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Abstract

The engineering of large-scale decentralised systems requires sound methodologies to

guarantee the attainment of the desired macroscopic system-level behaviour given the

microscopic individual-level implementation. While a general-purpose methodology is cur-

rently out of reach, specific solutions can be given to broad classes of problems by means

of well-conceived design patterns. We propose a design pattern for collective decision mak-

ing grounded on experimental/theoretical studies of the nest-site selection behaviour

observed in honeybee swarms (Apis mellifera). The way in which honeybee swarms arrive

at consensus is fairly well-understood at the macroscopic level. We provide formal guide-

lines for the microscopic implementation of collective decisions to quantitatively match the

macroscopic predictions. We discuss implementation strategies based on both homoge-

neous and heterogeneous multiagent systems, and we provide means to deal with spatial

and topological factors that have a bearing on the micro-macro link. Finally, we exploit the

design pattern in two case studies that showcase the viability of the approach. Besides

engineering, such a design pattern can prove useful for a deeper understanding of decision

making in natural systems thanks to the inclusion of individual heterogeneities and spatial

factors, which are often disregarded in theoretical modelling.

Introduction

Large-scale decentralised systems are becoming the more ubiquitous the more our lives become

connected, and the problem of understanding and controlling such complex systems is cur-

rently approached from a variety of perspectives [1–3]. A particularly interesting viewpoint on

decentralised systems is the one of Cognitive Science, which looks at their ability of collecting,

transforming and propagating information within the system while interacting with the exter-

nal world [4, 5]. However, providing desired cognitive processing abilities to large-scale distrib-

uted systems—from swarms of robots [6] to cognitive radio networks [7] and cyber-physical

systems [8]—is a complex problem that has no general solution available to date. This is mainly

due to difficulties in treating at the same time several complexity factors (e.g., heterogeneities
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in the interaction topology or in the individual behaviour). Additionally, each application faces

domain-specific challenges. For instance, in swarm robotics, any design methodology needs to

deal with the inherent spatial factors [9–12].

In lieu of a universal design methodology, general solutions can be provided for specific

classes of problems exploiting the concept of design patterns well known in software engineer-

ing [13]. Design patterns provide formal guidelines to deal with recurring problems in a spe-

cific field. For distributed systems, design patterns prescribe the individual-level microscopic

behaviour required to obtain desired system-level macroscopic properties [14–16]. According

to the literature, design patterns are defined by the following attributes: name, context, design

rationale, problem and solution (see S1 Text). Each attribute identifies and formally describes

one component of the proposed design method. For instance, the context determines the

domain of applicability of the design pattern, while the design rationale explains the what and

the how, that is, the origins and working principles. Additionally, one or more case studies

illustrate the application of the proposed solution to a specific problem instance.

Among the classes of cognitive processes that can be addressed through well-conceived

design patterns, decentralised decision making represents a fundamental ability in several con-

texts and application domains [17–20]. In this paper, we propose a design pattern for decentra-

lised decision making based on the nest-site selection behaviour of honeybee swarms [21–23].

Previous experimental and theoretical studies have demonstrated near-optimal speed-accuracy

tradeoffs in the selection of the most profitable option among a set of alternative nesting sites

by honeybees [21, 22]. Most importantly, inhibitory signals among bees provide an adaptive

mechanism to quickly break deadlocks and tune the decision dynamics according to the per-

ceived quality of the discovered options [22, 23]. The above properties of the nest-site selection

process are relevant for many practical decision-making scenarios in decentralised systems,

and justify its choice in this study.

Starting from the macroscopic description of the nest-site selection dynamics [22, 23], we

derive the exact relationship between microscopic and macroscopic models—also including

finite-size effects—for the general case of a best-of-n decision problem. The inter-related mod-

els represent the core of the design pattern, which is completed by formal guidelines for the

implementation of collective decisions in multiagent systems. We provide guidelines for imple-

mentation by means of either homogenous or heterogeneous agents, as well as guidelines for

the inclusion of spatial and topological factors that have a bearing in determining the micro-

scopic interaction patterns [9]. We illustrate the application of the design pattern in two case

studies, covering decentralised decisions by (i) static agents interacting in a fully-connected

network, and (ii) mobile agents involved in a search and exploitation task.

Collective Decisions through Cross Inhibition

We consider a best-of-n decision problem, that is, the choice of the best option, or any of the

equal-best options, among n different alternatives. Each option i 2 {1, . . ., n} is characterised

by a quality vi 2 [vm, vM]. We study decision making for a populationA of N agents, where

each agent ag, g 2 {1, . . ., N} is either committed to one of the available options i and belongs

to the sub-populationAi (size Ni and fractionCi = Ni/N) or is uncommitted and belongs to

sub-population U (size NU and fractionCU). Agents can obtain a noisy estimate v̂ i of the

quality associated to option i. At the macroscopic level, a decision is taken as soon as the

entire population or a large fractionCq (hereafter referred to as quorum) is committed to a

single option.

In this section, we first present a macroscopic model that accounts for the system mean-

field dynamics, and that describes the decision process at the population level without
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considering the actions of each individual agent and their inherent stochasticity. Then, we

introduce a microscopic model in the form of a probabilistic finite state machine (PFSM) to

describe the behaviour of the individual agent that changes its commitment state in response

to probabilistic events. This description level is the closest to the agent implementation and

allows us to directly link the control parameters of the agent behaviour to the macroscopic

parameters. Finally, we provide the link between macro and micro levels through equations

that convert ODE transition rates into the PFSM probabilities.

Macroscopic model

According to the model proposed for honeybee nest-site selection [22], four concurrent pro-

cesses determine the distribution of agents across populations: (i) uncommitted agents sponta-

neously discover option i at rate γi (ii) agents committed to option i spontaneously abandon

commitment at rate αi; (iii) agents committed to option i recruit uncommitted agents at rate ρi;

and (iv) agents committed to option j 6¼ i inhibit agents committed to option i at rate σj (cross-

inhibition). A committed agent that receives an inhibitory signal stops recruiting (hence the

expression stop signal) and reverts to the uncommitted state, becoming available for discovery

or recruitment by other agents. Such cross-inhibition mechanism allows the swarm to tune the

decision speed and break decision deadlocks in case of equal-best options [22].

The mean-field macroscopic dynamics are well described by an n-dimensional ODE system,

which extends the previously studied binary version [22, 23]:

_Ci ¼ giCU � aiCi þ riCiCU �
P

j 6¼isjCiCj

CU ¼ 1�
P

iCi

ð1Þ

(

where i 2 {1, . . ., n}. Here, the variation ofCi is determined by the four processes described

above, and a mass conservation equation constrains the dynamics within feasible bounds. The

transition rates (γi, αi, ρi and σi) are functions of the quality vi:

ai ¼ faðviÞ; gi ¼ fgðviÞ; ri ¼ frðviÞ; si ¼ fsðviÞ ð2Þ

The relations between option quality and transition rates determine the macroscopic dynamics

[23].

Microscopic model

The behaviour of individual agents is represented by the probabilistic finite state machine

(PFSM) shown in Fig 1A that describes the commitment dynamics. An agent can be either

uncommitted (state CU) or committed to option i (state Ci), and probabilistically changes state

every τ seconds according to two types of transitions: spontaneous and interactive. Spontane-

ous transitions model the discovery of option i with probability PgðviÞ and the abandonment

of commitment to option i with probability PaðviÞ. Interactive transitions model the recruit-

ment and cross-inhibition processes resulting from the interaction between agents belonging

to different populations. We refer to the probability of any agent interacting with an agent

committed to option i as P
Ci
. We assume a well-mixed system, so that P

Ci
¼ Ni=N . Recruit-

ment for option i is modelled by a transition from CU to Ci with overall probability P
Ci
PrðviÞ.

Cross-inhibition of an agent committed to option i is instead modelled as the cumulative effect

of the interaction with agents committed to a different option, with overall probability
P

j 6¼iPCj
PsðvjÞ (see S1 Text for details).
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Micro-macro link

The PFSM of Fig 1A represents the average agent behaviour (see also S1 Fig) [24]. Its actual

implementation requires choosing the way in which transitions are executed in relation to the

limited information available to the individual agent. For instance, the estimation of the popu-

lation-size dependent probability P
Ci
by individual agents requires some sampling of the cur-

rent population size. The implementation is rather straightforward, and is detailed in S1 Text.

Here, we focus on the other transition probabilities (Pg, Pa, Pr, Ps), and their correspondence

with the macroscopic transition rates to obtain the desired dynamics determined by Eq (2).

We propose two strategies based either on a homogeneous or on a heterogeneous implemen-

tation. In the homogeneous case, all agents compute their transition probabilities in the same

way as a function of the estimated quality v̂ i. In this case, it is possible to establish a direct cor-

respondence between micro and macro parameters:

Pl;gðv̂ iÞ ¼ lit ¼ flðv̂ iÞt;
i 2 f1; � � � ; ng

l 2 fg; a; r; sg
ð3Þ

where Pλ,g represents the actual probability for the agent ag to undergo the transition λ. Hence,

a principled choice of the individual transition probabilities can be made to obtain the desired

macroscopic dynamics as defined by Eq (2). The derivation of the micro-macro link is detailed

in S1 Text.

In the heterogeneous case, each agent computes its own transition probabilities differently

from other agents. We propose a simple response threshold scheme [25], so that agent ag fol-

lows a transition with a fixed probability if the (estimated) option quality v̂ i exceeds a given

threshold δg:

Pl;gðv̂ iÞ ¼
Pl" v̂i > dg

Pl# v̂i � dg
;

i 2 f1; � � � ; ng

l 2 fg; a; r; sg

(

ð4Þ

where Pl" and Pl# are tuneable parameters, and the value δg is drawn for each agent ag from a

probability distributionDl over the range [vm, vM]. With this implementation, it is possible to

establish a relationship between microscopic and macroscopic parameters through the

Fig 1. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour of an agent
in average. Here, the notation Pli

is a shorthand for PlðviÞ (A) PFSM describing the basic commitment

dynamics. Spontaneous transitions are represented by solid lines, interactive transitions by dashed lines. For
a complete version with n + 1 states, see panel A in S1 Fig (B) PFSM describing the dynamics of activity
change as agents switch from latent to interactive states. Latent states are indicated in grey, while changes in
the activity state are represented by dash-dotted arrows. (C) PFSM describing the coupled dynamics of
commitment and activity change. For a complete version with 2(n + 1) states, see panel B in S1 Fig.

doi:10.1371/journal.pone.0140950.g001
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cumulative distribution function F
Dl

ofDl:

F
Dl

¼
lt� Pl#

Pl" � Pl#

; l 2 fg; a; r; sg ð5Þ

For F
Dl

to be a cumulative distribution function, the relationship between quality and macro-

scopic transition rate expressed in Eq (2) must be monotonic in v—either increasing or

decreasing. As a consequence, the step function Eq (4) can be determined by:

Pl" ¼ flðvMÞt

Pl# ¼ flðvmÞt
l 2 fg; a; r; sg ð6Þ

The micro-macro correspondence given by Eqs (5) and (6) holds when each agent ag re-sam-

ples the threshold δg fromDl at every decision step (see also S1 Text). An approximation with

fixed thresholds is valid for recruitment and cross-inhibition, because re-sampling is ensured

by changing partner in each different interaction (as shown in case study I-A below). Fixed

thresholds for spontaneous transitions should not be used, unless the macroscopic dynamics

are dominated by recruitment and cross-inhibition (see case study I-B).

For both strategies—homogeneous and heterogeneous—the derivation of the relationship

between microscopic and macroscopic description levels passes through the introduction of a

finite-size stochastic macroscopic model determined by the systemMaster equation, which

allows us to link the microscopic stochastic description with the macroscopic mean-field

dynamics (see S1 Text for a detailed description).

Latent and interactive agents

In a practical application scenario, agents might not be able to interact with neighbours every τ

seconds. For instance, an agent might be busy estimating the quality of a discovered option, or

spatial/topological factors might prevent frequent interactions. Agents unable to interact are

latent, as opposed to interactive ones. We model changes in this activity state (i.e., the activity

dynamics) by considering that an agent becomes latent with probability PL, and returns inter-

active with probability P I . The switch in activity state is represented by the PFSM in Fig 1B,

which predicts that a fraction of ZI ¼ P I=ðP I þ PLÞ agents can be found asymptotically in the

interactive state. Similarly, ZL ¼ PL=ðP I þ PLÞ represents the fraction of agents in the latent

state. The activity switch is possible for both committed and uncommitted agents, leading to a

PFSM description with 2(n + 1) states (see S1 Text). Recruitment and cross-inhibition are

available only to interactive agents, while discovery and abandonment are available also to

latent agents, depending on the particular application. As an example, Fig 1C reports a PFSM

that correctly preserves the micro-macro link, and is exploited for the search and exploration

task discussed below. Given the microscopic description, it is possible to derive the correspon-

dence between micro and macro parameters by dividing the macroscopic transition rates by ηI
or ηL in Eqs (3), (5) and (6). For the specific case shown in Fig 1C, recruitment and cross-inhi-

bition are modulated by ηI, discovery and abandonment by ηL (see S1 Text).

Results

Following the implementation guidelines described above, we present here two case studies

that showcase the usage of the proposed design pattern. Case study I concerns decentralised

decisions-making by static agents interacting on a fully-connected network, and is divided in

two parts, I-A and I-B. Case study II concerns collective decisions by mobile agents in the con-

text of a search and exploitation task. To ease the discussion and simplify the visualisation, we
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present here a binary decision problem (options A and B with quality vA and vB), and we pro-

vide additional results for the best-of-n scenario in the online supplementary material. To

quantify the agreement between macroscopic models and microscopic implementation, we

look at the system performance through a set of metrics detailed below, and we compare the

process dynamics at different abstraction levels.

Metrics

Different metrics are used in the literature to evaluate the results of a decision-making process,

which are linked to the correctness of the response, the coherence across multiple repetitions,

as well as the speed of the process. Whenever time is required to gather sufficient information,

decision making gives rise to speed-accuracy tradeoffs—a very common phenomenon in bio-

logical systems [26]. In collective decision making, a high coherence of the group is also impor-

tant, as it can minimise the costs for conflicting choices by individuals. As maintaining

coherence is a time-consuming process that requires to spread information widely within the

group, speed-cohesion tradeoffs may also appear [27].

In decentralised systems, accuracy can be defined as the proportion of the group that is

committed to the best option, or to any of the equal-best options. Conversely, cohesion mea-

sures the ability of the group to be committed to the same option, notwithstanding its quality

[27]. Therefore, one can simultaneously have low accuracy and high cohesion, for instance if

10% of the group choses a high-quality option and the remaining 90% goes for a low-quality

one. In the context of engineering artificial systems, it is important to quantify both the aspects

of decision accuracy and group cohesion, and constrast them with the time required to arrive

at a decision.

To this purpose, we first introduce the resolutionR, which refers to the ability to discrimi-

nate between different-quality options, and is related to the normalised quality difference

between any two options A and B:R ¼ jvA � vBj=max ðvA; vBÞ. By requiring a target resolu-

tion, the designer can focus on maximising accuracy only in those portions of the problem

space that are above resolution, and just require that any solution is chosen below the given res-

olution threshold. Note that resolution is normalised so that the minimum quality difference

that can be detected is proportional to the quality magnitude, in analogy to many biological

decision-making processes following the Weber’s law.

Then, we consider the effectivity E as the ability of the group to take a decision within the

maximum execution time T. The effectivity is measured as the fraction of runs that reach the

quorumCq within the given time limit. Effectivity is related to the coherence of decision mak-

ing, as it measures the ability to take a decision (i.e., reach the predefined quorum) within the

maximum allotted time, notwithstanding the quality of the chosen option. By requiring a mini-

mum effectivity threshold, the designer can impose that the system reaches a coherent state

within a maximum time T.

Having defined resolution and effectivity, we introduce the main performance metrics we

take into account. The success rate S corresponds to the fraction of effective runs resulting in a

correct decision—i.e., the quorum is reached for the best option, or any of the equal-best

options—when starting from a fully-uncommitted population. The success rate is defined in

analogy to the exit probability in stochastic processes, and is related to the accuracy of decision

making, because the quality of the chosen option is taken into account. Note that, by looking at

the effective runs only—e.g., runs with effectivity larger than the given threshold—we limit

ourselves only to high-coherence results. The convergence time C is the average time required

to reach the quorumCq computed over all effective runs, and is defined in analogy to the exit

time of stochastic processes. This metric actually corresponds to the speed of the decision-
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making process, and can be exploited together with the success rate to select the most conve-

nient solution that optimises the speed-accuracy/cohesion tradeoff.

Case study I: Collective decisions on a fully-connected network

The first case study illustrates the implementation of decentralised decision making for a mul-

tiagent system in which each agent can potentially interact with any other agent (see Methods).

We present two parameterisations as case study I-A and I-B.

In Case study I-A, we study consensus decisions, that is, we design a system in which the

desired outcome is complete convergence of the group towards the choice of one or the other

option. To this end, we set the decision quorumCq = 1 and we require that a decision is taken

within T = 400s. Here, we also assume that option quality varies in v 2 [0, 1].

The first step towards implementation is the definition of the macroscopic parameterisation

and its relationship with the option quality. The analysis of the macroscopic dynamics from Eq

(1) reveals that consensus can be achieved only when abandonment is null (αA = αB = 0). We

arbitrarily choose a constant cross-inhibition rate sA ¼ sB ¼ �s, which is sufficient for deter-

mining a collective decision [23]. The value �s can be tuned to determine the time scale of the

process: the higher the rate, the quicker the convergence dynamics. Here, we choose �s ¼ 1. In

these conditions, the model predicts two equilibrium points corresponding to consensus deci-

sion for either of the two options, but their stability may vary depending on the relative

strength of discovery and recruitment. Assuming vA� vB, the Model (1) predicts that the equi-

librium at consensus for A is always stable, while consensus for B is stable only when γA<

γB + ρB (see S2 Text). Thanks to this result, an informed choice can be made about the macro-

scopic parameterisation and the relation with option quality: γi = fγ(vi), ρi = fρ(vi), i 2 {A, B}. In

particular, assuming a target resolution R = 0.15, we can minimise the chances of a wrong deci-

sion by designing the system to have a single stable equilibrium for the best option in any deci-

sion problem characterised by above-resolution quality differences. We select linear functions

that link macroscopic transition rates to the quality:

fgðviÞ ¼ k vi; frðviÞ ¼ h vi ð7Þ

where k and h are tuneable parameters. Next, we compute the constraint on the above func-

tions to satisfy our design choice: k> h (1 − R)/R (see S2 Text). Finally, we choose values that

comply with the prescribed bounds: h = 0.1 and k = 0.6.

The second step towards implementation is the analysis of the system performance in the

complete decision space for varying system size N. This can be studied numerically by approxi-

mating the finite-size macroscopic dynamics using the Gillespie algorithm [28]. Finally, the

multiagent system can be deployed following the prescriptions of the design pattern and choos-

ing a convenient implementation strategy. In the homogeneous case, all agents determine Pγ
and Pρ in the same way according to Eqs (3) and (7). Conversely, in the heterogeneous case

transition probabilities are determined by the step function of Eq (4), and vary from agent to

agent with thresholds randomly sampled from the distribution determined by Eqs (5), (6) and

(7). In this case study, we use fixed thresholds and we therefore limit the heterogeneous imple-

mentation to the recruitment probability Pρ, while we keep the discovery probability Pγ homo-

geneous across agents. Finally, we let agents update their state every τ = 0.2 s following the

design pattern guidelines (see S1 Text).

The performance of the multiagent system for both homogenous and heterogeneous imple-

mentations is compared to the macroscopic Gillespie simulations for varying system size N

(see Fig 2A). An excellent match between microscopic and macroscopic dynamics can be

observed for every system size, for both the success rate S and the convergence time C. When
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the difference in quality between the two options is above the resolution R = 0.15, the correct

decision is taken in at least 90% of the cases (i.e., S ¼ 0:9, as evidenced by the isolines in the

bottom-right part of Fig 2A laying within the grey shaded area) for every system size but

N = 10. Indeed, small groups suffer from stochastic fluctuations, reflected by a substantially

lower success rate with respect to larger groups. Conversely, the speed of the process is lower

for larger groups, as indicated by the isolines for Ĉ ¼ 50s in the top-left part of Fig 2A. To

quantify the scaling properties with respect to the system size, we analysed the convergence

time for each decision problem as a function of N. We found a generalised adherence with a

power law behaviour C ¼ bNa, with exponent a� 0.2 as shown in Fig 2B for macroscopic Gil-

lespie simulations, and S2 Fig for multiagent simulations. The coefficient b also varies with the

decision problem: the lower the option quality difference, the higher the coefficient. Looking at

Fig 2B and S2 Fig, we observe that C scales similarly across different decision problems, with

the exception of problems characterised by similar qualities (i.e., vA � vB) that require in

Fig 2. Collective decisions on a fully-connected network: comparison between the micro and the
macro dynamics and scaling properties. (A,C) Comparison between the stochastic finite-size
macroscopic model (black lines) and the multiagent implementation with both the homogeneous strategy (red
lines) and the heterogenous strategy (green lines). Results are displayed for varying system sizeN. For each
possible configuration (vA, vB), 500 independent runs are performed. We show results for configurations with
effectivity E > 0:7. The plot is divided in two parts: in the bottom-right triangle, we consider the success rate S

for each configuration (vA, vB), where vA � vB. For each group sizeN, we show the isolines at S ¼ 0:9. The
gray triangle indicates quality value pairs below the target resolution R = 0.15 (i.e., configurations in which the
two options are considered equivalent). In the top-left half of the plot, we consider the convergence time C for
each configuration (vA, vB), where vB � vA (i.e., the symmetric problems with respect to the bottom-right plot).

For each group sizeN, we show the isolines at C ¼ Ĉ . (B, D) Scaling of the convergence time C with the
system sizeN. For each configuration (vA, vB), we fit the curve C ¼ bNa and we show the heat-map for the
fitted coefficient a (see the bottom-right triangle showing the coefficient value for each configuration (vA, vB),
vA � vB) and b (see the top-left triangle showing the coefficient value for symmetric configurations (vA, vB), vB
� vA) across the decision space. Also in this case we show only configurations where E > 0:7 for all N, and
the white space indicates configurations with low effectivity. (A,B) Results for case-study 1A with vi 2 [0, 1], γi
= 0.6vi, αi = 0, ρi = 0.1vi, σi = 1 and i 2 {A, B}, Ĉ ¼ 50 s. (C,D) Results for case-study 1B with vi 2 [1, 10], γi = ρi

= vi, αi = 1/vi, σi = 10 and i 2 {A, B}, Ĉ ¼ 1 s.

doi:10.1371/journal.pone.0140950.g002
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general more time for convergence. Finally, we show in S3 Fig an example of the convergence

dynamics for a specific decision problem (e.g., vA = 0.9, vB = 0.6), which highlights the close

correspondence between ODEs, Gillespie and multiagent simulations.

Case study I-B is concerned with the general case of value-sensitive decision making [23],

and discusses the implementation in case of less restricting conditions with respect to the previ-

ous case study. We consider a quality range v 2 [1, 10], we fix the quorum for the collective

decision toCq = 0.8 and we limit the total execution time to T = 40 s. Here, we also demon-

strate a fully heterogeneous implementation of the multiagent system.

To obtain value-sensitive decision making [23], discovery and recruitment rates are assumed

to be linearly proportional to the option quality vi (i.e., γi = ρi = vi, i 2 {A, B}), the abandonment

rate is inversely proportional to quality (i.e., αi = 1/vi), while the cross-inhibition rate is constant

(si ¼ �s), which we fix to �s ¼ 10. Given the macroscopic parameterisation, we follow the same

methodology described above to analyse the finite-size effects produced by the system size N,

and we design the multiagent system following both the homogeneous and the heterogeneous

strategies (see Methods). In the latter case, we use fixed thresholds for all transition probabilities

and discuss the error introduced with respect to the macroscopic dynamics. According to the

design pattern prescriptions, agents are updated every τ = 20 ms (see S1 Text).

Fig 2C shows the match between the macroscopic Gillespie simulations and the multiagent

implementation with both the homogeneous and the heterogeneous strategy, for varying sys-

tem size N (see also S3 Fig for an example of convergence dynamics). The correspondence

between macroscopic model and microscopic implementation is remarkable also in this case.

Even with the rough approximation of fixed thresholds for the heterogeneous case, we note a

good match of the micro-macro dynamics, although not perfect especially for the convergence

time C at low qualities. The results show that the studied parameterisation allows to reliably

take decisions for above-resolution decision problems already with N = 100, as indicated by the

success rate S in the bottom-right part of Fig 2C. Conversely, the convergence time C is very

similar across different system sizes. Also in this case, we analysed the scaling behaviour of the

convergence time, and found adherence with a power law behaviour C ¼ bNa, but with a very

low exponent a (see Fig 2D for Gillespie simulations and S2 Fig for multiagent simulations).

With the proposed parameterisation, C becomes nearly independent of the system size N in

large parts of the problem space. The coefficient b is rather low too, indicating fast decisions

especially for large differences in quality. This is a result of the higher transition rates chosen

for the macroscopic model, which are reflected by a smaller timestep τ in the multiagent imple-

mentation as prescribed by the design pattern. Finally, we studied the micro-macro link in a

best-of-n scenario. The results presented in S4 Fig reveal a very good correspondence between

multiagent and Gillespie simulations, therefore validating the methodology beyond the binary

decision problems presented above.

Case study II: Collective decisions in a search and exploitation problem

Here, we present a case study that includes as main features spatiality and local interactions

between agents. The experimental scenario is similar to the swarm robotics study of [16].

Point-size agents move in a 2D environment characterised by three areas—a home and two tar-

get areas—and must select the best quality target (see Methods). Uncommitted agents explore

the environment to discover new options. Committed agents recruit and cross-inhibit other

agents and periodically re-estimate the quality of the option they are committed to. Differently

from [16], here quality is independent of distance. However, spatiality may influence the deci-

sion dynamics (e.g., the rate of discovery is higher for closer targets), and only an accurate

design of the agent behaviour can lead to the systematic choice of the best available option.
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We choose a macroscopic parameterisation similar to the one of case study I-B, but option

quality vi varies in [0.1, 1] and also the cross-inhibition rate varies linearly with quality (i.e., σi
= vi). Besides depending on option quality, discovery is episodic (see S1 Text), being deter-

mined by the diffusive motion pattern of uncommitted agents that start searching from home.

We model the macroscopic discovery rate to be proportional to the quality vi and to decay with

the target distance di as follows:

gi ¼
vi me

�xdi

di

ð8Þ

where ξ and μ are parameters estimated from preliminary experiments (μ� 0.12 and ξ� 0.24),

although geometrical approximations could be used as well.

Besides discovery, spatiality influences also the interaction patterns among agents, given

that interactions are possible only with agents in the local neighbourhood (see Methods). To

ensure a well-mixed system and comply with the design pattern requirements, we limit interac-

tions within the home area and we force agents to periodically return home. As described

above, the design pattern prescribes to have fixed probabilities to become interactive (e.g.,

return home with probability P I) or latent (e.g., leave home with probability PL). Therefore,

we designed the individual behaviour after the microscopic description of Fig 1C following

both the homogeneous and the heterogeneous strategy, and we set P I ¼ 0:001 and PL ¼ 9 PI

to ensure a fraction ηI = 0.1 of interactive agents on average.

The design choices detailed above allow us to determine the microscopic parameterisation

starting from the desired macroscopic transition rates (see S5 Fig for a comparison between the

rates determined by design and those estimated frommultiagent simulations through survival

analysis [29]). We have tested the micro-macro link varying both option quality and target area

distance, to observe how the implementation deals with the inclusion of spatial factors and

interactive-latent dynamics. Indeed, the macroscopic model does not consider such factors,

exception made for the model of discovery of Eq (8). In particular, we are interested in making

consistent choices notwithstanding the target area distance. Fig 3A shows one such case for a

homogeneous system in which the better option is also the farthest. The macroscopic model

predicts convergence on the best-quality option (B in this case, see the trajectory starting from

CU = 1), and the simulations are centred at the predicted stable point. Good agreement between

macroscopic Gillespie simulations and multiagent implementation is observable also for the

success rate S (see Fig 3A inset). For same quality options, the target area distance biases the

choice towards the closer target area (see S6 Fig for the homogeneous case and S7 Fig for the

heterogeneous case). When both distance and option quality are equal (i.e., a completely sym-

metric condition), the system converges toward the one or the other option with equal probabil-

ity, as shown in Fig 3B for the homogeneous case. Here too, the adherence between microscopic

and macroscopic dynamics is remarkable. All these tests have been performed withN = 500

agents. Good agreement is observed also for different system sizes, as shown in S8 Fig.

Discussion

The design pattern methodology we propose provides a complete framework that allows to

move from the choice of the macroscopic parameterisation down to the implementation of the

individual behaviour. Each step is supported by the principled understanding of the causal rela-

tionship between microscopic choices and macroscopic effects. We have substantiated the

methodology with case studies that, despite being idealised, contain all the ingredients to be

taken as reference for practical applications. In this respect, the inclusion of latent states for

individual agents is particularly important, as it allows to preserve the micro-macro link also
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when interactions are sporadic or when spatiality interferes with the well-mixed assumption

[16]. Indeed, departures from the macroscopic predictions are expected in case of heteroge-

neous interaction topologies, as is the case for other ordering processes [30, 31]. In this case,

the micro-macro link could be preserved through the inclusion of heterogeneous mean-field

approximations, which can correct the departure from the assumed well-mixed condition at

the macroscopic level [32]. Future work should aslo take into account the macroscopic effects

of interactions over adaptive and multi-layer networks, in order to (i) take into consideration

the variability of the topology of interactions with time [33] and (ii) allow for the existence of

different layers of connectivity among agents, each pertaining to specific context-related prop-

erties [34].

Besides engineering, our results can be relevant for better understanding the behaviour of

natural systems. With respect to honeybee nest-site selection, our results provide testable

hypotheses about the implementation algorithm employed by individual bees in relation to the

proposed macroscopic model [22, 23]. Our implementation algorithm is simpler than other

individual-based approaches [35, 36], as it abstracts several details that require assumptions

difficult to be verified experimentally. Similarly to previous studies, [36, 37], we have shown in

the second case study that spatiality affects the outcome of the collective decision biasing it

towards closer sites. In our implementation, this is mainly the result of the quicker discovery of

closer sites, while different latencies (e.g., shorter travel times) play a negligible role, thanks to

the fixed probability of becoming interactive required to preserve the micro-macro link (see S1

Text). Field experiments should be targeted to verify the existence of a tradeoff between dis-

tance and quality. Furthermore, the effects of finite-sized groups in the decision dynamics pre-

dicted by the stochastic macroscopic simulations adhere with studies about group-size effects

in natural conditions [38]: the larger the swarm the more accurate its decision. The scaling of

decision time with group size that we have highlighted here represents another interesting

aspect to investigate with field experiments. Finally, the extent to which behavioural

Fig 3. Collective decisions in a search and exploration problem: comparison between the micro and
the macro dynamics. The state space of the system is presented as a ternary plot characterised byΨU +ΨA

+ΨB = 1, so that vertices correspond to fully-uncommitted or fully-committed populations. Macroscopic
dynamics are indicated by trajectories and equilibrium points from the ODEmodel of Eq (1), parametrised
according to the specific configuration. The bold yellow trajectory indicates the behaviour starting from a fully-
uncommitted population (ΨU = 1). Stable equilibrium points are indicated as blue empty circles, while
unstable points are indicated as green empty diamonds. The density map in the background represents the
results of homogeneous multiagent simulations (1000 runs). The inset shows the success rate S for
macroscopic Gillespie simulations (white bars) and multiagent simulations (homogeneous in light gray and
heterogeneous in dark grey). (A) Micro-macro link for a decision problem in which the best option is also the
farthest one (vA = 0.7 < vB = 1 and dA = 1.5 m < dB = 2.5 m). The magnify-glass effect allows to appreciate the
close correspondence between the stable point predicted by the macroscopic model and the results from the
multiagent simulations. (B) Micro-macro link for a completely symmetric decision problem (vA = vB = 1 and dA
= dB = 2.5 m).

doi:10.1371/journal.pone.0140950.g003
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heterogeneities influence honeybee nest-site selection would be interesting to study, as genetic

and molecular determinants of honeybee behaviour seem to play an important role [39, 40].

Behaviour heterogeneity in social systems is an important aspect not to be overlooked, as it

can lead to interesting collective dynamics that are not attainable in fully homogeneous systems

[41–43]. In our study, the choice of response thresholds for the heterogeneous implementation

strategy is supported by the large literature on inter-individual variability in social insects [25,

44–47]. Recent studies have recognised the importance of including individual differences in

behaviour—often referred to as personality or behavioural syndrome [48]—to better under-

stand the collective dynamics [49, 50]. Here, we have highlighted the relationship between the

distribution of individual thresholds and the collective response function, so that macroscopic

predictions could be matched against estimates of the real threshold distribution [51]. We have

also shown that fixed response thresholds well approximate the macroscopic dynamics espe-

cially for interactive processes like recruitment [25]. Associating fixed response thresholds with

variable probability and intensity of responses may lead to more flexible and robust behaviour

at the colony level [47]. Response thresholds well adhere with adaptive mechanisms for thresh-

old adaptation [51, 52], allowing to finely tune the macroscopic response to match the statisti-

cal regularities that characterise the task. This adaptivity can result from evolutionary factors

[53] as well as from development and learning [47]. Integrating adaptive mechanisms in the

microscopic implementation could lead to improved performance [54, 55], and represents a

natural extension for the proposed design pattern.

Methods

Multiagent simulations on fully-connected networks

We implemented a synchronous simulation for a multiagent system on a fully-connected net-

work that directly derives from the design pattern implementation guidelines. At simulation

start, each agent ag estimates the quality v̂ i of all available options i 2 {1, . . ., n}, and on that

basis computes its own transition probabilities Pl;gðv̂ iÞ, with λ 2 {γ, α, ρ, σ}. In the homoge-

neous case, these are computed in the same way for each agent according to the desired para-

meterisation, as prescribed by Eq (3). In the heterogeneous case, each agent ag draws a random

threshold δg from the random distribution Dλ and computes the transition probabilities as pre-

scribed by Eq (4).

The simulation proceeds in discrete time steps of length τ. At each time step t, every agent

updates its state following the PFSM of Fig 1A. All spontaneous transitions are always available.

Conversely, interactive transitions depend on the interaction with a randomly selected partner,

who shares its own commitment state and probabilities of recruitment and cross-inhibition.

Given the well-mixed property ensured by the fully-connected topology, the population-

dependent probabilities P
Ci
are estimated by randomly choosing a different agent aĝ as partner

at each time step and checking its state: transitions are activated if the selected partner is com-

mitted to some option i (see S1 Text for details). In this case, the probability of recruitment Pr;ĝ

and of cross-inhibition Ps;ĝ are received from the selected partner, otherwise they are null. In

this way, the agent ag has complete information to update its commitment state.

Particle-based multiagent simulations

Agents are point-size particles capable to move in a 2D environment. Movement is simulated

through kinematic equations on the basis of the current agent speed ν and orientation θ. The

environment is an infinite plane and does not contain any wall or obstacle. No collision or

physical interference among agents is taken into account, and agents are free to move in any

A Design Pattern for Decentralised Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0140950 October 23, 2015 12 / 18



location of the 2D plane. The environment contains three circular areas with radius r = 0.3 m:

home, target A and target B. Target areas are located at a variable distance di 2 [1.5 m, 3.5 m], i

2 {A, B}, from the home area. Each target area is further characterised by a quality vi 2 [0.1, 1];

each agent can individually estimate the target area quality when is inside the area.

Agents move at a constant speed ν = 0.01 m/s and communicate with their neighbours

within an interaction range dI = 0.6 m. Every τ = 1s, agents update both their state and their

motion direction θ as detailed below.

Interactive and latent agents. As a consequence of local communications and of the dis-

tance between target areas, agents committed to different targets and uncommitted agents can-

not always interact with each other. To ensure a well-mixed system, we limit interactions only

when agents are within the home area. Agents remain in the home area for a time interval τI
exponentially distributed with average 1=PL. When a timeout expires, agents get latent and

leave the home area. Agents remain latent for a time interval τL exponentially distributed with

average 1=P I . The motion pattern is conceived to ensure that agents are within the home area

once they get interactive again (see below). To ensure that on average 10% of the agents are

interactive within the home area, we set PL ¼ 9P I .

Motion pattern. The agent motion direction θ is determined by the current agent state.

While moving, odometry sensors are exploited to track the position of known areas. In this

case study, we model noiseless sensors. In a more realistic implementation, agent-to-agent

communication can be exploited to compensate for odometry noise [56].

An uncommitted agent ag (C(ag) = CU) explores the environment in search of target areas:

when latent, it chooses a random direction and leaves home moving in a straight line. Upon

finding target area i, the agent makes an estimate of the quality v̂ i and gets committed with

probability Pg;gðv̂ iÞ (which is computed according to the homogeneous or heterogeneous

implementation strategy). Then, it stores the target area estimated quality and location—which

is kept updated through odometry—and returns back home. If an uncommitted agent has

explored the environment for [τL/2]s without encountering any target area, it returns home to

ensure that it gets interactive when already within the home area.

An agent ag committed to option i (C(ag) = Ci), while interactive, randomly moves within

the home area to communicate with neighbours. When latent, it leaves home to return to the

chosen target area i and re-estimate its quality v̂ i. The agent returns home after τL/2 s to

become interactive within the home area. While latent, the committed agent abandons com-

mitment with probability Pa;gðv̂ iÞ and returns home. This probability is also computed accord-

ing to either the homogeneous or the heterogeneous implementation strategy.

Interaction pattern. When interactive, all agents located in the home area can exchange

short communication messages with a randomly chosen neighbour. These messages contain

information on the agent state, which is used to estimate the population-dependent probabili-

ties (see S1 Text for details).

When committed to option i, agent ag also communicates the stored location of the target

area and its own probability of recruitment Pr;gðv̂ iÞ and cross-inhibition Ps;gðv̂ iÞ, computed

either with the homogeneous or the heterogeneous implementation strategy. Recruitment

takes place if the partner is uncommitted, otherwise cross-inhibition takes place only if the dis-

tance between the target area locations internally stored by the interacting agents is larger than

the target area radius r. In this way, cross-inhibition takes place only between agents committed

to different options, as prescribed by the design pattern.

When the population is divided between interactive and latent agents, the design pattern

prescribes that the dynamics of activity change must be faster than changes in the commitment

state. To achieve this, we let agents interact only upon getting latent. By doing so, we guarantee
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that the fraction of interactive agents committed to option i is always an unbiased representa-

tion of the global fractionCi (see S1 Text).

Supporting Information

S1 Text. Detailed description of the proposed design pattern methodology. In this docu-

ment, we detail and formalise all aspects of the design pattern for decentralised decision mak-

ing, in some cases repeating and extending the information succinctly given in the main text.

(PDF)

S2 Text. Stability analysis and parameterisation choice for multiagent simulations on fully-

connected networks. In this document, we provide additional results supporting case study

I-A, in particular concerning the stability analysis of the macroscopic system and the selection

of the desired macroscopic parameterisation.

(PDF)

S1 Fig. Probabilistic Finite State Machines (PFSMs) describing the microscopic behaviour

of an agent in average.Here, the notation Pli
; l 2 fg; a; r; sg, i 2 {1, . . ., n} is a shorthand for

PlðviÞ. (A) PFSM describing the basic commitment dynamics for n possible options. Sponta-

neous transitions are represented by solid lines, while interactive transitions are represented by

dashed lines. (B) PFSM describing the coupled commitment and activity dynamics. Latent

states are indicated in grey, and dash-dotted lines represent changes between latent and inter-

active states.

(TIFF)

S2 Fig. Scaling of the convergence time C with the system size N. For each configuration (vA,

vB), vA > vB—and the symmetric case (vA, vB), vB > vA—we fit the curve C ¼ bNa and we

show the heat-map for the fitted coefficient a (bottom-right) and b (top-left) across the deci-

sion space (see Fig 2 for details). Also in this case we show only configurations where E > 0:7.

(A,B) Results for case study I-A with vi 2 [0, 1], γi = 0.6vi, αi = 0, ρi = 0.1vi, σi = 1 and i 2 {A, B}

for the homogenous (A) and the heterogeneous (B) implementation. (C,D) Results for case

study I-B with vi 2 [1, 10], γi = ρi = vi, αi = 1/vi, σi = 10 and i 2 {A, B} for the homogenous (C)

and the heterogeneous (D) implementation.

(TIFF)

S3 Fig. Mean trajectory of the population fractionsCA,CB,CU over time from the initial

condition (CA = 0,CB = 0,CU = 1). Comparison at various levels of abstractions: mean field

model (solid lines), macroscopic, finite-size Master equation (circles), and multiagent simula-

tions (triangles). Simulations results are averaged over 100 independent runs. Errorbars are

smaller than the symbols size, and are not displayed. (Top) Parameterisation of case study I-A

with homogenous multiagent implementation and vA = 0.9, vB = 0.6. (Bottom) Parameterisa-

tion of case study I-B with heterogenous multiagent implementation and vA = 9, vB = 6.

(TIFF)

S4 Fig. Micro-macro link with varying number of options for case study I-B.We compare

the macroscopic dynamics predicted by the mean-filed model, the finite-size macroscopic

dynamics simulated by the Gillespie algorithm and the microscopic dynamics resulting from

homogeneous multiagent simulations (N = 500 agents). We fix the best option (A) to the maxi-

mum quality vA = 1, and all other options to the same, lower quality vi. The plot shows the frac-

tion of the population committed to option A at the end of the simulation, plotted against the

lower option quality vi. Solid lines show the macroscopic prediction of the ODE system. The

box-and-whiskers plots represent the statistics from Gillespie and multiagent simulations.
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Boxes represent the inter-quartile range of the data (2000 runs), while the horizontal lines

inside the boxes mark the median values. The whiskers extend to the most extreme data points

within 1.5 times the inter-quartile range. Outliers are not shown. A very good match can be

appreciated between microscopic and macroscopic dynamics, therefore validating the design

pattern for best-of-n scenarios.

(TIFF)

S5 Fig. Comparison of the macroscopic transition rates resulting from design choices

(solid lines) and estimated from the implemented multiagent system (points). The case for

distance dA = dB = 2.5 m is shown. Estimates have been obtained through survival analysis

computing the Nelson-Haelen estimator for the permanence time of agents in each state [29].

Survival analysis provides powerful non-parametric methods to estimate how the probability

of events changes over time directly from the experimental data. See also [16] for details.

(TIFF)

S6 Fig. Comparison of the macroscopic dynamics with the microscopic homogeneous

implementation for all tested decision problems (1000 runs for each setup).We vary both

distance dA 2 {1.5, 2, 2.5, 3, 3.5} m (from top to bottom) and quality va 2 {0.1, 0.4, 0.7, 1.0}

(from left to right), while we keep fixed the distance dB = 2.5 m and the quality vB = 1.

(TIFF)

S7 Fig. Comparison of the macroscopic dynamics with the microscopic heterogeneous

implementation for all tested decision problems (1000 runs for each setup).We vary both

distance dA 2 {1.5, 2, 2.5, 3, 3.5} m (from top to bottom) and quality va 2 {0.1, 0.4, 0.7, 1.0}

(from left to right), while we keep fixed the distance dB = 2.5 m and the quality vB = 1.

(TIFF)

S8 Fig. Micro-macro link with varying group size for the search and exploitation task.We

show results for vA = 0.7, vB = 1.0, dB = 2.5 m and dA 2 [1.5 m, 3.5 m]. In this condition, B is

the option to be selected, therefore we show the resulting fractionCB as the system size N var-

ies in [50, 500]. The plot shows results from 2000 simulations for each configuration. Dashed

lines represent the equilibrium point of the mean-field model, white boxes represent the master

equation approximated through Gillespie simulations, light grey boxes represent homogeneous

multiagent simulations, dark grey boxes represent heterogeneous multiagent simulations.

Boxes represent the inter-quartile range of the data (2000 runs), while the horizontal lines

inside the boxes mark the median values. The whiskers extend to the most extreme data points

within 1.5 times the inter-quartile range. Empty circles mark the outliers. A good match

between macroscopic and microscopic implementation can be appreciated for every group

size. The larger discrepancies are recognised with the heterogeneous implementation for the

most difficult decision problem (e.g., the wrong option is also the closest one: dA = 1.5).

(TIFF)

Author Contributions

Conceived and designed the experiments: AR VT. Performed the experiments: AR. Analyzed

the data: AR VT. Contributed reagents/materials/analysis tools: AR GV CFOMD VT. Wrote

the paper: AR GV CFOMD VT.

References
1. Liu YY, Slotine JJ, Barabási AL. Controllability of complex networks. Nature. 2011; 473(7346):167–

173. PMID: 21562557

A Design Pattern for Decentralised Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0140950 October 23, 2015 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140950.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140950.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140950.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0140950.s010
http://www.ncbi.nlm.nih.gov/pubmed/21562557


2. Helbing D. Globally networked risks and how to respond. Nature. 2014; 497(7447):51–59. doi: 10.
1038/nature12047

3. Lee EA, Hartmann B, Kubiatowicz J, Simunic Rosing T, Wawrzynek J, Wessel D, et al. The Swarm at
the Edge of the Cloud. IEEE Design & Test. 2014; 31(3):8–20. doi: 10.1109/MDAT.2014.2314600

4. Couzin ID. Collective cognition in animal groups. Trends Cogn Sci. 2009; 13(1):36–43. doi: 10.1016/j.
tics.2008.10.002 PMID: 19058992

5. Baronchelli A, Ferrer-i-Cancho R, Pastor-Satorras R, Chater N, Christiansen MH. Networks in Cogni-
tive Science. Trends Cogn Sci. 2013; 17(7):348–360. doi: 10.1016/j.tics.2013.04.010 PMID: 23726319

6. Brambilla M, Ferrante E, Birattari M, Dorigo M. Swarm robotics: a review from the swarm engineering
perspective. Swarm Intelligence. 2013; 7(1):1–41. doi: 10.1007/s11721-012-0075-2

7. Akyldiz IF, Lo BF, Balakrishnan R. Cooperative spectrum sensing in cognitive radio networks: A survey.
Physical Communication. 2011; 4(1):40–62. doi: 10.1016/j.phycom.2010.12.003

8. Derler P, Lee EA, Sangiovanni Vincentelli A. Modeling Cyber-Physical Systems. Proceedings of the
IEEE. 2012; 100(1):13–28. doi: 10.1109/JPROC.2011.2160929

9. Hamann H, Wörn H. A framework of space–time continuous models for algorithm design in swarm
robotics. Swarm Intelligence. 2008; 2(2):209–239. doi: 10.1007/s11721-008-0015-3

10. Michael N, Kumar V. Planning and Control of Ensembles of Robots with Non-holonomic Constraints.
Int J Rob Res. 2009; 28(8):962–975. doi: 10.1177/0278364909340280

11. Berman S, Kumar V, Nagpal R. Design of control policies for spatially inhomogeneous robot swarms
with application to commercial pollination. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). IEEE; 2011. p. 378–385.

12. Sartoretti G, Hongler MO, de Oliveira ME, Mondada F. Decentralized self-selection of swarm trajecto-
ries: from dynamical systems theory to robotic implementation. Swarm Intelligence. 2014; 8(4):329–
351. doi: 10.1007/s11721-014-0101-7

13. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, Boston, MA; 1995.

14. Babaoğlu G, Canright G, Deutsch A, Di Caro GA, Ducatelle F, Gambardella LM, et al. Design Patterns
from Biology for Distributed Computing. ACM Transactions on Autonomous and Adaptive Systems.
2006; 1(1):26–66. doi: 10.1145/1152934.1152937

15. Fernandez-Marquez JL, Di Marzo Serugendo G, Montagna S, Viroli M, Arcos JL. Description and com-
position of bio-inspired design patterns: a complete overview. Natural Computing. 2013; 12(1):43–67.
doi: 10.1007/s11047-012-9324-y

16. Reina A, Miletitch R, Dorigo M, Trianni V. A quantitative micro-macro link for collective decisions: The
shortest path discovery/selection example. Swarm Intelligence. 2015; 9(2–3):75–102. doi: 10.1007/
s11721-015-0105-y

17. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tache F, et al. Social integration of robots into
groups of cockroaches to control self-organized choices. Science. 2007; 318(5853):1155. doi: 10.
1126/science.1144259 PMID: 18006751

18. Vigelius M, Meyer B, Pascoe G. Multiscale Modelling and Analysis of Collective Decision Making in
Swarm Robotics. PLoS ONE. 2014; 9(11):e111542–19. doi: 10.1371/journal.pone.0111542 PMID:
25369026

19. Srivastava V, Leonard NE. Collective Decision-Making in Ideal Networks: The Speed-Accuracy Trade-
off. IEEE Transactions on Control of Network Systems. 2014; 1(1):121–132. doi: 10.1109/TCNS.2014.
2310271

20. Valentini G, Hamann H, Dorigo M. Efficient Decision-Making in a Self-Organizing Robot Swarm: On the
Speed Versus Accuracy Trade-Off. In: Proceedings of the 2015 International Conference on Autono-
mous Agents and Multiagent Systems (AAMAS 2015). International Foundation for Autonomous
Agents and Multiagent Systems; 2015. p. 1305–1314.

21. Marshall JAR, Bogacz R, Dornhaus A, Planqué R, Kovacs T, Franks NR. On optimal decision-making
in brains and social insect colonies. J R Soc Interface. 2009; 6(40):1065–74. doi: 10.1098/rsif.2008.
0511 PMID: 19324679

22. Seeley TD, Visscher PK, Schlegel T, Hogan PM, Franks NR, Marshall JAR. Stop signals provide cross
inhibition in collective decision-making by honeybee swarms. Science. 2012; 335(6064):108–11. doi:
10.1126/science.1210361 PMID: 22157081

23. Pais D, Hogan PM, Schlegel T, Franks NR, Leonard NE, Marshall JAR. A Mechanism for Value-Sensi-
tive Decision-Making. PLoS ONE. 2013; 8(9):e73216. doi: 10.1371/journal.pone.0073216 PMID:
24023835

A Design Pattern for Decentralised Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0140950 October 23, 2015 16 / 18

http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1109/MDAT.2014.2314600
http://dx.doi.org/10.1016/j.tics.2008.10.002
http://dx.doi.org/10.1016/j.tics.2008.10.002
http://www.ncbi.nlm.nih.gov/pubmed/19058992
http://dx.doi.org/10.1016/j.tics.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23726319
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1016/j.phycom.2010.12.003
http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1007/s11721-008-0015-3
http://dx.doi.org/10.1177/0278364909340280
http://dx.doi.org/10.1007/s11721-014-0101-7
http://dx.doi.org/10.1145/1152934.1152937
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11721-015-0105-y
http://dx.doi.org/10.1007/s11721-015-0105-y
http://dx.doi.org/10.1126/science.1144259
http://dx.doi.org/10.1126/science.1144259
http://www.ncbi.nlm.nih.gov/pubmed/18006751
http://dx.doi.org/10.1371/journal.pone.0111542
http://www.ncbi.nlm.nih.gov/pubmed/25369026
http://dx.doi.org/10.1109/TCNS.2014.2310271
http://dx.doi.org/10.1109/TCNS.2014.2310271
http://dx.doi.org/10.1098/rsif.2008.0511
http://dx.doi.org/10.1098/rsif.2008.0511
http://www.ncbi.nlm.nih.gov/pubmed/19324679
http://dx.doi.org/10.1126/science.1210361
http://www.ncbi.nlm.nih.gov/pubmed/22157081
http://dx.doi.org/10.1371/journal.pone.0073216
http://www.ncbi.nlm.nih.gov/pubmed/24023835


24. Crespi V, Galstyan A, Lerman K. Top-down vs bottom-up methodologies in multi-agent system design.
Auton Robots. 2008; 24(3):303–313. doi: 10.1007/s10514-007-9080-5

25. Robinson EJH, Franks NR, Ellis S, Okuda S, Marshall JAR. A Simple Threshold Rule Is Sufficient to
Explain Sophisticated Collective Decision-Making. PLoS ONE. 2011; 6(5):e19981. doi: 10.1371/
journal.pone.0019981 PMID: 21629645

26. Chittka L, Skorupski P, Raine NE. Speed-accuracy tradeoffs in animal decision making. Trends Ecol
Evol. 2009; 24(7):400–407. doi: 10.1016/j.tree.2009.02.010 PMID: 19409649

27. Franks NR, Richardson TO, Stroeymeyt N, Kirby RW, AmosWMD, Hogan PM, et al. Speed-cohesion
trade-offs in collective decision making in ants and the concept of precision in animal behaviour. Animal
Behaviour. 2013; 85(6):1233–1244. doi: 10.1016/j.anbehav.2013.03.010

28. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem A. 1977; 81
(25):2340–2361. doi: 10.1021/j100540a008

29. NelsonW. Hazard plotting for incomplete failure data. Journal of Quality Technology. 1969; 1:27–52.

30. Sood V, Redner S. Voter Model on Heterogeneous Graphs. Phys Rev Lett. 2005; 94(17):178701–4.
doi: 10.1103/PhysRevLett.94.178701 PMID: 15904343

31. Baronchelli A, Dall’Asta L, Barrat A, Loreto V. Topology-induced coarsening in language games. Phys
Rev E Stat Nonlin Soft Matter Phys. 2006; 73(1):015102. doi: 10.1103/PhysRevE.73.015102 PMID:
16486202

32. Moretti P, Liu SY, Baronchelli A, Pastor-Satorras R. Heterogenous mean-field analysis of a generalized
voter-like model on networks. Eur Phys J B. 2012; 85(3):1–6. doi: 10.1140/epjb/e2012-20501-1

33. Groß T, Blasius B. Adaptive coevolutionary networks: a review. Journal of The Royal Society Interface.
2008; 5(20):259–271. doi: 10.1098/rsif.2007.1229

34. Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, et al. The structure
and dynamics of multilayer networks. Physics Reports. 2014; 544(1):1–122. doi: 10.1016/j.physrep.
2014.07.001

35. Passino KM, Seeley TD. Modeling and analysis of nest-site selection by honeybee swarms: the speed
and accuracy trade-off. Behav Ecol Sociobiol. 2006; 59(3):427–442. doi: 10.1007/s00265-005-0067-y

36. Janson S, Middendorf M, Beekman M. Searching for a new home–scouting behavior of honeybee
swarms. Behav Ecol. 2007; 18(2):384–392. doi: 10.1093/beheco/arl095

37. Laomettachit T, Termsaithong T, Sae-Tang A, Duangphakdee O. Decision-making in honeybee
swarms based on quality and distance information of candidate nest sites. J Theor Biol. 2015; 364:21–
30. doi: 10.1016/j.jtbi.2014.09.005 PMID: 25218431

38. Schaerf TM, Makinson JC, Myerscough MR, BeekmanM. Do small swarms have an advantage when
house hunting? The effect of swarm size on nest-site selection by Apis mellifera. J R Soc Interface.
2013; 10(87):20130533–20130533. doi: 10.1098/rsif.2013.0533 PMID: 23904590

39. Mattila HR, Seeley TD. Genetic diversity in honey bee colonies enhances productivity and fitness. Sci-
ence. 2007; 317(5836):362–364. doi: 10.1126/science.1143046 PMID: 17641199

40. Liang ZS, Nguyen T, Mattila HR, Rodriguez-Zas SL, Seeley TD, Robinson GE. Molecular Determinants
of Scouting Behavior in Honey Bees. Science. 2012; 335(6073):1225–1228. doi: 10.1126/science.
1213962 PMID: 22403390

41. Martino AD, Marsili M. Statistical mechanics of socio-economic systems with heterogeneous agents.
Journal of Physics A: Mathematical and General. 2006; 39(43):R465–R540. doi: 10.1088/0305-4470/
39/43/R01

42. Helbing D, editor. Social Self-Organization. Understanding Complex Systems. Springer Verlag, Berlin,
Germany; 2012.

43. Huang K, Wang T, Cheng Y, Zheng X. Effect of Heterogeneous Investments on the Evolution of Coop-
eration in Spatial Public Goods Game. PLoS ONE. 2015; 10(3):e0120317–10. doi: 10.1371/journal.
pone.0120317 PMID: 25781345

44. Burns JG. Impulsive bees forage better: the advantage of quick, sometimes inaccurate foraging deci-
sions. Anim Behav. 2005; 70(6):e1–e5. doi: 10.1016/j.anbehav.2005.06.002

45. Mailleux AC, Detrain C, Deneubourg JL. Starvation drives a threshold triggering communication. J Exp
Biol. 2006; 209(21):4224–4229. doi: 10.1242/jeb.02461 PMID: 17050837

46. Dussutour A, Nicolis SC, Despland E, Simpson SJ. Individual differences influence collective behaviour
in social caterpillars. Anim Behav. 2008; 76(1):5–16. doi: 10.1016/j.anbehav.2007.12.009

47. Jeanson R, Weidenmüller A. Interindividual variability in social insects—proximate causes and ultimate
consequences. Biol Rev Camb Philos Soc. 2013 Dec; 89(3):671–687. doi: 10.1111/brv.12074 PMID:
24341677

A Design Pattern for Decentralised Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0140950 October 23, 2015 17 / 18

http://dx.doi.org/10.1007/s10514-007-9080-5
http://dx.doi.org/10.1371/journal.pone.0019981
http://dx.doi.org/10.1371/journal.pone.0019981
http://www.ncbi.nlm.nih.gov/pubmed/21629645
http://dx.doi.org/10.1016/j.tree.2009.02.010
http://www.ncbi.nlm.nih.gov/pubmed/19409649
http://dx.doi.org/10.1016/j.anbehav.2013.03.010
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1103/PhysRevLett.94.178701
http://www.ncbi.nlm.nih.gov/pubmed/15904343
http://dx.doi.org/10.1103/PhysRevE.73.015102
http://www.ncbi.nlm.nih.gov/pubmed/16486202
http://dx.doi.org/10.1140/epjb/e2012-20501-1
http://dx.doi.org/10.1098/rsif.2007.1229
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1007/s00265-005-0067-y
http://dx.doi.org/10.1093/beheco/arl095
http://dx.doi.org/10.1016/j.jtbi.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25218431
http://dx.doi.org/10.1098/rsif.2013.0533
http://www.ncbi.nlm.nih.gov/pubmed/23904590
http://dx.doi.org/10.1126/science.1143046
http://www.ncbi.nlm.nih.gov/pubmed/17641199
http://dx.doi.org/10.1126/science.1213962
http://dx.doi.org/10.1126/science.1213962
http://www.ncbi.nlm.nih.gov/pubmed/22403390
http://dx.doi.org/10.1088/0305-4470/39/43/R01
http://dx.doi.org/10.1088/0305-4470/39/43/R01
http://dx.doi.org/10.1371/journal.pone.0120317
http://dx.doi.org/10.1371/journal.pone.0120317
http://www.ncbi.nlm.nih.gov/pubmed/25781345
http://dx.doi.org/10.1016/j.anbehav.2005.06.002
http://dx.doi.org/10.1242/jeb.02461
http://www.ncbi.nlm.nih.gov/pubmed/17050837
http://dx.doi.org/10.1016/j.anbehav.2007.12.009
http://dx.doi.org/10.1111/brv.12074
http://www.ncbi.nlm.nih.gov/pubmed/24341677


48. Jandt JM, Bengston S, Pinter-Wollman N, Pruitt JN, Raine NE, Dornhaus A, et al. Behavioural syn-
dromes and social insects: personality at multiple levels. Biol Rev Camb Philos Soc. 2014; 89(1):48–
67. doi: 10.1111/brv.12042 PMID: 23672739

49. Wray MK, Seeley TD. Consistent personality differences in house-hunting behavior but not decision
speed in swarms of honey bees (Apis mellifera). Behav Ecol Sociobiol. 2011; 65(11):2061–2070. doi:
10.1007/s00265-011-1215-1

50. Planas-Sitjà I, Deneubourg JL, Gibon C, Sempo G. Group personality during collective decision-mak-
ing: a multi-level approach. Proc Biol Sci. 2015; 282(1802):20142515. doi: 10.1098/rspb.2014.2515
PMID: 25652834

51. Weidenmüller A. The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual
variability and self reinforcement in fanning response. Behav Ecol. 2004; 15(1):120–128. doi: 10.1093/
beheco/arg101

52. Theraulaz G, Bonabeau E, Denuebourg JL. Response threshold reinforcements and division of labour
in insect societies. Proc Biol Sci. 1998; 265(1393):327–332. doi: 10.1098/rspb.1998.0299

53. Duarte A, Pen I, Keller L, Weissing FJ. Evolution of self-organized division of labor in a response thresh-
old model. Behav Ecol Sociobiol. 2012; 66(6):947–957. doi: 10.1007/s00265-012-1343-2 PMID:
22661824

54. Franklin EL, Robinson EJH, Marshall JAR, Sendova-Franks AB, Franks NR. Do ants need to be old
and experienced to teach? J Exp Biol. 2012; 215(8):1287–1292. doi: 10.1242/jeb.064618 PMID:
22442366

55. Westhus C, Kleineidam CJ, Roces F, Weidenmueller A. Behavioural plasticity in the fanning response
of bumblebee workers: impact of experience and rate of temperature change. Anim Behav. 2013; 85
(1):27–34. doi: 10.1016/j.anbehav.2012.10.003

56. Gutiérrez A, Campo A, Monasterio-Huelin F, Magdalena L, Dorigo M. Collective decision-making
based on social odometry. Neural computing & applications. 2010; 19(6):807–823. doi: 10.1007/
s00521-010-0380-x

A Design Pattern for Decentralised Decision Making

PLOS ONE | DOI:10.1371/journal.pone.0140950 October 23, 2015 18 / 18

http://dx.doi.org/10.1111/brv.12042
http://www.ncbi.nlm.nih.gov/pubmed/23672739
http://dx.doi.org/10.1007/s00265-011-1215-1
http://dx.doi.org/10.1098/rspb.2014.2515
http://www.ncbi.nlm.nih.gov/pubmed/25652834
http://dx.doi.org/10.1093/beheco/arg101
http://dx.doi.org/10.1093/beheco/arg101
http://dx.doi.org/10.1098/rspb.1998.0299
http://dx.doi.org/10.1007/s00265-012-1343-2
http://www.ncbi.nlm.nih.gov/pubmed/22661824
http://dx.doi.org/10.1242/jeb.064618
http://www.ncbi.nlm.nih.gov/pubmed/22442366
http://dx.doi.org/10.1016/j.anbehav.2012.10.003
http://dx.doi.org/10.1007/s00521-010-0380-x
http://dx.doi.org/10.1007/s00521-010-0380-x

