performance index by adap-
tive learning and weighting factor adjustment of the neural network [14].

The operation of the entire closed-loop control system is unified and coordinated by
the internal clock of FPGA. The system only needs to provide the desired input value
r(k), clock, and reset signal to automatically complete the self-tuning process of the PID
controller parameters. The flow chart of the system implementation is given in Figure 2.
After the system is powered on, the system is first initialized and the motion state quantity
is used as the input of BPNN, then the PID control parameters are derived through the
forward propagation of the network, and finally the PID controller with the parameters
will output the control signal to the controlled object to complete the real-time control of
the controlled object. The response effect of the controlled object will be measured by the
sensor, and the measurement result will be fed back to the system for the next control
calculation. During each cycle, BPNN will learn the control effect of the controlled object by
the last output in a targeted manner. This process is the process of error backpropagation
to modify the synaptic connection weights until the output response of the system meets
the design requirements.

Network Input

BP Neural 

Network

PID Algorithm

Servo Motor

Measurement

End of study

End

N

Y

Start

System 

Initialization

Control Parameters(kp, ki and 

kd) and Error Input

Calculation e(k), e(k 1) and e(k 2)

Calculation kp*[e(k) e(k 1)], ki*e(k), 

kd*[e(k) 2*e(k 1)+e(k 2)]

Calculate the control amount 

Δu(k)

Output u(k)

Incremental PID

Figure 2. Flow chart of closed-loop control system.

3. FPGA Design of BP Neural Network PID Algorithm

BPNN consists of input layer, hidden layer, and output layer, which is a multilayer
feed-forward neural network. Signal forward propagation and error backpropagation are
the main features of BPNN. It modifies the connection weights between each neuron by
error backpropagation, and the process of backpropagation is the process of neural network
learning [23–28]. The topology of the three-layer BPNN is shown in Figure 3, where xi
and yj are the input and output of the network, respectively, and zk is the hidden layer
output of the network. According to the structure of BPNN, using the idea of top-down
design, this paper divides the network into forward propagation module, weight storage
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module, weight update module, PID module, state control module, error module, etc.
The connectivity and training process between the different functional modules is given
in Figure 4, and the corresponding RTL view is shown in Figure 5. First, the weights of
the motion state quantity and the weight storage module are sent to the BPNN, then the
forward calculations of the hidden layer and the output layer neurons, and finally, the
PID module outputs the comparison value. The connection weights of each layer of the
network are corrected using the gradient descent principle, and the changes of the weights
of the corresponding layer are calculated according to the output layer error module and
the implied layer error module, respectively. After the weight changes are delivered to
the corresponding weight update module to obtain the new weights, the old weights of
the weight storage module are replaced with the new weights. The state control module
is implemented by a finite state machine, and the enable signal is generated by means of
trigger edge triggering. The enable signal controls each sub-module in turn, which can
effectively avoid timing conflicts caused by too many modules, and also facilitate timing
constraints and timing analysis of the design.

 

Input layer Hidden layer Output layer

x1
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x2 y2
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Figure 3. Structure diagram of three-layer BP neural network.
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Figure 4. FPGA design framework of BP neural network PID controller.
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Figure 5. BP neural network PID controller: top-layer RTL schematic.

FPGA is used to implement neural networks because its good parallelism is compat-
ible with the way neural networks operate. Generally, it is impossible to implement the
neural network structure in parallel in hardware. There must be some sequential execu-
tion processes. Therefore, it is necessary to select the most suitable hardware structure to
complete the best mapping of the neural network on FPGA [29,30]. As shown in Figure 6,
a combination of parallel and serial is proposed in this design to complete the implementa-
tion of BPNN on FPGA. Parallel operations are used between the neurons in each layer,
and the FPGA pipeline technology is used in the architecture. The pipeline design is mainly
a method to reduce the delay of the combinational logic by splitting a larger combinational
logic block into multiple small combinational logic blocks and inserting registers between
these. An enable signal is also added in each module to start the sequential execution.

Hidden layer 

operation

Output layer 

operation

Weight 

storage

System clock

Enable signal 1 Enable signal iEnable signal 0

Figure 6. Network execution sequence diagram.

3.1. Forward Propagation Module Design

A neural network is composed of a large number of nodes (or neurons) connected to
each other [23]. Therefore, the neuron is the basic unit of the forward propagation module,
and its design is crucial to the FPGA realization of the entire network. Figure 7 shows
the RTL view of the forward propagation module, including hidden layer operations and
output layer operations, and each layer contains several neurons. Figure 8 shows the
hidden-layer neuron design of the system. First, the output of the upper-layer neuron is
multiplied by the connection weights of the corresponding nodes, then the accumulation
process is performed, and finally converted to index address to read the RAM stored value
in the activation function module. The stored fixed value is approximated instead of the
function value of the activation function, which is used as the input value of the neuron in
the lower layer, and then passed sequentially layer by layer until the output layer outputs
the control parameters, which indicates the end of forward propagation. The neuron design
of the output layer is similar to the neuron design of the hidden layer, but the difference
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lies in the activation function. Figure 9 shows the schematic of the neuronal RTL after the
synthesis of Vivado 2018.3 development software.
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Figure 7. RTL view of the forward propagation module of a BP neural network.
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Figure 8. Hardware circuit design of single neuron.
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Figure 9. RTL schematic diagram of single neuron.

In this design, The lookup table (LUT), comparator, and selector are chosen to im-
plement the activation function module. According to the functional properties of the
activation function, the interval of the function independent variable is divided into
(−∞,−4) ∪ [−4, 4) ∪ [4,+∞), and the activation function of the hidden layer neuron is
shown in the following Equation (3). When the input address is in the range of the interval
(−∞,−4) ∪ [4,+∞), the function value is taken as a fixed value. When the range is in
the interval [−4, 4), the definition domain is divided into multiple subintervals by using
1/256 as a subinterval length, and then the fixed value corresponding to the input address
is approximated to represent the output value of the activation function. The internal
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operation of the module is a 16-bit fixed-point decimal operation with eight decimal places,
while the absolute value of the function value of the activation function of each neuron does
not exceed 1. If the function value is stored in RAM as a 16-bit fixed-point decimal, six more
bits of storage space will be wasted. Therefore, to save FPGA resources, the function value
of the activation function is represented by a 10-bit fixed-point decimal. A COE file with
a storage depth of 2048 is generated on MATLAB2019b and used as the initial file of the
RAM IP core.

h_tanh(x) =


−1 x < −4

ex−e−x

ex+e−x −4 ≤ x < 4
+1 x ≥ 4

(3)

3.2. Error Backpropagation and Weight Update Module Design

According to the chain rule, the backpropagation algorithm uses the error between
the expected and the actual output as the backpropagation, and uses the gradient descent
method to adjust the network parameters to promote the error to develop in the direction
of smaller [31–33]. The principle of the gradient descent algorithm is to find the extreme
point of the objective function y = f (x), which is the point where the derivative f ′(x) = 0.
In the implementation of the algorithm, the initial value X0 is selected, and the value of x is
changed by several iterations during the training process, and finally the extreme value
point of the function is found after a large number of iterations. The design divides the
backpropagation algorithm into four modules, which are the output layer error module,
the output layer weight update module, the hidden layer error module, and the hidden
layer weight update module. Figure 10 shows the design structure of the backpropagation
algorithm, while Figure 11 shows the schematic of this part of the RTL extracted from
the top-level RTL view. In the design, the error module compares the actual wheel speed
obtained by the encoder with the desired speed to derive the system error, and then the
error is back-propagated by the output layer error module, and finally the weight update
of the output layer is completed in the output layer weight update module. Based on the
node error of the output layer, the node error of the hidden layer is calculated in the hidden
layer error module, and then the weight of the hidden layer is updated in the hidden layer
weight update module. The network weights updated by the backpropagation algorithm
will be stored in the weight storage module for the next network training.

The module is composed of several multipliers and adders. The input values and
weights of the network are 16 fixed-point numbers of 8 decimal places. After they are
multiplied, they become a 32-bit fixed-point number, and the decimal place becomes 16 bits.
In order to abandon unnecessary digits occupying resources, the method of truncation
is adopted to keep the output as a 16-bit fixed-point number. In a 16-bit binary number,
the highest bit is the sign bit. When it is 0, it means that the value is positive. When it is 1,
it means the value is negative.
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Figure 10. Structure design of backpropagation algorithm.
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Figure 11. RTL schematic diagram of backpropagation algorithm.

3.3. PID Module Design

This design uses FPGA to implement the incremental digital PID algorithm. In the
whole design of incremental PID control, only the last three error sampling values e(k),
e(k − 1), and e(k − 2) need to be stored to realize its function [34,35]. According to the
mathematical structure of Equation (1), the structure diagram of this incremental PID
control algorithm is shown in Figure 12, and the corresponding RTL schematic is shown
in Figure 13. In Figure 12, kp, ki, and kd are the outputs of the network output layer, r(k)
and y(k) are the set speed and the current actual speed of the DC motor, respectively, m1,
m2, and m3 are the results of the proportional, integral, and derivative parts of the PID
equation, respectively, and u(k) represents the output value of the PID control system.
The deviation operation is used to obtain the difference e(k), e(k− 1), and e(k− 2) for a
given number of r(k) and y(k), and then the result is fed to the later operation unit for
processing. The proportional, integral, and derivative modules multiply kp, ki, and kd
with ∆e(k), e(k), and ∆e(k)− ∆e(k − 1), and feed the results to the summation unit for
processing. In the summation module, m1, m2, and m3 are summed to obtain the control
increment ∆u(k) of the PID, and then the value of u(k− 1) stored in the register is added to
finally obtain the value of u(k) of the PID control arithmetic. The limiter module consists
of a comparator to limit the comparison values delivered to the PWM module to saturate
the output with the set maximum value when it reaches its maximum value.

The PID control module has a bit width of 16 bits for both r(k) and y(k), and a bit
width of 10 bits for the other three parameters kp, ki, and kd. In order to discard the space
occupied by unnecessary bits, when using FPGA to implement the multiplication and
addition operations in the PID control algorithm for fixed-point calculations, an output
conversion part was added to the program so that the value of the output result is also
16-bit bit wide. The format of fixed-point decimal is that the highest bit indicates the sign
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bit, and the remaining bits indicate the value bit, where the decimal bit is 8 bits. When the
highest bit is 0, it is positive, and when the highest bit is 1, it is negative.
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Figure 12. Structure of incremental PID control algorithm.
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Figure 13. RTL schematic of incremental PID control algorithm.

3.4. Main State Machine Module Design

The structure used in this design BPNN is a three-layer network structure, which
contains three neurons in the input layer, five neurons in the hidden layer, and three
neurons in the output layer corresponding to the proportional, integral, and differential
control coefficients of the PID. In the process of complex circuit design, the design of state
machines is one of the essential parts [36] of the conversion process from mathematical
algorithm to RTL design. The main state machine generates the enable signals for different
modules by jumping through the states, which are then transferred to the next processing
module. The main state machine of this adaptive closed-loop motion control system is
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shown in Figure 14, and the process of implementing the main parts of BPNN PID control
is described as follows.

IDLE
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Read Weight
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Figure 14. The main state machine diagram of the BP neural network.

The actual output value y(k) of the DC motor is first sampled, then the errors at
moments k, k− 1, and k− 2 are calculated, then the connection weights of each layer of the
network are read from the weights register, then the forward propagation operation from
the input layer to the output layer is completed, and finally the three control parameters
are output. The updated control parameters are used to obtain the PWM wave control
signal by PID operation, and the motion control of the DC motor is achieved by the drive
control board. The backpropagation is based on the gradient descent principle to correct
the weights of each layer of the network and update the weights layer by layer from
the output layer to the input layer in turn. According to its principle, the error of the
corresponding layer is obtained, and then the connection weight of the corresponding layer
is updated. After the weight of each layer of the network is updated, the training process
ends. After completing a training session, let k = k + 1 at this point, and then start the
next learning training until the required number of training sessions is reached or the error
meets the requirement, then the training is finished.

4. Design of Peripheral Modules for Neural Network PID Closed-Loop
Control System

In this proposed system, the neural network PID controller is used to realize the
closed-loop motion control of the DC motor, and the proposed peripheral module consists
of speed control module, PWM signal generation module, speed measurement module,
etc. The module structure is shown in Figure 15. Due to the mechanical characteristics,
there is jitter when the key is pressed or released, and key dejittering is accomplished by
counting to a predetermined value (15 ms) by a counter. The speed control module detects
the key value to complete the motor speed setting and uses the desired value r(k) as an
input value of the neural network. The BPNN_PID module is the BPNN PID controller
designed above, with output comparison values in the range of 0–4999, where y(k) is the
actual output value of the motor and e(k) is the deviation value of the system. The PWM
signal generation module generates PWM pulses with different duty cycle according to
the comparison value, and the pulses are input of the motor driver board to complete the
operation control of the DC motor. The speed measurement module is responsible for
measuring the real-time speed of the DC motor by sampling the total number of rising
and falling edges of the A and B phase quadrature pulse signals over a period of time Tc,
and then calculating them by the M speed measurement method (frequency method) to
complete the measurement of the real-time speed of the DC motor.
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Figure 15. DC motor control system measurement and control module structure diagram.

4.1. Motor Speed Measurement Module Design

According to the principle of DC motor speed measurement, we can design the speed
measurement module by referring to the design method of M speed measurement method
and displaying the result of speed measurement by digital tube. For a deterministic encoder,
the A and B phase pulse signals jump twice in one cycle T, and the four jumps are evenly
distributed in phase. Therefore, the encoder measurement accuracy can be improved by
generating quadruple frequency signals with four hops and counting them. The key to
the design of the speed measurement module is to be able to accurately capture the rising
and falling edges of the A and B signals and to complete the count of the number of pulses.
Figure 16 shows the structure of the speed measurement module, which is divided into
cache module, pulse statistics module, and speed conversion module. Figure 17 is the
RTL schematic diagram of the speed measurement module, corresponding to the three
sub-modules of the design structure diagram. In the schematic, the AB_SIGNAL module is
responsible for sampling the A and B signals, the AB_EDGE_CNT module is responsible
for counting the total number of rising and falling edges of the A and B signals within
Tc = 10 ms, and the M_METHOD module is responsible for converting the total number of
pulses into motor speed.

Cache 

module

Pulse statistics 

module

Speed conversion 

module
A

B

clk

speed

Figure 16. Design structure diagram of DC motor speed measurement module.
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Figure 17. Speed measurement module RTL schematic.

This rst_n is the system low reset signal, clk is the system clock divided clock signal
(frequency F = 50 M), and channel_a and channel_b are the A and B signals, respectively.
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Considering that there may be jitter and burr in the A and B signal when the level jumps,
the C_A and C_B registers, respectively, store the level value of the tenth system clock after
the A and B signal level reversal, that is, when deb_cnt = 10, while L_A and L_B register
the level value before the A and B signal level reversal. In addition, deb_cnt counts up to
10, and when the A and B phase pulse signal levels are flipped, deb_cnt clears and starts
counting again. In the AB_EDGE_CNT module, when deb_cnt = 10 and C_A⊕L_B = 1,
the edge statistics value is added by 1. Conversely, when deb_cnt = 10 and C_B⊕L_A = 1,
the edge statistics value is subtracted by 1. The total_pulse is the total number of level flips
of A and B signals during the sampling time period. When the counter count reaches F ∗ Tc,
the flag flag is set to 1 and total_pulse is cleared to zero. The M_METHOD module is based
on the statistical value of total_pulse, then based on the known number of fixed pulses
generated by one rotation of the DC motor, with a known sampling time Tc, and finally by
the calculation of the frequency method, the current speed of the motor speed (15:0).

4.2. PWM Signal Generation Module Design

The pulse-modulated PWM signal is generally generated by an analog comparator.
A given reference voltage is connected to one end of the comparator and a periodic sawtooth
wave voltage is connected to the other end. When the sawtooth voltage is less than the
reference voltage, the output level is high, and when the ramp voltage is greater than the
reference voltage, the output level is low, so that the duty cycle of the PWM signal can
be changed by changing the reference voltage. Based on this idea, the PWM waveform is
generated by FPGA, and only internal FPGA resources are needed to replace the analog
comparator with a digital comparator, eliminating the need for an external D/A converter
and analog comparator compared to an analog controller. The PWM signal is generated
as shown in Figure 18. The sawtooth wave signal B, when compared with the fixed value
A, is able to generate a PWM signal with a fixed pulse width. By changing the value of A,
we can change the duty cycle of the PWM signal. When the set speed value of the motor
changes, the duty cycle of the PWM signal changes as well. When the duty cycle of the
PWM signal increases, the motor speed speeds up, and when the duty cycle of the PWM
signal decreases, the motor speed slows down.

PWM 

wave 

Comparison value 

B

Figure 18. PWM signal waveform generation.

Figure 19 shows the RTL schematic of the PWM signal generation module. In the
design of the PWM waveform, the counter outputs counting pulses under the excitation
of the clock signal CLK. In order to output a gradually increasing sawtooth waveform,
the program outputs a count value at the arrival of each rising edge of the clock and adds
1 at the arrival of the next rising edge of the clock until the count is cleared to zero when
count = “1001110000111”, thus, a periodic sawtooth waveform is output. The output signal
count of the sawtooth wave and the comparison value duty of the BPNN_PID output are
added to both input ports of the digital comparator at the same time, and then the two are
compared. If the value of count is less than the value of duty, the comparator outputs high,
and, vice versa, it outputs low. This can generate a periodic PWM signal, and as long as the
comparison value duty of BPNN_PID output is changed, the duty cycle of PWM signal can
be changed to achieve the purpose of speed regulation.



Sensors 2022, 22, 889 14 of 18

clk

duty[15:0]

+

count0_i

RTL_ADD

I1

I0[12:0]
O[12:0]

count_i

RTL_MUX

I0[12:0]S=13'b1001110000111

I1[12:0]S=default
O[12:0]

S[12:0]

count_reg[12:0]

RTL_REG

C

D
Q

cmp_value_reg[12:0]

RTL_REG

C

D
Q

cmp_value_i

RTL_MUX

I0[12:0]S=13'b0000000000000

I1[12:0]S=default
O[12:0]

S[12:0]

<=

wave0_i

RTL_LEQ

O
I0[12:0]

I1[12:0]

wave_reg

RTL_REG

C

D
Q pwm_out

Figure 19. RTL schematic diagram of PWM signal generation module.

5. Simulation and Implementation of Closed-Loop Control System
5.1. Co-Simulation of Closed-Loop Control Systems

To address the problem of real-time simulation of a closed-loop motion control system,
this paper adopts a co-simulation method combining Simulink and Modelsim to verify
the correctness and effectiveness of the adaptive closed-loop control system design in this
paper. IP core is used in the design, so a co-simulation environment needs to be configured.
First, we use Modelsim to compile the corresponding IP source files to generate simulation
library files, then add the generated files to the project, and finally create the model to be
simulated in the Simulink platform. Closed-loop control systems are internally calculated
with 16 fixed-point fractional bits, where the highest bit is the sign bit, the lower eight bits
are the fractional bits, and the remaining seven bits are integer bits. The transfer function
selected for the closed-loop control system is shown below. The Simulink simulation model
created by using Matlab 2019b is shown in Figure 20, and the unit step response curves and
control parameter variation results of its closed-loop control system are shown in Figure 21.
In order to test the immunity of the adaptive closed-loop control system designed here,
the simulation curve change results are shown in Figure 22 after adding the disturbance
source. The simulation frequency of the whole system is set to 50 MHZ, and the simulation
duration of Simulink is set to 10,000 ns.

G(s) =
Y(s)
U(s)

=
1.2

208s + 5
e−10s (4)

Figure 20. Simulink simulation model of closed loop control system.

As can be seen from the step response graph (left panel) of Figure 21, the actual output
value continuously converges to the target value during the adaptive regulation of the
neural network, and finally the output reaches the desired input value of 1 at around
3000 ns. In addition, the Modelsim simulation waveform in Figure 21 (right panel) shows
that the PID control parameters (proportional, integral, and derivative) remain essentially



Sensors 2022, 22, 889 15 of 18

constant after 3000 ns. At this point, kp = 9/256, ki = 102/256, and kd = 24/256. By adding
a disturbance signal with a constant of 4 at t = 4 µs (bottom left), it can be seen from the
Modelsim simulation plot of Figure 22 (right) that after 5.25 µs, the PID control parameters
regain stability after retraining the output of the network and the actual output of the system
(top left) is able to track the input signal again. At this point, kp = 6/256, ki = 82/256,
and kd = 18/256. This proves the correctness and effectiveness of the neural network PID
controller design. Meanwhile, the FPGA-based neural network PID controller also has the
advantages of self-tuning parameters, as well as fast regulation times and small steady-state
errors, and is highly resistant to interference. References [9–11] use a microcomputer as the
experimental platform to design and implement several different control algorithms for DC
motor control systems, and achieve stable and reliable control results. However, the control
times are in excess of several hundred milliseconds, whereas the control system designed in
this paper is able to reduce the control time to a few microseconds, so the proposed design
is superior and provides a reference for complex practical control environments.

Proportional (kp)

Integral (ki)

Derivative (ki)

Figure 21. Step response curve graph and control parameter change graph without interference.

Proportional (kp)

Integral (ki)

Derivative (ki)

Figure 22. Step response curve and control parameter change diagram after adding interference at
t = 4 µs.

5.2. FPGA Implementation of Closed-Loop Control System

The experimental object of this proposed system is a DC motor with encoder, which
generates 120 × 13 = 1560 fixed pulses per revolution, while the motor encoder outputs
quadrature pulse signals of A and B phases. The hardware development platform is the
Xilinx model Xc7a200tfbg484-2 FPGA development platform. In addition, the operating
frequency of the entire control system is configured as the clock frequency F = 50 M.
The driver board of the motor is the TB6612FNG DC motor driver board, which is able to
control two DC motors at the same time. The A and B phase pulse signals from the encoder
are sampled on the FPGA development platform to complete the speed measurement of
the DC motor. This proposed system uses an integrated logic analyzer (ILA) to test and
analyze the system. Figure 23 shows the development experiment platform of this system.
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The bit file is first generated in Vivado 2018.3 development software and downloaded to the
FPGA development board, and then the signals to be observed are added to the integrated
logic analyzer (ILA). Figure 24 shows the actual speed signal, the comparison value signal,
and the PWM wave signal collected by the integrated logic analyzer.

xc7a200tfbg484-2
DC motor

TB6612FNG 
drive boardpower module

Figure 23. Experimental development platform for FPGA-based closed-loop control system.

In the experimental platform, the given speed of the DC motor is 20 r/min. From the
values of the signals shown in Figure 24, it can be seen that the actual speed value (ac-
tual_speed (15:0)) of the DC motor collected by the ILA is 5120, and the internal operations
of the FPGA are 16-bit fixed-point decimal, with 8 decimal places, so the current DC motor
can be obtained by mathematical conversion. The actual speed is 5120/256 = 20 r/min.
The period of PWM is set to 10 KHZ, and the high level of PWM wave (pwm_duty) is mea-
sured to be 1137 ns, so the duty cycle of PWM wave at the current speed of DC motor can
be calculated to be 1137/5000 = 22.74%. From the experimental results, it can be seen that
the experimental results verify the correctness and feasibility of the motion control system
design. Therefore, the combination of the BPNN and PID control algorithm can achieve
the purpose of adaptive closed-loop control, which provides a reference for intelligent
motion control.

Figure 24. Embedded logic analyzer (ILA) acquisition signal diagram.

6. Conclusions

The commonly used MCU, such as C8051 or STM32, cannot meet the high require-
ments for real-time performance and reliability. An innovative neural network PID control
method based on FPGA implementation is proposed, and a complete closed-loop control
system is implemented. For the design of the BPNN PID controller, a top-down design
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is used to divide the algorithm into several sub-modules, and the functions and design
flow of each module are described in detail. The peripheral module is designed to realize
the acquisition of the encoder output pulse signal and the measurement and control of the
motor speed. The co-simulation combining Modelsim and Simulink is used to improve the
efficiency of verification, and the test verification is completed on the experimental plat-
form. The results show that the designed system can realize the self-tuning of PID control
parameters, and also has the characteristics of reliable performance, good control effect, and
good robustness. Compared to traditional MCU-based control methods, the convergence
speed of the FPGA-based adaptive control method is much faster than three orders of
magnitude, proving its superiority over traditional methods.

In this paper, although the design of the adaptive closed-loop motion control system is
completed, as well as the system construction and simulation, which confirms its feasibility
and reasonableness, there is still a need for continuous exploration and improvement
in FPGA resource utilization and human–computer interaction, such as the use of more
accurate and less resource-consuming activation function implementation methods, and the
possibility of designing remote wireless touch screens to improve operability.
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