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SUMMARY

Recent technological developments have resulted in the emergence of new ad-

vanced vehicles such as suborbital vehicles and personal air vehicles. These innovative

vehicles have in turn opened up new markets that are characterized by a large and com-

plex solution space that requires designers to account for multiple objectives in early design

phases. The complexity of these new vehicles also gives rise to a large combinatorial space

of possible configurations for which no baseline has been established. A successful market

penetration requires designers to define an optimized baseline and to identify both the main

design drivers and potential technology gaps. Another major challenge is the presence of

evolving uncertainty in requirements due to the lack of experience and established regula-

tions. Hence, flexible decision-making techniques are needed to alleviate risks inherent to

the launch of new programs and support informed go/no-go decisions. This research aims at

supporting the development of emerging markets by establishing a methodology that enables

a broad design space exploration at a conceptual level, and guides the selection of solutions

against unclear objectives and under evolving uncertainty in requirements. In particular,

this research uses the development of profitable, safe, and robust suborbital programs as a

proof-of-concept to demonstrate the capabilities of the proposed methodology.

A review of current design approaches identified a lack of efficient design space ex-

ploration techniques. Current methods are indeed only capable of either comparing, at a

high-level, numerous architectures or of optimizing a handful of alternatives with respect to

more detailed parameters. In addition, there is a lack of available methodology to model and

propagate evolving uncertainty in requirements. To bridge these gaps, a four-step method-

ology is developed based on the generic top-down design decision support process. First, the

decision criteria are established. In particular, the design objectives are clearly identified

and the design constraints are determined and modeled with time-dependent membership

functions. Second, a new variable-oriented morphological analysis is developed to generate

xxx



all feasible concepts so that they can be systematically further optimized and compared.

Third, a modeling and simulation environment is developed, which is capable of rapidly

evaluating the performance, life-cycle costs, and safety of all types of suborbital vehicles at

a conceptual design level. Finally, a new evolutionary multi-architecture algorithm based

on architecture fitness is implemented that drives multi-objective optimization algorithms

to simultaneously compare and optimize all configurations. To support decisions under

evolving uncertainty, requirements are modeled with time-dependent membership functions

and are propagated using fuzzy set theory.

The new modeling and simulation environment was developed and implemented in the

context of suborbital vehicle design. By leveraging cycle-based approaches and surrogate

modeling techniques, the performance of all chemical rocket engines can be evaluated with

an accuracy of 3%, while dividing the execution time by a factor of 105 compared to current

physics-based models. This environment is also the first of its sort capable of estimating

the life-cycle costs of hybrid rocket engines. The application of the proposed methodology

also provides decision makers with key insights into the suborbital market. In particular, it

demonstrates that a wisely developed commercial suborbital program might be profitable.

The methodology also quantifies the trade-offs between affordable winged air launched ve-

hicles powered by solid engines and safe slender vehicles powered by hybrid engines. When

compared with existing approaches, the proposed methodology allows decision makers to

find solutions 40% more performant for the same execution time or 40 times faster for the

same accuracy. By quantifying the trade-offs between risk and expected performance, this

methodology also helps designers make challenging go/no-go decisions and provides them

with the best program start date. In particular, it provides a robust solution that increases

the probability of success by 10% compared to those generated by traditional approaches.

Finally, this methodology is a precious tool for designers who wish to quantify and rapidly

assess the impacts of potential future regulations on the selection of a design concept and

the profitability of the corresponding program.
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CHAPTER I

MOTIVATION

The transportation of people and goods is crucial for a healthy economy and is one

of the key contributors of overall good living standards. To meet people’s needs, multi-

ple means of transportation are available that are characterized by specific advantages and

drawbacks. Requirements can be driven by various sources such as cost, duration, distance,

topology, climate, and safety. To meet these requirements, more and more sophisticated

vehicles have been developed over the last decades such as trains, cars, boats, aircraft, and

spacecraft. Recent technology enhancements in multiple fields combined with demanding

customers’ requirements also result in the development of advanced vehicles which have

the potential to open new markets: suborbital vehicles, flying cars, hypersonic commercial

aircraft, magnetic trains, etc. To support the development of these emerging markets, deci-

sion makers must deal with specific challenges and characteristics. This chapter intends to

identify these key drivers by analyzing emerging transportation markets with a particular

emphasis on the ones served by suborbital vehicles and flying cars. A suborbital flight is

a short flight (usually less than three hours) during which the vehicle reaches the Karman

line. The latter is an imaginary boundary (that separates the atmosphere from outer space)

set by the Fédération Aéronautique Internationale (FAI) at 100 kilometers (62 miles). In

order to reach this limit, the vehicle must reach a speed high enough (around Mach 3) to

perform a parabola before safely returning to Earth. The main difference with an orbital

flight is that the maximum speed remains below the first cosmic speed (around 8 km/s),

which is the speed required to escape Earth’s gravity. Flying cars, also referred to as road-

able aircraft intend to enhance door-to-door mobility while reducing their environmental

footprint. These are hybrid vehicles which share characteristics with both aircraft and cars.

On the one hand, they allow their owners to use conventional roads to reach areas which

are not equipped with runways or which are too dense to enable take-offs and landings.
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On the other hand, they also allow them to rapidly cross large forests, maritime areas or

cover long distances (up to 900 km) faster than any conventional ground vehicles. To fully

describe the specific features of these new markets, Section 1.1 highlights the importance

of considering multiple objectives and their consequences on the vehicles’ design. Next,

Section 1.2 provides a review of existing concepts of suborbital vehicles and flying cars to

illustrate the challenges inherent to the design of such vehicles. Then, Section 1.3 addresses

the uncertainty in requirements and its evolution through the establishment of these new

markets. Finally, Section 1.4 uses these challenges to establish decision makers’ needs to

support the development of those markets.

1.1 The Presence of Multiple and Competing Objectives

When designing future aerospace vehicles, decision makers have to deal with multiple

and competing objectives in addition to traditional performance objectives. Indeed, accord-

ing to Schrage [386], 37% of project failures or delays are related to requirement definition

problems: 13% come from poor user input elicitation, 12% from incomplete requirements,

and 12% from changes in requirements. Therefore, requirements elicitation and analysis is

a critical step of any design project or program. Yet it is a very challenging one that has

serious consequences on programs’ competitiveness and viability if not done properly [386].

To remain competitive, companies have to develop innovative products that successfully

attract customers and meet both design and marketing requirements. As the product pro-

gresses through its life-cycle, the number of requirements and objectives to be met tends to

increase, leading to more complex decisions. Examples of requirements and objectives in the

context of the design of revolutionary concepts include affordability, safety, and customer

satisfaction. These objectives, along with their impacts on the design, are presented in this

section.

1.1.1 Affordability: a Key Enabler

The success of a market is primarily driven by its ability to meet potential customers’

expectations, especially as they relate to cost. This concept is known as affordability, which

is “the balance of benefits provided or gained from the system to the cost of achieving those
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benefits” [281]. If only few customers can afford the product, its market penetration will be

limited. The goal of this section is to demonstrate the importance of designing affordable

products. For that purpose, the relationship between price and demand, known as the price

elasticity on demand, is first discussed. Then, the impact of including affordability on the

vehicle design is assessed, as well as the importance of decreasing the life-cycle costs.

1.1.1.1 Price Elasticity

The law of demand states that the higher the price of a good or product, the less

customers will purchase. According to Anderson et al., this is the “most famous law in

economics, and the one that economists are most sure of” [14]. This section aims at demon-

strating that the sustainability of revolutionary concepts, especially suborbital vehicles and

flying cars, highly depends on their affordability. Advanced vehicles are able to serve two

different types of markets, transport and tourism, which are characterized by numerous

alternatives already available to meet people’s needs. Hence, the abundance of available

substitutes makes the demand for these vehicles highly sensitive to price. This elasticity Ed

is measured using Equation 1, where Q is the demand and P the price [329].

Ed =

dQ
Q

dP
P

(1)

Except for some very specific cases, this elasticity Ed is always negative. For example, if a

3% increase in price implies a 6% decrease in demand, the price elasticity of demand will

be -2. Based on this index, Anderson et al. decomposed the products/services into three

categories [14]:

• Inelastic products: products for which the price elasticity is greater than -0.8. They

mainly include basic food and legal services.

• Approximately unitary products: products for which the price elasticity is close to -1.

They mainly include housing, private education and television receivers.

• Elastic products: products for which the price elasticity is smaller than -1. They

mainly include restaurant meals, airline travels and luxury automobiles.
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Anderson et al. also show that specific brands of vehicles and foreign leisure travels have

a price elasticity close to -4 and are thus extremely sensitive to price. Price sensitivity can

also vary with time. Hence, according to Smith et al., the price elasticity of air travels is

expected to increase over the next decades, as shown in Figure 1 [400].
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Figure 1: Price elasticity of air travels [400]

Mavris et al. emphasize the importance of cost reduction for emergent modes of trans-

portation [255]. Figure 2 shows that if costs are not highly reduced, a new N+3 vehicle

(vehicle that will reach a Technology Readiness Level (TRL) of 4-6 in 2025) will not be able

to gain significant market shares. They also show that future high potential vehicles (with

ticket price factor smaller than 3) have a price elasticity of -2.7.
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Figure 2: Importance of price reduction for market penetration [255]

Price elasticity for flying cars is even more important as such vehicles target a wealthy

population wishing to improve its door-to-door mobility. Indeed, Ku shows that price elas-

ticity is especially high when travels are driven by individual and luxury reasons rather

than corporate and necessity reasons [246].

Figure 3: Key contributors to VTVL PAV market share [254]
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Mavris et al. conducted a study to identify the key enablers of a Vertical Take-Off and

Vertical Landing (VTVL) Personal Air Vehicle (PAV) market [254]. Presented in Figure 3,

the results show that gaining market shares mainly relies on decreasing cost, which is the

main driver. Passenger capacity, which can also be directly translated into cost, is the

second key driver as it enables the cost to be distributed across more passengers.

Similar to flying cars, the successful development of the suborbital market also requires

private companies and investors to keep the costs down to generate demand. The sensitiv-

ity of demand to ticket price for individuals with more than $5 million investable assets is

illustrated in Figure 4.
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Figure 4: Price elasticity for suborbital tourism [435]
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Virgin Galactic, XCOR, and Space Adventures anticipate a ticket price between $150,000

and $250,000 [459, 467, 473]. As illustrated in Figure 4, these prices are within the range

where the demand is highly sensitive to small changes in prices. For ticket prices above

$300,000, the market becomes a niche reserved to billionaires who are not really sensitive

to ticket prices. Below this threshold, reducing the ticket price highly impacts the demand.

Hence, the previous analysis shows that the markets served by new advanced

vehicles are characterized by a demand highly sensitive to price. Hence, in order

to optimize profit, it is critical to understand the trade-offs between price and vehicle size.

1.1.1.2 Impact of Demand on Design

There are inherent correlations between demand, price and vehicle configuration. For

example, lower ticket price results in higher demand but lower profit per ticket. Similarly,

demand impacts the capacity and thus the size of the vehicle. Changes in vehicle size, in

turn, impact the vehicle performance and consequently the ticket price. These relationships

are represented in Figure 5.
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Figure 5: Relationships between demand, capacity, size, performance, and price
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As demand increases and a new market is generated, regulations will have to be defined

and put in place, which will also significantly impact the design of the various vehicles.

Moreover, if the demand is high enough to create a large worldwide market, regulations

will necessarily emerge and also impact the design of the different vehicles. In particular,

regulations that limit emissions, noise, etc. will be defined. Kroo et al. showed that the

optimization of a wide-body aircraft against either cost or NOx reduction leads to very

different vehicles [388, 453]. For example, the wing area varies from 3,890 ft2 for minimum

cost to 4,810 ft2 for minimum NOx, which corresponds approximately to a 20% increase in

wing area. Similarly, the thrust required at sea level jumps from 67,700 lbs for minimum

cost to 97,400 lbs for minimum NOx, which corresponds to an increase of around 40% in

thrust. Fan et al. investigated the impact of changes in cruise speed on airline operations

and economics [139]. They showed that a 15% reduction in cruise speed would allow airlines

to save up to 10% in fuel and consequently decrease their cost by approximately 8%. This

decrease in cruise speed results in another optimum configuration. If new vehicles are spread

around the world, specific local regulations such as noise limit are likely to emerge. Mavris et

al. discussed the correlations between vehicle-level design variables and noise [253]. They

highlighted that airframe design variables such as wing area and flap ratios have a high

impact on approach noise whereas engine-sizing variables such as fan pressure ratio have a

high impact on take-off noise.

In the context of emerging markets, such regulations have not been established yet.

However, recent advancements require regulations and certification processes to be defined.

Such stringent regulations will tend to slow the market expansion down [167, 265]. In

addition, if new limits are established over the next decades to regulate new vehicles, they

will impact the overall vehicle design and change the optimum design.

Depending on price and demand, a different public will be concerned: billionaire tourists,

private pilots, general public, etc. Hence, the status of the passengers also impacts the

design of the vehicle. Indeed, requirements are not the same for highly trained astronauts,

fighter pilots, private pilots or general public. Therefore, the price level, and consequently

the targeted market, will also influence the design of the vehicles. In 2004, the commercial
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Space Launch Amendments Act introduced the first legislation for passenger transportation

in space, but it is only applicable in the United States. Moreover, this legal framework is

not complete yet and will continuously evolve with the introduction of new vehicles, new

countries, and new companies [143, 252]. The establishment of an international regulation

or a change in the current U.S. legislation would highly impact the design of the vehicles,

especially in terms of maximum admissible load factor, rocket engine characteristics, etc.

As far as flying cars are concerned, their democratization would require the designers to

focus on safety. This is achieved through stall speed, since the lower the stall speed, the

safer the vehicle. Decreasing the stall speed requires a decrease in maximum take-off gross

weight, which in turn highly impacts cost. Moreover, the democratization of flying cars

would probably require training skills for pilots. While they first intend to target private

pilots, enhancements in new technologies such as avionics could help open this market. Less

trained pilots or even the general public that followed a specific short training could be able

to use these flying cars.

All these observations demonstrate that demand, which is highly sensitive to

ticket price, would highly impact the design of the vehicles. The interrelationships

discussed above are further complicated by the increase in competition often seen with the

democratization and profitability of new markets. Moreover, the potential profitability na-

ture of these new markets, usually tends to increase the number of competitors, as discussed

in the following section.

1.1.1.3 Highly Competitive Markets

Even though military or government incentives have helped gain precious knowledge

and technical capabilities about these revolutionary vehicles, emerging markets are mainly

driven by private entities. In the context of suborbital vehicles, companies from more than

eight countries have developed their own concepts including the United States of America,

Romania, the United Kingdom, Canada, Argentina, Russia, Israel, and France. Figure 6

displays the location of suborbital commercial spaceports able to operate these vehicles.

The spaceports that are ready for suborbital flight operations are shown in green, while the
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spaceports under construction, or planned (the construction has not been started yet but

money has already been invested) are shown in red. Nine countries are involved in such

projects or already benefit from active spaceports: the United States, Sweden, France, the

Netherlands, Malaysia, South Korea, Russia, and the United Arab Emirates.

Figure 6: Location of current and future spaceports

Most of the spaceports are located in the United States since more than 50% of the

current companies are based there. While being currently dominated by the United States,

the market is expected to become a worldwide market in which a lot of money has already

been invested and in which competition will be strong enough to see several competing

companies emerge. Therefore, according to these studies, demand seems to support a

worldwide emerging multibillion market in which numerous companies will design, build,

and operate their own concepts over the next decades.

Similar to suborbital vehicles, hundreds of flying cars have been developed by entities

such as National Aeronautics and Space Administration (NASA) and Defense Advanced
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Research Projects Agency (DARPA). However, none has been certified or is commercially

available yet. Among potential competitors, the three most advanced seem to be Terrafugia

Transition [430], PAL-V [328], and AeroMobil 2.5 [6]. While the price is similar across all

vehicles (around $300,000), they exhibit different design characteristics and performance.

This shift from government-funded projects to commercial enterprise is strongly char-

acterized by a need for cost reduction. Indeed, companies and private investors do not have

the luxury of cost and schedule overruns, overall life-cycle costs must be assessed and con-

trolled and not passively suffered. Consequently, an important part of the design process

will focus on reducing cost. For example, in 2011, SpaceX estimated the development costs

of its Falcon 9v1.0 at approximately $390 million, while NASA had estimated these costs

at $3.6 billion using its typical development process [121, 311, 411].

Hence, new markets are characterized by numerous competitors that develop their own

concepts with specific capabilities based on various requirements. As discussed, there

is a need for reducing life-cycle costs while designing a vehicle that will face a

strong competition. If life-cycle costs are important when designing an aerospace vehicle,

safety also has to be considered. Indeed, according to Jerome Lederer, first head of safety at

NASA, “if you believe that safety is expensive, try an accident.” [393] The need to include

safety as a design objective is discussed in the next section.

1.1.2 Safety: a Regulatory Constraint

As most aerospace vehicles aim at transporting people and/or goods, safety becomes

a critical requirement. Space programs such as Apollo, the Space Shuttle, and the Space

Transportation Systems have demonstrated that iterative design methods based on perfor-

mance analysis take time and can lead to concepts that would be too costly to produce

or not safe to operate if they carry humans. During the 1990’s, as reliability became a

key requirement for customers, criteria used to select vehicles shifted from performance

and cost to reliability. The Columbia Accident Investigation Board illustrates this shift:

“The White House, Congress, and NASA leadership exerted constant pressure to reduce or

at least freeze operating costs. As a result, there was little margin in the budget to deal
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with the unexpected technical problems or make Shuttle improvements.” [168] Since the

Columbia disaster in 2003, NASA has promoted a safety-first policy that puts reliability

and safety at the forefront of the design. As a consequence, this led to “architectures that

meet vehicle and mission requirements for cost and performance, while ensuring that the

risks to mission and crew are acceptable.” [413]

Safety was a concern even before space programs. During World War II, E. Pieruschka

explained that the weakest link theory was not sufficient to explain aircraft failures [261].

He showed that for a system with 20 components with a reliability of 90% each, the total

system would have a reliability of only 12% [464]. Another example, from the building

industry, is the CityCorp Center [476]. After it was built, a major flaw was discovered in

the design: the building could not resist strong quartering winds if the tuned mass dumper

was to shut down. Indeed, during the design, some adjustments were made, such as the use

of bolts to secure joints instead of welding techniques. This led to a collapsing probability of

6.5%. Once the discrepancies were unveiled, CityCorp worked jointly with security services

to develop an evacuation plan and make emergency repairs. Meanwhile, three weather

specialists were monitoring winds. It shows that by making small changes in the design,

the building’s safety was not ensured anymore. The increased access to information has

also impacted the design methodologies as failures are now quickly reported on the web.

Public expectations are higher as capabilities are changing towards computerized resources

that should allow faster and more reliable calculations. This demonstrates the importance

of taking into account safety while designing in order to avoid extremely large operating

and maintenance costs [452].

According to the Aerospace Corporation, the “launch of expendable vehicles, when used

as a first stage to lift reusable rockets carrying crew and spaceflight participants, as well

as launch and reentry of reusable launch vehicles with crew and spaceflight participants

aboard, should be regulated differently than launch of expendable vehicles without humans

aboard.” [391] Hence, more stringent regulations are needed when vehicles carry human

beings, especially paying passengers. Based on these observations, one can conclude that it

is important to design for reliability in order to decrease the overall risk of failure [332].
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In their forecast of the future market demand for U.S. suborbital reusable launch vehi-

cles, NASA and the Aerospace Corporation identify safety as a key success factor. According

to them, “societal demands for safety of transport vehicles have increased significantly over

time. Because of this, assessing the level of safety that a system should achieve given its per-

formance and technical maturity is a key to determining the demand for its services.” [472]

Besides, the Federal Aviation Administration (FAA)’s Office of Commercial Space Trans-

portation recognizes the importance of integrating safety in the design process in order to

promote the emergence of suborbital space tourism [264].

The International Association for the Advancement of Space Safety (IAASS) is working

on providing rationalized guidelines using existing data, information, and knowledge orig-

inated from published papers, conferences, and industry resources [367]. These guidelines

represent an effort to harmonize the different regulatory philosophies between the United

States, where suborbital vehicles are licensed as launch vehicles, and Europe, where regula-

tors have suggested to certify such vehicles as aircraft. At the May 7 meeting, though, sub-

orbital vehicle manufacturers only expressed little support for the IAASS guidelines. “It’s

fundamentally wrongheaded,” said Jeff Greason, chief executive officer of XCOR Aerospace,

a company developing the Lynx suborbital vehicle. He argued it was unwise to establish

safety standards through theoretical analyses rather than flight experience [155]. “I don’t

think it’s right or healthy for the development of the industry to start touting these analyses

as a level of safety we can achieve before we’ve achieved it.” [155]

Most of the suborbital vehicle manufacturers are aware of the importance of safety and

have adopted a design procedure that promotes reliability and safety. In particular, the As-

tronaute Club Européen (ACE) developed a vehicle following a “safety first” approach [190].

They considered safety and reliability as the chief goal of the project. For that purpose, they

have selected a specific nontoxic kerosene and liquid oxygen engine that can be shut down in

case of emergency. In addition, they have incorporated an air-breathing engine to improve

the safety of the landing phase. Moreover, the cabin design is driven by safety require-

ments: reduction of effective load factor, ejection seats, flight control management system,

etc. Similarly, the HyFlyer has been designed by trading life-cycle costs and operational
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performance against system reliability, safety hazards, and environmental impacts [149].

Abensur developed innovative avionics and propulsion architectures for a “designed to

safety” space vehicle [3]. For that purpose, he used segregation (physical separation between

subsystems), differentiation (different hardware and software subsystem designs), and high

failure tolerance.

In 2004, to support the development of small and easy-to-fly aircraft, the FAA created

the light-sport category [146]. A light-sport vehicle needs to have a single engine, an un-

pressurized cabin and no more than two seats, weigh less than 600 kg, and have a maximum

airspeed limit of 222 km/h. According to Allen, vice president of sales at Terrafugia, in

2008, engineers asked the FAA if they would consider a flying car as being under this reg-

ulation, “before they made the investment of time and effort they wanted to know that

FAA would be supportive.” [314] At that time, few flying cars existed and thus the FAA

agreed. As a flying car can be operated both on roads and in the air, it needs to meet both

regulations. When designing a roadable vehicle, it is necessary to take into account require-

ments for both the aircraft and the car parts. Those additional requirements may impact

the design. For example, ground operations require airbags, windshields, wiping systems,

impact guards, mirrors, etc. Those additional subsystems, in comparison with a simple

aircraft, impact the empty weight. The structure of the flying car should also comply with

crash test regulations. When in aircraft configuration, back-up systems such as full-vehicle

parachutes should be implemented, also increasing the empty weight of the vehicle. Hence,

summing the additional weight may exceed the limit imposed by the regulation. Designers

will thus have to change the certification category, adding new requirements. For the Tran-

sition, they first started by meeting compliance requirements with the National Highway

Traffic Safety Administration (NHTSA) by submitting simulation results [430]. One hurdle

was establishing the responsibility between the requirements for air and road regulations.

For example, its engine, designed for flying performance is not required to comply with

federal emissions regulations, hence the Environmental Protection Agency (EPA) decided

to consider it in the aircraft category. In 2015, Terrafugia was granted an exemption for its

roadable aircraft by the FAA as its weight was over the regulation limit and by the NHTSA
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as they wanted to change the windshield material from glass to lightweight plastic [258, 392].

Indeed, glass would not resist in case of bird strike while flying and cracks might reduce

the operator’s visual field. They also asked to change the tire type as they need to be

more robust for take-off and landing, hence increasing the weight. Speed limitations also

constrain the design: when on the road, the vehicle should be able to go at the same speed

as other users, especially on the highway. When flying, maximum stall speed limitations

should be ensured. Both those speeds constrain the design of the engine. In addition, as

most roadable vehicles will be partially automated, subsystems will be necessary to avoid

other flying elements in the air traffic, to fly in bad weather conditions, and to avoid re-

stricted airspaces. Indeed, pilots will only have a twenty-hour training to be able to fly

such a vehicle so they will not know all the limitations, that thus need to be computed by

the vehicle. If the pilot becomes unresponsive, then emergency auto-landing should also be

implemented [144, 317, 431].

All these observations and examples show that safety is a critical design objective

that needs to be considered in early design phases, as it highly impacts the

design. While being affordable and safe, a concept also needs to be marketable and meet

consumers’ expectations to be successful, as discussed in the next section.

1.1.3 Passenger Experience: a Key Competitive Advantage

Current economic conditions require designers to develop innovative products that per-

fectly meet customers’ requirements. While multiple marketing approaches exist, one of the

most commonly used for innovative products is the technology push strategy [208]. It is

based on the design of new products due to enhancements in manufacturing techniques or

technological capabilities. These changes result in an improvement of the products on the

market, their cost, and performance. While this strategy tends to favor innovation, it often

fails to adequately capture customers’ needs. A good example of a technology push failure

is the Sinclair C5 [34]: a small one-person electrically powered transport vehicle with pedal

cycling assistance. This vehicle was developed in 1985 to be the first electric car. It was

first launched in Great Britain and even though it was a state-of-the-art vehicle, it did not
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receive great reviews and sales never went high. The public found it inappropriate for the

British market as the C5 was not rainproof, could not go faster than 24 km/h [398], and

needed pedaling for hill climbing. Hence, even though the chassis was designed by Lotus

Cars and the material used was extremely innovative for 1985, the technology push strategy

failed. To avoid such failures, another approach can be used: the market pull strategy. It is

based on a clear and identified customer demand. This approach usually aims at generating

a response to marketing actions. However, this approach fails to support the development

of breakthrough products. As such, there is a need for an approach that considers both

performance and the voice of the customer [159]. This section aims at discussing some

of the additional requirements that have to be taken into account when designing future

aerospace vehicles, especially the ones coming from customers.

According to many studies [16, 218, 334, 335], passenger preferences are based on their

flight experience and comfort, which highly vary between airlines, seat categories, cabin

layout, etc. Therefore, allowing airlines to improve passenger experience becomes a crucial

competitive advantage for vehicle manufacturers. Even though cost is an important crite-

rion, an improved comfort appears to have the same importance. According to Air Canada’s

CEO, “buying a fuel efficient aircraft is just half the recipe for pleasing passengers we need

to differentiate.” [241] In particular, the Association for Passenger EXperience (APEX)

conducted a survey and discovered that, once on-board, the main concern for passengers

is the legroom [480]. As the population is getting taller and bigger, seats are becoming

too narrow and people are getting less comfortable, transforming an agreeable flight into a

painful and stressful one [57, 227, 324, 470, 479, 483]. A survey was developed and pub-

lished by Deveraux et al. [156] to identify passenger expectations about these aspects with

a sample of 340 passengers. Seat comfort is an issue for 62% of passengers and 35% are

willing to pay more for extra legroom.

As suborbital flights are usually short and expensive, passengers expect to benefit from a

high level of comfort. Besides, since one of the key interests is to enjoy the micro-gravity, it

becomes crucial for passengers to have enough space. Increasing the seat pitch, or legroom,

will allow them to move freely and get a feeling of what astronauts live. When suborbital
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flights are used for scientific research, the material needed might occupy a large volume in

the cabin. The same objective has already been taken into account when designing aircraft

for parabolic flights, as shown in Figure 7.

Figure 7: Experiments on board the A300 Zero-G [255]

Current manufacturers already advertise their larger seat pitch and cabin comfort com-

pared to their competitors. For example, Virgin Galactic claims that: “SpaceShipTwo’s

cabin has been designed to maximize safety and comfort: it is the only spacecraft in history

designed explicitly to optimize its passengers’ experience. A dozen windows line the sides

and ceiling of the spacecraft, offering each astronaut the ability to view the black skies of

space as well as stunning views of the Earth below. Exposure to G-forces during Space-

ShipTwo’s ascent and descent is safely and comfortably managed thanks to systems such

as our custom-designed, articulated seats, which are upright during rocket boost and re-

clined during reentry. The cabin is also designed for unfettered enjoyment of a large floating

environment.” [462]

As suborbital vehicles are mainly used for space tourism and scientific research, one of

the key differentiation factors is their ability to provide a “space environment”. This corre-

sponds to the micro-gravity phase. Hence, one of the objectives when designing suborbital
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vehicles might be to increase the duration of the weightlessness phase.

Another key metric when designing suborbital vehicles is the maximum acceptable load

factor, which is directly linked to the force applied to the vehicle due to a change in velocity.

Load factor directly impacts passengers and their comfort. A direct consequence of positive

load factors is to make passengers feel heavier, and consequently to make motions difficult.

In addition, load factors highly affect human organs and might cause passenger discomfort.

This is caused by neurosensorial and cardiovascular effects, as well as other negative effects

on lungs, human musculoskeletal system, inner ear, etc. As a consequence, limiting the

maximum load factor usually becomes a key objective for manufacturers willing to improve

passenger experience.

Table 1 compares these two metrics (seat pitch and duration of the micro-gravity phase)

for different suborbital vehicle concepts. As demonstrated, these characteristics highly vary

between manufacturers and might be used as competitive advantages.

Table 1: Passenger experience comparison for various suborbital vehicle concepts [252]

Metrics
Space-

ShipTwo
RocketPlane

XP
New

Shepard

Seat pitch (m) 1.50 0.91 0.74

Weightlessness
phase (min)

4 3-4 3

Maximum load
factor (G)

3.5 5.0 6.0

For flying cars, the design is mostly centered on flying and driving easiness. Indeed,

according to NASA’s vision on personal air vehicles, they have to be “so easy to operate

that, like a rental car, anyone with a driver’s license can fly one.” [94] This requires vehicle

manufacturers to incorporate additional design objectives:

• Noise reduction: even though PAVs do not have their own noise regulations yet, it is

expected that a maximum noise limit will emerge soon. This regulation is expected

to follow the one applied for typical aircraft. The first aircraft noise regulation was

adopted in 1969 with the introduction of noise certification standards (FAR Part 36).
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International standards for aircraft noise were adopted in 1971 (ICAO Annex 16). The

FAR Part 36 [145] sets aircraft noise standards in stages based on technology genera-

tion and production year, and establishes measurement procedures. Frank et al. [158]

show that the maximum noise limit tends to decrease over time. Hence, reducing

noise emissions might become an objective for future flying car manufacturers.

• Spacious cabin and bag trunk: similar to traditional aircraft and other means of

transportation, the available volume is a key metric for passenger satisfaction. In

addition, the space available for luggage also becomes important as flying cars are

used for personal travels.

• Cabin accessibility and comfort: flying cars primarily target wealthy customers that

tend to ask for a high level of comfort in the cabin. This corresponds to luxury and

comfortable (often heavy) seats, cabin components, etc.

• Visual appeal: as PAVs are sold directly to private customers, visual appeal becomes

a key differentiation factor between different vehicles. Even though aircraft and space-

craft traditionally rely on performance metrics, it is crucial to incorporate aesthetics

in the design objectives of flying cars [142, 387, 446].

In addition, physical metrics such as load factors need to be taken into account. It should

be minimized for take-off to maximize the passengers’ comfort. According to Rogers [364],

a load factor of around 0.5 g is acceptable as it reaches the same values in current cars.

Improving passenger experience tends to require a larger, heavier, and more complex

vehicle [101, 300]. However, the competitive advantage gained is usually used to compen-

sate the additional cost. According to Gulfstream, one of the core challenges for vehicle

manufacturers is the “classic trade-off between delivering a leap ahead in terms of aircraft

performance, balanced against the desire to combine this with superior cabin comfort.” [458]

For that purpose, Gulfstream included comfort as a core objective of their design through

the assistance of their Advanced Technology Customer Advisory Team. This results in more

than 200 design changes in both the cabin and the cockpit.
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Hence, similar to life-cycle costs, improving passenger experience is a key objec-

tive that also highly impacts the design of advanced vehicles.

This section shows that, as systems become more and more complex and dynamic,

additional requirements emerge. Furthermore, systems are now asked to become multi-

functional, increasing the number of objectives to take into account [464]. Building on the

previous observations, the following Assertion can be formulated:

ASSERTION 1: Promising future markets are characterized by a multi-

objective decision space, where trade-off analyses must be conducted in early

design phases, as they might highly impact the vehicles’ size and configura-

tion.

As discussed in this section, designing complex vehicles results in a complex decision

space, where multiple objectives are usually competing. These objectives, arbitrarily prior-

itized by designers, lead to the emergence of a large number of possible vehicles. This rich

diversity in concepts is another characteristic of such emerging markets, as discussed in the

following section.

1.2 An Abundance of Designs

New emerging vehicles tend to be extremely complex and are composed of numerous

subsystems and functions. Contrary to well-established vehicles such as commercial aircraft

or cars, their designs are still pushed by unconventional concepts and new combinations of

technologies. Since no existing vehicles are currently in service, designers benefit from

significant freedom and do not build their design around a baseline.

1.2.1 A Diversified Panel of Existing Vehicles

The development of new vehicles is often favored by the establishment of rewarded design

competitions. Indeed, the first step of a full market penetration usually is the development

of a working prototype. This enables companies to decrease risks and uncertainty related to

potential markets while encouraging technology feasibility and enhancements. This was a
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common thread in past aerospace applications and has promoted the development of many

vehicles:

• Orteig Prize: first non-stop flight that links New York to Paris. This prize has been

won by Charles Lindbergh with his aircraft the Spirit of St. Louis in 1927.

• Sikorsky Prize: first human-powered helicopter to meet a set of extremely challeng-

ing flight requirements. This prize has been awarded to Aerovelo’s human-powered

helicopter Atlas in 2013.

• Kremer Prizes: pioneers of human-powered flights.

• Lindbergh Electric Aircraft Prize: best electric aircraft.

• Ansari X Prize: first vehicle built by a non-governmental organization capable of

carrying three people to 100 kilometers above the Earth’s surface, twice within two

weeks. This competition has been won by Scaled Composites with its SpaceShipTwo

in 2004.

These competitions gathered a large number of competitors that developed extremely dif-

ferent concepts. To illustrate this variety, examples are given for suborbital vehicles and

flying cars.

1.2.1.1 Existing Suborbital Vehicles

Created in May 1996, the Ansari X Prize was a true catalyst to the development

of reusable suborbital vehicles. Funded by a large number of donors (Anousheh and

Amir Ansari, First USA, etc.), this competition offered U.S. $10 million to the first non-

governmental organization that “builds and launches a spacecraft capable of carrying three

people to 100 kilometers above the Earth’s surface, twice within two weeks” [484]. The

competition was won on October 4, 2004 by the company Scaled Composites with its

SpaceShipOne. The 26 competing teams developed concepts with various configurations

tailored to different missions. These numerous concepts can be compared with respect

to different criteria such as mission definition, propulsion system, and airframe configura-

tion. Among the existing concepts, different types of launch techniques are used: typical
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horizontal take-off from a runway, vertical launch, and air launch (by carrier aircraft or

high-altitude balloons). As shown in Figure 8, there is no dominant launch type even if

44% of the concepts proceed by vertical launch.

Vertical launch

44%

Horizontal take-off

28%

Air launch

28%

Figure 8: Different types of launch

Each technique has advantages and drawbacks that must be considered during the de-

sign process. A qualitative comparison of the various launch modes is presented by Marti

and Nesrin Sarigul-Klijn [376, 377], F. Lehot and J-F Clervoy [252], the RAND Corpora-

tion [178], and N. Zakaria et al. [492].

Similar to the launch methods, there exists a wide variety of landing techniques but no

dominant configuration. Figure 9 shows the proportion of the different methods. Gliding

and horizontal powered landing are both horizontal landings on conventional runways (59%

of the concepts), while rocket-powered landing and parachute braked landing are both

vertical landings (41% of the concepts). In addition to these alternatives, Marti and Nesrin

Sarigul-Klijn [377] also describe other types of aerodynamic decelerators such as parafoils

and rigid or semi-rigid decelerators.

Each concept has a specific airframe configuration based on its launch and landing

procedures. One can distinguish two major types: winged body or slender body. These

airframe configurations often reflect the combination between the various types of launch

and landing. For example, a vehicle that lands horizontally must have wings, even if it is
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launched vertically. Some observations about these combinations can be made. When ver-

tical launch is combined with horizontal landing, the landing gear only needs to be sized for

the landing weight (usually significantly lower than the take-off gross weight). If a vehicle

takes off and lands vertically, the load path is always axial and therefore the overall empty

weight is reduced.

Gliding

34%Horizontal powered

25%

Parachute

35%
Rocket

6%

Figure 9: Different types of landing

Up to three different engines can be implemented on a single vehicle, each with a specific

function based on the type of mission to be flown. Air-breathing engines are sometimes used

for phases at low altitudes (high-density). Rocket engines are used for high thrusts and high

altitudes during a short amount of time. Finally, attitude control systems must be used

since aerodynamic-related devices such as ailerons are not efficient enough at high altitude.

All concepts are equipped with rocket engines: 21% are hybrid such as the Space-

ShipOne, 13% are solid such as the Cosmopolis XXI, and 66% are liquid such as the Vehra.

Moreover, among existing concepts, approximately 30% are equipped with both a rocket

engine and an air-breathing engine. Even if this additional engine adds weight and com-

plexity to the design, it is much more efficient during the first part of the climb, where the

atmosphere is dense enough.

To illustrate this variability, Figure 10 shows two examples of the X Prize vertical take-

off concepts: the Black Armadillo from Armadillo Aerospace and the Canadian Arrow from
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Canadian Arrow. Figure 11 presents two horizontal take-off concepts: the Rocketplane XP

from Pioneer Rocketplane and the SpaceJet from Astrium. Finally, Figure 12 shows the

SpaceShipOne from Scaled Composites and the Wild Fire from the da Vinci Project, which

are respectively an aircraft-carried and a balloon-carried vehicle.

(a) Black Armadillo [130] (b) Canadian Arrow [24]

Figure 10: Examples of vertical take-off concepts

(a) Rocketplane XP [108] (b) SpaceJet [30]

Figure 11: Examples of horizontal take-off concepts
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(a) SpaceShipOne [380] (b) Wild Fire [409]

Figure 12: Examples of air-launched concepts

1.2.1.2 Existing Flying Cars

The concept of flying car is not new and first emerged in 1917 with Glenn Curtiss. While

the “Curstiss Autoplane” was able to take off, it never performed a full flight [456]. How-

ever, it marked the beginning of a long series of trials that can be illustrated by examples

such as the Aerocar from Taylor in 1949 [428], the Airphibian from Fulton in 1950 [401],

and Aerobile from Waterman in 1957 [456]. Nowadays, several companies are developing

commercial prototypes. On the military side, DARPA is promoting the development of

“innovative solutions” for military use: a roadable Vertical Take-Off and Landing (VTOL)

vehicle capable of carrying up to four persons and their gear. Similar to the Ansari X Prize,

this competition will reward winners with $9 million to support Phase 1 development. Var-

ious concepts have emerged with extremely different characteristics. Similar to suborbital

vehicles, these numerous concepts can be compared with respect to different criteria such as

mission definition, propulsion system, and airframe configuration. Among the existing con-

cepts, both horizontal and vertical take-off/landing concepts have been designed. In order

to enable vertical take-off, concepts must be equipped with either rotors or rotating engines,

while horizontal take-off concepts rely on typical jet engines or propellers. This variability

is characterized by trade-offs between efficiency in cruise and potential use of small areas

to take off and land. The propulsion configuration may also vary between competitors:
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tractor (forward-mounted engines), pusher (backward-mounted engines) or tractor-pusher

(mixture). For winged bodies, the location of the wings with respect to the fuselage is

another variable: low wing, mid-wing, high wing or even parasol wing. One of the key tech-

nological challenges is the ability to retract the wings. As such, four main concepts exist:

detachable wing, variable swept wing, folding wing, and telescopic wing. Finally, the landing

gear/wheel configuration also varies among existing concepts: tricycle or quad-cycle, which

could be either retractable or fixed. These alternatives have been widely implemented and

combined on existing vehicles so that no baseline seems to emerge. To illustrate this strong

variety, Figures 13 and 14 describe some examples of existing concepts. Figure 13 shows

two examples of horizontal take-off concepts: the Terrafugia Transition from Terrafugia and

the Aeromobil 2.5 from Aeromobil. While they both have retractable wings, the wings of

the latter rotate around the vertical axis and the wings of the former around the horizontal

axis. Figure 14 presents two vertical take-off concepts: the PAL-V One from PAL-V and the

Terrafugia TF-X from Terrafugia. The latter uses rotating propellers to enable a vertical

take-off and an efficient cruise, while the former uses a rotor so that the vehicle behaves like

an helicopter.

(a) Terrafugia Transition [430] (b) AeroMobil [6]

Figure 13: Examples of horizontal take-off concepts

This section showed the variety of existing configurations for each vehicle because of the

large number of features described by numerous possible options. Hence, the various possible

combinations result in a large combinatorial space that must be explored by designers, as

discussed below.
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(a) PAL-V One [328] (b) Terrafugia TF-X [430]

Figure 14: Examples of vertical take-off concepts

1.2.2 Large Combinatorial Space

The complexity of aerospace systems requires designers to select the best option for each

subsystem. The large number of available options for each choice contributes to enlarge the

design space. In addition, new markets require designers to develop both a configuration

and its corresponding operations. Indeed, there is currently no clear request for proposal

or design mission for such vehicles. The National Business Aviation Association provides a

template for requests for proposal for aircraft charters [312]. It includes precise information

about the mission, the number of passengers, the price, etc. However, no such document

exists for emerging markets. Hence, this leads to enlarging the design space and prevents

designers from locking on a design. As a consequence, designers need to carry more design

alternatives longer throughout the design process. To illustrate this observation, a high-level

morphological matrix is created for both flying cars and suborbital vehicles. These mor-

phological matrices decompose both vehicles and missions into high-level features (rows) in

order to identify each available option (columns). These matrices are presented in Tables 2

and 3. As shown in Tables 2 and 3, the number of alternatives that can be generated by

combining the different options is extremely large. In addition, this first analysis does not

include any detailed information. As a consequence, these matrices could be expanded even

more and the corresponding number of alternatives would grow exponentially. While a com-

patibility analysis along with some qualitative considerations can be made to help decrease

the combinatorial space at the beginning, it will still remain extremely large. This large
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number of possible configurations cannot be individually evaluated by design-

ers. Hence, a rigorous and systematic methodology that enables quantitative

trade-off analyses to support the selection of a design is needed. In order to tackle

this large design space, designers have relied on current practices, as discussed below.

Table 2: Morphological matrix for suborbital vehicles

Alt. 1 Alt. 2 Alt. 3 Alt. 4
Number
of alt.

Take-off
method

Horizontal Vertical
Aircraft
launched

Balloon
launched

4

Landing
method

Horizontal
powered

Gliding Rocket Parachute 4

Wing Delta Swept wing
Straight
wing

None 4

Vertical
surface

Vertical
stabilizer

Wing tip None 3

Horizontal
surface

Horizontal
stabilizer

Canards None 3

Main
engine

Liquid Solid Hybrid 3

Number of
rocket
engines

1 2 3 4 4

Auxiliary
engine

Typical
turbojet

Augmented
turbojet

Typical
turbofan

Augmented
turbofan

4

Number of
auxiliary
engines

0 1 2 3 4

Afterburn-
ers

Yes No 2

Attitude
control

Cold gas Liquid 2

Number of possible combinations 442,368

1.2.3 Current Practices and Limitations

Due to the novelty of such vehicles, companies logically favored the use of technologies

that they have already developed and leveraged their own internal skills and know-how

to design their vehicle. During this design exercise, no design space exploration or global
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Table 3: Morphological matrix for flying cars

Alt. 1 Alt. 2 Alt. 3 Alt. 4
Number
of alt.

Take-off
method

Horizontal Vertical 2

Landing
method

Horizontal Vertical 2

Wing Delta Swept wing
Straight
wing

None 4

Vertical
surface

Vertical
stabilizer

Wing tip None 3

Horizontal
surface

Horizontal
stabilizer

Canards None 3

Aircraft
engine

Jet Propeller Rotor Turboprop 4

Number of
aircraft
engines

1 2 3 4 4

Car engine Diesel Gasoline Electric Hybrid 4

Rotating
engines

No
Horizontal

axis
Vertical
axis

3

Wing
location

Low Mid High 3

Propulsion
type

Tractor Pusher
Tractor -
Pusher

3

Landing
gear

Tricycle Quad-cycle 2

Number of possible combinations 497,664

optimization was performed. Instead, major design decisions were made based on expertise

and company’s experience. This lack of rigorous methodology has also been the “norm” in

the design of launchers that emerged in the last decades [455]. Hence, each company tends

to push for the configuration they believe in. Suborbital vehicles can be used to illustrate

this statement. For instance, Bristol Spaceplanes and Armadillo Aerospace push for liquid

engines, while Vanguard Spacecraft and Canadian Arrow push for solid engines, and Scaled

Composites and Pablo de Leon & Associates for hybrid engines. Some companies such as

Pioneer Rocketplane and Dassault Aviation believe in lifted bodies, while others (Armadillo

Aerospace and Acceleration Engineering) favor non-lifted bodies. Bristol Spaceplanes led by
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David Ashford (an aircraft aerodynamicist who also worked on rocket motors), developed

a conventional aircraft augmented by a liquid rocket engine. Burt Rutan, who designed

the SpaceShipOne, was an aircraft designer as well and developed a winged body. Richard

Speck, who led Micro-Space, was a charter member in the National Association of Rocketry

and designed a VTOL concept [484].

Roadable aircraft are another example of this diversity. Two design approaches are

usually considered: enable cars to fly or enable aircraft/rotorcraft to roll. For example,

Stefan Klein, chief designer and co-founder of AeroMobil built his vehicle around a car,

after having spent years leading innovative research projects for automotive companies

including Audi, Volkswagen, and BMW [6]. Designers from PAL-V decided to build their

concept around a rotorcraft and were directed by Peter Jorna who worked 18 years at the

National Aerospace Laboratory in Amsterdam and served as head of the Flight Division,

managing Helicopters, Operational Research, Human Factors, Flight Mechanics, and Flight

Simulation departments [328]. Finally, Carl Dietrich, who received his BS, MS, and PhD

from the Department of Aeronautics and Astronautics at the Massachusetts Institute of

Technology (MIT), founded Terrafugia and built his concept around an aircraft [430]. Once

a baseline architecture has been selected, an optimization is only performed locally so that

no strong similarities can be noticed between concepts. This lack of baseline is very specific

to new emerging markets. For conventional commercial aircraft, a baseline is defined for

each type of mission and many similarities exist between concepts. Hence, for emerging

markets such as suborbital vehicles and roadable aircraft, the use of current practices based

on local optimization leads to a large variety of configurations.

Based on the previous discussion, one can conclude that relying on com-

panies’ expertise and qualitative considerations results in the development of

various concepts among which no baseline has been defined. These observations

lead to the following Assertion:

ASSERTION 2: A rigorous and systematic methodology is needed that en-

ables the exploration of a large combinatorial design space and supports quan-

titative trade-off analyses to facilitate the selection of a design.
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The diversity in existing concepts, as discussed in this last section, can also be explained

by the lack of regulation and clearly defined requirements. This aspect is further developed

in the section below.

1.3 Evolving Uncertainty in Requirements

The necessary regulatory frameworks for these growing markets are currently being

discussed but have not been fully defined yet. Indeed, because the technologies involved

in new activities are rapidly expanding, there is a strong need to develop an appropriate

regulatory framework. Finally, it is important to note that, due to the novelty of the

concepts, the possible applications have not yet been completely defined and the offered

vehicles are designed for experiences that highly vary among the potential competitors.

1.3.1 A Confusing Regulatory Framework for New Vehicles

Emerging markets are usually characterized by the use of new technologies as well as

hybrid solutions that could highlight gaps in current regulations. Revolutionary technologies

such as those used for magnetic levitation of trains require precise regulations in terms

of certification and safety. Suborbital tourism may be one of the trickiest markets to

regulate. Indeed, while multiple new technologies have to be certified, the legal framework

is also hybrid as it is at the boundary between space laws and air laws. Another hybrid

market is the roadable aircraft. In this case, the vehicle is at the boundary between two

well-regulated domains: ground transportation and air transportation. These two markets

will be investigated in detail to further illustrate the lack of well-defined requirements for

emerging markets.

1.3.1.1 Suborbital Vehicles

Suborbital flights will be performed by either an aircraft or a spacecraft. Independently

of the concept used, it needs to reach an altitude which corresponds to the limit between the

atmosphere and outer space. Therefore, an important question is naturally raised: should

the space law, the air law or even both laws be applied? The answer to this question will

have significant legal implications on suborbital space tourism. Beginning in 1984 with the
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Commercial Space Launch Act, the legislation concerning commercial space transportation

mainly focused on public health and safety issues. Then, in 1998, the FAA was granted

authority for licensing the returning vehicles from space. Two years after, the FAA’s Of-

fice of Commercial Space Transportation finalized its licensing process for reusable launch

vehicle missions including crew and payload. On the civil aviation side, the legislation is

regulated by both the FAA and the Aviation Safety. These two legislatures (aircraft and

spacecraft) have always evolved independently from each other. Therefore, the regulation

hybrid vehicles (aircraft airframe and rocket engines, air launched vehicles, etc.) fall under

is not clear cut. Indeed, as mentioned by Axelle Cartier and Ioana Cristoiu [71], “suborbital

flights are at present the major issue to be dealt with under the current legislation. [...] It

is not clear what will be the applicable law. It is to be expected that issues will depend on

different national legislatures.” Even if the FAI considers the Karman line at 100 kilometers

as being the limit with outer space, there is no clear physical line. The definition of the

layer contained between 80 km and 110 km is still debatable [180, 463, 465, 482].

In 2004, the commercial Space Launch Amendments Act introduced the first legisla-

tion for passenger transportation in space but it is only applicable in the United States.

Moreover, this legal framework is not complete yet and will continuously evolve with the

introduction of new vehicles, new countries, and new companies [143, 181, 252]. Also, the

establishment of an international regulation or a modification of the current U.S. regulation

is very likely to impact the design of the vehicles, especially in terms of maximum admissible

load factor, rocket engine characteristics, etc.

In addition, while the flight is the most important part of the suborbital experience,

ground infrastructures are needed and will contribute to the passenger training, the main-

tenance of the vehicles, the storage of components, launch and recovery platforms, etc. A

dilemma appears between the use of existing airports and the development of new and

better-suited spaceports. If the vehicle is registered as an aircraft, it can be operated from

existing airports. Nevertheless, several issues still remain:

• Vehicles must behave like an aircraft and must be able to follow the current air traffic

rules.
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• Maintenance must be done on rocket engines and any unconventional components

using existing machines and infrastructures.

• Environmental requirements such as noise and pollution must be met.

• Airport safety services and procedures must be efficient enough to ensure the safety

of suborbital operations.

Most of these challenges can be avoided by building customized, but expensive, spaceports.

Moreover, if the vehicle takes off horizontally and uses a runway, the latter must be certified

by an airport regulation. If the vehicle is launched vertically, no regulation exists for

commercial launch pads. As such, the establishment of regulations concerning ground

infrastructures will also have an impact on the design and the mission of suborbital vehicles.

The legal regime applicable on board the vehicle depends on its registration status:

aircraft or space object. This becomes even more important for space tourism activities.

Indeed, these new passengers will face many medical constraints that would probably require

the establishment of a compulsory pre-flight medical examination whose guidelines have still

to be determined. Moreover, in order to improve the passengers’ experience and safety, the

following constraints have to be addressed during the design phase:

• High g-forces: during the rocket powered acceleration phase and the reentry phase,

the vehicle undergoes a significant load factor which could create gray-out (partial loss

of vision), blackout (loss of vision), G-LOC (G-force induced Loss Of Consciousness)

or even death. The limits highly depend on the passenger and his/her level of fitness.

According to NASA [99], untrained humans can support up to 20 g during less than

10 seconds or 6 g during 10 minutes. Blackout often occurs between 4 and 6 g.

These high g-forces can also increase the heart rate, causing a pain in the human

musculoskeletal system and dyspnea. The alternation of high and low load factors

tends to favor cardiovascular diseases such as aneurysm and could lead to disastrous

ends especially for people already subject to slight heart diseases. Hence, for health

and comfort-related issues, this load factor has to be highly reduced. Some design

considerations would help reducing these effects. For example, reclining seat and
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low acceleration rate would increase the comfort of the passengers. Anti-g suits are

another option to reduce the effects of high load factor. While increasing the payload

weight and reducing the passenger’s comfort, these suits could improve the resistance

of passengers and consequently allow them to withstand higher load factors.

• Exposure to radiations: the vehicle travels in the upper-level of the atmosphere where

galactic and solar radiations are more intense. According to the Health Physics Society

[252], radiations received during a suborbital flight are 0.0053 mSv. This value is five

times lower than a round trip transatlantic flight and twenty times lower than a lung

radiography.

• Vibrations: during take-off and reentry, the vibrations undergone by passengers could

become annoying for sensitive passengers and must therefore be reduced.

All these constraints are not being regulated yet and must be considered

as uncertainty sources in the design requirements. However, with the progres-

sive establishment of the regulatory framework, this uncertainty will tend to

decrease and constraints to converge towards fixed values.

1.3.1.2 Flying Cars

Since the beginning of the 21st century, technologies seem mature enough to enable

the design of viable flying cars. This is confirmed by the numerous prototypes designed

around the world. While viable vehicles have already shown their potential, government

officials and designers must decide which regulations to use: aircraft, automotive, both or

even a completely customized one. Potential regulatory frameworks that could be used in

the United States to certify roadable aircraft are the Light Sport Aircraft (LSA) certifica-

tion, the Special Airworthiness Certification, and the FAR Part 23 certification. Depending

on targeted applications and characteristics, one of these certifications can be used. Ta-

ble 4 compares the characteristics of these three certifications. Table 4 presents regulatory

trade-offs between cost and potential applications. Indeed, while LSA regulation enables a

low-cost certification, the vehicle can only carry two passengers including the pilot.
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Table 4: Comparison of currently available certifications [100, 224, 447, 448, 449]

Light Sport Aircraft
Special

Airworthiness
FAR Part 23

Maximum
TOGW

1,430 lbs 2,700 lbs 19,000 lbs

Maximum stall
speed

45 kts 61 kts No restriction

Cabin
limitations

2 persons 4 persons No restriction

Pressurization No No Yes

Cost $125-150k $1-5 million $5-50 million

Commercial
use

No No Yes

Retractable
landing gear

No No Yes

Engine
restriction

Single reciprocating
engine

No No

No commercial use is allowed below a certification process that costs around $5-50 mil-

lion. Aware of these limitations, the Aviation Rulemaking Committee is currently reviewing

the certification process. An update of this 30-year-old certification process will revitalize

current markets. Nevertheless, the changes have not been defined yet and will probably

emerge between 2016 and 2020 [100]. These doubts in future certification processes

bring significant uncertainty in requirements, which will decrease over time.

Hence, this evolving uncertainty in requirements needs to be considered in

early design phases.

Another element that must be taken into account while designing small personal vehicles

is the ability of being piloted by a large number of people. As of today, two main pilot

certifications are available: sport pilot (14 CFR Part 61, Sub-part J) and private pilot (14

CFR Part 61, Sub-part E). While the former only takes approximately 35 hours (between

$4,500 and $6,000), the latter usually takes around 70 hours (between $8,500 and $10,000).

However, several restrictions limit the privileges of sport pilots:

• Only Light Sport Aircraft can be piloted.
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• No more than one passenger can be carried.

• No night-flying and instrument-flying allowed.

• Altitude is limited to 10,000 ft.

Hence, these restrictions must be taken into account when targeting new markets. How-

ever, for emerging vehicles, precise targeted markets are usually not fully defined and might

remain unclear until later phases of the vehicle development. Nevertheless, once fully de-

fined, regulatory requirements must be translated into design constraints. This constitutes

another source of evolving requirements’ uncertainty.

1.3.2 Possible Applications Are Not Well Defined

Revolutionary and unconventional vehicles are usually driven by technology enhance-

ments rather than precise market-driven needs. Prototypes are then built to transform

ideas into viable products while applications gradually emerge over time. Being different

in nature, each application needs to be regulated by specific requirements, constraints, etc.

This fuzziness in applications in early design stages also brings a high level of uncertainty

in requirements and targeted objectives. Suborbital vehicles and flying cars provide two

examples of such uncertain environments. Indeed, catalyzed by the Ansari X Prize, tech-

nology feasibility has been boosted by the emergence of different applications such as space

tourism, satellite launch, etc. Besides, while flying cars have recently been demonstrated as

technologically and economically feasible, possible applications have not been fully defined

yet: transport, leisure, etc.

1.3.2.1 Suborbital Vehicles

The conversion of the idea of touristic suborbital flights into a concrete and viable

experience has only occurred very recently. While Virgin Galactic is the unambiguous leader

in such activity, several competitors are emerging with various concepts. The quality of

suborbital flights in terms of passenger experience can be defined by five major parameters:

maximum altitude reached, duration of weightlessness, duration of the flight, ticket price,

and maximum load factor perceived. The first three parameters have to be maximized while
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the last two have to be minimized. Table 5 compares the data advertised by the different

competitors.

Table 5: Comparison of the various experiences [252, 457]

Company
Maximum
altitude
(km)

Duration in
weightless-

ness
(min)

Flight
duration
(min)

Ticket
price

(U.S. $)

Maximum
load

factor (g)

Virgin
Galactic

110 3-4 150 250,000 5

Suborbital
Corporation

100 3-5 360 102,000 -

Starchaser
Industries

≥100 4 20 200,000 4.5

Airbus 100 3-4 90 260,000 3

Blue Origin 107 3 15 - 6

Rocketplane 100 3-4 60 - 4-5

Dassault
Aviation

100 3 120 - 4

As shown in Table 5, most of the metrics significantly vary from one company to the

other. Moreover, other parameters such as the type of launch, whose diversity has already

been discussed in Section 1.2, and the configuration of the cabin (available space by passen-

ger, orientation of the seats, etc.) can also be considered as key drivers of the passengers’

experience and are subject to strong uncertainty. In addition to space tourism, suborbital

vehicles would also support other activities. As presented by the Tauri Group [86, 435], the

potential offered by suborbital flights can benefit eight different markets: commercial human

spaceflight, basic and applied research, aerospace technology test and demonstration, me-

dia and public relation, education, satellite development, remote sensing, and point-to-point

transportation. Hence, even if a direct application of suborbital flights seems to be space

tourism, many other applications could gradually emerge and provide new requirements,

constraints, and objectives.

Suborbital flights could also serve as a platform for studies related to emergency medicine

in space, human behavior, biological or physical research, etc. Since a serious injury takes
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no more than six minutes to become fatal, the average four to five minutes spent in micro-

gravity are enough to practice, improve, and certify space emergency procedures. These

flights also offer a unique environment for learning more about the alternation of micro-

gravity and hyper-gravity phases. Finally, as far as other domains are concerned, these

flights would allow researchers to perform their experiments on their own and without

having to be well trained and physically fit.

Suborbital vehicles can also be used as a first stage to launch small satellites into Low-

Earth Orbits (LEOs). Several programs have been started to study this possible application

including the Orbital Suborbital Program (OSP) [383], RASCAL [154, 217, 487], and the

Swiss Space Systems (S3) [374].

1.3.2.2 Flying Cars

Flying cars have generated interest since the beginning of the 20th century. Indeed,

they have been depicted in numerous movies such as Star Wars (1977-2005), Back to the

Future II (1989), Blade Runner (1982), and The Fifth Element (1997). The lack of current

flying cars have also become an idiomatic mark of disappointment in present technologies

compared to past promises. Comedian Lewis Black said: “This new millennium sucks! It’s

exactly the same as the old millennium. You know why? No flying cars!” [331]. Indeed,

these emblematic flying cars have the potential to revolutionize everyday life. Potential

applications of these new vehicles are listed below:

• Extension of leisure General Aviation (GA) aircraft: this application seems to be the

most promising in the near term. Indeed, based on current predicted prices (around

$300,000), these vehicles will first be available for wealthy private pilots willing to

extend the capabilities of their aircraft/car. For this market, requirements and con-

straints will be close to typical GA aircraft while also encompassing ground traffic

regulations.

• New taxi services: flying cars can be used for faster taxi services, especially for long

distances. Such commercial use will require additional safety measures and stringent

certifications and regulations. Specific requirements could include higher speed and
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lower cost.

• Personal door-to-door aerial vehicles: this application will require a significant de-

crease in cost to enable general public to afford it. In addition to this important cost

reduction, solutions must be found for pilot training and air traffic control. Imple-

mentations of more sophisticated avionics and auto-pilot systems would probably be

key enablers for this application.

• Strategic military vehicles: this application does not require the same requirements as

the previous ones. Pilots could be highly trained and affordability is usually less em-

phasized. However, performance such as speed, payload, and maneuverability become

critical.

Along with technological improvement of current concepts and the establishment of regula-

tions, specific applications will start to emerge as well as a series of targeted values for the

different constraints. Even if requirements’ uncertainty is now extremely high, more precise

values will progressively emerge for each of those constraints. Hence, the large num-

ber of possible applications will also result in an evolving uncertainty around

critical requirements such as safety, comfort, and mission definition. All these

observations lead to the following Assertion:

ASSERTION 3: Significant uncertainties originate from customer, regulatory,

and market requirements. These uncertainties, which evolve throughout the

design process and as the market grows, must be addressed to support the

development of robust vehicles.

With this third Assertion, the main characteristics of emerging markets were investi-

gated. The following section summarizes information collected in Sections 1.1 to 1.3 to

help establish critical capabilities required to support the development of these emerging

markets.
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1.4 Summary

This section intends to define the research objective by identifying specific capabilities

required to ensure the development of these new markets. Finally, the main challenges that

must be addressed by decision makers are also discussed.

1.4.1 Main Research Focus Areas

Section 1.1 showed that emerging markets are characterized by a complex multi-objective

decision environment. It also highlighted the potential impact of trading these competing

objectives on the design of the vehicles. In particular, it discussed the importance of con-

sidering life-cycle costs, safety, and passenger experience in the early design phases. This

led us to Assertion 1: promising future markets are characterized by a multi-

objective decision space, where trade-off analyses must be conducted in early

design phases, as they might highly impact the vehicles’ size and configuration.

Including all potential objectives in the early design phases is crucial. This will help max-

imize benefits by seeking the best trade-off between price, demand, configuration of the

vehicle, etc. Therefore, once the first phase of technology feasibility has been successfully

achieved and a promising demand identified, life-cycle costs, safety, and other customer-

oriented considerations must be integrated into the design process. These considerations

will support the transition of the previous demonstrators and prototypes into new concepts

that can be profitable so that both manufacturers and operators can make enough money to

sustain the new market. As of today, the design process of almost all revolutionary and ad-

vanced vehicles has been following a very disorganized and cost inefficient methodology by

relying on expert judgments and subjective decisions. A typical example of such inefficient

programs is the American Space Shuttle [199]. Other examples can be found in Lockheed

Martin’s programs for which the focus has been put on performance and innovation rather

than affordability. Indeed, most of the time, life-cycle costs, safety, and customer-oriented

requirements have only been considered in the final phases of the design process, when the

design freedom has already been greatly reduced and the major part of the costs already

committed. These practices result in very expensive programs with non-affordable, unsafe,
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and unattractive vehicles. Moreover, even small modifications in the design during the pre-

liminary or the detailed design phases appear to be disastrous in terms of cost incurred.

Since approximately 80% of the costs are committed by the end of the conceptual design

phase, they must be integrated into the decision process no later than this phase.

Due to the complexity of aerospace systems and the large number of possible alterna-

tives mentioned in Section 1.2, the design space for each architecture already provides a

significant optimization challenge for both the vehicle and its mission. Indeed, the design

and optimization of novel and unconventional concepts are characterized by a lack of rele-

vant data, information, and knowledge that prevents the application of traditional design

methods. These challenges have been identified and discussed by Mavris et al. [279]. Indeed,

they suggest the creation of physics-based models and numerical simulations to alleviate

the lack of historical and physical data. They also emphasize the significant role of re-

quirements as cost drivers. Hence, there is a need to assess the impact of requirements on

profitability. The evolving nature of these requirements can be addressed by shifting from

deterministic, serial, and single-point designs to dynamic parametric trade environments.

Finally, they also suggest the use of surrogate modeling to enable the integration of the

multiple disciplines into a single environment that can support rapid parametric trade-off

analyses.

Applications of the aforementioned methods will enable a paradigm shift to occur. The

benefits of the latter are displayed in Figure 15 in terms of cost committed and design

freedom throughout the design process. The design process is typically divided into three

successive steps, which follow the requirements definition phase. The purpose of this phase

is to identify and understand stakeholders’ requirements. This phase is primordial since

requirements enable the designers to define the problem and benefit from a good starting

point for the design. With more than 22% of project failures being attributed to require-

ments definition, it is critical that they are properly captured [434]. The three steps of

the design process characterized by an increasing level of detail of the representations and

analyses are discussed below [278]:

• Conceptual design: the end-goal of this phase is the identification and selection of
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the feasible and viable concepts. The number of concepts that need to be evaluated

and compared is typically extremely large. This phase traditionally relies on experi-

ence, expertise, and historical data. For unconventional vehicles, when no data are

available, physics-based models or approximations by surrogate models can be used.

Since detailed information about the product is usually unavailable, the choice of the

modeling methods is often driven by consistency and speed instead of accuracy. This

phase aims at defining the overall configuration by making the main design choices

and describing the general performance of the vehicle. Hence, it is a key phase as

decisions have a strong impact on the overall vehicle’s cost and performance.

• Preliminary design: this phase transforms the concept identified at the end of the

conceptual design into a real product that can be manufactured and operated. Hence,

each design variable will be sized to obtain an optimized design that meets both

constraints and requirements. The concept is decomposed into several subsystems

and a more detailed multidisciplinary optimization is performed. More sophisticated,

complex, and accurate tools are used compared to the conceptual design phase and

interactions between the different subsystems are also addressed. During this phase,

designers will also face an important trade-off between model accuracy and compu-

tational time. While high-fidelity tools lead to better and more detailed results, the

time spent to develop the models and run the simulation limits the number of alterna-

tives that can be investigated. This phase ends with final decisions about the overall

configuration of the vehicles.

• Detailed design: this last phase focuses on the design, development, and fabrication

of every piece of the vehicle. Subsystems can still be fine-tuned but the level of

freedom is highly limited. During this phase, tasks mainly rely on Computer-Aided

Design (CAD) and Computer-Aided Manufacturing (CAM) software. An efficient and

abundant cooperation between the different teams is also required in order to ensure

a consistent design and a successful product once assembled. This phase ends with

the construction of a prototype and its testing.
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Figure 15: Expected benefits of the paradigm shift [277]

Hence, enabling this paradigm shift, and consequently avoiding the same mistakes to be

repeated for these new vehicles, is crucial to support the development of new markets.

In addition, emerging markets are extremely challenging as they are characterized by

very specific features. Firstly, Section 1.2 points out the need for a rigorous and systematic

methodology able to support the selection of a design in a particularly large combinatorial

design space. It also discusses the lack of baseline due to strong limitations in current de-

sign practices. In this respect, Assertion 2 was formulated: a rigorous and systematic

methodology is needed that enables the exploration of a large combinatorial

design space and supports quantitative trade-off analyses to facilitate the se-

lection of a design. Secondly, Section 1.3 discusses the presence of high uncertainty in

requirements as well as its evolution through the progressive establishment of regulations.

It also shows the possible emergence of multiple applications for a given vehicle and their

corresponding impacts on constraints and requirements. Hence, Assertion 3 was made:

significant uncertainties originate from customer, regulatory, and market re-

quirements. These uncertainties, which evolve throughout the design process
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and as the market grows, must be addressed to support the development of

robust vehicles.

As a consequence, designers and decision makers have to tackle challenging problems

related to evolving requirements specific to those new markets. Due to the large num-

ber of possible architectures along with their corresponding possible configurations and

missions, the architecture selection is extremely challenging. Current practices that rely

on local optimization only provide good and useful results when the requirements are

well known and established, and when a baseline is clearly defined. However, as dis-

cussed in Sections 1.2 and 1.3, this is not the case for those specific markets. If cur-

rent practices are directly used, there is a high risk of missing hidden promising op-

portunities. Some combinations of features may not be considered while being promis-

ing for some set of requirements. It also provides better flexibility to designers who

will be able to perform trade-off analyses across a large range of concepts. An anal-

ogy between design space and country exploration can be made. This will help under-

stand the importance of good design space exploration techniques. To explore a new
∣

∣

design space
country

∣

∣, different types of
∣

∣
design approaches

maps

∣

∣ exist. Typical
∣

∣

aircraft design approaches
city maps

∣

∣ pro-

vide extremely detailed information about a very small area.
∣

∣

Architecture comparison approaches
National maps

∣

∣

give an overview of the entire
∣

∣

design space
country

∣

∣ but are not detailed enough to support impor-

tant decisions about
∣

∣

design choices
itineraries

∣

∣. Finally,
∣

∣

architecture optimization approaches
sets of city maps

∣

∣ provide im-

portant information about a handful of
∣

∣
architectures

cities

∣

∣. These approaches are useful when
∣

∣

architectures and configurations considered
roads and cities visited

∣

∣ have been predefined and when there is no inherent

uncertainty. However, they do not provide enough flexibility to dynamically explore the
∣

∣

design space
country

∣

∣ according to
∣

∣

new requirements and regulations
weather and special event updates

∣

∣. There is a trade-off between level of

detail, area covered, and convenience. To overcome this pitfall, a
∣

∣

broad design space exploration
GPS

∣

∣

is needed. It will provide the required level of detail about the entire
∣

∣

design space
country

∣

∣ to help
∣

∣

designers
travelers

∣

∣ make the right decisions according to new available information. This is essential

to avoid
∣

∣

designers
travelers

∣

∣ from wasting their time in uninteresting areas, while also allowing them

not to miss some interesting areas. Baselines are often selected by experts based on pre-

vious experience in the field. However, the lack of historical data in new markets requires
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more architectures described by more configurations to be considered. This broad design

space exploration is the ability to consider all alternatives of the design space at a level of

detail that would enable well-founded decisions to be made according to new or changing

requirements. Therefore, designers must broadly explore the design space. In ad-

dition, they must highlight promising alternatives and identify potential technology gap(s)

that would prevent the development of such markets. Moreover, the main cost drivers must

be identified and the trends clearly understood. This would enable designers to emphasize

certain domain(s) in terms of research and development. Finally, decision makers must be

able to determine whether it is preferable to use a single baseline or several baselines for the

various potential applications. Such decision requires the ability to quantify the trade-offs

between performance and robustness. Hence, alternative optimization must include these

two criteria as objectives by using Pareto frontiers. This is only possible if a quantita-

tive analysis is performed. These aforementioned capabilities result in the formulation

of the following Research Focus:

RESEARCH FOCUS 1: To enable a broad and informed design space explo-

ration for optimized vehicle selection at a conceptual design level.

Lack of regulations and fuzziness in customer requirements require designers to deal with

highly uncertain requirements. Besides, this uncertainty is rapidly changing throughout the

establishment of the market. In addition, most probable values for these constraints will

also emerge. As a consequence, current static robust design approaches rapidly face impor-

tant limitations. Indeed, more flexibility is required to allow decision makers to decide if it

is more profitable to start a more detailed design or to wait until more precise regulations

are fixed. The risk related to each option must be quantified to support the right decision.

Moreover, if designers are able to identify requirements that are the most sensitive to un-

certainty, they can better negotiate the regulatory framework. Besides, more flexibility will

also enable designers to update their design priorities and the corresponding requirements

and constraints to match new available market analyses. To do so, both rapid trade-

offs and objective prioritization capabilities are required. This flexibility will also
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provide the crucial capability to estimate the benefits/costs of designing a single vehicle for

two relatively similar applications as well as precise information about those vehicles. One

of the key characteristics of emerging markets is the evolving nature of its requirements

and constraints. There are two majors parameters that describe an uncertain constraint:

its most probable/mean value and its degree of uncertainty. The latter is often modeled by

the variance or the standard deviation of the probability distribution. As regulations and

applications are emerging, these two parameters can rapidly change. The evolution of un-

certainty is not similar for all constraints and consequently some requirements can converge

towards fixed values faster than others. Thus, decisions under evolving uncertainty

in requirements must be supported. This leads to the following Research Focus:

RESEARCH FOCUS 2: To support decisions under unclear objectives and

evolving uncertainty in requirements.

The identification of these two research focuses highlights the need for a methodology that

supports decision makers during the emergence of new markets. To better understand the

problem and the needs, an analogy with current medical challenges is formulated below:
∣

∣

Designers
Physicians

∣

∣ deal with highly complex
∣

∣
new vehicles
human bodies

∣

∣. Their goal is to support their
∣

∣

products
patients

∣

∣

in a world where new
∣

∣

regulations
diseases

∣

∣ are regularly appearing and evolving. In addition, there is

a large amount of uncertainty in
∣

∣

customers’ requirements
people’s way of life

∣

∣ so that it is crucial to find
∣

∣

designs
drugs

∣

∣

robust to small changes in the aforementioned noise factors. On the one hand, a static

approach to the problem, which uses very generic solutions makes them highly inefficient

due to potential
∣

∣

competitors
virus reinforcment

∣

∣. On the other hand, the development of extremely spe-

cific and customized solutions is expensive and might require detailed information that is

not necessarily available on time. Hence, there is a need for more flexibility in decisions.

Solutions must be adapted before the point of no return is reached. Such methodology

can enable the exploration of the entire
∣

∣

design space
DNA

∣

∣ in order to avoid missing
∣

∣
alternatives
information

∣

∣

and identify new trends between
∣

∣

choices and results
symptoms and diseases

∣

∣. Besides, it also allows
∣

∣

designers
physicians

∣

∣

to find the best solution using the maximum amount of information available at a given

point in time. As a consequence, such methodology has the potential to revolutionize the
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way
∣

∣

vehicles are designed
people are treated

∣

∣ such that more
∣

∣

designs can be successful
people can be saved

∣

∣ while saving a large amount

of money and reducing inherent risk by using more information. Therefore, developing such

competencies is crucial and will provide great benefits. The key enablers of such methodol-

ogy are discussed in the following section.

1.4.2 Establishment of the Research Objective

Based on the aforementioned research focuses, characteristics of this new methodology

are described below:

• The unusually large design space, which results from the potentially high number of

viable architectures and the lack of baseline, must be explored. Not only should the

methodology be able to generate and evaluate the different architectures, but it should

also be capable of finding the best configuration for each architecture. Depending on

the configuration, the performance of a given architecture might vary significantly

due to the large number of options for each feature. Therefore, a single configuration

for each architecture does not fully define or characterize an architecture and is not

sufficient to support the selection of a design.

• The presence of numerous competing design objectives requires the methodology to

support traceable and informed decisions enabled by quantitative trade-off analyses

between objectives. In addition, once priorities have been set, the methodology must

also support concept selection.

• The high uncertainty inherent to emerging markets must be addressed by designing

vehicles robust to small changes in requirements and constraints. Performance of such

vehicles must be quantified in order to support informed decisions.

• Due to the evolving nature of requirements’ most probable values and uncertainty,

decision flexibility must be emphasized through rapid trade-offs and objective priori-

tization. The capabilities of rapidly developing and analyzing multiple scenarios is one

of the key enablers of such flexibility. To efficiently support decision makers through-

out the design process, the degree of uncertainty as well as the mean value of each
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constraint should also be controllable. While requirements are highly uncertain at

the beginning of the design process, they are continuously freezing with the establish-

ment of regulations and more precise applications. For that purpose, time-dependent

uncertainty must be modeled and included in the decision process.

• Dominant configurations must be highlighted by identifying the least and the most

affordable options for all features. Then, potential baselines can be defined and quan-

titatively described for higher fidelity studies and local optimization.

• The main design drivers must be identified. The impacts of each alternative on the

vehicle characteristics would then be assessed. Based on a sensitivity analysis, design-

ers must be able to decide which domains must be privileged in terms of research and

attention to improve the overall affordability.

In order to develop these capabilities, the remaining of the research will be articulated

around the following Research Objective:

RESEARCH OBJECTIVE: To establish a methodology that enables a broad

design space exploration at a conceptual level to select solutions against un-

clear objectives and under evolving uncertainty in requirements.

To reach this objective, several methodological and technical challenges need to be addressed

as discussed in the following section.

1.4.3 Research Challenges

The novelty of emerging markets as well as the complexity of the problem raise numerous

challenges that need to be addressed for a successful development of the aforementioned

capabilities.

First of all, the design of new advanced vehicles usually relies on cutting-edge tech-

nologies or is at the boundary between two established domains. For example, suborbital

vehicles require technical performance similar to spacecraft, while providing operational ca-

pabilities and safety levels similar to aircraft. Flying cars must benefit from both car and
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aircraft/helicopter capabilities. Hypersonic commercial transportation requires the devel-

opment of new technologies for both airframe and propulsion systems in order to minimize

the sonic boom, reduce the take-off noise, increase the cruise efficiency (propulsion and aero-

dynamics), etc. The complexity of the considered systems also points out the limitations of

Cayley’s design paradigm [204] which states that:

• Each function can be plainly assigned to corresponding subsystems: wing generates

lift, propulsion system overcomes drag, fuselage carries payload, etc.

• The optimization of the overall vehicle can be treated as a sum of independent opti-

mization problems for each subsystem.

These observations do not take into account the need to increase efficiency and open new

flight domains that leads to highly integrated functions and subsystems. Hence, this

paradigm fails to recognize that an optimized vehicle is not necessarily the sum of indi-

vidually optimized subsystems, as described in Equation 2.

∑

optimized subsystems 6= optimized vehicle (2)

To tackle these limitations and support efficient solution selection, a holistic approach is

required that integrates all disciplines and considers their interactions.

Current guidelines and practices for conventional vehicle design might not apply to these

new categories of vehicles. The novelty of such vehicles is also translated into significant

lack of historical data because there is no active vehicle currently in service. As a con-

sequence, physics-based modeling is required for an appropriate quantification of trends.

Moreover, while design for affordability with early cost considerations is now commonplace

in well-established industries such as aviation and automotive, emerging markets tend not

to emphasize this aspect in early phases. This lack of consideration for cost combined with

the fact that most aerospace companies keep their data, and especially their cost data,

proprietary, makes early cost considerations another challenge.

The size of the design space defined by the various possible combinations is also particu-

larly large due to its numerous dimensions. Indeed, in addition to traditional alternatives for
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airframe and propulsion, the number of possible combinations of different types of propul-

sion or new technologies increases the design space. Contrary to conventional markets,

which only consider one baseline concept, new markets cannot be based on qualitative con-

siderations or predefined baselines in order to avoid the risk of missing opportunities due

to the lack of knowledge in the field. All these alternatives not only enlarge the design

space but implicitly include another dimension: the mission. While traditional requests for

proposal usually provide a clear description of the mission that must be performed, new

markets have another degree of freedom that must be addressed. Finally, requirements have

not been completely defined yet and are likely to change over the next decades.

The desired methodology requires several capabilities that are not commonplace in tra-

ditional vehicle design processes. Traditionally, new designs are either market pulled or

technology pushed. While the latter mainly relies on innovative ideas and technologies

that try to be transformed into a marketable product, the former directly comes from an

interpretation of a request for proposal. While different architectures might be considered

through morphological matrices, a baseline is always selected for more detailed trade-offs.

This baseline is often selected based on experts’ judgment and previous experience in this

field. However, the novelty of the considered vehicles, their large variety of possible config-

urations, and the lack of predefined baseline require the methodology to explore the design

space more deeply. Hence, more architectures and more configurations per architecture

must be evaluated in order to support decisions. This involves the use of an optimization

process that must be able to take architectures defined by different variables as inputs. The

complexity of the problem also increases with the hybrid nature of the design variables,

which can be continuous, discrete, and categorical.

To address these challenges and meet the Research Objective, new capabilities need to

be developed, as described in the following section.
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1.4.4 Required Capabilities

In order to support an improved design space exploration, the proposed methodology

must be able to find solutions that are better than the ones found using existing method-

ologies. In addition, due to the lack of baseline and the numerous possible combinations

of technologies, the methodology must be able to consider multiple concept configurations

evaluated by different modeling and simulation environments. Because the design spaces

of interest are usually extremely large, the methodology must be efficient and fast to com-

pute, while also providing the ability to capture important trends and perform key trade-off

analyses.

To support decision-making under evolving uncertainty in requirements, the method-

ology must handle the dynamic behavior of uncertainty. Go/no-go decisions must also be

supported with quantitative and analytic analyses. Besides, the methodology has to sup-

port the rapid development of various scenarios in order to assess the risk and the expected

performance related to each potential decision.

Finally, in order to provide insights on the market of interest, the methodology has to

help decision makers identify the key baseline(s) in the multi-objective solution space, along

with a detailed description of these baselines.

To help the development of this methodology, the following chapter reviews, compares,

and evaluates existing methods and approaches. By identifying potential gaps that must

be bridged, it will help select the different methods, tools, and approaches that can be

leveraged to develop the required capabilities.
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CHAPTER II

PROBLEM DEFINITION

This chapter presents a review of the state-of-the-art in fields relevant to this research.

It will help understand the current practices along with their assumptions, strengths, and

limitations. The purpose is either to find the best available methods/tools or to identify

the potential gaps that could prevent the previous objectives from being met. Hence, this

chapter will be articulated around several Research Questions originating from breaches

in current practices that must be addressed. A description, comparison, and evaluation of

existing techniques will help develop Hypotheses, which correspond to proposed solutions to

the aforementioned Research Questions. This chapter starts by discussing the first Research

Focus: to enable a broad and informed design space exploration for optimized

vehicle selection at a conceptual design level. Then, it addresses the second Research

Focus: to support decisions under unclear objectives and evolving uncertainty

in requirements.

2.1 Design Space Exploration

As mentioned in Section 1.4, a successful completion of the Research Objectives requires

a methodology with design space exploration capabilities that are not commonplace in

traditional aerospace conceptual design approaches.

2.1.1 Gap Identification

Three different design approaches have been identified in the literature: typical aircraft

design process, architecture comparison, and architecture optimization. New aircraft de-

signs usually originate from either a market pull or a technology push. To match these two

market penetration models, two approaches are usually used and are described by Mavris

et al.: Technology Impact Forecasting (TIF) and Technology Identification Evaluation Se-

lection (TIES) [236, 276, 280, 284, 403]. TIF is a top-down approach that seeks the best
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combination of technologies to meet future goals. The TIF methodology is described as a

six-step process [403]: define the modeling environment, define the baseline, define variables

and responses, create surrogate models, define the technology scenarios, and conduct the

probabilistic simulation. TIES is a bottom-up approach that forecasts and discusses the

ability of a combination of technologies to meet future goals. The TIES methodology is

described as a nine-step process [276]: define the problem, identify a baseline and the con-

figurations that will be examined, define the modeling and simulation environment, explore

the design space, determine the viability of each concept, define technologies that might

be infused, evaluate the impact of each technology on the vehicle, populate the evalua-

tion matrix, and select technologies. These two approaches are based around a predefined

baseline usually selected by experts thanks to their experience in the field. Besides, new

concept ideas or technology innovations are brought by subsystems on existing baselines in

order to reduce the overall uncertainty and the risks associated with new designs. A direct

consequence of such practices on the market is the increase of the number of derivative

aircraft within generations and the re-use of successful technologies between families [158].

Hence, current aircraft design practices only consist in local design space explorations for

new technology infusion. The same observations can be made about the approach used

to design launch vehicles, which optimizes a baseline to meet future requirements. This

approach is described by several researches [4, 25, 72, 93] and requires important technol-

ogy choices to be made in order to set the optimization process. In particular, Collange

et al. [93] propose a six-step process for the conceptual design of future launch vehicles:

selection of technologies, preliminary staging based on simplified calculations, propulsion

system design, sizing of the different stages, trajectory and performance optimization, and

loop to reach an optimized and feasible launch vehicle. Hence, the typical approach for

launch vehicle design follows the same principles as the typical aircraft design approach and

consequently provides the same advantages and drawbacks.

Newer aerospace applications such as hypersonic aircraft and interplanetary spacecraft

are more likely to see breakthrough programs with new architectures. Hence, a wide range

of research has been conducted in terms of architecture selection. Some methods require
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designers to manually input the different architecture alternatives [454, 455] in order to per-

form the concept optimization. Others describe a systematic way to generate and compare

architectures, but do not allow architecture optimization [18, 117, 153, 242, 346, 468]. Con-

sequently, if newer applications were to favor a wider design space exploration, none of the

current methods would be able to systematically cover the entire design space. Figure 16

shows the ability of current design approaches to explore the design space.

Figure 16: Performance of current aerospace design processes

The entire available design space is represented in beige. The blue circles represent the

areas of this design space covered by the corresponding design approach. The size of the

circles represents the amount of configurations considered by a given design process: the

larger the circle, the larger the number of design variables. The intensity of the color repre-

sents the level of detail of the associated modeling and simulation framework. The typical

aircraft design approach considers few configurations around a single baseline architecture.

The corresponding analysis framework is extremely accurate and detailed. This leads to a

single dark circle with a relatively large size. The architecture comparison approach com-

pares many architectures but the level of detail of the evaluation framework is often based

on qualitative information. In addition, only one configuration per architecture is consid-

ered, and there is no optimization. This results in numerous small light blue circles. The

architecture optimization approach considers fewer baseline architectures and performs sep-

arate optimizations before comparing the best configurations from each architecture. While

numerous configurations are considered for each architecture, the modeling environment is
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more accurate than the architecture comparison approach but less accurate than the typical

aircraft design approach. This leads to two to three large and relatively light blue circles.

To illustrate the limitations of current design approaches, their application to the design

of suborbital vehicles is investigated. Typical aircraft design approaches, which aim at

optimizing a predefined architecture, have been widely used and have conducted to the

design of many different optimized configurations, as described below:

• Flittie et al. designed a VTVL vehicle powered by a hybrid propulsion system [149].

Designers from the American Rocket Company, Martin Marietta Manned Space Sys-

tems, and United Technologies Chemical Systems Division wanted to demonstrate the

feasibility and viability of large hybrid boosters.

• Haigneré et al. optimized an air launched vehicle with horizontal landing capabil-

ities [190]. Their goal was to develop an extremely safe vehicle using on the shelf

technologies.

• Frank et al. optimized an Horizontal Take-Off and Horizontal Landing (HTHL) con-

cept based on a hybrid rocket propulsion system with auxiliary turbofan engines [157].

The architecture was selected using qualitative considerations and experience from the

team.

• Chong et al. developed another HTHL concept powered by a Rocket-Based Combined

Cycle (RBCC) engine [177]. They used fixed requirements and a predefined baseline

to perform a multidisciplinary optimization.

• Chavagnac et al. developed a winged bizjet-sized vehicle powered by both turbofans

and rocket engines [77]. The optimization of the configuration was made around a

baseline defined by the authors’ expertise to meet well-defined requirements.

All of these designers claim to have developed the best vehicle according to their specific

set of requirements. However, they did not explore other architectures. Hence, they might

have missed some promising architectures due to the extensive use of expert judgment

and qualitative considerations to select their baseline. In addition, they did not consider
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robustness in their design or even assess the performance of their vehicles with respect to

small changes in requirements. Often, the level of detail considered for performance and

alternative evaluation meets, or even exceeds, the needs for conceptual design decisions.

Hence, while benefiting from good modeling capabilities, the typical aircraft

design approach only covers a tiny part of the design space.

The one analysis that uses an architecture comparison approach has been conducted by

Sarigul-Klijn et al. [377]. They decomposed the vehicle and the mission into several features

such as take-off mode, landing mode, airframe configuration, and propulsion system. They

used first principle equations as well as comparison with historical data to characterize each

alternative. No optimization was performed and the analysis was based on precise require-

ments originating from the Ansari X Prize. They suggested four promising architectures as

potential winners of the Ansari X Prize:

1. Vertical take-off, aerodynamic decelerator

2. Vertical take-off, wings with wheel landing

3. Some air launch, aerodynamic decelerator

4. Some air launch, wings with wheel landing

Based on these four promising architectures, they performed a thorough study considering

safety, affordability, and customer acceptance. They found that the preferred configuration

for suborbital space tourism is a Vertical Take-off and Horizontal Landing (VTHL) concept

powered by hybrid rocket engines. However, no detailed information has been provided on

either the vehicle configuration or its mission. First principle considerations cannot be used

to successfully evaluate and compare each alternative. While considering more alter-

natives than typical design approaches, architecture comparison approaches do

not provide enough information to support informed decisions.

Finally, some methodologies have been developed to optimize different alternatives of

suborbital vehicles but are restricted to a small part of the design space. Indeed, Huang et

al. created a methodology to optimize HTHL concepts in terms of propulsion, trajectory,
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etc. [212, 213, 214]. They discretized design variables to generate cases to be evaluated by

the analysis code. This methodology is similar to a small-size Design of Experiments (DoE)

performed on a subset of possible alternatives. Villeneuve et al. developed a methodology

for architecture selection of launch vehicles [455]. While it can easily be applied to suborbital

vehicles, this methodology only optimizes a handful (3-4) of architectures. Thus, these

methods cannot be used to systematically cover the entire design space because

of the lack of centralized optimization process.

The evaluation of the capabilities of current aerospace design processes shows a lack of

methodology able to systematically cover the entire design space, as required to meet the

Research Objective. Therefore, observations from the review of existing design approaches

give rise to the first Research Question:

RESEARCH QUESTION 1: How can current conceptual design approaches

be improved to enable a broader exploration of large and complex design

spaces?

To address this question, capabilities of existing approaches are compared in Table 6. The

desired methodology requires all architectures to be considered to avoid any missing oppor-

tunities. Moreover, it also requires the configurations of each architecture to be optimized

since a given architecture can be described by a large number of configurations.

Table 6: Comparison of the various design space exploration methods

All
architectures

Generalized
selection

Configuration
optimization

Typical design !!

Architecture
comparison

!! !!

Architecture
optimization

! !!

Table 6 shows that a combination of the architecture comparison approach and the ar-

chitecture optimization approach will benefit from all required capabilities. Indeed, such
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methodology will be able to consider and compare as many architectures as architecture

comparison methods by using their capability to systematically generate alternatives. This

capability is translated into a large number of circles in the design space. The method-

ology will also be able to optimize configurations within each architecture by considering

multiple variables for each subsystem similar to architecture optimization methods. This

capability corresponds to larger circles (Figure 17). Finally, in order for the impacts of each

design choice to be captured, an accurate modeling and simulation environment must be

implemented through physics-based modeling. This last capability is translated into darker

circles. Figure 17 represents the desired performance of the proposed methodology in terms

of design space exploration capabilities.

Figure 17: Expected capabilities of the proposed methodology

58



However, the same challenges that limit existing approaches also prevent such method-

ology to be implemented. Indeed, the various alternatives generated by the architecture

comparison approach are not defined by the same variables and do not necessarily require

the same modeling and simulation environments or equations to be optimized. For example,

flying cars based on wings and propellers cannot be optimized with the same variables and

the same modeling and simulation environment as the ones that are based on helicopters.

Hence, a single centralized algorithm that can both optimize and compare alternatives can-

not be defined because the design variables and the modeling and simulation environment

are different. This is the fundamental flaw in current processes that explains the limitations

of the aforementioned methods:

• Approaches that can compare all architectures are based on weak optimization pro-

cesses. Indeed, only few generic variables common to all architectures are considered.

However, these variables are not precise enough to capture trends within each archi-

tecture and do not support their optimization.

• Approaches that optimize architectures are restricted to a subset of architectures

defined by the same variables. Trade-offs between variety/number of architectures

and level of detail of their design variables ultimately appear. This rapidly limits the

scope of such methods.

To address this challenge, the methodology needs to systematically generate alternatives

that can be further optimized and compared. This requires the ability to develop an algo-

rithm that can both optimize alternatives that are not defined by the same design variables

and/or evaluated by the same modeling and simulation environment, and systematically

compare them. Since performance evaluation of such alternatives might be long, the al-

gorithm needs to be efficient. This excludes full-factorial approaches or large DoEs. The

creation of a methodology that integrates both architecture comparison and architecture

optimization into a single process can be broken down into two steps. The first step con-

sists in the systematic generation of alternatives while the second step aims at comparing
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and optimizing the previously generated alternatives. The remaining of this section se-

quentially addresses these two steps by analyzing current practices to help develop the new

methodology.

2.1.2 Systematic Generation of All Feasible Alternatives

Even though it might appear common in aerospace, the first step hides several challenges

that prevent current practices to be used. Indeed, alternatives that have to be evaluated

are not predefined. Therefore, the generation of alternatives needs to go beyond a selection

among existing concepts by systematically generating all possible alternatives. In addition,

alternatives must be generated in such a way that they can be further optimized and

compared. Hence, this alternative generation must include design variables. Indeed, in

order for an optimizer to optimize the different alternatives previously generated, they need

to be described by the same variables. This “apple to apple” comparison is a requirement

of this architecture generation process. Finally, since optimization processes might be long

to run, it is preferable to reduce the number of algorithms to be executed. These challenges

lead to the following Research Question:

RESEARCH QUESTION 1.1: How can we systematically capture all feasible

alternatives, which are not necessarily defined by the same design variables,

for further comparison and optimization?

To address this question, existing alternative generation methodologies are compared and

evaluated. They will then be leveraged to develop a new methodology that benefits from

the aforementioned capabilities.

2.1.2.1 Review of Existing Alternative Generation Methods

First, existing alternative generation approaches are reviewed in order to be later lever-

aged.

6-3-5 method: Created by B. Rohrbach in 1968, this method aims at generating 108

new ideas in half an hour [259, 327]. The method requires six designers who sit together
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and each participant has to write three ideas every five minutes. Ideas are then passed to

the next designer who uses it for inspiration to create more ideas. Hence, after six rounds,

a total of 108 ideas are generated. This method encourages quantity without ensuring

quality. Moreover, there is no rigorous or systematic process involved and the ideas rely on

experience of the designing team.

Design Catalogues: This method is usually used by selecting a handful of representative

solutions instead of all possible ones [370]. It is very popular in scenario development.

However, it only provides a limited number of alternatives to be considered for further

analyses. For example, in the context of oil price forecast, instead of considering billions

of combinations of price scenarios, only three are considered: baseline, optimistic, and

pessimistic. Using this method, designers will miss some opportunities and will not be able

to screen the entire design space. In addition, the creation of these representative solutions

requires experience in the field, which is usually extremely limited for new markets.

Theory of Inventive Problem Solving (TRIZ): Created by Altshuller, this theory

relies on the exploration of past solutions [164]. Indeed, Altshuller categorized problems

into five levels with respect to their degree of inventiveness and defined their occurrence:

apparent solution (32%), minor improvement (45%), major improvement (18%), new con-

cepts (4%), and discovery (1%). As a consequence, he developed a methodology that would

work for about 95% of the problems using a five-step process:

1. Identify the problem

2. Formulate the problem by identifying potential gaps or technical difficulties

3. Search for previously well-solved problems

4. Identify analogous problems with known solutions

5. Adapt identified solutions to the stated problem

However, this methodology does not work for innovative concepts and lacks of rigor in the

generation of concepts.
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Morphological Analysis: The General Morphological Analysis (GMA), developed by

Zwicky, is a methodology to explore all possible solutions in multi-dimensional and non-

quantifiable complex problems [498, 499, 500]. One of its most common forms is the mor-

phological matrix used in numerous aerospace design methodologies [160, 207, 276, 403].

The system is decomposed into functions or features (rows in the morphological matrix)

for which different alternatives are identified (columns in the morphological matrix). Then,

solutions are created by generating all combinations of alternatives. This full-factorial ap-

proach to design space definition is rigorous and systematic but also generates non-feasible

combinations. Hence, this method is usually combined with a compatibility matrix [161].

While the combination of the morphological matrix with the compatibility matrix will

remove infeasible solutions, the number of alternatives to be considered usually remains

extremely large.

Interactive Reconfigurable Matrix of Alternatives (IRMA): The aforementioned

morphological matrix has been improved to account for the dynamic and iterative nature

of decision-making processes [136, 221, 273, 341]. Indeed, the Interactive Reconfigurable

Matrix of Alternatives (IRMA) embodies both the morphological and the cross-consistency

matrices within a single software framework. It benefits from the following advantages:

hidden integrated compatibility matrices, filters that can reduce the number of alternatives,

standardized and flexible, integrated method for alternatives selection, etc. However, it does

not track design variables and the number of possible solutions generated is still extremely

large.

Adaptive Reconfigurable Matrix of Alternatives (ARM): Even though the IRMA

greatly supports the generation of design concepts, it is based on a static functional de-

composition. To overcome this pitfall, Adaptive Reconfigurable Matrix of Alternatives

(ARM) [18] has been developed that relies on functional induction. It acts as a hybrid of

the IRMA and the function/means tree so that both functional and physical breakdowns

can be interactively managed. While being more flexible than the IRMA, it suffers from

the same main pitfall: design variables are not tracked. In addition, this tool aims at

62



supporting the designers in the concept selection rather than in the concept generation.

The ARM has been implemented into the Architecture Design Environment (ADEN) [18],

whose goals were to manage complex relationships between architectural elements and to

provide a framework for trade-off analyses and performance evaluation of a single generated

alternative.

Decision tree: Decision trees map out all possible paths that can be followed to achieve

a primary goal and its corresponding sub-goals [233]. Hence, if goals are linked to vehicle

features, decision trees can help lay out alternatives. This approach is systematic and logic

and thus reduces the probability to omit items. Compatibility issues are directly addressed

so that only feasible solutions are generated at the end nodes. This approach is similar

to the morphological matrix except that it requires designers to individually generate all

alternatives. Hence, even if it does not require a separate compatibility matrix, the same

amount of thinking is needed from the designers. However, it is less rigorous and systematic

than the morphological matrix since designers must manually build each branch of the tree

diagram. Finally, this method does not track design variables either.

Morphological Evaluation Machine and Interactive Conceptualizer (MEMIC):

Morphological Evaluation Machine and Interactive Conceptualizer (MEMIC) [19] is an au-

tomated concept generator able to produce multiple design solutions from a given set of

sub-functions. It relies on a web-based repository. The tool uses function-component rela-

tionships embedded in a function-component matrix and the component-component com-

patibility contained in a Design Structure Matrix (DSM). This tool aims at assisting de-

signers in the choice of the various options for each function and sub-function while also

supporting the generation of several “good” solutions. However, it does not include a sys-

tematic generation of alternatives in order to cover the entire design space and does not

capture the design variables that define the different alternatives.

Based on the previous analysis, the best way to explore as many alternatives as possible

is to decompose the system into features. In particular, it appears that the combination of
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both morphological and compatibility matrices represents the best solution to systemati-

cally and rigorously generate all feasible alternatives. However, the number of alternatives

that must be considered for further optimization and comparison is extremely large. Since

the multi-objective optimization of each concept requires a significant amount of setup and

execution time, it becomes rapidly infeasible to simply use this process. In addition, this

process does not consider the downstream use of the generated alternatives. In this research,

they must be further used by an optimization algorithm to be compared and optimized.

In order to consistently use existing optimization algorithms, alternatives must be defined

by the same variables, which rarely happens when dealing with unconventional concepts.

Thus, while a sequential use of conventional morphological and compatibility matrices en-

ables a systematic generation of alternatives, it is not conducive to further comparison and

optimization. These challenges are addressed in the following section with the development

of an improved morphological analysis based around variable-oriented architectures.

2.1.2.2 Proposed Process

If the generated alternatives have to be further considered within an optimization algo-

rithm, one must ensure that they are described by the same design variables. For example,

a winged body does not have the same design variables as a slender body and cannot be op-

timized by the same algorithm. To overcome this challenge, groups of alternatives that are

defined by the same variables can be created. This will reduce the number of multi-objective

optimization algorithms that must be individually launched, while also providing consistent

information to these algorithms. To do so, and consequently improve the conventional

morphological matrix, some terms need to be clearly defined:

• Alternative: given set of design variables sufficient to fully define a concept

• Features: functions or physical elements that can vary among alternatives

• Options: various available choices for a given feature

• Architecture: group of alternatives that are described by the same design variables
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• Configuration: given set of design variables that freeze the design of a given architec-

ture

Based on these “new” definitions, a two-step process is proposed (Figure 18). The first

step consists in grouping the different options that can be described by the same design

variables. This reduces the number of available options for each feature and consequently

the number of possible architectures. The design variables used to describe and character-

ized the different options of a given group are included in the optimization process. As a

consequence, the number of possible alternatives is increased but the number of discrete

architectures is decreased. Instead of decreasing the design space, continuous variables are

kept and consequently an infinite number of potential alternatives are considered. This will

make the following optimization process more efficient. The second step aims at removing

the features that are only described by one group of options in the morphological matrix.

Indeed, instead of decomposing this feature into several options, its specific set of design

variables is used in the optimization process.

Figure 18: Improvement of the morphological analysis

Following this two-step improvement of the traditional morphological analysis, a typical

compatibility matrix is created to ensure that only feasible alternatives are generated.

This new process provides significant benefits to the development of the methodology

discussed in Section 1.4. Indeed, it provides a systematic and rigorous methodology that

is able to capture all alternatives. Compared to the traditional approach, it decreases the

number of optimization algorithms that must be executed and thus decreases set-up and
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computation times. Hence, the new process provides a methodology to generate alternatives

in order to further foster an efficient optimization and comparison of all possible concepts.

This leads to the following Hypothesis:

HYPOTHESIS 1.1: IF a variable-oriented morphological analysis combined

with a compatibility analysis is developed THEN all feasible alternatives can

be systematically generated for further comparison and optimization.

In order to validate this Hypothesis, Experiment 1.1 is implemented. First, a list of

all possible options for each architecture needs to be created using knowledge gained from

a literature review. Next, a conventional morphological matrix will be created and modi-

fied based on the previous methodology and the new “architecture” definition. Finally, a

compatibility analysis will be developed and combined with the previous variable-oriented

morphological analysis. To fully validate Hypothesis 1.1, three elements need to be vali-

dated: exhaustiveness, feasibility, and ability to be further compared and optimized. In

particular, the number of discrete optimization algorithms to be executed has to be greatly

reduced in order to foster large design space explorations. According to various studies, the

execution time for a single optimization algorithm is around several days [50, 52, 325]. As a

consequence, reducing the number of algorithms is a key enabler of large-scale design space

exploration. As described in Section 1.2, typical conceptual design spaces for advanced

vehicles are composed of at least 500,000 alternatives. So, in order for such exploration to

be manageable, the number of discrete optimization algorithms must be reduced by a factor

105. This would result in an overall computational time of about one week. The validation

of Hypothesis 1.1 will be addressed through the following four questions:

1. Are all existing concepts covered by the final set of alternatives?

2. Are all alternatives feasible?

3. Is the number of discrete optimization algorithms to be executed greatly reduced

compared to the typical morphological analysis?
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4. Is each architecture defined by a unique set of design variables?

Once all the alternatives have been generated by the aforementioned process, they must

be optimized against stated criteria and compared to enable designers to make informed

decisions. This is discussed in the following section.

2.1.3 Comparison and Optimization of Alternatives

The goal of this section is to provide a methodology that can efficiently and simultane-

ously compare and optimize the generated alternatives against multiple criteria. To reach

this goal, the following challenges need to be addressed:

• Variables are described by design variables that can be continuous (sweep angle),

discrete (number of engines), and categorical (type of propellant). Therefore, conven-

tional efficient gradient-based algorithms cannot be used.

• Architectures can be defined by different design variables and evaluated with differ-

ent modeling and simulation environments. Hence, the use of a single conventional

optimization algorithm is impossible.

• There are potentially many architectures to be optimized and many discrete or cate-

gorical design variables. Consequently, surrogate models cannot be used to speed up

the process.

• There are multiple objectives that are not prioritized. As a consequence, multi-

objective optimization algorithms must be used. However, due to the lack of a priori

prioritization and required capabilities to visualize trends, aggregation of the multiple

objectives into a single objective function is not possible.

These challenges require the development of a new optimization process. This leads to

the following Research Question:

RESEARCH QUESTION 1.2: How can the Pareto frontier of solutions de-

fined by different sets of design variables be efficiently determined in a design

space composed of discrete, continuous, and categorical variables?
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In order to address this question, the first step is to optimize each architecture with

respect to its specific design variables. To do so, existing multi-objective optimization al-

gorithms are described, compared, and evaluated to support the development of the new

process. Only algorithms that can, at least, deal with continuous variables are presented.

Their ability to also handle discrete, and consequently categorical, variables will be eval-

uated. A typical formulation of such problem is presented in Equation 3, where y is the

vector of objectives and x the vector of variables. g and h represent the inequality and

equality constraints, respectively.

min
x

y = f(x)

g(x) ≤ 0

h(x) = 0

(3)

To solve this problem, two main approaches can be taken. The first approach called compro-

mise optimization (or a priori multi-objective optimization) defines an Overall Evaluation

Criterion (OEC), which is a value function that aggregates multiple attributes. In this case,

the user preferences are included upfront. The second one called Pareto optimization (or a

posteriori multi-objective optimization) generates a set of optimized solutions which repre-

sent relative optimality between attributes. In this case, the user preferences are captured

a posteriori.

2.1.3.1 Compromise Programming

One of the first ideas when dealing with multiple objective is to combine them into a

single aggregate function using weights to emphasize some of the objectives. For example,

minimizing the fuel consumption could be preferred to maximizing the cruise speed. Even

if a multitude of formulations exists, one of the most widely used is the one suggested by

G. N. Vanderplaats [451] and presented in Equation 4, where wk is the weighting factor

corresponding to the kth objective function fk, f
⋆ is the kth function target, and f− the kth

worst known value of the kth objective function.

f(x) =

{

∑

k

[

wk
fk(x)− f⋆

k (x)

f−
k (x)− f⋆

k (x)

]2
}0.5

(4)
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Another formulation was provided by Mavris et al. [274] within the aerospace domain

to support the selection and evaluation of military aircraft. The OEC developed is pre-

sented in Equation 5. In this formulation, the Greek letters correspond to the weighting

coefficients and each ratio represents a criterion: Life-Cycle Cost (LCC), Mission Capability

Index (MCI), Engine-related Attrition Index (EAI), Survivability Probability (SP), and

Operational Readiness (OR). For criteria that must be maximized, the baseline denoted by

the subscript BL is the denominator and for criteria that must be minimized, the baseline

is the numerator.

OEC = α

(

LLCBL

LLC

)

+ β

(

MCI

MCIBL

)

+ γ

(

EAI

EAIBL

)

+ δ

(

SP

SPBL

)

+ ǫ

(

OR

ORBL

)

(5)

While being fast and easy to implement, these methods are very subjective because they

depend on the definition of weighting factors. Moreover, some formulations could be very

sensitive, especially if extremely small and/or high values are used. Similarly, criteria with

a broader range could dominate the optimization. To overcome these drawbacks, another

more complex approach has been developed, as discussed in the next section.

2.1.3.2 Pareto Optimization

Instead of seeking for one optimum solution, the idea is to generate a set of optimum

solutions. For that purpose, the Pareto optimization is based on a partial ordering space

instead of a total ordering space. This space has the following rules [170]:

• A “weakly dominates” B if A is better in some attributes and equal in others.

• C “strongly dominates” B if C is better in all attributes.

• A and C are “incomparable” if A is better than C in some attributes but worse in

others.

Based on these rules, the subset of all non-dominated points is called the Pareto frontier

(Figure 19). Even though this technique does not provide a single optimized point, the

visualization of the Pareto frontier allows decision makers to better understand trade-offs

that must be made. It then helps them formulate a single-objective optimization problem
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to select their “best” design. This advantage becomes even more important when uncer-

tainty is present in requirements. This technique is harder and more complex to implement

but is promising and has already provided significant benefits in the conceptual design of

spacecraft, launch vehicles, and supersonic aircraft [65, 87, 289, 455]. Another important

advantage of this approach is its applicability to sub-problem optimization with its capa-

bility to only keep non-dominated alternatives without any decisions.

Figure 19: Notional example of a two-objective Pareto frontier [170]

Determining the Pareto frontier is not an easy task, especially when the number of

criteria, constraints, and variables is very large. Two major strategies of Pareto frontier

sampling can be identified [170].

The first strategy consists in defining and solving a series of single-objective problems

so that each of them provides a point on the Pareto frontier. This can be achieved by

varying either the objective function or the constraints. A common approach is to define a

parametric objective function as the weighted p-norm presented in Equation 6, where p is

the selected norm (usually 1 or 2), yi the different objectives, and wi their corresponding

weighting factors that have to be changed for each sub-problem.

f(x) =

(

∑

i

wiy
p
i (x)

)1/p

(6)
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Other more sophisticated methods based on the same operating principle also exist such as

the Epsilon-Constraint method [191], the Normal Boundary Intersection (NBI) method [104],

and the Normalized Normal Constraint (NNC) method [293]. While being fast, easy to im-

plement and relatively straightforward, these techniques do not work well for non-convex,

non-linear, and highly constrained design spaces.

The second strategy consists in using evolutionary algorithms. They approach the

Pareto frontier by iteratively optimizing a population of points. Ghosh and Dehuri [173],

Tan et al. [426], as well as Foncesca and Fleming [151] provide a survey of such existing

algorithms. A brief description of each of them is provided along with their main advan-

tages and drawbacks in order to help determine the most suitable algorithm for the stated

problem.

• Weighted-Sum-Approach (WSA): it uses a genetic algorithm to generate the weights

wi of the objective function presented in Equation 6. While being computationally

efficient, this approach has some difficulties to find accurate weighting factors when

there is a scaling disparity between objectives. Moreover, it cannot handle non-convex

design space.

• Vector Evaluated Genetic Algorithm (VEGA): it is an extension of the simple genetic

algorithm since it only modifies the selection phase. Indeed, it creates sub-populations

generated from the old generation by a proportional selection for each objective. Then,

it merges these sub-populations to create the next generation. This approach is simple

and easy to implement but has some issues when dealing with non-convex design

spaces.

• Niched Pareto Genetic Algorithm (NPGA): it mainly relies on a modified tournament

selection, which includes the dominance principle among the selection criteria. This

approach is complicated to implement and its performance highly relies on the tour-

nament size and the sharing factor among two populations. Nevertheless, it is very

fast to run.
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• Non-dominated Sorting Genetic Algorithm (NSGA): it uses the same operating princi-

ples as the genetic algorithm (i.e. reproduction, mutation, and selection). It classifies

the individuals into several layers based on their fitness. This fitness is attributed

based on the “level of dominance”. This algorithm is relatively easy to implement

but is very sensitive to initial parameters. To correct this pitfall, an improved version

called Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been created in

2002 [110]. This version takes into account the crowding distance, which is a measure

of the relative distance between points. It enables an evenly-spaced sampling of the

Pareto frontier and is also very efficient when dealing with unconventionally shaped

design spaces. Even if this approach is more resource and time-consuming, it has the

capability of handling all kinds of design spaces and complex problems.

• Multi-Objective Genetic Algorithm (MOGA): it uses non-dominance and determines

its level by assigning a value to each individual compared to all the others. It is

different from the NSGA, which proceeds by layers of non-domination. This algorithm

is efficient and fast to run but the performance highly depends on the sharing factor.

This sharing factor is used to weight the diversity in fitness assignment [90].

• Strength Pareto Evolutionary Algorithm (SPEA): it combines the notions of elitism

and Pareto non-dominance. Indeed, at every generation, a set of non-dominated points

is kept from the previous generation. Elitism is then used to update the population

and the set of non-dominated points at each generation. Contrary to the MOGA

or NPGA, this algorithm does not use any predefined parameters so that it is more

robust to the nature of the problem and to the initial settings. Nevertheless, it is

relatively inefficient for non-convex spaces.

• Predator-Prey Evolution Strategy (PPES): relatively different from the other algo-

rithms, it uses the concept of predator-prey to assign fitness to individuals. An undi-

rected connected graph is built and preys are placed on its vertices. Then, predators

(one per objective function) are located on the graph and catches the prey with the
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best value according to its criterion. Predators move in the graph until the con-

vergence criterion is reached. The method is simple and easy to implement but it

often results in unevenly-spaced Pareto frontiers and is very sensitive to predefined

parameters.

• Thermodynamic Genetic Algorithm (TGA): it evaluates the fitness of each individual

by a function related to thermodynamic equilibrium called Gibbs energy. It enables

the convergence towards the Pareto frontier while preserving a good diversity among

the obtained solutions. The algorithm is based on a predefined annealing schedule

and thus the overall performance of the algorithm depends on the definition of this

schedule.

2.1.3.3 Tool Selection for Architecture Optimization

To select the most suitable method, it is important to recall its desired capabilities. It

must be able to both handle discrete and continuous variables, and deal with complex and

thus potentially non-convex design spaces. Finally, it must be independent of predefined

settings since the behavior of the response is completely unknown at this point. Table 7

compares and evaluates the aforementioned methods in order to find the most suitable al-

gorithm. For the stated problem, the best technique appears to be NSGA-II.

While NSGA-II can be used to individually optimize each architecture, a process must

be developed to integrate them into a single optimization process and consequently enable

both optimization and comparison. This integration is discussed in the next section.

2.1.3.4 Proposed Optimization Process

This section discusses the development of an optimization process that combines all

architectures into a single problem. As a first step, the previously mentioned architecture

optimization problems are considered as sub-problems. Hence, the primary optimizer takes

architectures as variables and outputs the overall Pareto frontier. The latter is generated

by combining all sub-Pareto frontiers. The first idea would be to sequentially define the
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Table 7: Comparison of the various multi-objective optimization algorithms

Discrete
variables

Non-convex
space

Pareto
frontier

Best
solution

No pre-
defined
settings

OEC ! ! !

Weighted
p-norm

! !

Epsilon-
Constraint

!

NBI ! !

NNC ! !

WSA ! ! !

VEGA ! ! !

NPGA ! ! !

SPEA ! ! !

NSGA ! ! !

NSGA-II ! ! ! !

MOGA ! ! !

PPES ! ! !

TGA ! ! !

Pareto frontier of each architecture and combine them. However, both alternative evaluation

and NSGA-II are expensive to run. In addition, variables are all categorical since they

correspond to the various architectures. To address these challenges, a new evolutionary

algorithm inspired by simulated annealing is developed, that is able to handle multiple

architectures. Simulated annealing is an optimization algorithm inspired by the annealing

process for metals [123]. This type of metaheuristic algorithm enables an efficient search in

presence of local minima. Besides, it enables a better efficiency than a simple grid search

while keeping diversity and allowing uphill searches. Hence, the new evolutionary algorithm

is defined by the following four-step process:

1. Start to execute the NSGA-II for each architecture with an initial number of genera-

tions N0 identical for all architectures.

2. Evaluate the fitness fi of each architecture. fi corresponds to the number of non-

dominated points originating from architecture i in the overall Pareto frontier.
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3. Determine the number of generations Ni of each architecture for the next iteration of

the primary algorithm based on the following principle:

• If fi 6= 0: Ni is proportional to fi.

• If fi = 0: Ni has a probability p to reach N0. pi is defined in Equation 7, where

mi is the number of fruitless iterations of architecture i and T a given constant.

pi = 1− exp

(−mi

T

)

(7)

4. Repeat steps 2 and 3 until the convergence criterion is met.

Evolutionary
algorithm

Architecture 2

Architecture 1

...

Architecture k

Req. 2

Req. 1

...

Req. m

NSGA-II

NSGA-II

...

NSGA-II

Figure 20: Description of EMMA

Implementing this algorithm has numerous advantages. It enables promising architec-

tures to be favored in the selection process by assigning them more generations. Moreover,

it also enables less promising architectures to be explored in order to ensure that every

point of the design space has a chance to be explored independently of the initial condi-

tions. Hence, all promising configurations can be investigated. The constant T needs to

be determined and represents the trade-off between fast convergence and insensitivity to

the initial points, and accuracy of the final set of points. The overall optimization process,

called Evolutionary Multi-architecture Multi-objective Algorithm (EMMA), is summarized

in Figure 20 and leads to the formulation of the following Hypothesis:

HYPOTHESIS 1.2: IF an evolutionary multi-architecture multi-objective al-

gorithm based on architecture fitness is developed to drive a sequential use

of multiple NSGA-IIs THEN the Pareto frontier of solutions defined by dif-

ferent sets of continuous, discrete, and categorical variables can be efficiently

generated.
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In order to validate this Hypothesis, Experiment 1.2 is implemented. First, a list of

all requirements as well as the output of Experiment 1.1 are needed. This experiment also

requires the NSGA-II from Matlab and a design framework to evaluate each alternative.

Next, the aforementioned design process will be implemented to find the overall Pareto

frontier under fixed requirements. In parallel, a DoE will also be developed across all

architectures to be used as a baseline for comparison. The validation of Hypothesis 1.2

requires three elements to be checked: the accuracy of the location of the Pareto frontier,

the quality of its sampling, and its usability for complex and large-scale problems. This will

be done through three questions:

1. Are most of the points from the DoE dominated by the points on the Pareto frontier

of the proposed algorithm?

2. Is the Pareto frontier evenly sampled?

3. Does the benefits of the proposed algorithm increase with the problem complexity?

2.1.3.5 Summary of the New Design Space Exploration Method

The combination of the two methodologies developed for both alternative generation

and alternative comparison/optimization are now combined to formulate the following Hy-

pothesis, which addresses Research Question 1.

HYPOTHESIS 1: IF all feasible alternatives are systematically generated

using a variable-oriented morphological analysis AND IF they are simulta-

neously compared and optimized using an evolutionary multi-architecture

multi-objective algorithm based on architecture fitness THEN large design

spaces can be better explored at a conceptual design level.

In order to validate this Hypothesis, one must ensure that the combination of the two

methods described in Experiments 1.1 and 1.2 fully addresses Research Question 1. Ex-

periment 1 will ensure that the design space exploration has been improved by comparing

its results to existing methodologies. In particular, the proposed methodology must enable

76



new promising concepts to be rapidly identified in a design space, where alternatives are

not necessarily defined by the same variables and/or evaluated with the same modeling and

simulation environment.

Hitherto, requirements were considered as fixed. However, as discussed in Section 1.3,

they are highly uncertain and their uncertainty evolves over time. This evolving uncertainty

will be discussed in the following section.

2.2 Decision-Making Under Evolving Uncertainty in Requirements

Accurate requirements definition is one of the key success factors of a good design. How-

ever, it is also one the most challenging parts of the design process. This task becomes even

more difficult with the presence of the various sources of uncertainty described in Section 1.3.

Traditional aerospace design processes often rely on a single design mission [45] that best

represents the most constraining mission requirements. However, new vehicles have to be

designed while requirements (mission, safety, ticket price, and comfort) have not been de-

fined yet. In addition, such vehicles could support various future applications. Raymer

defines aerospace design as the process of finding the vehicle that meets or maximizes all

other requirements when sized to the design mission [354]. This would result in having

one vehicle per mission, which is not economically viable. The concept of robust design

has therefore been introduced and refers to techniques that attempt to mitigate the effects

of variability of different factors on the vehicle performance. Section 1.3 also established

the evolving nature of this uncertainty. Indeed, at the beginning of a market establish-

ment, uncertainty in requirements is extremely high and there is no most probable value.

Along with technology maturation and market establishment, various possible applications

appear and thus provide different goals for requirements and regulations. These goals are

translated into most probable value around which uncertainty is still strong. Finally, at the

dawn of the detailed design and the production phases, potential applications are frozen

and regulations are precise enough. Figure 21 illustrates this evolution in regulations and

applications along with its impacts on uncertainty. In this example, the first requirement
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converges towards a single value while the second requirement converges towards two dif-

ferent end values due to different applications.

Figure 21: Evolution of requirements’ uncertainty over time

The following sections describe the steps of a decision-making methodology that captures

all periods of the market establishment.

2.2.1 Gap Identification

Based on the previous analysis, three different states can be identified and are repre-

sented in Figure 22. While States 1 and 3 are static, State 2 is dynamic since both the

degree of uncertainty and the most probable value change.

(a) State 1 (b) State 2 (c) State 3

Figure 22: Different states of requirements
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Therefore, to address this second state, designers must be able to rapidly control both

the degree of uncertainty and the most probable values. To be taken into account, uncer-

tainty must be propagated through the design framework and its consequences must be

assessed. Due to its complexity, the design framework has a long execution time so that

the treatment of uncertainty must rely on few function calls. Finally, since uncertainty

distributions are usually unknown at the beginning of the market development, the process

should not rely on predefined distributions to propagate uncertainty. To discuss the way

uncertainty can be modeled and propagated, this section describes, compares, and evalu-

ates state-of-the art techniques in robust design. These methods can be decomposed in

five categories: probabilistic methods, non-probabilistic methods, dynamic set-based design

methods, information-gap decision theory, and Bayesian Information Toolkit (BIT).

2.2.1.1 Probabilistic Approach

The idea of probabilistic approaches is to propagate uncertainty by treating noise vari-

ables as random variables modeled by probability distributions instead of fixed values [172].

Figure 23 describes the general process of probabilistic approaches.

𝑓(𝑥, 𝜀)𝜀1⋮𝜀𝑛 𝑦
𝑥1 ⋯ 𝑥𝑚

Figure 23: General process of probabilistic robust design [170]

The implementation of probabilistic robust design can be decomposed into three different

steps: noise variable modeling, uncertainty propagation, and robust design formulation.

Each of these steps requires the choice of a method to be implemented.
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Noise variable modeling: As previously mentioned, variables must be modeled by prob-

ability distributions. Depending on the circumstances, one of the following distributions

may be used [285]:

• Uniform: for a given range [l;u], all outcomes x are equally likely. This represents a

complete uncertainty and it can be modeled using Equation 8.

u(x) =











1
u−l ∀ l ≤ x ≤ u

0 elsewhere
(8)

• Triangular: used when three outcomes are known. In particular, a triangular distri-

bution is characterized by the minimum l, the maximum u, and the most likely m. It

can be modeled using Equation 9.

t(x) =























2(x−l)
(u−l)(m−l) ∀ l ≤ x ≤ m

2(u−x)
(u−l)(u−m) ∀ m ≤ x ≤ u

0 elsewhere

(9)

• Gaussian: represents the addition of many random numbers and is widely used to

represent natural phenomena. It is modeled in Equation 10, where µ is the mean and

σ2 the variance.

g(x) =
1√
2πσ2

exp−
1

2σ2 (x−µ)2 (10)

• Weibull: usually used to model reliability and failure rates in engineering. It is mod-

eled in Equation 11, where α and β are two constants so that the failure rate is

expressed as Z(t) = αβtβ−1.

w(x) =











αβxβ−1 exp−αxβ ∀ x > 0

0 elsewhere
(11)

• Beta: one of the most flexible distributions used to model random variables within a

given range [l;u]. It can be modeled using Equation 12, where α and β are two fixed

integers.

b(x) =
(u− x)β−1 (x− l)α−1

(α−1)!(β−1)!
(α+β−1)! (u− l)α+β−1

(12)
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Once one of these distributions has been selected for each noise variable, they need to be

propagated through the optimization process. The different methods are discussed below.

Uncertainty propagation: Uncertainty propagation refers to the way used to assess the

effect of the variability of each noise variable on the objective function(s). Two types of

methods can be identified: statistical and non-statistical methods [84].

Statistical methods use a large number of samples of the noise variables and repeat-

edly analyze the output of the system to statistically determine its distribution. Among

statistical methods, the most widely used are the Monte-Carlo simulation and the Latin

Hypercube sampling method. The Monte-Carlo simulation generates points by randomly

sampling the noise variables based on their probability distribution. Then, it executes the

code to find the output corresponding to each sample. Finally, it statistically creates the

Probability Density Function (PDF) of the objective function. Even though this method

is very accurate as it provides the entire PDF, it is computationally expensive because the

code must be executed for a large number of points. This technique is widely used within

the aerospace domain [160, 272, 275, 359]. The Latin Hypercube sampling method wisely

generates sample points based on a division of each variable into intervals [288]. While the

number of points of the final sampling can be chosen by the user, each interval can only

be represented once in the final sampling. Even though it is more computationally efficient

than the Monte-Carlo simulation, it still requires many function calls. Hence, to address

this common pitfall of statistical methods, non-statistical methods have been developed.

While being more efficient, non-statistical methods are also less accurate and require

several assumptions to be made. Examples of such methods are Moment methods, polyno-

mial chaos, and Bayesian Monte-Carlo (BMC) technique. Moment methods use a Taylor

series expansion to approximate the response variance as a function of the variances of each

input parameter. Equations 13 and 14 present the First-Order Second Moment (FOSM)

method and the Second-Order Second Moment (SOSM) method, respectively.

Var1 (y(x)) = Var(x)

(

∂y

∂x

∣

∣

∣

∣

x̄

)2

(13)
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Var2 (y(x)) = Var(x)

(

∂y

∂x

∣

∣

∣

∣

x̄

)2

+
1

2

(

Var(x)
∂2y

∂2x

∣

∣

∣

∣

x̄

)2

(14)

While these methods are computationally efficient and thus useful for design space explo-

ration, they have some pitfalls. Indeed, they highly depend on the type of PDF chosen

for the noise variables and are only accurate for Gaussian distributions. To address the

second drawback, polynomial chaos expansions decompose the uncertainty into determinis-

tic and random components. The random component is characterized by an infinite series

of Hermite polynomials. BMC incorporates prior knowledge into the process using Gaus-

sian process based on Bayes Theorem and consequently improves the classical Monte-Carlo

simulation. Equation 15 presents this theorem for a single uncertain parameter θ and the

observed parameter x.

P (θ|x) = P (x|θ)P (θ)

P (x)
(15)

While this method is also relatively efficient, it still requires prior knowledge about the

distribution of the noise variables and many function calls. This method is also more

complicated to implement and depends on some predefined parameters that could impact

the accuracy of the final result. Once the probability distributions have been propagated

through the design process, the final step consists in defining an objective function that

incorporates the variability.

Objective function formulation: The objective function aims at balancing the opti-

mization of the initial objective function and the minimization of the variability. Three

main approaches are commonly used: traditional robust design formulation, robust design

Pareto frontiers, and reliability-based design optimization [172]. Traditional robust design

formulations define a new objective function presented in Equation 16 that needs to be

minimized. In this equation, µy is the mean of the objective function, yT its targeted value,

and σ2
y its variance.

min (µy − yT )
2 + σ2

y (16)

This formulation can also be extended to multi-objective optimization using the Joint Prob-

abilistic Decision Making (JPDM) [27, 28]. The latter introduces the probability of success
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as a new objective function that contains information from all other objective functions.

Robust design Pareto frontier techniques aim at determining the set of non-dominated solu-

tions with respect to both the objective function and its variance. Finally, reliability-based

design optimization focuses on guaranteeing that a given constraint gi is not violated within

a specific probability Ri. Its general formulation is given in Equation 17, where x are the

design variables and ǫ the noise variables.

P [gi(x, ǫ)] ≤ Ri (17)

While various methodologies have been presented to model, propagate, and analyze

uncertainty, they all rely on user-defined probability distributions. However, these distri-

butions are usually unknown at the beginning of the establishment of a new program. The

next section presents other robust design methodologies that do not require uncertainty

distributions.

2.2.1.2 Non-Probabilistic Approach

Non-probabilistic methods allow decision makers to consider uncertainty variables with-

out precise information about their probability distributions. Two main methods exist in

the literature: fuzzy set theory and interval analysis.

Fuzzy set theory: Fuzzy set theory assesses the behavior of a system under inexact or

unreliable variables [80, 125, 126]. This methodology is especially useful when variables

cannot be modeled statistically. In addition, it is very simple to use and to implement.

Hence, it has been widely used for engineering applications.

Fuzzy logic calculates the approximate behavior of the system using models based on

inexact or unreliable data. The membership function represents the degree of membership

of the fuzzy variable within a fuzzy set. First introduced by Zadeh in 1965, membership

functions assign to each object a grade of membership between zero and one [491]. They

enable the modeling of imprecision in definition criteria and consequently represent the

degree of truth. Uncertainty analysis using fuzzy sets is often called a possibility approach.
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Fuzzy logic has been widely used in engineering applications [36, 124, 137, 245, 267, 397,

495, 496, 497].

To illustrate how fuzzy set theory propagates uncertainty, one can consider a problem

with n uncertain design variables xi. These variables are modeled by membership functions,

which represent how much a variable is in a set. Probability represents how probable it is

that a variable is in a set. Hence, in fuzzy set theory, axioms of classical probability can

be relaxed. Moreover, each variable is characterized by a mean value µi and a standard

deviation σ2
i . If X is defined as the objective function such as X = f (x1, x2, ...xn), the

robust design problem can be defined using Equation 18. In this equation, T is the target

value of the objective function, gi =
∂f
∂xi

, hij = ∂2f
∂xi∂xj

, and σij is the covariance of xi and

xj .

minVar(X) = min
n
∑

i=1

n
∑

j=1
gi(µ)gj(µ)σij

subject to E(X)− T = f(µ) + 1
2

n
∑

i=1

n
∑

j=1
hij(µ)σij − T

(18)

A consequence of this simplicity is a reduced accuracy compared to probabilistic methods.

Indeed, instead of propagating the entire distribution, only the mean and the variance are

propagated. However, for a first order estimate, this methodology appears ideal since both

the mean value and the degree of uncertainty can be controlled.

Interval analysis: Interval analysis models uncertainty using two parameters: the min-

imum and maximum values constraints are expected to take [113, 118, 119]. Hence, if

P = [p1, p2, ..., pt] is the vector of constraints, its uncertainty P I can be defined with P c

and Pw, which are the middle vector and the radius vector, respectively, as described in

Equation 19.

P I = P c + [−1 , +1]Pw (19)

Based on this definition, the initial optimization problem is translated into a bi-objective

optimization problem as illustrated in Equation 20. For a specific optimal solution X, FL

and FU represent the minimum and the maximum of the interval number F
(

X,P I
)

=
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f (X,P ), respectively.

min f (X,P ) = min (F c, Fw)

F c = 1
2

[

FL
(

X,P I
)

+ FU
(

X,P I
)]

Fw = 1
2

[

FU
(

X,P I
)

− FL
(

X,P I
)]

(20)

This method, easy to implement, only considers the bounds of the uncertainty interval and

does not allow decision makers to favor a specific most probable value. In addition, it has

been shown that, for large problems, the solution might be too conservative [84].

2.2.1.3 Dynamically Constrained Set-Based Design

Set-based design has been developed by Toyota and improves traditional point-based

design [405]. It is based on three main principles. First, it explores the design space by

defining the feasible region for each discipline. Then, it combines all disciplines to determine

the feasible design space of the vehicle, which is the intersection of all previous regions.

Several constraints can also be added to narrow this design space. Finally, it gradually

reduces disciplinary feasibility regions by increasing the level of detail so that the feasibility

region is defined before commitment. Kizer et al. improved this methodology to integrate

uncertainty in requirements/constraints and thus developed the Dynamically Constrained

Set-Based Design [238]. Traditional set-based design has been adapted assuming non-static

requirements. A three-step method is described:

1. Creation of the feasible design space similarly to conventional set-based design space

using nominal values for the constraints.

2. Perturbation of the constraints to obtain an intermediate approximation of the robust

feasible design space.

3. Refinement of the robust design space.

This methodology allows designers to identify robust designs and develop scenarios with

different constraints. Hence, it enables the identification of both critical constraints and

main design drivers. However, it does not enable the simultaneous control of both the most

probable value and the degree of uncertainty. This approach can be used to address States

1 and 3 of the requirements but not State 2.
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2.2.1.4 Information-Gap Decision Theory

Information-gap decision theory aims at supporting decision makers in the presence of

strong uncertainty. This non-probabilistic method represents the disparity between what

is known and what is unknown. The theory is based around three models: an uncertainty

model, a system model, and a decision-making model.

Uncertainty model: This model quantifies uncertainty in a non-probabilistic way [32,

83, 203]. To do so, it uses α, called horizon of uncertainty, in order to model the nested

subsets U (α, ũ) around the estimate of the parameter ũ. The size of this subset increases

with uncertainty and α measures the distance between the estimate and a possibility. This

theory can be considered as a local decision theory since it starts with an estimate and

then applies deviations around it. For instance, if a variable u is expected to take the

value ũ = 100 but this information is only reliable at ±10%, the nested subset is given in

Equation 21, where α = 10.

U (α, ũ) = {u :| u− ũ |≤ α} (21)

System model: This model enables uncertainty to be propagated through the system

by modeling the behavior of the real system. Since it represents designers’ theoretical

knowledge, it might also include uncertain elements. It corresponds to the design framework

or the performance analysis code. Then, for a given minimum/maximum level of the desired

outcome, the system will determine the maximum degree of uncertainty acceptable to reach

this value. This corresponds to the robustness of the decision and assesses the greatest level

of uncertainty under which requirements are always met. It represents the ability of the

system to achieve acceptable outcomes over a large range of noise factor inputs. In addition,

for a given windfall output, the system will determine the level of uncertainty required to

reach this value. This corresponds to the opportuneness of the decision and forecasts the

level of uncertainty that ensures success.
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Decision-making model: This model specifies the targeted values of outcomes. It en-

sures the success of the decision by deciding the trade-off between the two aforementioned

objectives. The robustness optimization implies the maximization of the level of uncertainty

under which the required outcome would fail. The opportuneness optimization requires the

minimization of the horizon of uncertainty constrained to a given value of the objective

function.

The advantage of this theory is its ability to predict uncertainty without using probabil-

ity distributions. However, this theory cannot capture unexpected events since it is based

on a fixed universe of possibilities. In addition, it requires a first estimate as a starting

point, which is not necessarily available in early stages. Hence, at this stage, it might be

preferable to consider the entire region of uncertainty rather than deviations around an

estimate. Finally, because it is a static process, it does not enable trade-offs and does not

match the dynamic behavior of decision-making [402].

2.2.1.5 Bayesian Information Toolkit

While all previous methodologies consider uncertainty analysis as a static approach,

BIT aims at developing a more flexible ability to adapt the design when new data sets

become available [469]. This method combines probability encoding methods and Bayesian

updating techniques. Three main probability encoding methods are suggested to systemat-

ically extract information from subjective information and experts’ judgment to uncertain

quantities. The variations depend on what is asked: probability (P), values (V) or both

(PV):

• P-method: it requires specific points on probability scale for fixed values.

• V-method: it requires specific values for fixed probability.

• PV-method: it requires the description of points on the cumulative probability distri-

bution.

Bayesian updating techniques are based on Bayes’ theorem. Let X be a random variable

and θ a realization of the random variable Θ. The probability density function of X is
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f (x, θ) and the one of Θ is fΘ (θ). To update information about Θ using observation about

X, the Bayes’ theorem is expressed using Equation 22.

fΘ|X (θ|x) = fX,Θ (x, θ)

fX (x)
=

fX|Θ (x|θ) fΘ (θ)

fX (x)
(22)

Then, a six-step methodology is provided to propagate uncertainty that integrates the two

previous methods [469]:

1. Identify variables subject to uncertainty.

2. Select probability encoding methods.

3. Collect data.

4. Choose Bayesian updating models.

5. Translate subjective data into model parameters by inverse Cumulative Distribution

Function (CDF) analysis.

6. Update uncertainty model.

While this methodology enables both mean values and uncertainty to be controlled, several

pitfalls have been identified. Indeed, this approach is based on probability distribution

functions, which are usually unknown in early phases. In addition, it only provides a way

to update the model but does not allow to rapidly develop multiple scenarios. Finally,

uncertainty is propagated using statistical methods and consequently the execution time

will be too long if each function evaluation already takes a large amount of time.

This review of current methodologies is summarized in Table 8, which assesses the per-

formance of each methodology with respect to important criteria: the ability to control both

the mean value and the degree of uncertainty, the ability to evaluate robustness without

requiring probability distributions, and the computational efficiency of the process. Table 8

shows that there is no available method that fully meets all required capabilities. Indeed,

most of the existing methodologies are static and can only address either State 1 or State

3. The only methodology that is flexible (Bayesian Information Toolkit) requires to input
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probability distributions and consequently requires knowledge about uncertainty. More-

over, this method is long to run and does not match the potential long execution time of

the evaluation environment.

Table 8: Comparison of the various robust design methodologies

Controllable
degree of

uncertainty

Controllable
values

Distribution
not required

Fast

Conventional
probabilistic
methods

!!

Conventional
non-

probabilistic
methods

!! !! !!

Dynamic SBD !! !! !

Info-gap theory !!

BIT ! !

This leads to the formulation of the following Research Question:

RESEARCH QUESTION 2: How can decision makers identify and prioritize

a set of solutions robust to evolving uncertainty in requirements?

This Research Question can naturally be decomposed into two distinct goals that will se-

quentially be discussed in the next two sections. First, evolving requirements’ uncertainty

must be addressed and then objective prioritization must be enabled.

2.2.2 Modeling of Evolving Requirements’ Uncertainty

The two elements that might evolve across the three states are the degree of uncertainty

and the mean values of requirements. The idea of the new process proposed in this research

is to sequentially address each capability.

In order to model and propagate uncertainty around fixed values, either conventional

probabilistic or non-probabilistic methods can be used. To find the most suitable one for
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this problem, different methods are compared in Table 9 against the required capabilities:

number of function evaluations (speed), information required about the uncertainty (entire

distribution or few data), accuracy of the result, their ability to use the deterministic nature

of the problem (do not repeat cases), and their usability for large problems.

Table 9: Comparison of the various uncertainty propagation methods

Fast
No distri-
bution
required

Accuracy
Use deter-
ministic
nature

Usable for
large

problems

Monte-Carlo !! !!

Latin
Hypercube

!! !!

Baysian
Monte-Carlo

!! ! !!

FOSM &
SOSM

!! ! !!

Interval
analysis

!! !! ! !!

Fuzzy logic !! !! ! !! !!

Based on this comparison, fuzzy logic seems to be the most suitable approach to model

and propagate uncertainty around fixed values. To modify these fixed values, a DoE can

be used as already implemented in Dynamically Constrained Set-Based Design. Being

more efficient than a full factorial, DoEs are smarter methods to cover the design space.

Hence, once combined, decision makers can vary both the mean value of each requirement

to develop multiple scenarios and the degree of uncertainty of the membership function

through the variance of this membership function using the DoE. If this methodology is

combined with a design space exploration, new trends can be identified and new capabilities

are available to help designers make decisions under evolving uncertainty. The next section

aims at incorporating those two methodologies into a framework that also allows designers

to prioritize their objectives and better support their decisions.
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2.2.3 Objective Prioritization

Objective prioritization is performed in a discrete design space since both the sampling

of the Pareto frontier and the DoE provide discrete values. Hence, Multi-Attribute Decision

Making (MADM) techniques can be used. The objective is to rank the different alternatives

according to stated criteria to support decision makers. There are four common steps to all

MADM techniques that must be carefully followed to ensure an efficient process [330]:

1. Select the relevant criteria and alternatives.

2. Quantify the relative importance of each criterion.

3. Evaluate each alternative with respect to each criterion.

4. Determine a ranking of alternatives.

While a large number of techniques exist, they have been categorized with respect to the

type of information they can handle: no information, information on environment, and

information on attributes. Since the first two types are often too subjective, the last one

is preferred in this research. This category of techniques can be further decomposed ac-

cording to the characteristics of the information itself: ordinal, cardinal or nominal. For

optimization purposes and accuracy, methods based on cardinal data are preferred. Indeed,

if no cardinal data is used, a concept which is slightly better than the others for all criteria

except for one (for which it is drastically worse) could be considered as the best one. Hence,

only MADM techniques based on cardinal data are reviewed and compared.

2.2.3.1 Pugh Decision Matrix

Created by Stuart Pugh, the decision-matrix method is a method that quantitatively

compares multiple design alternatives [349]. It leads to the best alternative with respect to

an established set of design criteria. The Pugh Matrix is one of the most popular examples

of such decision matrices [62, 70, 210, 404, 438]. Once these criteria have been identified, a

baseline is set. Then, each alternative is benchmarked against this datum point using three

different symbols: “+” (better than the baseline), “-” (worse than the baseline), “S” (same

91



as the baseline). To grade each concept, “+1” is assigned to “+”, “-1” to “-”, and “0” to

“S”. Then, individual concept scores are calculated and the best concept is selected. A no-

tional Pugh Matrix is presented in Table 10. According to this notional example, Concept

1 should be selected among the ones evaluated.

Table 10: Notional Pugh Matrix

Criteria
Alternatives

Concept 1 Concept 2 Concept 3 Baseline

Maximum altitude + + S
Micro-gravity time + - -

Maximum load factor S + -
Ticket price + - S
Emissions S S +

Total score +3 0 -1

This technique is able to handle a large number of decision criteria and concepts in

a very simple manner. Nevertheless, an unwise choice of the baseline (worse/better than

a majority of the concepts) would imply a lack of strong pattern. In this situation, the

datum point must be changed and the process restarted. Also, it does not take into account

quantitative data even if they are available. For example, a concept with a huge ticket

price (ten times higher than the others) could appear to be the best if all other criteria are

slightly better than the baseline. Finally, it does not allow decision makers to give more/less

importance to some specific criteria.

2.2.3.2 Technique for Order Preference by Similarity to Ideal Solution

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is

based on the assumption that the best alternative has the shortest distance to the utopia

solution [247, 282]. This approach first defines the utopia and the anti-utopia solutions,

which are respectively a combination of the best and the worst alternatives for each criterion.

Then, the Euclidean distance between each concept and those two points is calculated. The

ranking of all alternatives is consequently obtained: from the best (closest to the utopia

point) to the worst (farthest to the utopia point). The distance is computed using a utility
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function as presented in Equation 23. The weighting factor wi represents the importance of

the ith criterion and yji the value for this criterion for the jth concept. This value is usually

normalized in order to ensure consistent results while comparing small and large numbers

such as take-off gross weight and sweep angle. Moreover, if no cardinal information exists,

a scale can be created to quantify all objective values. For example, one can evaluate safety

on a scale from 0 to 10, 0 being the worst and 10 the best.

U(yj) =
∑

i

yjiwi (23)

While providing the advantages of the Pugh Matrix (simplicity and ability to compare

a large number of criteria/concepts), the TOPSIS makes up for some of its drawbacks.

Indeed, the weighted sum allows decision makers to define their preferences on specific

aspects (cost, performance, etc.). Besides, it uses absolute values rather than a relative

comparison with the baseline. However, this technique assumes a monotonic behavior of the

evaluation criteria and requires subjective and fixed values for the different weighting factors

wi. Modifying those weighting factors can be analogous to stretching the corresponding

axes. It might become problematic and lead to biased solutions as the optimum solution is

often very sensitive to these weights.

Life-cycle costs

M
ax

im
u
m

lo
ad

fa
ct
o
r

Utopia

Anti-utopia

A1

A2

Ai

Figure 24: Illustration of a two-objective TOPSIS application
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Figure 24 shows a two dimensional example of the TOPSIS application. Ai are the

different alternatives that define the design space drawn in blue. The goal is to minimize

the two objectives (costs and load factor) but there is a trade-off: the alternative with the

minimum load factor does not correspond to the cheapest alternative.

2.2.3.3 Elimination and Choice Translating Reality

The “Elimination and Choice Translating Reality” (ELECTRE) technique, which orig-

inally comes from the French “Elimination Et Choix Traduisant la Réalité” is a method

that dichotomizes alternatives based on outranking relationships. It is based on binary

comparisons between two alternatives and aims at determining which alternative is better

(outranks) than the other even if there is no strict domination. Domination means that an

alternative is better than another in all criteria. It can be noted that this relationship is

not transitive: even if A1 outranks A2 (A1 → A2) and A2 outranks A3 (A2 → A3), there is

no indication that A1 outranks A3 (A1 → A3). To understand how preferred alternatives

are chosen, an example with eight alternatives Ai is taken and a diagraph (Figure 25) is

built according to the outranking relationship principles [485].

Once this diagraph has been drawn, ELECTRE seeks the kernel K, which is the core of

the diagraph. Every node that belongs to this kernel is a preferred alternative. K has two

properties: it does not contain any node that is outranked by another one and every node

that does not belong to the kernel must be outranked by at least one other node in K. In

the case illustrated in Figure 25, the kernel is defined by the nodes A1, A2 and A5. Finally,

by developing concordance and discordance indexes, ELECTRE quantifies the outranking

relations and enables the automation of this methodology. One of the main drawbacks is

the lack of ranking among the kernel’s alternatives and consequently there is no indication

about “the best” solution. Indeed, all alternatives within the kernel are considered to be at

the same level. Moreover, in order to formalize outranking relationships, thresholds are set

and their arbitrary definition highly impacts the final results.
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Figure 25: Diagraph of the eight alternatives [485]

2.2.3.4 Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) tries to structure expert judgments to make

rational decisions [152]. This approach only requires comparisons between alternatives’

attributes. Its applications are multiple and include choices, ranking, prioritization, resource

allocation, etc. The process can be decomposed into five steps:

1. Define the n criteria and the m alternatives of interest. This includes gathering infor-

mation about each alternative and defining a scale from 1 to 9 to evaluate alternatives

with respect to each criterion.

2. Establish priorities among criteria by assigning weighting factors wi to each of them.

3. Create a comparison matrix Mi for each criterion as presented in Equation 24. Each

element at the jth row and kth column of this square matrix corresponds to the ratio

of the score of the jth alternative to the score of the kth alternative.

Mi =



















1
Ai,1

Ai,2
· · · Ai,1

Ai,m

Ai,2

Ai,1
1 · · · Ai,2

Ai,m

...
...

. . .
...

Ai,m

Ai,1

Ai,m

Ai,2
· · · 1



















(24)

4. Normalize each column of Mi to create Mi and compute the priority vector pi by

averaging each row.
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5. Compute the final score for all alternatives in the final vector f defined in Equation 25.

f =
∑

i

wipi (25)

This method is powerful and flexible since it reduces highly complex decisions to sim-

ple one-on-one comparisons and can handle both qualitative and quantitative information.

However, some inconsistencies could occur as each alternative is compared with all others.

As a consequence, good scores for some criteria and bad scores for other criteria can be

compensated due to aggregation and precious information can be lost. Moreover, the nine-

point scale has limitations since it can be difficult for decision makers to decide whether

an alternative is four or five times better than another. Finally, an alternative with an

extremely bad score with respect to one criterion (that should eliminate the alternative)

could still be promising due to the limitation of the nine-point scale.

According to this analysis, the TOPSIS seems to be the most suitable technique for

this application. Indeed, this method is fast, easy-to-implement, and is capable of handling

absolute values. Decision makers can also easily change their priorities in order to get the

best solution. Now that all required pieces have been selected, the next section describes

the complete methodology that addresses Research Question 2.

2.2.4 Proposed Decision-Making Process

The methodology developed for Research Question 2 is illustrated in Figure 26.

Figure 26: Overview of the proposed decision-making process
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This process is built around the multi-objective optimization algorithm discussed in

Section 2.1, which is treated as a black box responsible for providing the Pareto frontier of

solutions under a given series of fixed requirements.

The decision-making methodology presented above can be decomposed into five steps,

as detailed below:

1. Model uncertainty using membership functions.

2. Implement the algorithm for uncertainty propagation using fuzzy logic.

3. Create a time-dependent model for each membership function using scaling factors

for the main parameters such as mean value and standard deviation.

4. Develop a DoE on the time-dependent scaling factors of each membership function.

5. Implement the TOPSIS based on the results given by the Pareto frontier and for each

point of the DoE.

This process provides all the elements that help formulate Hypothesis 2.

HYPOTHESIS 2: IF fuzzy set theory is used to propagate requirements’

uncertainty whose magnitude has been modeled by scalable time-dependent

membership functions AND IF a Design of Experiments of these scaling pa-

rameters is used to further create a TOPSIS THEN informed decisions can

be made under fuzzy objectives and evolving uncertainty in requirements.

In order to validate Hypothesis 2, Experiment 2 is implemented. As inputs, it requires a

list of requirements modeled by time-dependent membership functions, objectives, an eval-

uation environment, and the process developed in Section 2.1 to find the Pareto frontier

under specific requirements. The experiment consists in implementing the fuzzy set theory

algorithm for uncertainty propagation, the DoE, and the TOPSIS. To fully validate Hy-

pothesis 2, two elements need to be validated: the ability of the method to address evolving

uncertainty in requirements and its ability to help designers with decision-making.
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2.3 Formulation of the Overarching Hypothesis

The capabilities developed through the new design space exploration process discussed

in Section 2.1 and the process detailed in Section 2.2 to model and propagate evolving un-

certainty in requirements are combined to formulate the Overarching Hypothesis presented

below:

OVERARCHING HYPOTHESIS: IF a variable-oriented morphological anal-

ysis is used to feed an evolutionary multi-objective multi-architecture opti-

mization algorithm AND IF fuzzy set theory is used to parametrically prop-

agate requirements’ uncertainty through a multi-disciplinary physics-based

modeling and simulation environment THEN large multi-architecture design

spaces can be better explored AND informed decisions can be made under

evolving uncertainty in requirements.

In this chapter, several gaps have been identified and formulated through Research

Questions. A literature review also highlighted some methods that have been leveraged

to develop the cornerstones of the new methodology by the formulation of the two main

Hypotheses and the Overarching Hypothesis. The following chapter organizes the afore-

mentioned pieces into an approach that will enable the implementation of the Experiments

in order to validate the corresponding Hypotheses and address the Research Objective.
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CHAPTER III

PROPOSED APPROACH

This research focuses on establishing a methodology that enables a broad design space

exploration at a conceptual level to select solutions against unclear objectives and under

evolving uncertainty in requirements. Chapter 2 identified two main gaps in current prac-

tices that need to be bridged in order to meet the established needs. The research follows

the generic top-down design decision support process presented in Figure 27.

Establish the need

Define the problem

Establish value

Generate alternatives

Evaluate alternatives

Make decisions

Figure 27: Generic top-down design decision support process

Chapters 1 and 2 aimed at addressing the first two steps of this decision process. Indeed,

by looking at current practices and analyzing emerging markets, Chapter 1 led to the

formulation of three assertions:

1. Promising future markets are characterized by a multi-objective decision space, where

trade-off analyses must be conducted in early design phases, as they might highly

impact the vehicles’ size and configuration.
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2. A rigorous and systematic methodology is needed that enables the exploration of

a large combinatorial design space and supports quantitative trade-off analyses to

facilitate the selection of a design.

3. Significant uncertainties originate from customer, regulatory, and market require-

ments. These uncertainties, which evolve throughout the design process and as the

market grows, must be addressed to support the development of robust vehicles.

Based on these assertions, required capabilities to help decision makers address new markets

have been identified and have led to the Research Objective: to establish a methodology

that enables a broad design space exploration at a conceptual level to select solu-

tions against unclear objectives and under evolving uncertainty in requirements.

First attempts to address this objective using existing techniques encountered several dif-

ficulties due to the lack of methods equipped with the required capabilities. These gaps,

identified in Chapter 2, gave rise to the two main Research Questions:

1. How can current conceptual design approaches be improved to enable a broader ex-

ploration of large and complex design spaces?

2. How can decision makers identify and prioritize a set of solutions robust to evolving

uncertainty in requirements?

The literature review performed in this same chapter has enabled the formulation of hy-

potheses. To be validated, experiments have been developed and must be implemented

following the approach described in the remaining of this chapter. This closes the first two

steps of the generic top-down design decision support process as shown in Figure 28.

To develop the aforementioned methodology, there is a need for a test bed. Hence,

suborbital tourism is selected and the proof-of-concept will be the design the design of a

profitable, safe, and robust commercial suborbital program.

In order to address the research questions and hypotheses formulated in Chapter 2, a

four-step approach is followed:

• Step 1: Establish the decision criteria
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• Step 2: Define the design space

• Step 3: Evaluate alternatives

• Step 4: Make informed decisions

Establish the need

Define the problem

Establish value

Generate alternatives

Evaluate alternatives

Make decisions

Figure 28: Generic top-down design decision support process

The objective of the following sections is to describe and detail each of these steps while

also identifying the expected contributions.

3.1 Step 1: Establish the Decision Criteria

The objectives of this first step are first to establish a set of decision criteria that will

be used to compare and optimize the various alternatives, and second to address their

implementation within the overall sizing and synthesis environment.

First, this step refers to Chapter 1 in order to identify the metrics of interest. These

criteria can include economic or flying performance as well as customers’ requirements such

as safety and comfort. This step also aims at classifying these metrics into two distinct

categories: constraints and optimization objectives. Constraints are parameters whose val-

ues have been fixed or bounded to limit the design freedom. Optimization objectives are

parameters that must be optimized (maximized, minimized or be as close as possible to a
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target value). Then, this step also addresses the implementation of such criteria. Indeed,

it quantifies each criterion and provides a range of values that will be considered in the

robustness analysis. The use of fuzzy logic for uncertainty modeling requires to model each

noise variable by a membership function so that it can be further propagated through the

optimization process. Once the objectives have been clearly defined and set, one can start

to select the alternatives that will be considered. This task is addressed in the following

section.

3.2 Step 2: Define the Design Space

Defining the design space consists in determining all feasible alternatives that will be

used for further comparison and optimization. The large diversity in concepts mentioned

in Chapter 1 makes this task difficult. To address this challenge, a three-step process will

be followed:

1. Generate all possible alternatives

2. Determine and describe the design variables of these alternatives

3. Generate all feasible architectures along with their specific design variables

This section aims at describing each phase of this three-step process.

3.2.1 Generation of Alternatives

In order to explore the entire design space, vehicles and missions are decomposed into

features. Then, a literature review of all features will help list the available options for each

feature. Once all options for all features have been listed, the conventional morphological

matrix of the vehicle will be created.

3.2.2 Identification and Description of Design Variables

Based on the options previously generated, a deep literature review will be conducted

to define the key drivers of each option. If no existing models exist at a conceptual design

level, sensitivity analyses will be performed to extract the main design drivers. Hence, only

the key design variables will be listed with their typical ranges.
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3.2.3 Generation of All Feasible Architectures

The aforementioned morphological matrix does not take into account the compatibility

between each alternative and optimization parameters. Hence, the methodology presented

in Hypothesis 1.1 will be used to create the modified morphological matrix. First of all,

options that are defined by the same design variables will be grouped in order to reduce

the dimensions of the morphological matrix. Based on this new morphological matrix, a

compatibility matrix will be created in order to support the generation of feasible archi-

tectures only. This final list of all feasible architectures, along with their corresponding

design variables, corresponds to the definition of the design space. Figure 29 summarizes

the process followed for design space definition.

Functional decomposition

Possible alternatives

Compatibility analysis

List of feasible architectures

Identification of variables

Determination of ranges

Design space definition

Figure 29: Methodology for design space definition

This systematic approach to generate feasible architectures attempts to provide a new

methodology to explore the entire design space. The implementation of this step will enable

the execution of Experiment 1.1 in order to validate Hypothesis 1.1.

Once each alternative has been characterized by its design variables, it can now be

modeled and its performance can be evaluated. This performance evaluation requires a

design framework, as discussed in the following section.
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3.3 Step 3: Evaluate Alternatives

This steps aims at evaluating alternatives against all objectives fast enough to enable

further comparison and optimization. Many sizing and synthesis environments are already

available. In order to find the most suitable for this application, selection criteria must be

established. Hence, the performance evaluation environment must ideally benefit from the

following capabilities:

• Automation: the environment must be able to be implemented within an automatic

loop to execute several hundreds of thousands runs and therefore cover the entire

design space and consider requirements’ uncertainty. Thus, the environment must

also be fast to run.

• Easy to learn: tools that require a long learning process will not be favored. Indeed,

some software require an intensive and long training before being able to handle their

operating principle and the syntax of their input and output files.

• Conceptual design level: the environment needs to include design variables commonly

used at the conceptual level. Detailed information about the vehicle geometry are

not available at this point of the process and therefore precise Computational Fluid

Dynamics (CFD) calculations that require a detailed mesh of the vehicle cannot be

included within the tool. If so, either the number of variables would become unman-

ageable or the execution time too large for a complete design space exploration at this

phase of the design.

• Physics-based modeling: in addition to the architecture selection, the environment

must be able to optimize a given architecture. If a delta wing is chosen, the tool must

be able to optimize its shape in terms of sweep angle, taper ratio, root chord, etc. The

main design parameters of the rocket engine must also be determined. Besides, the

trajectory must be optimized in terms of flight path angle, speed, etc. This capability

implicitly requires the use of physics-based modeling techniques in addition to, or

instead of, historical data.

104



• Cost considerations: the integrated environment must be able to parametrically han-

dle life-cycle costs so that each alternative can be evaluated not only in terms of

performance, but also in terms of acquisition cost and operating costs. This is a

critical enabler of the paradigm shift.

• Integration: the different modules (if more than one) must be integrated within a

single environment. Moreover, this environment must have the capability of being

integrated within an optimization environment.

Hence, this section starts with a comparison and evaluation of existing sizing and synthesis

environments.

3.3.1 Review of Existing Sizing and Synthesis Tools

Marti and Nesrin Sarigul-Klijn present an overview of all possible methods for launch

and recovery of manned suborbital vehicles [377]. To perform their study, they use historical

data, first-order integration of the equations of motion as well as qualitative considerations

in terms of safety, customer acceptance, and affordability. They finally provide a recom-

mendation for the “best suborbital vehicle”, which is, according to them, a winged body

powered by a hybrid rocket engine that takes off vertically and lands horizontally like a

glider (unpowered). While being quite exhaustive, their study does not follow a rational

and systematic methodology since it is mainly based on the authors’ expertise and sev-

eral high-level and very generic equations. Moreover, all cost and safety considerations are

qualitative and there is no optimization approach within each architecture. Nevertheless,

they provide a quite exhaustive morphological matrix with an interesting overview of the

corresponding existing concepts.

Rockwell Scientific developed Design Sheet, a framework that could help quantify the

previous assertions. This Boeing proprietary tool allows conceptual designers to quickly

explore design spaces with a large number of alternatives [46, 63, 355]. This is a general

aerospace software in which designers can select their own Measure Of Effectiveness (MOE)

among a variety of performance, survivability, responsiveness, and affordability criteria. It

provides a series of plots that allow designers to easily perform multidisciplinary trade-off
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studies. While being very flexible in terms of concepts and missions explored, this tool

requires the users to input the required equations and is therefore based on very simple

analytical models for each discipline. Therefore, an important amount of work is required

from the users to be able to use the tool for their specific problems. The core of the tool

lies in a series of optimization algorithms applied once the requirements, the constraints,

and the models have been inputted. This tool has been used to compare Unmanned Aerial

Vehicles (UAVs) [69], GA aircraft [63], and Reusable Launch Vehicles (RLVs) [46]. Finally,

depending on the equations inputted, an architecture optimization could become relatively

hard to perform due to the genericity of the tool.

A higher-fidelity tool was required to precisely design and study the performance of

new aerospace systems. For this purpose, the AeroSpace Trajectory Optimization Soft-

ware (ASTOS) was written by the German Aerospace Center (DLR) in collaboration with

the Institute of Flight Mechanics and Control (IFR) at the University of Stuttgart. It was

further improved by the European Space Agency and the development of the software is now

conducted by Astos Solutions GmbH [477]. ASTOS is both a trajectory and a vehicle design

optimization tool [23, 478]. It integrates aerodynamic and propulsion models, which enable

an important variety of vehicles to be modeled: typical aircraft, launchers, and capsules.

Detailed aerodynamic characteristics are provided as a function of the geometry, the angle of

attack, and the flight point. A large variety of engines can also be modeled: throttleable and

restartable rocket engines (liquid, solid, and hybrid) with variable specific impulse as well

as various air-breathing engines. ASTOS also benefits from a library of existing aerospace

vehicles that can be used as baselines. ASTOS is also able to handle two types of trajectory

modeling approaches: collocation methods and multiple shooting methods. Users can spec-

ify multiple cost functions they want to optimize against as well as constraints on all types

of variables such as maximum load factor or maximum temperature. ASTOS has already

been successfully used for a series of applications: conventional launchers (Vega, Ariane 5

ECA, Soyuz), advanced launchers/RLV (Hopper, Skylon, Socrates), re-entry vehicles (Mars

Demo Lander, X-38, Sphynx, ExoMars09), and orbit transfers/others (ConeXpress-OLEV,

Lunar Excursion Vehicle) [474]. However, this software does not include any life-cycle cost
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considerations. Finally, since it is very accurate, this software requires a very detailed input

file with variables that are sometimes unknown or irrelevant at the conceptual stage of the

design process. Thus, in addition to the longer execution time, it could lead to unexpectedly

wrong results.

More specific design tools were developed to meet certain companies’ needs. The Trajec-

tory Synthesis Simulation Program (TSSP) was developed by the University of Oklahoma in

collaboration with Rocketplane Limited, Inc. to support the development of its horizontal

take-off and horizontal landing suborbital vehicle [214]. It is a multidisciplinary conceptual

design level tool in which the main design disciplines (aerodynamics, propulsion, weight,

thermal, performance, and trajectory) are coupled into an integrated environment. The

optimizer uses the equations from the Energy State Approximation (ESA) technique de-

tailed in Section 3.3.5. For a given vehicle, it tries to minimize the amount of fuel burned

while satisfying the various constraints: maximum dynamic pressure, maximum load factor,

maximum temperature, maximum heat transfer, etc. This tool provides a visualization of

the multidisciplinary design space as well as a summary of the key mission performance.

It also allows designers to check the sensitivity of the key design parameters on the overall

vehicle performance. The tool is able to handle multiple geometries thanks to its aerody-

namic module as well as multiple propulsion systems. However, it has only been developed

for horizontal take-off and horizontal landing concepts. Moreover, it is not commercially

available and does not include life-cycle costs within its framework.

J. D. Mattingly et al. presented an energy-based methodology for aircraft conceptual

design [271]. The design process is based on a loop between constraint analysis and mission

analysis. This loop relies on stated requirements and models for aerodynamics, propulsion,

and weight. The objective of this optimization is to find the best design point (the one

with the lowest thrust loading) that meets all constraints and mission requirements. It also

ensures that the fuel available exactly matches the fuel required plus the safety reserves.

The high-level representation of this methodology is displayed in Figure 30.

The final product of this process is a set of three parameters that globally describe

the vehicle at a multidisciplinary level: the take-off gross weight WTO (mass/weight), the
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surface area S (aerodynamics), and the thrust at sea level TSL (propulsion).
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Figure 30: Overall design process [271]

The combination of NASA’s FLight OPtimization System (FLOPS) and NASA’s Air-

craft Life-Cycle Cost Analysis (ALCCA) provides a conceptual design tool that enables

both aircraft performance and life-cycle cost evaluation [307]. This combination is based

on multidisciplinary modules: aerodynamics, propulsion, weight, performance, noise, emis-

sions, and life-cycle costs. The aerodynamic module uses an improved version of Lockheed’s

Empirical Drag Estimation Technique (EDET). It decomposes the drag coefficient into four

sources: skin friction, drag due to compressibility effects, induced drag, and pressure drag.

While FLOPS allows the users to input their own drag polar, supersonic and hypersonic

regimes are not well modeled. The propulsion module allows the users to choose between

an internal performance model or their own engine decks. Nevertheless, FLOPS is not

able to model rocket engines. Finally, the weight module is based on historical data and

is corrected by different scaling factors that take into account variations due to material

properties, flight regimes, etc. Hence, while this tool, which is publicly available, provides
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a complete study at conceptual design level (including life-cycle costs), it cannot be used

for hybrid configurations for which there is no historical data available. Indeed, it can

only handle general aviation, civil transport, and fighter aircraft. Moreover, it requires a

detailed geometric description of the vehicle which is unknown for this problem and could

consequently lead to inaccurate results.

The Rapid Access-to-Space Analysis Code (RASAC) was developed by F. Villeneuve at

the Aerospace Systems Design Laboratory (ASDL) at the Georgia Institute of Technology

[454, 455]. This conceptual design tool enables the comparison of different launch vehicle

architectures, their optimization as well as the evaluation of their robustness. The tool is

divided into five disciplinary modules: trajectory, aerodynamics, propulsion, weight, and

economics. The trajectory module calls four types of calculation methods, depending on

the type of mission segment: Energy-State Approximation, two dimensional Newtonian cal-

culation, Hohmann orbit transfer, and Breguet’s range equation. The aerodynamic module

is able to directly model all-body configurations or to use input tables or Response Sur-

face Equations (RSEs). Therefore, except for all-body configurations, an additional tool is

required to generate aerodynamic data (tables or RSEs) upstream from this aerodynamic

module. The propulsion module enables the modeling of three types of engines: rocket,

turbojet, and ramjet. It uses analytical equations but does not allow the user to distinguish

between hybrid, liquid, and solid engines. The weight module relies on a set of equations

that estimate the weight of 28 subsystems using geometric variables, take-off gross weight

and empty weight estimations. Finally, the cost module relies on equations from the NASA-

Air Force Cost Model (NAFCOM) and mainly uses the weight of each subsystem to predict

the life-cycle costs. However, it does not support the comparison of the different rocket

engine types.

Stanley et al. developed a methodology for the conceptual design of a two-stage rocket-

powered reusable vehicle [414, 415]. The environment, capable of performing trade studies,

is composed of five modules: geometry, aerodynamics, trajectory, aeroheating, and weight/-

size. These modules take two sets of inputs: mission and propulsion. However, trade-studies

require the execution of multiple configurations manually inputted. While life-cycle costs
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are qualitatively discussed, no quantitative cost model is included in the environment.

J. R. Olds developed a framework based Multidisciplinary Design Optimization (MDO)

for the conceptual design of new RBCC Single-Stage-To-Orbit (SSTO) launch vehicles [326].

The framework optimizes the vehicle for a single objective which is a minimum dry weight.

Hence, it does not include any cost modeling modules. In addition, no conditions were

implemented to enforce feasibility in the selection of design variables. As a consequence,

around 30% of the designs generated by the analysis process were infeasible and the opti-

mization under given requirements could take up to a day to run [244].

NASA Ames Research Center developed the Hypersonic Optimization Code (HAVOC),

an integrated design environment for hypersonic launch vehicles [17, 235, 481]. The execu-

tion of the code results in a single vehicle, optimized against a given set of requirements.

However, the modules are very specific to the study of hypersonic vehicles and cannot han-

dle all suborbital configurations. Moreover, no cost considerations are included within the

framework.

R. D. Braun developed Collaborative Optimization (CO), which is a new multi-level

optimization technique that distributes the overall optimization to several disciplinary sub-

problems [49]. CO has then been applied to SSTO launch vehicles [50, 51]. Using 95

design variables and 16 constraints, the algorithm uses optimization techniques based on

gradient calculation and cannot handle discrete variables. Moreover, the tools used require

an execution time too long for robustness analysis [244].

The environments discussed in this section are compared and evaluated in Table 11.

For each criterion, the rating is as follows: a double check mark if it perfectly fulfills the

criterion, a single check mark if it partially fulfills it, and nothing if it does not fulfill at all.

This rating will be used for the remaining of this chapter.
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Table 11: Comparison of the various sizing and synthesis codes

Fast Available Easy
Design space
exploration

Conceptual
level

Architecture
optimization

Cost
modeling

Automa-
tion

Sarigul !! !! !!

Design
Sheet

!! !! ! ! ! !!

TSSP !! ! ! !! !

Mattingly !! !! !! ! !!

FLOPS !! !! ! ! !! !! !!

ASTOS ! ! !! ! !

RASAC !! !! ! !! ! ! !!

Stanley !! ! !! !

Olds ! ! ! !! !

HAVOC !! ! ! !! !!

Braun ! ! !! !! !
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This evaluation shows that there is a lack of readily available sizing and synthesis envi-

ronment that can evaluate all various alternatives against life-cycle costs. This leads to the

following Research Question:

RESEARCH QUESTION 3: What are the key enablers of a sizing and synthe-

sis environment able to evaluate the various alternatives of suborbital vehicles

for further comparison and optimization at a conceptual design level?

The previous analysis and comparison showed a common thread to all quantitative siz-

ing and synthesis environments: a decomposition into several disciplinary modules. Each

of these modules must be capable of modeling the various alternatives. Moreover, a decom-

position into disciplinary modules is also justified by the various alternatives identified for

each feature in Section 1.2. In particular, when designing unconventional configurations,

disciplines that describe the problem, as well as their interactions, must be integrated [279].

While all environments benefit from performance modules (weight, aerodynamics, propul-

sion, and trajectory), economics and safety are not always included. However, as discussed

in Section 1.1, this is a significant required capability that must be included in the design

framework. In order to articulate all these modules, different structures might be used.

They are categorized based on the number of optimization levels: single-level, bi-level, and

multi-level [171].

Single-level structures are based around one centralized optimizer and distribute the

analysis to different analyzers. Three main formulations were identified: All-At-Once

(AAO), Individual Discipline Feasible (IDF), and Multi-Disciplinary Feasible (MDF) [98].

In AAO approaches, all disciplinary variables are optimization variables and disciplinary

equations correspond to optimization constraints. Thus, designs are only consistent at con-

vergence. IDF approaches use the same principle but ensure disciplinary feasibility at each

iteration. Finally, MDF approaches only output consistent multidisciplinary designs at each

iteration. This consistency has a cost in terms of number of function calls so that the time

required to generate a design increases from AAO to IDF and to MDF. The number of

design variables that must be controlled by the optimizer decreases from AAO to IDF to
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MDF and thus the optimization problem becomes smaller for MDF approaches. On the one

hand, MDF approaches require the development of efficient system analysis tools, usually

based on the Fixed-Point Iteration (FPI) method. On the other hand, AAO cannot directly

use disciplinary tools with their corresponding equations since they have to be set as design

constraints. Finally, it has been shown by Allison [12] that MDF algorithms perform well

for low coupled problems while IDF is relatively insensitive to coupling. While MDF ensures

consistency, IDF ensures feasibility at each iteration by enforcing the various constraints.

To match the increasing complexity of engineering problems, multi-level optimization

strategies have also been developed. They better match typical organizational structures

and enable the overall optimizer to distribute the tasks to multiple sub-optimizers. Among

them, two representatives of these methods are CO and Analytic Target Cascading (ATC).

CO is a bi-level approach that matches problems described by disciplines at the same hier-

archical level while ATC is a multi-level approach with hierarchical rules and feedforward

communication. CO promotes subspace autonomy by allowing each discipline to benefit

from its own optimizer. Compared to ATC, this approach has weak interactions between

disciplines, which only receive information from the main optimizer. CO only requires

one execution of the main problem and is based on shared optimization while ATC re-

quires multiple executions and is based on shared coordination. Finally, CO seems to be

more efficient in terms of function calls than ATC. While being useful for large problems

within large organizations, these multi-level approaches do not correspond to conceptual

level characterized by a relatively limited number of design variables. Table 12 summarizes

the capabilities of each optimization structure. The overall problem contains both contin-

uous and discrete variables so that a meta-heuristic algorithm will probably be used for

the global optimization. Hence, the number of function calls is large and increases with

the number of variables. In addition, the number of function calls can be further decreased

by avoiding inconsistent solutions to be generated. Since a conceptual design approach is

followed, the number of design variables is not too large (around 30 variables are expected).

Therefore, an MDF approach is preferred [112].
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Table 12: Comparison of the various optimization frameworks

MDF IDF CO ATC

Consistent design only !! !!

Good convergence ! !! ! !

Easy to implement !! !

Good for many variables !! !!

Feasible design only !! !!

However, with a traditional MDF process, solutions are not necessary feasible before

the final convergence since constraints are handled by the optimizer. In addition, there

is a need for decreasing the number of design variables in order to increase the efficiency

of the algorithm. As discussed by Defoort et al. [112], local coupling is a commonly used

method to reduce both the number of variables and the strength of the coupling in the

overall design framework. Defoort suggests the use of FPI, but depending on the problem,

FPI convergence may not occur or may produce a suboptimal solution [171]. Hence, it will

be replaced by a local optimizer using gradient-based methods. The idea is to generate ge-

ometries and ensure that engines are optimally sized to meet trajectory requirements. As a

consequence, based on the geometry generated by the optimizer, its weight and aerodynamic

characteristics will be sequentially computed. There is no feedback between aerodynamics

and weight. Then, an optimizer including both the trajectory and the propulsion modules

will be created. It will include the highly coupled trajectory and propulsion modules to

find the optimized propulsion system that enables the vehicle to perform the minimum

fuel-to-climb trajectory. The only feedback will be the change in weight/size due to the

new propulsion system. The implementation of the local optimizer will thus reduce the

strength of the coupling and enable the enforcement of various constraints so that only fea-

sible solutions will be generated. Finally, since the intermediate optimizer is built around

continuous variables, it will be fast to run and therefore accelerate the overall optimization

process by using more efficient gradient-based algorithms for a given group of variables. The

proposed structure is presented in Figure 31 and is characterized by a modified MDF ap-

proach. Hence, in addition to only generate consistent designs, this MDF approach will be
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improved by a local optimizer which will also ensure feasibility among the generated designs.

Trajectory

Aerodynamics

Weight/Size

Propulsion

Economics

Optimizer

Safety

Figure 31: Proposed structure of the design environment

To enable a successful use of this structure, the execution of the different modules needs

to be fast. Figure 32 notionally represents the characteristics of different modeling tech-

niques in terms of accuracy and number of variables considered.

Figure 32: Characteristics of the different modeling techniques
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The area that must be targeted in this study is displayed in red on the graph. As

shown, when available, empirical relations can be used. However, since some concepts are

new, there is a lack of historical data to build these relations, and consequently surrogate

modeling can be used to speed up the process. Surrogate modeling takes advantage of simple

analytical equations to approximate complex physic processes. The different surrogate

modeling techniques include Response Surface Methodology (RSM) [306], Artificial Neural

Network (ANN) [82], and Kriging [269]. These models, while ensuring a good accuracy

would allow a real-time execution of the environment. Hence, both empirical relations

and surrogate modeling of physics-based models can be leveraged to build the disciplinary

modules.

These observations lead to the formulation of the following Hypothesis.

HYPOTHESIS 3: IF a sizing and synthesis environment based on a mod-

ified Multi-Disciplinary Feasible (MDF) approach and using both empirical

relations and surrogate models is created THEN performance of the various

alternatives of suborbital vehicles can be evaluated for further comparison

and optimization.

In order to validate this Hypothesis, Experiment 3 is implemented. As inputs, it re-

quires a description of existing vehicles and their corresponding missions. In addition, it also

requires each discipline to be modeled by empirical relations or surrogate models. Then,

the design framework will be created, as described in Figure 31 and executed for the afore-

mentioned vehicles. To fully validate Hypothesis 3, three elements need to be validated:

accuracy (to match actual data and ensure consistent results), usability (to provide the

multi-disciplinary metrics for all types of suborbital vehicles), and speed (to enable further

comparison and optimization). This will be done through four questions:

1. Are the calculated vehicles’ performance consistent with the literature?

2. Is the execution time acceptable (around 10 seconds)?

116



3. Does the modeling and simulation environment provide all the metrics required to get

a complete picture of the vehicle?

4. Is the modeling and simulation environment capable of evaluating all types of subor-

bital vehicles?

Experiment 3 requires models for each discipline that are fast to run and accurate. The

different disciplinary modules with their following capabilities are listed below:

• Weight modeling for new concepts including all airframe configurations and propulsion

types.

• Propulsion modeling for both air-breathing engines (turbofans, turbojets, etc.) and

rocket engines (liquid, solid and hybrid propellants).

• Aerodynamic modeling for multiple configurations such as typical fixed-wing bodies,

launchers, etc.

• Trajectory optimization based on data from the first three disciplines and that can

handle various types of missions.

• Life-cycle costs assessment (acquisition cost, operating cost, etc.).

• Safety evaluation using quantitative metrics common to all suborbital vehicles.

A review and evaluation of the available approaches and tools for each discipline is

provided in the following sections. The goal of this review is to help identify potential

candidates for inclusion in the multidisciplinary environment as well as gaps in existing

capabilities.

3.3.2 Weight and Size Estimation

Weight reduction has traditionally been the ultimate goal of designers since it is directly

associated with fuel efficiency and consequently cost efficiency. Nevertheless, even if many

studies have shown that affordability is not necessarily obtained for minimum weight, weight

estimation still remains a significant task in aircraft and spacecraft design. While weight
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estimation seems relatively easy to do at the end of the design process by simply summing

the weight of all components, it turns out to be extremely complex in early design stages.

Due to specific material properties, there is also a strong relationship between weight and

dimensions. Therefore, an accurate weight estimation in early phases also implies an accu-

rate vehicle description. Three main approaches can be distinguished: the Fixed-Fraction

method, the Statistical Correlation method, and the Point Stress Analysis method [97].

Each of them will be described and investigated in order to identify suitable existing tools

and models. They will be compared and evaluated in order to identify the ones that can be

used to build the weight module.

3.3.2.1 Weight Estimation Methods

The three aforementioned techniques for vehicle weight estimation have their specific

level of complexity, accuracy, and detail that must be understood for a wise selection.

The Fixed-Fraction method is the simplest, fastest, and easiest method since it assumes

that the weight of a given component is a fraction of the empty weight, the take-off gross

weight or the wing area [354, 368]. Equation 26 provides a typical example of the wing

weight estimation Ww as a function of its exposed planform area Se in imperial units [354].

Ww = 10× Se (26)

However, this method has some drawbacks because it assumes that there is only one key

parameter to estimate the weight of a component. For example, using this approach, the

wing described in Equation 26 would have the same weight independently of its sweep angle,

taper ratio, and material. Moreover, it does not account for the location of the landing gear

and engines which have a significant impact on the weight of the wing. As such, it can only

be applied to one specific type of vehicles. Even if it could be very efficient to predict the

weight of a derivative aircraft, it cannot be used for innovative or unconventional vehicles.

Besides, this estimation method cannot be used to geometrically optimize a configuration

due to its small number of input parameters.

The Statistical Correlation method uses historical data to develop empirical equations.
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It is a generalization of the first method using more complex relationships with more pa-

rameters. Experience shows that a power model (weight as a function of the power of some

variables) often provides good correlations [97]. Moreover, the parameters of this model

can be easily estimated because there is a linear relationship between the logarithm of the

weight and the variable. The general formula is given in Equation 27, where αi and βi are

two coefficients found empirically, Xi the parameters, and W the component weight. This

type of relation is often called Mass Estimating Relationship (MER). Some implementa-

tions of this technique are iterative since a component weight could use another weight to

be determined.

W =
∑

i

αiX
βi
i (27)

This technique overcomes most of the pitfalls previously described due to its ability to take

into account the impact of more than one key parameter on the component weight. This

method is also easy to implement and very fast since it uses on analytical relations. By only

taking into account key factors, these equations are usually perfectly adapted to conceptual

level considerations. However, one of the main drawbacks of this method is its strong

reliance on historical data so that difficulties could arise when considering enhancements

in materials as well as new or hybrid configurations. This could partially be overcome by

introducing correction/calibration factors for the different materials, levels of technology,

etc. Examples of successful implementations of this approach are numerous and it has

become the most widely used method in the aerospace domain [174, 354, 375].

The Point Stress Analysis method is a physics-based method that uses detailed informa-

tion about the material and shape of the components. This method can only be applied to

the main mechanical components such as the wing and the fuselage since there is no existing

mathematical prediction techniques for other subsystems such as avionics, hydraulics, etc.

Indeed, the method sizes these components based on specified loads they must be able to

carry. Due to the complexity of the problem, a resource and time-consuming computer

program is needed. Examples of such methods are the Structural WEight Estimation Pro-

gram (SWEEP) [20], Patran/Nastran [302, 303], Abaqus [105, 399], etc. This method also

requires very detailed information about the vehicles and the loads. As such, this technique
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is not suitable for conceptual design analyses.

Based on this analysis, the Statistical Correlation method will be used for this work due

to its simplicity, availability, and optimal level of detail. The most common implementations

of this approach are presented, compared, and evaluated below.

3.3.2.2 Existing Weight Estimation Models

The Weight/Volume (WTVOL) module of the Space Shuttle Synthesis Program (SSSP)

was developed by NASA to predict the weight and the dimensions of each component of

the space shuttles [96]. It consists of a series of equations that use existing weight data and

specific inputs for the thermal protection and propulsion systems. However, this program

was built for the Space Shuttle and consequently has very limited applications.

The Weight Analysis of Advanced Transportation Systems (WAATS) computer program

has been developed by the Aerophysics Research Corporation for NASA [174]. It uses power

law formulas to predict the weight of a large number of subsystems. The tool assumes that

the propellant weight and the physical characteristics are known. An iterative approach is

used until convergence on the take-off gross weight is reached. Propulsion systems such as

turbojet, ramjet, and liquid rocket engines are investigated. Different regression parameters

are proposed depending on the type of vehicle: low speed vs. high speed.

Hypersonic Aerospace Sizing Analysis (HASA) is a model that predicts the vehicle

length and volume consistent with body, fuel, structural, and payload weights [194]. It

was developed by Sverdrup Technology and can handle SSTO and Two-Stage-To-Orbit

(TSTO) vehicles as well as hypersonic and supersonic aircraft. This model takes into

account propulsion and material enhancements. In addition to air-breathing engines, liquid

rocket engines are modeled with various propellants. Results show an accuracy of ±10% in

terms of weight and size.

D. P. Raymer provides a summary of MERs used by current airframe companies [354].

Applications of his equations include all types of aircraft: GA, fighter, cargo, etc. The

equations come from various sources and have been adapted by including “fudge fac-

tors” [220, 419, 420]. The equations capture almost all aircraft components and are perfectly
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adapted to optimization at a conceptual design level.

M. H. Sadraey created a set of equations for estimating the weight of aircraft’s main

components [375]. These equations can be applied to GA, transport, cargo, and fighter

aircraft. He uses a hybrid method that combines material density, published data about

current aircraft, his own empirical relations and relations from existing studies [381, 419,

420, 441]. However, M. H. Sadraey only provides equations for lifting surfaces, fuselages,

engines, and fuel systems.

The RASAC has a weight estimation module that decomposes the vehicle into 28 el-

ements [455]. The weight is then given as a function of the vehicle geometry, propel-

lant properties, vehicle take-off gross weight, and other key design drivers. RASAC uses

MERs from various sources in order to create a complete weight module for launch vehi-

cles [174, 194, 366].

3.3.2.3 Model Selection

Table 13 compares the various weight estimation models. The two best candidates are

RASAC and HASA. Hence, inspired by RASAC, a weight module will be developed using

MERs from different sources in order to benefit from a customized module with the required

flexibility and an appropriate level of detail. However, none of these models is capable of

appropriately modeling the three rocket engines to support their optimization.

Table 13: Comparison of the various weight estimation models

Winged-
body

Non
winged-
body

3
rocket
engines

Propulsion
optimiza-

tion

Appropriate
level of
details

WTVOL ! !!

WAATS !! ! ! !

HASA !! !! ! !!

Raymer !! !!

Sadraey !! !!

RASAC !! !! ! !

The propulsion system (engines and propellants) also represents the biggest part of the

121



vehicle weight [157, 377]. Besides, the overall vehicle’s weight and performance are highly

sensitive to propulsion choices so that a thorough study of the propulsion system will be

performed in the following section. In addition, hybrid rocket propulsion is a new propulsion

type and the lack of historical data requires the use of a physics-based modeling for weight

and performance estimation. This leads to the following Research Question:

RESEARCH QUESTION 3.1: What modeling techniques can be leveraged

to evaluate both weight and performance of liquid, solid, and hybrid rocket

engines at a conceptual design level for further comparison and optimization?

According to the previous Research Question, special attention should be paid to propul-

sion modeling. Hence, propulsion modeling will be discussed in the following section.

3.3.3 Propulsion Modeling

Since a suborbital vehicle travels across all atmospheric layers, it must evolve within

low and high-density air. Figure 33 represents a high-level decomposition of the different

available propulsion types. Each of them has its own characteristics, applications, advan-

tages, and drawbacks due to its specific operating principle. The purpose of this section

is to study each of them in order to find the possible candidates for suborbital vehicles.

Once they have been selected, their design methodology will be presented based on existing

approaches.

An overview of the main features helps highlight the potential applications for each

technology within the suborbital flight environment. Indeed, suborbital vehicles might be

powered by up to three propulsion systems with different requirements and purposes:

• Main engine: it must deliver a huge amount of thrust during a short period of time

in order to provide sufficient speed for the vehicle to reach at least 100 km. Since this

engine must be able to work at high altitude, where the air is extremely thin, a rocket

engine has to be used.

• Auxiliary engine: depending on the launch type, an auxiliary engine may be installed

for low speed and low altitude segments. This engine, which only helps the vehicle to
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Figure 33: Propulsion alternatives

reach an intermediate altitude, where the main engine is started, requires less thrust

than the main engine. Consequently, air-breathing engines will be preferred due to

their higher efficiency.

• Attitude control system: at 100 km, the atmosphere is too thin to allow the use

of aerodynamic surfaces (aileron, rudder, and elevator) to control the orientation of

the vehicle. Therefore, low thrust and short duration rocket engines must also be

installed. This reaction control system should have a thrust of approximately 100 N

and must be very fast to react.

123



3.3.3.1 Overview of the Different Alternatives

Shaft engines: Shaft engines can be split into two different categories: reciprocating

engines (or propeller) and turbine-powered engines such as turboprops. Propeller engines

are piston engines that drive a rotating crankshaft in order to rotate a propeller. Turboprop

also rotates a propeller but it is driven by a gas turbine instead of a piston engine. These

engines are both very efficient but provide less thrust than turbojet or turbofan engines.

Moreover, their optimum design Mach number is below 0.4 for a reciprocating engine and

around 0.6 for a turboprop. In addition, since they require high-density air to produce

thrust, they are not efficient at high altitude.

Jet engines: A turbojet engine is composed of five main components: diffuser, compres-

sor, combustion chamber (burner), turbine, and nozzle (Figure 34). The compressor and

the turbine are mechanically linked by a crankshaft. The incoming air is decelerated by the

diffuser, compressed and heated by the compressor in order to reach optimal combustion

conditions. Finally, the flow is expanded by the turbine and ejected throughout the nozzle.

Figure 34: Notional turbojet engine [437]

The amount of thrust generated T mainly depends on the difference between the exhaust

speed Vj and the free-stream velocity V∞ as well as the mass flow rate ṁ. Equation 28

presents the simplified thrust equation. The principle of a turbofan is the same except that

there is a bypass flow which does not go through the engine core.

T = ṁ (Vj − V∞) (28)
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Ramjet and scramjet engines are simpler since they do not have moving parts. The com-

pression is achieved only by using the speed of the incoming air. Consequently, they are

only composed of a diffuser, a burner, and a nozzle. Figure 35 compares the main types

of jet engines in terms of efficiency (Isp) and design Mach number. One can conclude that

each type has its own operating Mach number range, which must be considered during the

engine selection.

Figure 35: Comparison of the different jet propulsion types [186]

Chemical rocket engines: For rocket engines, the thrust is produced by accelerating

the fluid exhaust without using the incoming air. An exothermic chemical reaction of

the propellants within the combustion chamber heats the fluid, which is then expanded

(and accelerated) through a supersonic propelling nozzle. Chemical rocket engines can be

classified into three main categories depending on the nature of the propellants: liquid,

solid, and hybrid. These engines are the most widely used among existing launchers and

suborbital concepts. The three aforementioned types can mainly be distinguished based on
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the following specific characteristics:

• Liquid propulsion: propellants are stored in liquid form into two separated tanks. The

specific impulse depends on the nature of the propellants but is usually between 250

and 500 s.

• Solid propulsion: the oxidizer and the reducer are both mixed into a single combustion

chamber in solid form. Even if it can reach high thrust, the specific impulse usually

remains below 270 s.

• Hybrid propulsion: this type of propulsion combines the liquid and the solid charac-

teristics since the reducer is usually stored in solid form while the oxidizer is separately

stored in liquid form. The specific impulse is usually between 290 and 350 s.

Even if liquid propulsion was predominantly used on the existing vehicles, all of them

must be investigated due to their competing advantages and drawbacks. The latter are

qualitatively exposed for each propulsion system and must be considered in the design

process [189, 216, 229, 423, 445].

Liquid propulsion engines have high specific impulse and can be easily controlled, stopped,

and restarted. Most liquid propellants are environmentally friendly and maintenance is easy

on this type of engines. Nevertheless, the design is usually complex, pumps must be added

and the tanks must be pressurized by an auxiliary system. Finally, the density of the fuel

is relatively low and the risk of leaks or spills is high.

Solid propulsion engines have simpler design and are easy to operate without any leaks or

spills risks. Besides, solid propellants have a relative high density. However, they are almost

impossible to control, stop, restart or reuse once they have been ignited. Consequently, they

cannot be tested. In addition to having small specific impulse, their propellants are usually

very polluting.

Compared to solid propulsion, hybrid propulsion has higher specific impulse, it is safer,

less toxic, more controllable, and easier to operate. Compared to liquid propulsion, it is me-

chanically simpler and safer. While being denser than liquid propellants, hybrid propellants

are convenient for including additives. In addition, hybrid propulsion engines are expected
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to be cheaper than the other two types in terms of both RDT&E costs and recurring costs.

However, they also have some drawbacks: their regression rate is usually too slow to pro-

duce very high thrust and for a given oxidizer rate, the oxidizer-to-fuel ratio shifts. These

off-peak operations, combined with possible unburned residues, make them less efficient.

Electric engines: Electric propulsion uses electrical power to accelerate a propellant and

consequently extract thrust. Three main categories of electric engines emerge based on the

way the propellant is accelerated:

• Electrothermal: the propellant is heated by an external source of energy.

• Electromagnetic: the Lorentz force is used to “push” the gas and therefore produce

thrust.

• Electrostatic: a high voltage electrostatic field is used to directly accelerate ions.

In general, electric propulsion provides high performance by increasing the specific energy of

the propellant stream. Thus, they can achieve higher exhaust velocities which then enable

lower propellant mass and also greater payload-to-mass ratio. However, electric propulsion

is said to be power limited since the rate at which the external source can supply energy to

the propellant is constrained by the mass available for the power system. Therefore, even

if these technologies appear to be very efficient and promising, the available thrust is very

small (usually lower than 10 N).

Nuclear engines: A nuclear rocket engine heats a working fluid using nuclear fission

instead of typical chemical processes. Nuclear engines can deliver a huge amount of thrust

with a high specific impulse compared to chemical ones [59]. J. Ramsthaler compares

two 65-kN engines and concludes that nuclear engines have a specific impulse twice as

big as the chemical ones as well as a longer life time. Nevertheless, nuclear engines have

some drawbacks which disqualify their potential use. Indeed, in addition to their high

structure weight and high cost, they present a large number of safety issues [88]. The

protection of crew members from radiations appears to be heavy and expensive. Moreover,
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all maintenance procedures must be changed and personnel must be protected. Finally, a

problem during the flight could lead to a large and disastrous contamination [58].

Cold gas engines: The energy is pre-stored through a high pressure gas. Usually, the gas

compressed in the tanks is N2, H2 or He. Then, the gas is released through a feed system

and accelerates in a converging-diverging nozzle. Therefore, this system is simple, safe, and

easy to operate but can only provide low thrust (usually less than 100 N) compared to

chemical rocket engines.

3.3.3.2 Engine Selection

A summary of the main features of each technology is provided in Tables 14 and 15.

An order of magnitude of the specific impulse (Isp) or Thrust Specific Fuel Consumption

(TSFC) and the available thrust or specific thrust is displayed as well as the main advantages

and disadvantages. For comparison purposes, air-breathing engines and rocket engines have

been separated.

Table 14: Characteristics of the different rocket engines [216]

Isp (s) Thrust (N) Advantages Disadvantages

Cold Gas 60-250 0.1-50
simple, safe, low
contamination

low Isp

Chemical 150-350 0.1-107
high thrust, widely

used

moderate
performance, safety
concerns, combustion

issues

Nuclear 800-1,000 up to 107 high Isp, high thrust
unproven, low thrust
loading, expensive,
safety concerns

Electric 500-10,000 10−3-20 huge Isp
heavy system, low
thrust, limited
experience

Electric engines will not be considered due to their lack of applications for suborbital

vehicles (no low-thrust engines are required). Since nuclear engines are politically contro-

versial and hazardous, they will not be considered either. Cold gas engines can only be used

for attitude control due to its small thrust. All three chemical rocket engines could serve
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as main rocket engines while only liquid chemical rocket engines can be used for attitude

control purposes. Indeed, solid engines are difficult to restart and hybrid engines are diffi-

cult to precisely control. Finally, since shaft engines can only be used at very low altitude

and only benefit from a small specific thrust, they will not be modeled.

Table 15: Characteristics of the different air-breathing engines [283, 354]

TSFC
(hr−1)

Specific
thrust

(lb/lb/sec)
Advantages Disadvantages

Ramjet 1-4 100-250
light, high specific
thrust, low cost

inefficient off-design

Turbojet 0.8-0.9 70-90
light, high specific
thrust, high altitude

high TSFC

Turbofan 0.4-0.7 20-70 small TSFC bulky, heavy

Shaft 0.2-0.3 3-10 very small TSFC
low speed and very
low altitude only

Ramjets and scramjets are only very efficient at their design supersonic Mach number.

However, since the auxiliary power source is only used to accelerate the vehicle, it principally

operates at subsonic speeds so that they will not be considered in this work. Nevertheless,

both turbojets and turbofans with or without afterburners are potential alternatives for the

auxiliary source of thrust. The resulting morphological matrix for the propulsion system is

illustrated in Table 16.

Table 16: Morphological matrix for the propulsion systems

Functions
Alternatives

Alt. 1 Alt. 2 Alt. 3

Main engine Liquid Solid Hybrid
Auxiliary engine Turbojet Turbofan None
Attitude control Cold gas Liquid
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3.3.3.3 Propulsion Design Process

The general design process of an engine can be divided into four main steps and is

described in Figure 36. First, all the requirements must be gathered (operational environ-

ment, performance, mission, constraints, etc.). Based on the requirements, design choices

including cycle type, cooling approach, and materials must be made. Based on those char-

acteristics, performance must be computed following by a weight estimation. Finally, a loop

must be created in order to verify that the requirements are met and optimize the engine

by modifying some design parameters. The requirements are defined by the trajectory in

terms of thrust required, duration of the combustion, etc. The main design choices are

handled by an optimizer.

Requirements
definition

Design
choices

Performance
analysis

Weight
estimation

Figure 36: General engine design process

For each propulsion type (air-breathing and rocket engines), a tool must be developed

that has both performance analysis and weight estimation capabilities. The following pro-

vides a brief review of the existing tools with respect to each of these capabilities.

Air-breathing engines: Air-breathing engines are well-known and widely used today.

Moreover, since these engines equip a majority of current aircraft, many tools and databases

are available to assist engineers in their design. However, in addition to being proprietary,

these very accurate software are based on high-fidelity analyses and CFD codes. They

require a substantial amount of data to be run and were often developed in-house based on

companies’ own design practices.

There are three main approaches to evaluate both performance and weight of a jet

engine: a whole engine approach, a component-based approach, and a cycle parameters-

based approach. They must be examined and compared in order to find the one which

best meets the following criteria: fast to run for design space exploration, capture variables
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used at the conceptual design level, and accurate enough to enable the comparison between

different engine architectures and cycles. The aforementioned approaches are described and

compared below:

• Single parameter approach: in this approach, the weight or the main performance of

the whole engine is related to only a few important parameters such as the thrust

required at sea level. The model is based on historical data and surrogate models.

For example, D. Raymer [354] provides the weight and the TSFC of a turbofan as a

function of the thrust required, the maximum Mach number, and the bypass ratio. C.

Svoboda [424] suggests an equation that relates the key engine parameters (weight,

dimensions, TSFC, etc.) to the thrust required. The methods from this approach

are very fast to run, easy to implement, and require only few and usually available

inputs. Nevertheless, their accuracy may be relatively low, with an error generally

greater than 10%. Moreover, this approach does not enable the comparison between

engines with different cycles or technology levels. Periklis Lolis [262] compared the

different methods for engines with a weight up to 9,000 kg. He showed that Raymer’s

method leads to 240% errors while Svoboda’s method leads to less than 30%.

• Component-based approach: in this approach, the weight of the engine is computed

by summing the individual weight of each component such as the compressor, the in-

let, the combustion chamber, etc. For example, Pera et al. [333] developed equations

for V/STOL applications. One of the most generic tools, widely known and used, is

the NASA’s Weight Analysis of Turbine Engine (WATE) software. It benefits from a

very good accuracy (errors usually between 5% and 10%) but requires many design

variables (as do the other tools in this category). It also allows users to improve

or extend its capabilities in order to match their specific needs. Tools based on a

computer-based approach compute the weight and the characteristics of each compo-

nent before integrating them in order to find the overall engine performance: weight,

dimensions, TSFC, etc. The computation time is often significant and the correlation

factors are becoming outdated and thus need to be updated in order to ensure a good
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accuracy.

• Cycle parameters-based approach: this approach uses the main cycle parameters such

as the mass flow rate ṁ, the thrust required at sea level (TSL) the Turbine Inlet Tem-

perature (TIT), the Overall Pressure Ratio (OPR), and the Bypass Ratio (BPR).

This approach is a good compromise between the accuracy of the component-based

approach and the simplicity (few inputs) of the single parameter approach. It uses

both historical data and correlation factors in order to match the engine weight. Pro-

grams such as PARA, PERF, and AEDSys provide the main performance parameters

as a function of the flight conditions, the mass rate, the pressure and bypass ra-

tios, the maximum allowable temperatures and components efficiencies. E. Torenbeek

[442] provides Equation 29, which enables the weight estimation without any spatial

dimensions.

Weng =
10×OPR0.25 × ṁ

1 + BPR
+ 0.12

TSL

g0

(

1− 1√
1 + 0.75BPR

)

(29)

Gerend and Roundhill [169] provide a series of formulas that relate the different de-

sign parameters to the engine weight. These formulas, developed in 1970, have been

updated by R. Quintero as part of his PhD thesis [351]. In addition to the main cycle

parameters, they also use parameters that include the certification year of the engine

or its forecast lifetime.

The evaluation and the comparison of these tools are provided in Table 17 leveraging

past studies such as the ones from P. Lolis [262] and B. Montgomerie [298].

Rocket engines: Similarly, the same three approaches can be defined for rocket engines.

Component-based tools are based on Navier-Stokes equations and CFD codes in order to

compute the flow phenomena within each component of the engine. While being very ac-

curate, these tools are very slow to run and require a huge amount of time for component

modeling and meshing. Cryogenic Rocket Combustion (CryoROC) is a software devel-

oped by Astrium to characterize complex flows in the combustion chambers and nozzles of
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Table 17: Comparison of the various weight estimation tools

Few inputs Acceptable Architecture
Weight Performance

and fast accuracy comparison

Svoboda ! ! ! !

Raymer ! ! ! !

WATE ! ! !

Gerend-
! ! ! !

Roundhill

Torenbeek ! ! ! !

AEDSys ! ! ! !

PARA or
! ! ! !

PERF

cryogenic hydrogen/oxygen rocket engines [179]. Rocket Combustion Flow Analysis Mod-

ule (ROCFLAM) is also a multi-phase Navier-Stokes code for flow phenomena in thrust

chambers when storable propellant combinations such as hydrazine/N2O4 and H2/N2 are

used [249]. Many software using the cycle parameters-based approach already exist for

performance analysis and are very similar: Rocket Propulsion Analysis (RPA), Cpropep,

Redtop, etc. These tools take the main design parameters such as the propellants, the

pressure of the combustion chamber, and the nozzle area ratio and provide the optimal

mixture ratio, the exit speed, the thrust coefficients, and the specific impulse as a function

of altitude. Redtop is also able to handle weight estimation but instead of outputting a

single value, it provides a confidence interval to account for users not selecting important

parameters such as the material. Instead, R. Humble [216] provides analytic formulas based

on historical data for each type of rocket engine in order to compute the weight and the size

of each component. The single parameter approach uses the typical ideal rocket equations

as well as historical data. In addition, R. Humble [216] also provides Equation 30 to get a

first estimate of liquid engine mass me based on its required thrust T .

me =
T

g0 (25.2 log T − 80.7)
(30)
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3.3.3.4 Tool Selection

While cycle parameters-based approach can be used to estimate the weight and size of

jet engines, there is no available tool that meets all requirements for rocket engines. Indeed,

since jet engines are widely used and well-known, historical data can be used to predict both

weight and performance. As far as rocket engines are concerned, a physics-based modeling

is required for both weight and performance calculations. Hence, a hybrid method will

be developed. Firstly, surrogate models of basic engine performance parameters will be

developed using the cycle-based software RPA. Secondly, using these parameters, empirical

and physics-based relations from Humble will be used to predict the weight and size of all

rocket engines. Finally, surrogate models will be calibrated based on existing engines using

efficiency factors. These observations lead to the following Hypothesis:

HYPOTHESIS 3.1: IF performance parameters found by creating surrogate

models of the cycle-based software Rocket Propulsion Analysis (RPA) are

inputted into a physics-based weight prediction model THEN performance

and weight of liquid, solid, and hybrid rocket engines can be rapidly predicted

at a conceptual design level.

In order to validate this Hypothesis, Experiment 3.1 is implemented. As inputs, it

requires a description of existing engines and their requirements found in literature. The

experiment consists in computing weight and performance of these engines and check the

results. To fully validate Hypothesis 3.1, two elements need to be verified: the accuracy of

the evaluation method through a comparison with actual data for both performance and

weight/size, and the ability of the method to be used at a conceptual design level. This will

be done through four questions:

1. Is the performance of all chemical rocket engines obtained similar to real data?

2. Are the weight and size of all chemical rocket engines obtained similar to real data?

3. Are the engines described by no more than 4-5 variables?
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4. Is the calculation fast (around 1 second) so that it can be integrated into a large-scale

optimization process?

To describe the behavior of a flying vehicle, the four external forces acting on this vehicle

must be modeled: weight, thrust, lift, and drag. While Sections 3.3.2 and 3.3.3 enable the

characterization of the first two, the following section will discuss the two aerodynamic

components: lift and drag.

3.3.4 Aerodynamic Modeling

Aerodynamic modeling is one of the cornerstones of a new vehicle design. Indeed, to

compute the trajectory and the vehicle performance, the main aerodynamic coefficients must

be determined. This aerodynamic study is a very difficult task since suborbital vehicles go

through all flight regimes presented below:

• M ∈ [0, 0.8]: The subsonic regime corresponds to Mach numbers that do not involve

shocks and supersonic regions along the vehicle. These flows are characterized by

smooth streamlines as well as a flow propagation both downstream and upstream.

For Mach numbers smaller than 0.3, the flow can be considered as incompressible

(constant density).

• M ∈ [0.8, 1.2]: The transonic regime involves Mach numbers close to one and is a hy-

brid domain that includes both subsonic and supersonic regions along the vehicle. It is

usually characterized by high drag coefficients and consequently requires a significant

amount of thrust.

• M ∈ [1.2, 5]: The supersonic regime is defined by a flow with a Mach number greater

than one at every point. These flows are usually characterized by shock and expansion

waves. One of the most important properties of supersonic flow is that disturbances

cannot propagate upstream.

• M ≥ 5: The hypersonic regime corresponds to very high supersonic speeds and

is mainly characterized by high temperature effects and interactions between shock

waves and viscous boundary layers.
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For each regime, the behavior of the flow is very different and implies different assump-

tions. Therefore, many aerodynamic tools are only valid for certain regimes. Existing

concepts reach Mach numbers around 4-5 so that the aerodynamic module must handle low

speed calculations for take-off and landing purposes as well as hypersonic phases.

In addition to the flight velocity, another key driver of the aerodynamic parameters is

the shape of the vehicle. As presented in Section 1.2, suborbital concepts do not have a

standard geometry: winged bodies (delta wing, swept wing,. etc.), slender bodies as well

as other unconventional configurations such as the rotating wing of the SpaceShipTwo.

By definition, the vehicle must be able to cross all atmospheric layers, from the ground

to the space boundary. Therefore, it will be exposed to various atmospheric conditions in

terms of density and temperature that will greatly impact its aerodynamic behavior and

that must be taken into account.

Thus, the aerodynamic module must be able to handle all these configurations under all

flight regimes. Moreover, technical requirements previously mentioned must also be met:

fast to run, automation, availability, conceptual design level, and easy to use. This section

first describes the atmosphere which is the operating environment of the vehicle. Then,

possible configurations that must be modeled will be presented and detailed. An overview of

the different aerodynamic analysis approaches will be provided and existing tools compared

and evaluated. The ultimate purpose of this section is to find a tool, or a set of tools, that

can constitute the aerodynamic module of the integrated design environment.

3.3.4.1 Evolution of the Main Atmospheric Parameters

The International Organization for Standardization (ISO) published a standard atmo-

spheric model as an international standard: ISO 2533:1975. It defines the International

Standard Atmosphere (ISA) with a set of tables that describe the key atmospheric pa-

rameters: pressure, temperature, density, etc. The temperature behavior also suggests a

decomposition of the atmosphere into several layers, as displayed in Figure 37.
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Figure 37: Evolution of the key atmospheric parameters [89]

Several mathematical models of the parameters are available. The temperature is usu-

ally modeled by a piece-wise linear function presented in Equation 31, where T is the

temperature, h the altitude, and the set (T1, h1, a) three constants specific to the model

and the layer concerned [43].

T (h) = T1 + a (h− h1) (31)

Similarly, the density is modeled by an exponential or a power law such, as presented in

Equation 32, where T0 and ρ0 are respectively the standard temperature and density at sea

level and Th another constant [43].

ρ(h) = ρ0

(

1 +
Th

T0
h

)4.26

(32)

Finally, complete models developed from tables and more precise interpolations exist

such as the one developed by B. Lewis into Matlab [256]. Thus, they can directly be used

in the integrated environment when necessary.

137



3.3.4.2 Description of the Possible Vehicle Configurations

All primary airframe architectures that can be used for suborbital vehicles are assumed

to fit into one of the two following categories: winged-body and slender-body vehicles.

A slender body is the simplest shape since it is only composed of a large cylinder closed

by a cone at the front. Small ailerons can be included at the rear of the fuselage in order

to control and stabilize the vehicle. The main design variables of such vehicles are the

cross-section area, the radius of the cone, the relative length of the cone compared to the

entire body, etc.

A winged body can be aerodynamically decomposed into three main components: the

fuselage, the wing, and the empennage (nacelles could also be included if needed). Each

of them has specific roles: the fuselage carries the payload, the rocket engine, a part of

the propellant, and other subsystems. The wing creates lift and is equipped with ailerons

to control the roll motion. The empennage is mainly used for pitch and yaw control and

stability. The fuselage can be described similarly to the slender body. The wing must be

defined by specific parameters such as the sweep angle, the taper ratio, etc. As far as the

empennage is concerned, different configurations can be selected depending on the type of

wing.

These shapes can be aerodynamically defined by a series of coefficients that are used to

characterize the vehicle’s behavior throughout its flight regimes. Among these coefficients,

there are the drag polar coefficients and the maximum lift coefficient. To model them, an

aerodynamic analysis must be performed and the possible approaches are described below.

3.3.4.3 Analysis of the Main Aerodynamic Analysis Approaches

Aerodynamics is based on the study of the fundamental Navier-Stokes equations. They

describe the motion of fluid substances and include the continuity equation (33a), the
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momentum equation (33b), and the energy equation (33c).

∂

∂t
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ρ dV +
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The different approaches that exist to perform the aerodynamic analysis come from the dif-

ferent assumptions that are made to simplify the complex equations previously mentioned.

Datasheet Methods: Due to their complexity, the Navier-Stokes equations are difficult

to solve. Therefore, one solution is to create a database of aerodynamic coefficients that

come from experimental measurements. This method is particularly useful for performance

assessment of conventional concepts but does not allow any shape optimization or aerody-

namic trade-off study. For example, estimations of drag polar coefficients and maximum

lift coefficient are fixed at a given value for each type of aircraft [271].

Analytical Methods: Under some assumptions, analytical formulas can be derived to

predict the aerodynamic coefficients. The lifting-line theory is one of the most famous

examples of such analyses. While being extremely fast, easy to implement, and parametric,

this theory faces several limitations. Indeed, it cannot be used for compressible flows, viscous

flows, swept wings, and low aspect ratio wings. To overcome some of these limitations,

correction factors have been included in analytical formulas. For example, the Prandtl-

Glauert factor β presented in Equation 34 takes into account compressibility effects, where

M∞ is the free stream Mach number.

β =
√

1−M2
∞ (34)
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Another way to obtain analytical formulas is to build empirical or semi-empirical rela-

tions based on experimental measurements, observations, and correction factors.

Analytical formulas often rely on restrictive assumptions and application domains. Nev-

ertheless, they are often used in the early design phases because they do not require long

computational time and are usually parametric. The large number of available formulas

provides a good coverage of typical configurations with more or less accuracy and level of

detail.

Computational Fluid Dynamics Methods: CFD methods are more complex than

the other two because they require meshes and numerical resolutions but allow designers

to overcome some of the limitations previously exposed. Indeed, CFD can handle complex

configurations and intake flows with multi-element design. Moreover, it allows detailed

trade-offs and can be combined with optimization tools. However, CFD methods require

more computational time and work from designers to mesh and define the shape so that

they are considered to be more expensive than the others.

There exists a large variety of CFD methods currently available. Figure 38 presents a

typical decomposition going from the most general (top) to the most specific (bottom) [103].

3-D Navier-Stokes

3-D Euler

3-D Panel Method

2-D Multi Element

2-D Panel Method & 3-D Vortex Lattice

Figure 38: Various CFD methods

A 3-D resolution of the Navier-Stokes equations can theoretically handle every problem

140



but appears to be extremely expensive in terms of time and computer resources. It also

requires an extremely accurate meshing of the studied body to be usable. Therefore, a

review of the assumptions under each method is necessary in order to choose the most

suitable method. Nevertheless, the study will be restricted to 3-D methods.

3-D Navier-Stokes equations only assume a continuum fluid and are always valid for at-

mospheric applications. One of the most famous implementations of such resolution is the

product suite ANSYS Fluid Dynamics [15]. In particular, ANSYS gathered ANSYS CFX

and ANSYS Fluent into the single ANSYS CFD bundle. This tool has a wide variety of ap-

plications such as automotive, aerospace, and maritime industries. Once the body has been

meshed, this software is able to capture all flow phenomena: laminar and turbulent flows

with transition, incompressible and compressible flows, all flight regimes, heat exchanges,

static or dynamic bodies, etc. Thus, this tool allows designers to fully characterize every

vehicle under all flight conditions. Nevertheless, it requires a precise and non-parametric

meshing of the surface as well as a very long computational time and heavy CPU require-

ments. This software is usually used for a detailed sizing and optimization of pieces such

as fairings, pylons, rotor blades, etc.

Euler equations directly come from the Navier-Stokes equations with certain assump-

tions. Indeed, the flow is considered to be inviscid: no viscosity, no heat conduction, and

no mass diffusion. This approximation is valid if the Reynolds number is high, which is the

case in the context of this research. By removing some negligible terms, this assumption will

speed up the calculation process while keeping a reasonable accuracy. The implementation

of this method is similar to the previous one and some of the most popular and well-known

software are MGAERO [416] and Flite3D [436]. Nevertheless, this method still requires an

important CPU time and a precise meshing.

Panel methods are based on potential flow assumptions defined by an irrotational flow.

The surface is discretized into small panels upon which singularities are attached. Appli-

cation of boundary conditions allows to solve Laplace’s Equation. This assumption greatly

simplifies the problem but is only valid for subcritical flows. Initially developed for incom-

pressible flows, this method has been extended to compressible flow and remains roughly
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accurate for supercritical and supersonic flows with attached shocks. It becomes inaccurate

for detached shocks at high supersonic speeds. Implementations of this method is consider-

ably faster than the resolution of the Euler equations and the meshing does not need to be

as precise as for the two previous methods. VSAERO is one implementation of this method

and examples of complete detailed vehicle resolution show a computational time of several

hours and is still too long for a conceptual design space exploration [103, 417]. However,

its application on simple surfaces such as simple wing and fuselage remains relatively fast

to run and usable.

The 3-D vortex lattice method is a method mainly used in early design phases. This

method assumes that the flow is incompressible, incviscid, and irrotational. Nevertheless,

compressibility effects at subsonic speeds can be taken into account using correction factors

such as the one presented in Equation 34. Another limitation of this method is its restriction

to thin surfaces so that slender bodies cannot be modeled. Moreover, the angle of attack is

also assumed to be small. This method can be seen as an extension of the lifting-line theory

by creating an infinite number of horseshoe vortices in order to model the lifting surface.

This method has been widely implemented in different languages to create multiple tools.

Among them, there are AVL [122], Tornado [356], and VLM [490].

Based on the previous comparison, panel methods and 3-D vortex lattice methods seem

to be the best trade-off between fast computational time, accuracy, and ability to handle all

configurations and flight regimes. Nevertheless, at a conceptual design level and for design

space exploration purposes, the use of empirical formulas would highly speed up the overall

optimization process. Hence, the following comparison will only consider extremely fast

computational methods and empirical formulas.

3.3.4.4 Comparison of Existing Tools

The complexity of the aerodynamic analysis does not allow the selection of a single tool

fast enough to perform an analysis at the vehicle level over the entire flight regime and for

every configuration. Hence, the drag will be decomposed into different types so that simpler

and faster tools or methods can be independently used for each category with a relatively
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good accuracy. The different categories of drag considered in this study are listed below

and represented by their corresponding drag coefficient:

• Friction and form drag: CDff

• Induced drag: CDi

• Interference drag: CDif

• Wave drag: CDw

Therefore, the entire vehicle drag can be found be summing each component as described

in Equation 35. Because of the differences in the nature of each phenomenon, different

methods will be used for each of them in order to maintain good accuracy without using

complicated and long CFD calculations.

CD = CDff + CDi + CDif + CDw (35)

Skin friction and form drag: The form drag is a direct consequence of the shape of

the body. Indeed, by perturbing the flow field around it, the body creates a net imbalance

of surface pressure acting in the drag direction. The integration of this pressure imbalance

over the surface directly results in the form drag. The latter is mainly affected by the body

shape, the angle of attack, and shocks. Skin friction is caused by the net effect of shear

stress acting in the drag direction. This friction drag is affected by the smoothness of the

surface and the size of the wetted area.

In the literature, the estimation of these drags is mainly dominated by two main meth-

ods: the equivalent skin-friction method and the component buildup method [354]. The

first method assumes that the form drag is a small percentage of the skin friction so that

Equation 36 can be applied. Cfe, called the equivalent skin friction coefficient, depends on

the type of aircraft.

CDff = Cfe
Swet

Sref
(36)

The component buildup method is more precise and estimates the drag coefficient of each

component independently. Contrary to the equivalent skin-friction method, this method
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can enable a geometry optimization and trade-off studies. The skin friction and form drag

can be estimated in Equation 37. It uses the flat-plane skin friction coefficient Cfk corrected

by a form factor FFk.

CDff =
∑

k

CfkFFk
Swetk

Sref
(37)

Different models of the form factor are available in the literature and are compared by Gur

et al. [187]: Torenbeek [442], Jobe [222], Nicolai [319], Raymer [354], Shevell [395], and

Hoerner [205].

Roskam presents a specific methodology that also incorporates the interference drag [369].

This method appears to be highly parametric but relies on parameters from experimental

data provided by various plots. These plots need to be mathematically modeled in order to

automate this method and make it usable.

Induced drag: Every finite lifting body, and especially wing, induces wing-tip vortices.

These vortices result in an additional pressure drag component called induced drag. Gur

et al. [187] cover several numerical estimation models usually used: the Trefftz plane [37],

Prandtl’s lifting-line theory [338], the vortex lattice method [138], and the Weissinger non-

linear lifting-line model [475]. Simpler methods consist in assuming that the induced drag

takes the form presented in Equation 38, where CL is the lift coefficient and AR the aspect

ratio. Then, several empirical models are available to find the efficiency parameter e such

as Raymer [354], Roskam [369], Sadraey [375], etc.

CDi =
C2
L

πeAR
(38)

Interference drag: It has been shown that the total drag of combined bodies is greater

that the sum of its components’ drag [21]. Hence, the interference drag is defined as a

pressure drag due to the mixing of flow fields around each component.

Hoerner developed a series of empirical relationships for various combinations of config-

urations using experimental data [205]. However, his results are restricted to subsonic flow

fields. Tétrault extended Hoerner’s formulation to the transonic regime for a wing-fuselage

application [432]. He used CFD calculations to develop his formula whose application is
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restricted to wings with thickness-to-chord ratios smaller than 7.5%. According to his for-

mulation, the wing-fuselage interference drag depends on the thickness-to-chord ratio, the

Reynolds number, and the inclination angle (angle between the wing and the surface’s nor-

mal). Raymer uses an interference factor which depends on the interaction [354]. This factor

increases the parasite drag of each element in order to take into account the interference

drag.

Wave drag: At supersonic speeds, flow features are dominated by shock waves. These

shock waves are responsible for a pressure pattern characterized by a strong pressure imbal-

ance in the drag direction. Hence, the integration of this pressure difference over the entire

body defines the wave drag, which is a particular type of pressure drag. Its corresponding

drag coefficient is usually decomposed into two components: the zero-lift wave drag CDw,0

and the wave drag due to lift CDw,l, as stated in Equation 39.

CDw = CDw,0 + CDw,l (39)

Preliminary analyses of supersonic drag usually rely on linearized or modified linearized

methods. Such formulations have been developed by Loxam [263], Jones [225], Jumper [226],

etc. One of the most widely used applications is the Harris wave drag program called

AWAVE [195, 196], a program for zero-lift wave drag calculation. While this tool can only

handle specific types of configurations, Rallabhandi et al. [352] developed an improved wave

drag code that requires a complete meshing of the vehicle. NASA Ames Research Center

developed the Arrow code that can compute the wave drag due to lift of arrow wings at

supersonic speeds based on Rogers’ theoretical developments [363]. Roskam decomposes

the vehicle into components and presents a methodology for wave-drag calculation for each

of them based on empirical relationships and coefficients that can be extracted from exper-

imental results [369]. Finally, Raymer proposes a modified version of the skin friction drag

estimation including adjustment factors [354]. Special attention is given to the fuselage

wave drag because of the large impact of its shape on wave drag. To do so, the perfect

Sears-Hack body is usually used to assess the zero-lift wave drag coefficient [421].
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The previous analysis shows that Roskam provides a methodology that meets all required

capabilities: empirical relations modeling all drag coefficients for all geometries and all flight

regimes. By relying on a single tool, results will also be more consistent so that comparison

inconsistencies will be avoided. Up to now, Sections 3.3.2 to 3.3.4 aimed at characterizing

vehicles’ performance and weight as individual disciplines. These different disciplines must

now be gathered to model the overall trajectory. This is addressed in the following section.

3.3.5 Trajectory Optimization

In order to study the trajectory of an airborne vehicle, its governing equations of motion

through the air must be established and understood. Figure 39 represents the four physical

forces acting on an aircraft once airborne. The free-stream velocity V∞ is defined as being

parallel to the flight path which makes an angle θ, called flight path angle, with respect to

the horizontal. The weight W is directed towards the center of the Earth which is assumed

to be confounded with the vertical. The resultant of the aerodynamic forces is traditionally

separated into two forces projected onto two different axes: the lift L which is perpendicular

to the flight path and the drag D which is parallel to the flight path. Finally, the thrust T

is defined forward to the vehicle inclined with an angle ǫ with respect to the flight path.

𝐿
𝐷 𝑇

𝑊

𝜀𝜃

Figure 39: Forces acting on an airborne vehicle

In addition to these notations, the angle between the lift and the Earth’s vertical plane

containing the aircraft’s longitudinal axis vertical is called the bank angle φ. The instan-

taneous curvature of the flight path angle in the horizontal plane is defined by R1 and the
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one in the vertical plane is defined by R2. In this study, the Earth is assumed to be flat and

its reference frame to be an inertial one. Moreover, the vehicle is modeled by a point mass

(rotational motions neglected) and no slip angle is considered. Thus, the vehicle’s motion

can be described using Equations 40, 41, and 42 [13].

m
dV∞

dt
= T cos ǫ−D −W sin θ (40)

m
V 2
∞

R1
= L cosφ+ T sin ǫ cosφ−W cos θ (41)

m
(V∞ cos θ)2

R2
= L sinφ+ T sin ǫ sinφ (42)

A first natural approach to study and optimize aerospace trajectories would be to find a

direct solution to these equations. Even with typical approximations, this complete resolu-

tion is usually complex and requires highly sophisticated mathematical algorithms that are

time consuming. A second, simplified, approach has been developed and uses the vehicle’s

total energy in lieu of these equations.

3.3.5.1 Complete Resolution of the Equations of Motion

This first approach directly uses the equations of motion and the natural state variables

such as position, velocity, and time. Assuming that the lateral motion is irrelevant (good

approximation at conceptual design phase) for the trajectory calculation, a two dimensional

formulation can be used [296, 455]. It consists in a system of six equations and six unknowns

(x, y, u, v, t, γ) where x and y are the coordinates and u, v the velocity components on the

x-axis and y-axis respectively. t is the time and γ the thrust vector angle defined by the

sum of θ and ǫ. Equations 43 to 48 present the six equations of the system.

ẋ = u (43)

ẏ = v (44)
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ṁẍ = T cos γ − L sin θ −D cos θ (45)

ṁÿ = T sin γ + L cos θ −D sin θ (46)

ṁ = − T

g0Isp
(47)

γ = γ(t) (48)

In addition to this system of equations, a series of constraints might be imposed to

the problem. These constraints come from requirements (maximum load factor), structural

limitations (maximum dynamic pressure), etc. Hence, the problem becomes a non-linear

constrained optimization problem. This is only an example of simplifications that can be

done on the original system. Some complex formulations even consider the lateral motions

and rotations [33, 35, 114]. To solve the aforementioned system or even a more complete

formulation, several mathematical methods have been developed and are detailed below.

Single shooting methods are numerical methods for solving a boundary value problem

by reducing it to the solution of an initial value problem and propagating the solution

throughout the trajectory. Two types of implementation have emerged: direct and indirect.

The main difference between the two implementations relies on the definition of the control

function. For direct shooting methods, the control is parameterized and an explicit numer-

ical integration is performed. For indirect methods, the control is defined at each step by

the maximum principle. Shooting methods have been implemented in several software such

as the Generalized Trajectory Simulation (GTS) [290], DUKSUP [26] and the Program to

Optimize Simulated Trajectories (POST) [48]. Written by Lockheed Martin Astronautics

and NASA-Langley Research Center (LaRC), the latter is widely used in the aerospace

domain. It can handle problems with both three and six degrees of freedom. Initially de-

veloped to optimize the trajectory of the American Space Shuttle, it is capable of dealing

with powered and unpowered vehicles for atmospheric ascent and re-entry missions. It is
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based on a direct shooting approach and, by construction of this approach, the solution is

always physically correct since there is no risk of any discontinuity in state variables. Aero-

dynamic coefficients are inputted by using lift and drag models or axial and normal models.

Propulsion data can be inputted for three types of engines: rocket engines, jet engines, and

ramjet engines. This approach is especially suitable when the problem can be described by

a small number of variables. However, a major issue persists for all these methods: small

changes introduced early in the trajectory could propagate into highly non-linear changes

at the end of the trajectory and result in non-accurate solutions. To address this issue, a

simultaneous approach has been introduced with the multiple shooting approach.

To overcome the propagation problem inherent to sequential resolutions, the multiple

shooting approach breaks the trajectory into smaller intervals and integrates the different

equations on each one of these intervals. In order to ensure the overall accuracy, it imposes

additional matching constraints at the boundary between two segments. Similar to the sin-

gle shooting approach, both direct and indirect algorithms can be implemented to compute

the values of the state variables as a function of time on the whole interval. This approach

greatly improves the robustness of the calculation but requires more variables and the size

of the problem rapidly increases with the number of intervals. Nevertheless, this drawback

is mitigated by the ability of this approach to exploit parallel processing techniques. This

approach has also been widely implemented within the aerospace industry in tools such as

BNDSCO [322, 422] and Kreim et al. [243]. They have been respectively applied to study

missile trajectories and the re-entry phase of the American Space Shuttle’s trajectory.

The collocation approach, which is very similar to the multiple shooting approach, also

divides the trajectory into small segments. However, in addition to discretizing control

variables, this approach also discretizes state variables. To be optimized, the trajectory is

divided into phases also called sub-arcs, linked by events. Different types of phases can be

defined that are divided into two groups:

• Propagation phases: analytic propagation, explicit integration, implicit integration,

etc.
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• Transformation phases: jump phase (state relation discontinuities), state transforma-

tion (changes in equations of motion), transformation of coordinates, etc.

Phases from the second category are discrete and are used to link phases from the first

category that last a finite amount of time. This approach still has a drawback since there

is a possible emergence of non-physical solutions due to discontinuities in state variables.

Indeed, inaccurate connections between two partitions of a state variable would create non-

physical trajectories with jumps in variables such as altitude or speed. This approach is still

considered as very efficient for trajectory optimization problems and was implemented in

various aerospace tools: Optimal Trajectories by Implicit Simulation (OTIS) [193], Sparse

Optimal Control Software (SOCS) [433], Advanced Launcher Trajectory Optimization Soft-

ware (ALTOS) [64], etc. OTIS was written by the Boeing Corporation in collaboration with

NASA-Glenn Research Center (GRC) and is one of the most widely used in the U.S. in-

dustry with POST. It performs trajectory performance studies at a relatively high-fidelity

level [309, 315, 342, 358]. Written in Fortran, this program is able to handle a large panel of

objects (aircraft, missiles, re-entry vehicles, satellites, etc.) with multiple types of propul-

sion systems such as air-breathing and rocket engines. The aerodynamic and propulsion

models used to compute the trajectory must be defined by the users. Then, for a given vehi-

cle, OTIS determines the best trajectory such that the vehicle reaches an inputted altitude

while meeting a series of specified constraints: maximum heat flux, stall angle, etc.

D. Nelson [315] compares the two U.S. software using test cases and concludes that,

even if the two approaches give the same quantitative results, some differences have to be

noticed:

• OTIS allows the users to easily plot all variables while POST requires more work from

the users.

• Users can easily create their own variables in OTIS. However, the creation of new

variables in POST requires major changes in the source code.

• POST requires an initial value for each variable. Thus, an unwise choice of these

guessed values could result in non-optimal solutions. In contrast, OTIS only requires
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the users to specify the variables that they want to track and does not need initial

values for these variables.

• Contrary to POST, OTIS’ implicit method could output physical inaccuracy in state

variables such as discontinuity.

• POST has the capability to impose a maximum load factor while the latter requires a

lot of efforts in OTIS. This capability provides a good advantage for manned vehicles.

• Contrary to POST, OTIS does not allow the users to model horizontal take-off phases.

In order to overcome this issue, constraints can be added but they deteriorate the

accuracy of the results.

• Some small issues have also been found while modeling air-breathing engines in OTIS.

In a nutshell, the previous methods are based on a complete, but complex, resolution of the

equations of motion. Therefore, when a detailed description of the vehicle is available and

the methods well implemented, the results are very accurate. Nevertheless, the computation

time of those methods is relatively long for a design space exploration and the data available

at a conceptual design level might be insufficient for a successful use of these methods.

Hence, a more simplified formulation is desirable for our requirements, as described in the

next section.

3.3.5.2 Energy-State Approximation

While the previous approach provides a complete numerical resolution of the two or three

equations of motion, there is a need to develop a simplified model. Indeed, complex models

only yield to more accurate results if they closely represent the real system. However, at

a conceptual design level, detailed information about the system is usually unavailable. In

addition, a complete resolution might require a long computation time and a faster approach

becomes necessary to explore the entire design space. To address these challenges, the ESA

method has been introduced by E. S. Rutowski [373] and developed by Bryson et al. [61].

This method assumes that both ǫ and α are small angles and defines the total energy per

unit mass Es as a new state variable. It includes the contribution of both the potential
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energy and the kinetic energy and can be defined using Equation 49, where h represents

the altitude, V∞ the free stream velocity, and g0 the acceleration of gravity.

Es = g0h+
V 2
∞

2
(49)

With the aforementioned assumptions, the time rate of change of the total energy Ės can

be expressed using Equation 50, where T is the thrust, D the total drag, and m the vehicle

mass.

Ės = V∞
T −D

m
(50)

It can be shown that h and α can be expressed as a function of Es and V∞ only. In this case,

V∞ appears as a control variable. For a given Es, the minimum time-to-climb trajectory

can be formulated using Equation 51, while the minimum fuel-to-climb trajectory can be

formulated using Equation 52.

max
V∞

{[T (E, V∞)−D (E, V∞)]V∞} (51)

max
V∞

{

T (E, V∞)−D (E, V∞)

ṁ
V∞

}

(52)

Initially applied to aircraft trajectory optimization problems, it has been shown that

this approach is also suitable for launchers and suborbital vehicles [200]. This ESA method

benefits from a faster execution time, a level of detail corresponding to the stated problem

and a reduced complexity or risk of failure compared to the complete resolution. Therefore,

this approach seems to be more appropriate although it is less accurate. Many tools have

already successfully implemented this method for similar analyses [60, 214, 339, 455].

Sections 3.3.2 to 3.3.5 bring the required pieces to assess the flying performance of

the vehicle. However, the design and engineering of a product are inseparable from the

consideration of its entire life-cycle costs. Hence, the following section discusses the different

life-cycle cost components.
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3.3.6 Life-Cycle Cost Assessment

In today’s highly competitive environment, life-cycle cost estimation is becoming a sig-

nificant discipline for new business endeavors. Indeed, good and relatively accurate estima-

tion techniques are required, even in early design phases, in order to avoid huge investment

of time and money in non-viable products. However, due to the inherent iterative and

evolving nature of the design process, cost estimation appears to be a very difficult task,

especially at the early stages. The small amount of data available about the concept brings

even more uncertainty and risk. Besides, the classified nature of some projects in the very

competitive aerospace industry makes the collection of data tedious and difficult. Never-

theless, the latter is essential for both assessing the economic viability of the project and

making it as affordable as possible [66]. To address these challenges, this section defines

the basic components of life-cycle costs and provides a comparative overview of the current

and potentially applicable state-of-the art cost estimation techniques.

3.3.6.1 Life-Cycle Cost Components

To support the establishment of a new suborbital market, the economic viability of the

vehicle manufacturer and operator must be ensured. On the one hand, the manufacturer

deals with Research, Development, Testing and Evaluation (RDT&E) costs and production

costs. Its revenues come from the money earned from selling the vehicle to the operator.

Consequently, the manufacturer’s Return On Investment (ROI) is optimized by maximizing

the difference between the vehicle price and the aforementioned costs. On the other hand,

the operator deals with the acquisition cost, the total operating cost and the disposal cost

of the vehicle. Its revenues come from the passengers and depend on the ticket price.

Its ROI is maximized by reducing acquisition and total operating costs while maximizing

the ticket price and the number of passengers. While the two analyses seem independent,

they are in fact highly correlated. In addition to the impact of the acquisition price on

both manufacturer revenues and operating costs, many other elements must be considered.

Indeed, the better the concept is in terms of passengers’ comfort, the higher the ticket price

can be compared to competitors. The better the vehicle is designed, the lower the operating
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costs will be. Nevertheless, there is usually a trade-off between acquisition and operating

costs. This trade-off is often translated into a conflict of interest between manufacturers

and operators. While the revenues are mainly driven by market trends, this work will focus

on cost rather than revenue optimization. Figure 40 presents a description of the different

categories of life-cycle costs and their main components.

RDT&E costs includes technology research, design, software, and system engineering

as well as the costs related to the prototype fabrication, flight, evaluation, and testing.

RDT&E costs also include all certification-related costs. These costs are fixed and do not

depend on the number of vehicles produced.

Production costs correspond to the costs required to manufacture and assemble every

vehicle subsystem such as airframe, engines, avionics, and thermal protection system. This

covers labor, production tooling, machines, materials as well as the overhead and adminis-

trative expenses. Contrary to RDT&E costs, production costs are variable and the number

of vehicles produced will greatly impact them.

Total operating costs are usually divided into three main categories: Direct Operat-

ing Cost (DOC), Indirect Operating Cost (IOC), and Refurbishment/Spares Cost (RSC).

DOCs are defined as costs related to general flying operations. They include flying opera-

tions, fuel, propellants, insurance, maintenance, maintenance burden, depreciation, interest,

and rents. IOCs are defined as costs required to operate the vehicle but not related to the

flights themselves. They include landing and navigational fees, station costs, passenger-

related costs, advertisement and promotion expenses, and administrative costs. RSCs can

be defined as the costs required to change the critical vehicle components in addition to

typical maintenance operations. For aerospace vehicles, typical components are the thermal

protection system, key components within the rocket engine, etc.

Disposal costs are the costs incurred to dispose of the vehicle after its useful life in accor-

dance with regulatory and legal environments. They include transportation, disassembly,

and destruction costs. Even though they are often negligible compared to the other costs

and highly depend on the second life of the vehicle, they are translated into requirements.

For example, some toxic materials cannot be used. Thus, they will not be taken into account
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in this study.

Life-cycle cost
components

PRODUCTION

Material
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Technical support
Management

DOC

Fuel
Maintenance
Recovery

RSC

Rocket engines
Thermal structure
Refurbishment

Figure 40: Life-cycle cost components

3.3.6.2 Overview of Cost Estimation Techniques

The broadness of the cost components led to the emergence of a large number of ap-

proaches. However, a categorization of these approaches is prone to controversy and in-

consistency. T. Farineau et al. [141] classify the techniques into three different categories:

analytic, analogic, and parametric methods. R. Roy [371] divides these techniques into five

categories: traditional cost estimating, parametric cost estimating, feature based costing,

neural network based cost estimation, and case based reasoning. A. Niazi et al. [318] pro-

vide a more detailed decomposition of the Product Cost Estimation (PCE) techniques as

illustrated in Figure 41.

Finally, O. Trivailo et al. [443] describe the different categories of existing tools within

the aerospace domain with a focus on early design phase applications. Their categorization

includes six approaches: expert judgment, parametric modeling, rough order of magnitude,

loose analogy, close analogy, and engineering build-up. Based on the previous studies, a new

categorization, detailed enough for the purpose of this study, is presented in Figure 42 and

will be followed for the remainder of the description. Four main categories are identified:
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expert judgment, analogy, parametric modeling, and analytic modeling.

Figure 41: Classification of the PCE techniques [318]

Estimation
techniques

Bottom-up approach Analytic modeling

Expert judgment

Top-down approach

Parametric modeling

Analogy

Figure 42: Overview of the different estimation techniques

The expert judgment method is based on a group of experts who use their own knowledge

and experience to predict the cost. They are usually supported by a large database in which

they can select the data relevant to their specific problem. This method is often considered

very subjective because it depends on the specific people in charge of the task. Moreover, the
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results could be biased by either political or business pressures. In spite of these drawbacks,

this method remains widely used in today’s industry. Besides, thanks to its flexibility, it

can be used throughout the entire design process and no precise and pre-defined variables

are required. An example of the implementation of such methods is the Delphi method.

The latter collects the opinion of experts through questionnaires in order to statistically

reach an expert consensus [198].

The analogy method extrapolates the cost by comparison with similar existing concepts.

This method is only based on a single or few data points and consequently correction factors

must be applied to correct for differences in size, technology level, complexity, etc. Various

elements of comparison can be used such as stakeholders’ specifications, performance, vehicle

size, similarities in the architecture, etc. O. Trivailo et al. [443] identify two subcategories:

loose analogy and close analogy. While the first one only requires few “loosely similar”

characteristics, the second one requires more “closely similar” characteristics. Contrary

to close analogy, loose analogy is usually adjusted with scaling factors and is used in early

design phases. In general, this method is very fast, cheap to implement, and transparent for

users. Nevertheless, it still relies on subjective considerations to determine both concepts

similar to the one studied and scaling factors. Moreover, detailed economic data must

be available for the similar concept(s). An example of such method is the Case-Based

Reasoning (CBR), which has been implemented into Kate from Acknosoft and ReCall from

iSoft [175, 471].

The parametric method consists in a series of mathematical relations called Cost Esti-

mating Relationships (CERs) that estimate the cost with respect to its major parameters.

Frequent cost drivers are weight, maximum Mach number, material, etc. They are estab-

lished using historical data and statistical models and can be calibrated for new technologies

or other factors. Such models exist under various forms (linear, power, exponential, poly-

nomial, etc.) with one or more variables. This technique is one of the most widely used in

the aerospace industry, especially in early design phases. Its usefulness is also confirmed by

the fact that the FAA accepts these CERs for proposal preparations [443]. Moreover, many
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famous software use these relationships such as the Statistical-analytical Model for Cost Es-

timation and Economic Optimization of Space Transportation Systems (TransCost) [239],

NASA Air Force Cost Model (NAFCOM) [286], and Development And Procurement Cost

of Aircraft (DAPCA) from RAND Corporation [201]. Nevertheless, even if this top-down

approach is fast, cheap, easy to use, and only requires few input variables, it still has some

drawbacks. Indeed, two main difficulties arise: one concerning the establishment of the

CERs and another concerning their validity. Indeed, in order for good models with good

correlations to be created, the quality of the database on which they rely must be good

enough and must be representative of the problem studied. Besides, even if they have been

successfully established, frequent changes in manufacturing processes, materials, technolo-

gies, and economic environment make the use of these CERs difficult, or even impossible

for new and innovative architectures. An example of CER is provided in Equation 53 to es-

timate the development cost $D of commercial aircraft [354], where We is the empty weight

and V the maximum velocity.

$D = 48.5W 0.63
e V 1.3 (53)

The analytic modeling, or engineering build-up method decomposes the project into

tasks and components. Once fully decomposed, the cost of each subsystem can be assessed

by the corresponding experts using the specific characteristics of each subsystem and cus-

tomized cost estimation methods. This approach is usually used during the late design

phases when a detailed description of the concept is known and clearly defined. Indeed,

while being very accurate, this technique requires a lot of resources and precise data about

the product, its manufacturing process, materials, etc. This method is usually applied to

fix the product price at the end of the design and manufacturing processes.

Table 18 compares the efficiency of each cost estimation method with respect to each

design phase. Even if expert judgment can always be applied, it is not suitable for this

project. Analytic modeling requires too much information about the project and the con-

cept to be applied at conceptual design level. For automation purposes and avoidance of

man-in-loop requirements, parametric modeling is preferred. Existing tools leveraging this
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approach are discussed in the following section.

Table 18: Applicability of Cost Estimation Methods throughout the design process

Conceptual Preliminary Detailed

Expert judgment ! ! !

Analytic modeling !!

Parametric modeling !! !! !

Analogy ! !! !

3.3.6.3 Overview of Cost Estimation Tools and Models

Parametric modeling techniques have been implemented into a large number of tools

and can be compared against various criteria: level of detail (number of inputs/outputs),

phases of the life-cycle costs that are covered, availability, easiness to use, and configurations

covered (launch vehicles, aircraft, etc.).

Space Transportation Systems Cost Estimation and Economic Optimization (TransCost)

is a publicly available tool developed by D. E. Koelle in 1971 and frequently updated. The

last version of the CERs has been is the TransCost Version 8.2 from 2013 and are docu-

mented in [240]. This tool only concerns launch vehicles (re-usable and expendable) and

covers all life-cycle costs. The models use Man-Year as cost unit which is totally inde-

pendent of inflation and currency exchange rates. The CERs are mainly driven by mass

variables, subsystem type, and complexity factors. Moreover, it is well documented and

the equations are transparent for the users so that it can be implemented in all integrated

environments [239].

Unmanned Space Vehicle Cost Model (USCM) was developed by the United States Air

Force Space Division. It only concerns unmanned, earth-orbiting space vehicles. It is able

to predict flight hardware, RDT&E, production, and operating costs. It provides models

for subsystems at a component level. Nevertheless, this tool became an ITAR tool and is

consequently not available [440].

Advanced Missions Cost Model (AMCM) was developed by the Exploration Programs
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Office of NASA’s JSC. Unlike most of the other static CERs, this model determines a

pattern of cost across the entire space composed of the various cost parameters. Thanks

to this multidimensional perspective, extrapolations outside the calibration population of

data point is more accurate. As such, this model uses complexity factors instead of linear

relationships. It is able to estimate the cost of various types of concepts: planetary space-

craft, manned re-entry, missiles, commercial aircraft, fighter aircraft, etc. Nevertheless, its

flexibility requires the users to calibrate the model and is therefore complicated to handle.

This tool also became ITAR and is not available [389].

Advanced Cost Estimating System (ACES) was developed by the German 4cost com-

pany. Contrary to the other tools, it does not have a database of past mission concepts.

Instead, it uses multidisciplinary database to create the CERs. It has been used by the

DLR, EADS Astrium, OHB, and MT Aerospace. The inputs it takes are relatively different

when compared to the other tools and are more related to economic conditions, manufac-

turing processes, and development strategies. In addition to be relatively expensive, this

tool cannot support architecture comparison and configuration optimization since it does

not input these types of design variables [2, 443].

Launch Vehicle Cost Model (LVCM) was developed by the Department of Defense in

a classified tool governed by strict ITAR regulations. Its purpose is to estimate RDT&E

as well as operation and support costs for launch vehicle programs. Inputs of this tool are

very detailed and need to be entered by a well-trained user [443].

The NASA/Air Force Cost Model (NAFCOM) was developed by the Science Applica-

tions International Corporation (SAIC). It is an Excel-based tool for space hardware that

can be applied at subsystem and component levels. The tool uses weight, materials, and

complexity factors as primary cost drivers and is able to predict RDT&E, production, and

operating costs. It has been established using a database of more than 120 reference projects

and 8 of these are manned spacecraft. The software allows the users to select among two

estimation options: typical parametric CERs or specific analogy. Nevertheless, this tool is

ITAR and cannot be used [286, 308].

The Development And Procurement of Costs of Aircraft IV (DAPCA IV) consists in
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a series of freely available CERs developed by the RAND Corporation [201]. It estimates

the number of hours required for engineering, tooling, manufacturing, and quality control.

Once estimated, the use of appropriate labor rates allows users to compute the total cost.

It also provides equations for manufacturing material cost. In addition to this airframe-

dedicated tool, engine costs can be estimated using other RAND Corporation’s studies [39]

and studies from Hamburg-Harburg University [390].

The ALCCA module integrated into the FLOPS is a code developed by NASA and the

Georgia Institute of Technology. It estimates aircraft manufacturing, production, RDT&E,

and operating costs for fighter, commercial, and GA aircraft. It also allows users to plot

the manufacturer and airline cash-flows. It uses weights and performance calculations from

FLOPS and specific factors about the economic context and the complexity of the aircraft.

This tool is available to the author.

The PRICE cost model, developed by PRICE Systems, is a series of modules with dif-

ferent purposes: PRICE-H, which estimates hardware development and production costs,

PRICE-HL, which predicts hardware maintenance and support costs, PRICE-S, which as-

sesses all types of software-related costs, PRICE-M, which estimates costs of electronic

components, and PRICE-PM, which schedules projects. Hence, this model is not dedicated

to space systems and requires a lot of detailed key inputs in order to produce accurate

results. Moreover, it requires a relatively long user training due to the complexity of the

tool. It is widely used in the aerospace industry but its scope is too broad to be of interest

at this stage of the design process [347].

Galorath Inc. developed the Systems Evaluation and Estimation of Resources (SEER),

which is a series of tools similar to PRICE. Hence, SEER-H is devoted to hardware, electron-

ics, and systems, SEER-MFG is designed for fabrication and assembly and other platforms

are dedicated to IT and software. The estimations are mainly based on sector-specific mod-

els and require a significant amount of work from the users to be calibrated for a specific

scope. Estimates can be obtained at different levels: from component to system of system

level [166].

MAP-H was developed by the French company 3f to assess the hardware cost of a large
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variety of products in many fields: aerospace, chemistry, industrial, etc. It is able to compute

all life-cycle costs as well as the possible integration costs for large systems of systems. This

universal cost estimation tool is based on a series of specific powerful algorithms that require

to be calibrated and adjusted by the users. The variables required by the algorithms are also

dependent on the configuration selected by the users but they must describe the product,

its level of complexity, its context, and its operating environment. Due to its high flexibility,

this commercial tool also requires a long training and is not easy to use [1].

R. A. Goehlich developed a statistical-analytical model called Suborb-TransCost, whose

applications only include suborbital vehicles [176]. The model, adapted from the classical

TransCost model, is organized in four interconnected submodels: development cost, vehicle

cost, total operating cost, and total profit. It is perfectly adapted to suborbital vehicles

and covers all configurations considered in this study: winged and ballistic vehicles, with

optional engines, etc. Nevertheless, it only addresses the cost of liquid engines.

Table 19: Comparison of the various cost estimation tools

All rocket
engines

Available Easy
All

concepts

Appropriate
level of
detail

TransCost ! ! !! ! !

USCM ! !!

AMCM ! !! !!

ACES ! !

LVCM !!

NAFCOM ! !! ! !!

DAPCA IV !! !! !!

ALCCA !! ! !

PRICE !!

SEER !! !!

MAP-H !!

Suborb-
TransCost

!! !! !! !
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As shown in Table 19, no existing tool currently meets all requirements. Suborb-

TransCost seems to be the most suitable for our application. Nevertheless, this

model only discusses liquid rocket engines and the level of detail is not high

enough to enable any optimization.

Since the rocket engine is a key cost driver, accurate trend identification requires a more

precise modeling of the propulsion system. In addition to TransCost, for solid and liquid

engines and Suborb-TransCost for liquid engines, only one other available methodology

has been found. Developed by Sjovold and Morrison, CERs are provided for liquid and

solid rocket engines as a function of their main design parameters [185]. However, no

existing model has been found to assess the cost of hybrid rocket engines. These

observations result in the formulation of the following Research Question:

RESEARCH QUESTION 3.2: How can life-cycle costs of vehicles powered

by hybrid rocket engines be evaluated in early design phases?

To address this question, existing models for solid and liquid engines will be modified to

enable the modeling of hybrid engines. The lack of historical data motivates the development

of a more physics-based approach that can be successfully implemented to model all life-

cycle costs of hybrid rocket engines. The nature of the hybrid engine comes from the fact

that it is composed of elements from both liquid and solid engines. As shown in Figure 43,

a hybrid engine can be perfectly decomposed into two parts: one solid engine

and one liquid engine without nozzle. Hence, existing CERs for liquid and solid

engines can be used to model life-cycle costs of hybrid engines. CERs from Sjovold

and Morrison model production costs as a function of key engine variables and development

costs as a function of production cost.

Thus, the production cost of a hybrid rocket engine can be modeled as the sum of these

two components based on the following four-step methodology once the engine has been

sized:

1. Extract the cost of the nozzle from the overall liquid engine cost using historical data.
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2. Compute the production cost of the liquid sub-engine without its nozzle using CERs

from Sjovold and Morrison.

3. Compute the production cost of the solid sub-engine using CERs from Sjovold and

Morrison.

4. Sum the costs of these two components.

Figure 43: Physical decomposition of hybrid engines

To predict the RDT&E cost of hybrid rocket engines, RDT&E costs for the solid and

the liquid engines with the corresponding production cost will be computed. Then, RDT&E

cost for the hybrid engine is assumed to be the weighted average of these two cost based on

the relative weight of each sub-engine.

Finally, operating costs will be decomposed into two categories: maintenance and pro-

pellant. While maintenance costs follow the same principle as RDT&E costs, propellant cost

will be directly computed using the engine performance and the propellant cost. Therefore,

wisely combining CERs for liquid and solid rocket engines can provide good estimates for

hybrid engine life-cycle costs. These observations lead to the formulation of the following

Hypothesis:
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HYPOTHESIS 3.2: IF a hybrid rocket engine is physically decomposed into

a liquid engine without its nozzle and a conventional solid engine THEN its

life-cycle costs can be predicted using existing models developed for liquid

and solid engines.

In order to validate this Hypothesis, Experiment 3.2 is implemented. As inputs, it re-

quires a description of existing hybrid rocket engines. The experiment consists in computing

the life-cycle cost of these engines using the new module and compute the life-cycle costs

for solid and liquid engines with the same requirements. As no actual data are available,

the validation of Hypothesis 3.2 is based on the comparison with the cost of other types of

engines. In particular, one must check if, for a given set of requirements, the life-cycle costs

of hybrid engines are between the ones of solid and liquid engines.

While life-cycle costs represent one of the most important decision criteria, safety is also

crucial, especially when dealing with commercial flights. Hence, the next section discusses

risk analysis.

3.3.7 Safety Analysis

Safety analysis takes an important part in current decisions when designing innovative

aerospace vehicles, especially for vehicles involving commercial passengers. Thus, to eval-

uate the safety level of each possible design, it is necessary to develop an accurate risk

and reliability assessment module. The goal is to evaluate the safety level of each possible

design. In this section, four different reliability and risk assessment techniques currently

applied in aerospace design are investigated [464]: Fault Tree Analysis (FTA), Reliability

Block Diagrams (RBD), Markov analysis, and Petri Net analysis. These techniques are then

compared, evaluated, and leveraged to find the best strategy for this research. They can

be decomposed into two different types of analysis. While the first two methods perform a

static analysis, the last two perform a state space one.
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3.3.7.1 Fault Tree Analysis

An FTA is a top-down or deductive approach to reliability modeling. This method

identifies the top-level failure (failure dramatic for the vehicle) along with the potential

causes [251, 372, 412]. The lower levels are composed of events that cause the upper levels.

Those levels are linked to each other using logic gate links that represent the causal effects.

The top of the tree is composed of the main events, while the lowest level is called basis

level and is defined by all the basis events. The progression from a basis event to the main

event is called a scenario. The higher the number of scenarios defined, the more real the

model is. All the events have to be independent from each other. Typical FTA versions

only have two logic gates: AND and OR, as described below:

• Gate OR: The top event occurs if at least one of the down events occurs. The gate

OR is represented by the symbol displayed in Figure 44(a).

• Gate AND: The top event occurs if all the down events occur. The gate AND is

represented by the symbol displayed in Figure 44(b).

(a) Gate OR (b) Gate AND

Figure 44: Illustration of OR and AND gates

If no intermediate or basis events are repeated, reliability calculations can be done

directly using boolean operations. Inputs can be either total probability, or failure/success

rates. Equations 54 and 55 show how to compute the probability of the event for a gate

AND and OR, respectively, where Pi are the probabilities of the different inputs.

PAND =
∏

i

Pi (54)

POR = 1−
∏

i

(1− Pi) (55)
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However, intermediate or basis events can take part into different scenarios. Hence, in

order to keep the calculation straightforward, repeated events have to be avoided. Therefore,

the FTA needs to be restructured, leading to a more compact representation. However,

while the impact assessment of each event is more convenient, the failure scenarios are less

explicit. Figure 45 displays an example of a tree transformation with a repeated event A.

Figure 45: Transformation of an FTA to avoid repeated events [464]

FTA can become rather complicated when applied to complex systems. In particu-

lar, this technique was used for the Space Shuttle and its FTA has more than 1,400 ele-

ments [488]. Nevertheless, FTA is commonly used by companies since it has a relatively

intuitive and simple representation and can perform easy calculations using Boolean oper-

ators.

3.3.7.2 Reliability Block Diagrams

RBD is a static tool very similar to the FTA [116, 140, 297]. The subsystem failure inter-

actions are modeled and each subsystem is represented in a single block with an associated

failure rate. Inputs are on the left while outputs are on the right. Each block represents a

subsystem to which a failure rate is assigned. The blocks are connected either in series or

in parallel. A parallel configuration represents a subsystem redundancy in the risk analysis.

Figure 46 represents two parallel systems connected in series. For this configuration, the
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set of possible paths is: {A,C}, {A,D}, {B,C}, and {B,D}.

Figure 46: Reliability Block Diagram [464]

3.3.7.3 Markov Analysis

A Markov analysis is a method used in engineering to evaluate system reliability [127,

162, 350]. While FTA and RBD are static models imposing the independence of events,

the Markov analysis does not need independence and is a truly dynamic state space model.

A Markov analysis consists in a series of Markov chains, made of states and transitions

between the states. A state is the condition in which the element is currently operating,

and is set as failed or operated for a reliability analysis. Transitions between states are

usually described as failures and repairs of the system. Figure 47 displays an example of a

simple Markov chain where the transitions occur with a failure rate λ and a repair rate µ.

λ

μ

λ

μ

Figure 47: A parallel system with two identical units [488]

The Markov chain requires the system to have the memoryless property: the future

states of the problem are independent of the past states. The probability of making a

transition must be constant with time, which means that the likelihood of failure is only

dependent on the working state of the component. One major drawback of the Markov

analysis is that the model size increases exponentially with the number of components.

The diagram for a Markov analysis becomes very complicated even with a relatively

simple system. One solution to this problem is to use a Markov analysis for parts of the

system that are interdependent and then use the resulting subsystem failure probability as
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an input into a model, which can handle larger systems such as FTAs and RBDs.

3.3.7.4 Petri Net Analysis

A Petri net is a reliability method first proposed by C. A. Petri in 1962 [7, 223, 304, 336,

337]. It provides the means to analyze the dynamic behavior of systems. A Petri net has

two types of nodes: a place node and a transition node. In a Petri diagram, arcs connect

places and transition nodes. One or more tokens can exist in each place determining the

state of the system. A transition occurs when every input to that transition has at least

one token in it. The “firing” occurs by removing one token from the input and placing that

token into the output. An illustration of the Petri diagram of a repairable unit is provided

in Figure 48.

Figure 48: Illustration of a repairable unit [488]

Petri net can be used to replicate the work of an FTA. It is much more powerful in

determining reliability as they can model dynamic systems.

3.3.7.5 Method Selection

Based on the previous analysis, Table 20 summarizes the key advantages and drawbacks

of each method. As described in Table 20, top-level oriented techniques are more suitable

for a conceptual design level. Indeed, Markov and Petri Net analyses require detailed data

about the vehicle and are very complex. In addition, the FTA offers a better visualization

tool than the RBD. Consequently, safety analysis will be conducted using a dynamic and

upgradable FTA that accounts for all possible configurations.
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Table 20: Safety and reliability assessment methods

Top-level oriented State-space oriented

FTA RBD Markov analysis
Petri Net
analysis

Advan-
tages

Classical boolean calculations.
Simple and good visualization

capabilities.

Truly dynamic
modeling for

dependent events.

A token can have
associated
continuous

counters, which
enables the

remembering of
its age.

Draw-
backs

Scenario-based (all relevant
scenarios must be explicitly

described). Static
configuration: poorly model

dynamic and adaptive systems.

Exponential increase
of the size of the

model with respect
to the number of
modeled units.

Time-independent
failure rates (no

aging).

Very complex
and rarely used
in reliability
assessment.

Sections 3.3.2 to 3.3.7 addressed both flying, economic, and safety performance of the

vehicle. Once fully integrated into the design framework, the different modules will en-

able designers to evaluate the performance of each alternative. The establishment of this

design framework provides the inputs required to implement Experiments 1 and 2. This

implementation, which helps improve the decision-making process, is detailed in the next

section.

3.4 Step 4: Make Informed Decisions

Decision-making is defined as “the act of reaching a conclusion or of passing of judg-

ment on an issue under consideration” [429]. Two main decision-making approaches can

be distinguished: heuristic and analytic. The first approach is based on experience and

personal judgment while the second one is built on quantitative information, models, and

mathematical algorithms. The analytic approach will be preferred since it provides a sense

of optimality instead of satisfaction only. This results in a need for rigorous and systematic

processes, as developed in Chapter 2. In particular, for emerging market, decision-making
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attempts to:

• Optimize the vehicles against multiple objectives.

• Design vehicles under evolving uncertainty in requirements.

• Allow decision makers to freeze requirements and prioritize their objectives.

• Perform trade-offs between constraints and objectives.

Based on the two processes developed in Sections 2.1 and 2.2, the development of the

decision-making framework follows the following steps:

1. Architecture comparison and optimization

(a) Develop the optimization algorithms (NSGA-II) for each architecture

(b) Create the architecture-based evolutionary algorithm

2. Uncertainty modeling

(a) Model uncertainty with time-dependent membership functions

(b) Propagate membership functions using fuzzy logic theory

3. Objective prioritization

(a) Develop a DoE using mean values and degrees of uncertainty of each requirement

(b) Develop a TOPSIS based on Pareto frontiers given by the previous optimization

process

The implementation of this framework will provide the required capabilities to execute

three of the experiments developed in Chapter 2. First of all, the capability of the new op-

timization algorithm will be tested through Experiment 1.2. By combining this experiment

with Experiment 1.1, Experiment 1 can also be easily implemented. It will ensure that the

sequential combination of the alternatives generation methodology and the optimization

process really improves design space exploration. Finally, Experiment 2 can be set up to

validate the ability of the methodology to address evolving uncertainty in requirements.

The overall research structure is displayed in Figure 49.
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Research Objective: To establish a methodology that enables a broad
design space exploration at a conceptual level to select solutions against

unclear objectives and under evolving uncertainty in requirements.

Assertion 2: A rigorous and systematic
methodology is needed that enables the ex-
ploration of a large combinatorial design
space and supports quantitative trade-off

analyses to facilitate the selection of a design.

Assertion 1: Promising future markets are
characterized by a multi-objective decision space,

where trade-off analyses must be conducted
in early design phases, as they might highly
impact the vehicles’ size and configuration.

Assertion 3: Significant uncertainties orig-
inate from customer, regulatory, and market
requirements. These uncertainties, which
evolve throughout the design process and
as the market grows, must be addressed to
support the development of robust vehicles.

Research Question 1: How can current conceptual
design approaches be improved to enable a broader
exploration of large and complex design spaces?

Research Question 2: How can decision makers identify and priori-
tize a set of solutions robust to evolving uncertainty in requirements?

Hypothesis 1: IF all feasible alternatives are systematically
generated using a variable-oriented morphological analysis
AND IF they are simultaneously compared and optimized
using an evolutionary multi-architecture multi-objective al-
gorithm based on architecture fitness THEN large design
spaces can be better explored at a conceptual design level.

Hypothesis 2: IF fuzzy set theory is used to propagate re-
quirements’ uncertainty whose magnitude has been modeled by
scalable time-dependent membership functions AND IF a Design
of Experiments of these scaling parameters is used to further
create a TOPSIS THEN informed decisions can be made un-
der fuzzy objectives and evolving uncertainty in requirements.

Generate Feasible
AlternativesEstablish Value Evaluate

Alternatives
Make Informed

Decisions

Research Question 3: What are the key enablers of a
sizing and synthesis environment able to evaluate the var-
ious alternatives of suborbital vehicles for further com-
parison and optimization at a conceptual design level?

Hypothesis 3: IF a sizing and synthesis environment based
on a modified Multi-Disciplinary Feasible (MDF) approach and
using both empirical relations and surrogate models is created
THEN performance of the various alternatives of suborbital ve-
hicles can be evaluated for further comparison and optimization.

Motivation

Problem
Definition

Proposed
Approach

Figure 49: Overall structure of the research
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As mentioned in Section 3.1, the proposed decision-making process follows a rigorous,

structured, and comprehensible four-step process that will be detailed in the next chapters.

It starts with the identification of the decision criteria, as discussed in the following chapter.
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CHAPTER IV

STEP 1: ESTABLISH THE DECISION CRITERIA

This chapter discusses the establishment of the various criteria that will both limit the

available design space and be used to evaluate and compare the various design alternatives.

Indeed, at the beginning of each project, there is a need for mapping the customer require-

ments to quantifiable and precise criteria. First, the design objectives that can be used to

evaluate alternatives are clearly defined. Then, the design constraints that limit the design

space are presented, along with their uncertainty model.

4.1 Design Objectives

In order for space tourism to really materialize, designers need to focus on the actual

desires and motivations of potential customers, while also addressing safety and certification

issues. The Socotec Group surveyed potential customers about their interests and obstacles

in suborbital flights [252]. The results are presented as a ranking in Table 21.

Table 21: Ranking of interests and obstacles in suborbital flights [252]

Interests Obstacles

1 See the Earth from space Too expensive
2 Experience rocket acceleration Interest in other activities
3 Get a feeling of what astronauts experience No interest in space
4 Experience micro-gravity Too risky

Based on these results, two main obstacles appear to be addressable by designers and

must be used as design objectives: life-cycle costs and safety. Indeed, in order to overcome

some of the obstacles, a safe and affordable vehicle must be designed. In addition, to ensure

the continued existence of the suborbital market, there is a need for satisfying paying

passengers. For that purpose, the last criterion will be passenger experience. Each of these

three criteria are detailed in the following sections.
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4.1.1 Affordability

In current economic conditions, designing an economically viable product is crucial. Not

only must the vehicle be affordable to develop and to build, but it must also be cheap to

operate. To quantify all these aspects, the total program cost is chosen as the metric to

quantify affordability and is minimized. Equation 56 relates the vehicle’s affordability ya

to the different economic metrics defined in the design framework. In this equation, CD is

the development cost of the vehicle, nv the number of vehicles built, CM the manufacturing

cost of the vehicle, nl the number of launches per vehicle over the entire program, and CO

the total operating cost of a single vehicle for a single mission.

ya = CD + nv (CM + nlCO) (56)

4.1.2 Net Present Value

The Net Present Value (NPV) is the key metric commonly used by managers and high

executives to perform project valuation and make investment decisions. It is representative

of the economic viability of a project and numerous investors use it to evaluate their projects

of interest [165]. The NPV is the sum of the discounted Free Cash Flows (FCFs) of the

project. Discounting enables the concept of time value of money, which accounts for the

fact that the later the money is received or spent, the less it is worth. Indeed, money

received early can be invested and increase in value later on. Discounting also accounts for

the riskiness of the market. Equation 57 provides the definition of the NPV of a project

lasting N periods, having cash flows FCFk at each period k, and with a discount rate i.

NPV =

N
∑

k=1

FCFk

(1 + i)k
(57)

The NPV presents many advantages. As previously stated, it considers the time value

of money. Moreover, it provides managers with a metric that quantifies the profitability of

a project. As a consequence, it can be used to compare and rank different projects with

respect to their economic performance. Indeed, the sign of the NPV indicates whether a

project is profitable enough or not. Indeed, a positive NPV indicates that the projected
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earnings (in present dollars) generated by a project or investment exceed the anticipated

costs (in present dollars). Similarly, a negative NPV results in a net loss. Hence, the Net

Present Value Rule states that an investment should only be made if the NPV is greater

that zero [353].

4.1.3 Safety

Since suborbital vehicles are designed to carry people, the most important criterion is

their safety. Indeed, similar to aircraft or other transportation systems, the failure rate

has to be smaller than a fixed value in order for the vehicle to be certified. As there is no

existing standard and the calculation requires extremely precise information, safety cannot

be evaluated using failure rates. Instead, an arbitrary quantitative scale yr representing the

risk level is defined, as presented in Section 6.7. Therefore, the objective is to minimize this

risk level yr.

4.1.4 Passenger Experience

Since no real data is available for space commercial passengers, the requirements are

extracted from commercial flights. Many studies have been conducted that rank passenger

personal space as the top priority for passengers [78, 156, 301, 486]. In particular, the APEX

showed that the major preoccupation for passengers is legroom [16]. As a consequence,

increasing the seat pitch can be used as a representative objective to improve passenger

experience.

In addition, the time spent in microgravity is one of the unique aspects of a suborbital

flight, especially for the market established around the scientific research. Hence, the pas-

senger experience can also be modeled by the duration of the weightlessness phase. The

latter starts once the rocket engine is shut down and ends at the beginning of the reentry.

The reentry altitude is around 30 km for a slender body and 45 km for a winged body. In

order to determine the duration of the weightlessness phase tw, it is assumed that the only

external force that acts on the vehicle is the Earth gravity g0. This assumption is valid at

such high altitudes since the atmospheric density is negligible. As a consequence, applying

the Newton’s Second Law on the vehicle results in Equation 58, where ~a is the vehicle’s
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acceleration.

~g0 = −~a (58)

Using only the vertical component, Equation 59 can be derived, where hw0 is the initial

altitude of the weightlessness phase, vw0 the vertical velocity of the vehicle at the beginning

of the weightlessness phase, and hwf the altitude at the beginning of the reentry.

−1

2
g0t

2
w + vw0tw + hw0 − hwf = 0 (59)

The vertical speed at the beginning of the weightlessness phase can be calculated as a

function of the maximum altitude hmax using Equation 60, where thmax is the time required

to reach the maximum altitude.














−1
2g0t

2
hmax + vw0thmax + hw0 − hhmax = 0

vw0 = g0thmax

(60)

The resolution of the previous system of equations results in Equation 61, which provides

the vertical velocity of the vehicle at the beginning of the weightlessness phase.

vw0 =
√

2g0 (hmax − hw0) (61)

Combining Equations 59 and 61, the total duration of the weightlessness phase can be

calculated, as shown in Equation 62.

tw =

√

2

g0

(

√

(hmax − hw0) +
√

(hmax − hwf )

)

(62)

While the optimization aims at improving these design objectives, there is a need to

limit the design space based on regulations and customer requirements, as discussed in the

next section.

4.2 Design Constraints

In order to ensure the feasibility and the viability of the optimized design, several con-

straints must be taken into account in various domains. Using existing analyses [252, 377,

418], three main constraints have been identified: the maximum altitude reached by the
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vehicle hmax, the maximum load factor nmax, and the total number of passengers per year.

The following sections discuss the initial membership functions used to model each con-

straint and describe time-dependent models that can be applied to account for the evolving

nature of uncertainty.

4.2.1 Initial Membership Functions

4.2.1.1 Maximum Altitude

In order for passengers to be considered as space tourists, the maximum altitude has to

be, at least, 100 km. However, some of the customers might want to reach a higher altitude,

and consequently have a longer time in microgravity. Some applications such as the launch

of small satellites or scientific research might require higher/lower altitude. Therefore, there

is a large amount of uncertainty on this constraint. For example, the Lynx developed by

XCOR only reaches an altitude of 60 km [344], while the Crusader X designed by Micro-

Space, Inc. reaches an altitude of 120 km. However, most of the current concepts aim

at reaching an altitude between 100 and 110 km. Hence, the uncertainty is modeled by a

trapezoidal membership function, as presented in Figure 50.

Maximum altitude (km)60 100 110 140

Figure 50: Membership function of the maximum altitude constraint

4.2.1.2 Maximum Load Factor

While the seat pitch directly represents the passenger experience, there is also a need

for taking into account the maximum load factor. Indeed, this factor impacts both the

safety and the comfort of the passengers. According to Starke et al. [418], it is one of

the main requirements for suborbital flights. They also set a limit for the maximum load
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factor equal to 5 in order to limit the risk of gray-out and especially black-out. Moreover,

in order to improve the passenger experience, some concepts might benefit from a lower

maximum load factor, such as the RocketPlane XP, which only reaches 3.5. Based on

this analysis, the uncertainty of the maximum load factor constraint is modeled with a

trapezoidal membership function, as displayed in Figure 51.

Maximum load factor (g)3 4 4.5 5

Figure 51: Membership function of the maximum load factor constraint

4.2.1.3 Yearly Number of Passengers

Designing the best vehicle for the future suborbital market requires designers to model

the potential demand. Since the market is new, the amount of uncertainty is relatively

large. To account for this uncertainty, the Futron Corporation developed three demand

scenarios based on different market maturity dates [439]. The baseline scenario forecasts

15,000 passengers per year against 11,000 for the pessimistic and 30,000 for the optimistic,

as displayed in Figure 52.

Number of passengers11,000 15,000 30,000

Figure 52: Membership function of the yearly number of passengers constraint
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4.2.2 Time-Dependence Models

In order to model the impact of time on the various requirements, several traditional

models can be applied to the scaling parameters used to represent the aforementioned

membership functions. In particular, two main parameters of interest might be the mean

value and the standard deviation. While the standard deviation tends to decrease over time,

the mean value might follow different trends. This section provides examples of models that

can be used to model time dependence of the various factors around the baseline value λ0:

• Exponential behavior: this model is particularly useful to model a decrease in the

degree of uncertainty. Indeed, it can describe a rapid decrease in the first years/months

followed by a period of asymptotic and slow decrease towards zero. This scaling

factor λe is driven by a single parameter t1/2 called the half-life time, as described in

Equation 63. In this model, the larger the half-life time, the slower the decrease.

λe (t) = λ0 exp

(

−t ln 2
t1/2

)

(63)

• Quadratic behavior: this model can be used to model the variation of a mean value

over time that follows a quadratic trend. As described in Equation 64, the scaling

factor λq is driven by two parameters a and b that must be defined by the users.

λq (t) = λ0 + at+ bt2 (64)

• Linear behavior: this model can be used to model a linear variation of any parameter

based on a single constant c, as described in Equation 65.

λl (t) = λ0 + ct (65)
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CHAPTER V

STEP 2: DEFINE THE DESIGN SPACE

This step aims at determining all feasible alternatives that will be considered in the de-

sign space exploration. As discussed in Section 2.1, a modified version of the morphological

matrix is developed in order to improve the efficiency of the overall optimization process.

This new method is implemented into a software called Efficient Variable-Oriented Software

for Architecture Generation (ENVISAGE), whose its development is a part of this work.

5.1 Improvement of the Morphological Matrix

The objective of the new method is to generate all feasible alternatives in a way that they

can be efficiently optimized. While the typical morphological matrix provides a powerful

method to generate all possible alternatives, it does not ensure the feasibility of the obtained

alternatives. To overcome this drawback, the morphological matrix is combined with a

compatibility matrix. While this combination is able to provide all feasible alternatives, it

does not account for design variables. In addition, since a single optimizer can only handle

alternatives that are defined by the same design variables, there is a need for grouping

them. Hence, alternatives that are defined by the same design variables are grouped into a

single architecture. For instance, straight wings, delta wings, and swept wings are grouped

into a single wing category and are defined by their sweep angle, surface area, aspect ratio,

etc. This allows for each generated architecture to be optimized by a single optimizer. The

output of this method is a list of all feasible architectures and their corresponding design

variables. The development of the aforementioned method can be decomposed into four

steps:

1. Generate alternatives: alternatives are generated using a morphological analysis. This

method is particularly useful for multi-dimensional complex problems since it provides

a structured, functional, and intelligent way to decompose a problem and generate
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alternatives [340]. One of the most common practices in morphological analysis is

the use of a morphological matrix, or matrix of alternatives. This matrix is a two-

dimensional representation of the system. Each row represents a function/feature of

the system and each column represents an option. The number of possible alternatives

is given by the product of the number of options of all functions. If the morphological

matrix M is defined by its rows i and its columns j, the number of alternatives is

defined in Equation 66.

Nalt =
∏

i





∑

j

M∗
i,j



 where















M∗
i,j = 1 if Mi,j 6= ∅

M∗
i,j = 0 if Mi,j = ∅

(66)

2. Ensure feasibility: feasibility is ensured by only selecting the combinations of options

for which all options are compatible with each other. A square matrix called com-

patibility matrix is used to define compatibility between options. This matrix C is

symmetric so that only the upper (or lower) triangular needs to be completed by ei-

ther 0 or 1 according to the rule presented in Equation 67. In this equation, k and l

represent the kth row and the lth column of the matrix.

Ck,l =















1 if options k and l are compatible

0 if options k and l are incompatible

(67)

Using the definition of the compatibility matrix, the diagonal can be prefilled by ones

since a given option is necessarily compatible with itself. In addition, while functions

can be described by different options, only one option per function can be selected

for a given design alternative. As a consequence, all options used to define the same

function are necessarily incompatible. Therefore, additional entries can be prefilled.

As a consequence, the final number of entries that must be filled by designers is

reduced to Nf , as defined in Equation 68.

Nf =
Nalt (Nalt − 1)

2
−
∑

i

(

∑

j M
∗
i,j

)((

∑

j M
∗
i,j

)

− 1
)

2
(68)
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3. Assign variables: the design variables need to be identified to enable alternatives to

be grouped into architectures. First, all design variables that are used by at least

one option of a specific function are defined. Then, the listed variables are assigned

to options using assignment matrices. These matrices are composed of checkboxes to

link variables to options.

4. Generate feasible architectures: based on both the morphological matrix and the

compatibility matrix, an algorithm will first determine the list of feasible alterna-

tives. Then, based on this list and the assigned design variables, alternatives that are

described by the same variables are grouped into architectures.

This methodology has been implemented into a new software written in Matlab called

ENVISAGE. Its development is described in the following section.

5.2 Development of the EfficieNt Variable-orIented Software for Ar-
chitecture GEneration (ENVISAGE)

The general structure of the tool is based on the method described in the previous

section. First, the users input their morphological matrix based on a functional decompo-

sition. Then, to ensure the feasibility of the generated concepts, they complete a pre-filled

compatibility matrix. After this point, two analysis options are proposed:

• Alternative-based analysis: users can generate the list of all feasible alternatives.

• Architecture-based analysis: after defining the design variables specific to each func-

tion and option, users can generate the list of all feasible architectures.

While the general architecture of the tool is displayed in Figure 53, this section discusses

the main functions of the software, further detailed in Appendix A.1.

First, users have to define all possible options using the parametric morphological ma-

trix proposed when defining possible options. Assuming that the physical decomposition

has already been performed, users list all identified functions in rows and the corresponding

potential options for each function in columns. Once the morphological matrix has been

fully defined, the compatibility between each couple of options must be defined by the users
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using the automatically generated square compatibility matrix. Since the compatibility

matrix is symmetric, only the upper triangular is considered. In addition, the compatibility

matrix is automatically pre-filled to account for the fact that two options of the same feature

are necessarily incompatible. Users can load a predefined matrix and save modifications of

this matrix. Once the compatibility has been defined, two different analyses are proposed.

The first one corresponds to the traditional approach and lists all feasible alternatives. The

second one allows users to define design variables and generate architectures based on the

new approach.

Welcome window

Define possible options
Morphological matrix

Ensure feasibility
Compatibility matrix

Generate
feasible alternatives

Define and assign
design variables

Generate
feasible architectures

Figure 53: General architecture of ENVISAGE

5.2.1 Generate Feasible Alternatives

The list of feasible alternatives is generated based on both the morphological matrix

and the compatibility matrix. The developed function converts the morphological matrix

into a list of alternatives using a recursive function that searches for feasible combinations

of options. This recursive function also accounts for the compatibility between an option

and all other options from a given list.
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5.2.2 Generate Feasible Architectures

In order to define the elements required to generate architectures, the users need to

define the design variables that must be considered for each function and allocate them to

the corresponding options. Using the variables defined for each option and the list of feasible

alternatives, a set of variables is associated to each alternative. A final loop is then used to

group all alternatives that are described by the same design variables into architectures.

This architecture generation process is summarized in Figure 54 and its detailed imple-

mentation into a generic user-friendly environment is described in Appendix A.1.

5.3 Application to Suborbital Vehicles

The previous software is used to generate the different architectures of suborbital vehi-

cles, which is used as Experiment 1.1. A functional decomposition of the vehicle highlights

the main features of suborbital vehicles. The main objective of commercial suborbital vehi-

cles is to carry passengers to an altitude higher than 100 km. To reach the targeted altitude,

the vehicle must take-off (or be launched), fly, and land safely. To be able to fly, the vehicle

must create lift and/or thrust. Since the vehicle must fly at very high velocity and high

altitude, a rocket engine is needed. In addition, it can be seconded by different types of

jet engines. The vehicle must also be laterally and longitudinally stable and controllable in

the atmosphere and in space. The functional decomposition is displayed in Figure 55. The

gray boxes correspond to the end functions that will appear in the morphological matrix

while the white boxes correspond to high-level features that are further decomposed.

Based on the previously defined functions, the options are generated based on existing

concepts. More than 30 vehicles have been investigated and decomposed in order to find the

possible options [22, 252, 268, 484]: SpaceJet (Astrium), New Shepard (Blue Origin), Vehra

(Dassault Aviation), Soar (Swiss Space Systems), SpaceShipTwo (Scaled Composites), Lynx

2 (X-COR), Space Cruiser (Vela Technology Development), AS&T Suborbital Aerospace-

plane (Andrews Space & Technology), Lucky Seven (Acceleration Engineering), Advent
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Figure 54: Architecture generation process
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Type of jet
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Longitudinal
stability

Number of pilots

Attitude
control system

Figure 55: Functional decomposition of suborbital vehicles

(Advent Launch Services), ORIZONT (Aeronautics and Cosmonautics Romanian Associa-

tion), Black Armadillo (Armadillo Aerospace), The Spirit of Liberty (American Astronau-

tics Corporation), Ascender (Bristol Spaceplanes, Ltd), Canadian Arrow (Canadian Arrow),

Wild Fire (The da Vinci Project), Gauchito-The Little Cowboy (Pablo de Leon & Asso-

ciates), The Space Tourist (Discraft Corporation), The Green Arrow (Flight Exploration),

Aurora (Fundamental Technology Systems), Liberator (HARC), Negev 5 (IL Aerospace

Technologies), Solaris X (Interorbital Systems), Astroliner (Kelly Space and Technology),

Cosmos Mariner (Lone Star Space Access Corporation), Crusader X (Micro-Space, Inc.),

SabreRocket (PanAero, Inc.), XP (Pioneer Rocketplane), SpaceShipOne (Scaled Com-

posites), Thunderbird (Starchaser Industries), Cosmopolis XXI (Suborbital Corporation),

MICHELLE-B (TGV Rockets), and Eagle (Vanguard Spacecraft).
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Using the information about the aforementioned concepts, options for each of the iden-

tified functions can be found to provide the required data to build the morphological matrix

related to suborbital vehicles (Table 22):

• Type of launch: suborbital vehicles can take off horizontally (similar to typical air-

craft) or vertically (similar to rockets). In addition, some concepts have been launched

by an intermediate vehicle: either an aircraft (SpaceShipOne) or a balloon (Wild Fire).

• Type of landing: suborbital vehicles can land horizontally with power (similar to

typical aircraft) or without power (similar to the SpaceShipOne and the Space Shut-

tle). In addition, some concepts can also land using retro-rockets (New Shepard) or a

parachute (Black Armadillo) to slow down their rate of descent.

• Lift generation: both slender bodies and winged bodies have been used for existing

concepts. Slender bodies do not generate lift and only rely on their thrust to fly

(Black Armadillo). Winged bodies can be equipped with straight wings (SpaceJet),

delta wings (Vehra) or swept wings (Rocketplane XP).

• Longitudinal stability: for vehicles equipped with wings, there might be a need for

a second horizontal lifting surface that helps controlling the stability of the vehicle.

This can be fulfilled either by an horizontal stabilizer or by a canard.

• Lateral stability: for vehicles equipped with wings, there is a need for a vertical

surface that controls the stability of the vehicle. This can be fulfilled either by a

vertical stabilizer or by large wing tips.

• Type of rocket engine: the three main types of chemical rocket engines can be used

to power a suborbital vehicle from low altitude to around 100 km. In addition, the

range of thrust used in suborbital vehicles corresponds to the trade-off zone between

pressurized and pump-fed liquid engines. Therefore, they must both be considered in

addition to solid and hybrid rocket engines.

• Number of jet engines: in order to benefit from an efficient propulsion at low altitude,
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the rocket engine can be seconded by jet engines. If present, the number of jet engines

can reach four, similar to the biggest commercial aircraft in service.

• Type of jet engines: since the jet engine has to operate during a short period of time,

provide a large amount of thrust, and evolve at high speed and high altitude, only

turbojet and turbofan engines are considered in this research.

• Number of pilots: while most of the concepts include human pilots (1 or 2), some of

them are fully automated (New Shepard).

• Number of passengers: While all commercial suborbital vehicles aim at carrying pas-

sengers (or at least an equivalent weight of payload), the number of passengers greatly

varies between concepts. Indeed, it goes from 1 (Ascender) to 8 (Space Cruise).

• Attitude control system: in order for the vehicle to be controllable for the re-entry

phase, the vehicle must be equipped with an attitude control system. According to

existing concepts, the latter can be either composed of cold gas engines (Canadian

Arrow) or liquid rocket engines (Lynx 2).

189



Table 22: Morphological matrix for suborbital vehicles

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8
Number
of alt.

Type of
launch

Horizontal Vertical
Aircraft
launched

Balloon
launched

4

Type of
landing

Horizontal
powered

Gliding Rocket Parachute 4

Lift
generation

Delta Swept wing
Straight
wing

None 4

Longitudi-
nal

stability

Horizontal
stabilizer

Canards None 3

Lateral
stability

Vertical
stabilizer

Wing tip None 3

Type of
rocket
engine

Pressurized
liquid

Pump-fed
liquid

Solid Hybrid 4

Number of
jet engines

0 1 2 3 4 5

Type of jet
engines

Typical
turbojet

Augmented
turbojet

Typical
turbofan

Augmented
turbofan

None 5

Number of
pilots

0 1 2 3

Number of
passengers

1 2 3 4 5 6 7 8 8

Attitude
control

Cold gas Liquid 2

Number of possible combinations 2,764,800

190



Based on this literature review, the morphological matrix presented in Table 22 is in-

putted in ENVISAGE. A first raw alternatives generation would result in a total of 2,764,800

possible combinations. However, among these combinations, some are incompatible. Hence,

the next step aims at removing all incompatible combinations from the generated list.

The compatibility between options is set based on the authors’ knowledge and judgment.

For example, a slender body cannot take off or land horizontally. In addition, there is no

incentive to carry jet engines if the vehicle is launched from an aircraft or from a balloon.

Other similar considerations are made to build the compatibility matrix. Once completed,

ENVISAGE is executed in order to extract all feasible alternatives. A list of 123,000 feasible

alternatives is provided.

5.3.1 Variable Definition and Assignment

To create architectures, the design variables used to describe each function have to be

listed and assigned to their specific options. The list of all design variables considered in

this study is provided below:

• Type of launch: initial speed Vi, initial altitude hi, take-off field length LTO

• Type of landing: landing field length LLA, landing speed VLA, engine re-start altitude

tr

• Lift generation: reference area Sref , sweep angle Λ, aspect ratio AR

• Longitudinal stability: horizontal surface area Sh, maximum thickness-to-chord ratio

of the horizontal surface tc,h

• Lateral stability: vertical surface area Sv, maximum thickness-to-chord ratio of the

vertical surface tc,v

• Type of rocket engines: propellant prop, nozzle expansion ratio ǫ, chamber pressure

pc, thrust Tr, burning time tb

• Number of jet engines: number of jet engines nj
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• Type of jet engines: afterburner ab, turbine inlet temperature T4, thrust Tj , transition

altitude ht

• Number of pilots: number of pilots np

• Number of passengers: number of passengers nPAX

• Attitude control system: thrust TAC , number of engines nAC , burning time tAC

5.3.2 Results

Once the design variables are listed and assigned to the corresponding options, ENVIS-

AGE is executed and identifies 4 feasible architectures. A summary of the architecture

generation process is provided in Figure 56. Starting with about 2.8 million total combi-

nations, the integration of the compatibility matrix within the process allows designers to

divide the number of alternatives to be investigated by a factor of 23. Grouping all alterna-

tives defined by the same design variables into architectures further enables to reduce the

number of architectures to be optimized to four. Doing so allows for the number of discrete

algorithms to be set to be reduced by a factor of 700,000.

2.8 million total
combinations

123,000 feasible
alternatives

4 feasible
architectures

Create architectures

Ensure feasibility

Figure 56: Summary of the architecture generation process

The application of the proposed approach on suborbital vehicles shows that all subor-

bital vehicles can be grouped into four architectures, as described below and illustrated in

Figure 57:

• Architecture 1: slender vehicles that take off vertically without jet engines (New

Shepard).
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• Architecture 2: winged vehicles that take off from the ground horizontally or vertically

without jet engines (Lynx II).

• Architecture 3: winged vehicles that take off from the ground with jet engines (Rock-

etplane XP).

• Architecture 4: winged vehicles without jet engines launched from an aircraft (Space-

ShipTwo).

(a) Architecture 1 [40] (b) Architecture 2 [150]

(c) Architecture 3 [108] (d) Architecture 4 [460]

Figure 57: Example of each architecture

The next section discusses and quantifies in more detail the general benefits of imple-

menting a variable-oriented morphological analysis for a complex design problem.

5.4 General Benefits of the New Architecture Generation Methodology

As discussed in Section 2.1, a design space exploration usually requires complex opti-

mization processes. The efficiency of such exploration is driven by the ability of the designers
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to both cover the maximum number of concepts and reduce the execution time to reach the

best concept(s). The use of morphological analysis already ensures the exhaustiveness of the

concept generation process. The proposed approach focuses on reducing the execution time

of the optimization process. The required number of function calls to reach the optimum

value is used to better quantify the benefits of implementing a variable-oriented morpholog-

ical analysis. Chelouah et al. [79] calculated the average number of function calls required

for a genetic algorithm to optimize different test functions. Among these test functions, the

Rosenbrock function Rn (Equation 69) and the Zakharov function Zn (Equation 70) have

n design variables and can be used to analyze the behavior of the optimization algorithm

with respect to n. Since they can easily be scaled to n dimensions, these two functions

provide a good way to measure the impact of increasing the number of design variables on

the required number of function calls. In addition, they have been tested with the same

convergence criteria so that the results are consistent.

Rn (x) =

n−1
∑

j=1

[

100
(

x2j − xj+1

)2
+ (xj − 1)2

]

(69)

Zn (x) =





n
∑

j=1

x2j



+





n
∑

j=1

0.5jxj





2

+





n
∑

j=1

0.5jxj





4

(70)

Their results for different values of n are presented in Table 23. Since the behavior of

the problem’s specific objective function is unknown, the average number of function calls

is calculated for each n. It is then approximated by fc (n) = 7.7018n2 + 1189.5n − 1323.6

with an R2 of 0.9995.

Table 23: Number of function calls for Rn and Zn functions [79]

Functions
Number of design variables

2 5 10 50 100

Rn 960 3,990 21,563 78,356 194,302
Zn 620 1,350 6,991 75,201 195,246

Average 790 2,670 14,277 76,779 194,774

Even though this relationship highly depends on the problem’s objective function and
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constraints, it is assumed that the trend in the number of function calls with respect to

the number of variables remains similar to the aforementioned functions. The number

of function calls required can now be compared assuming two design processes that can

cover the entire design space: the first one optimizes all 2.8 million alternatives and the

second one optimizes all four architectures generated by ENVISAGE. Figure 58 represents

the computational time required to find the optimum value with respect to the number

of design variables considered in the conceptual design of suborbital vehicles. It assumes

an execution time of the design framework of one second. Using the traditional design

process, the number of function calls Nt is defined by Nt = 2.8 × 106 × fc (n). Using

ENVISAGE, Nt = 4× fc (n). As illustrated in Figure 58, implementing the aforementioned

variable-oriented morphological analysis helps significantly reduce the required execution

time, hence supporting the complete exploration of large design spaces.
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Figure 58: Improvements in computational time
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In order to estimate the benefit of grouping options against the disadvantage of adding

more design variables, the factor k is introduced. k represents the number of variables that

must be added to the optimization process when grouping two options. For instance, if

k = 5, removing one option from a function requires five more variables in the optimization

process. To perform trade-off analyses, a baseline morphological matrix is used, which is

composed of 15 functions and 8 options per function, initially defined by 10 variables. Hence,

the total number of combinations is 815 = 3.5× 1013, which initially requires 815fc(150) =

1.2× 1019 function calls to be completely investigated. Figure 59 displays the improvement

in the number of function calls with respect to the number of options removed per function.
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Figure 59: Improvements in the number of function calls

As expected, the benefits are smaller as the number of variables added per function

removed increases. The results also demonstrate that, even for 15 variables added per

option removed, the improvement exceeds 40%. In addition, grouping 3 out of the initial 8
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options results in large improvements, independently of the number of variables added.

A sensitivity analysis is conducted to assess the sensitivity of improvement to changes

in the number of functions, number of variables per function, etc. A DoE is generated using

the statistical software JMP®. A Latin Hypercube is used to cover the entire design space

with 3,000 points. The variables and their corresponding ranges are presented below:

• Number of functions: [10; 30]

• Number of options per function: [5; 15]

• Number of variables per function: [2; 10]

• Number of variables added per option removed: [1; 15]

• Number of functions removed per function: [1; 5]

The results are presented in Figure 60. Each curve represents the sensitivity of the overall

improvement in the number of function calls with respect to changes in a specific parameter.

For a given curve, this analysis assumes that all other parameters are constant. Therefore,

each curve corresponds to partial derivatives of the improvement in the number of function

calls with respect to a specific parameter. As shown in Figure 60, the amplitude of the

improvement in the number of function calls is mainly driven by the number of options

removed per function and the number of functions considered in the morphological matrix.
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This analysis demonstrates that the improvements in the number of function calls are

more significant when the number of functions considered increases. In particular, it shows

that the benefits of using a variable-oriented morphological analysis are more significant

when dealing with larger problems that have a more detailed decomposition along with

a higher number of design variables. These attributes characterize the design of complex

concepts such as suborbital vehicles. The benefits of such morphological analysis decrease

with the number of options per function and k, however their sensitivities are relatively

small compared to the two key drivers.

The results of Experiment 1.1 presented in this chapter are provided below:

1. The 30 existing concepts studied in the literature are included in the list of possible

alternatives generated by the proposed methodology.

2. The integration of the compatibility matrix within the process constrains all the gen-

erated alternatives to be feasible.

3. The number of discrete optimization problems to be executed is reduced by a factor

of 5× 105.

4. Each architecture is defined by a unique set of design variables and can consequently

be further optimized by a single optimization algorithm.

Hence, these observations result in the validation of Hypothesis 1.1:

VALIDATION HYPOTHESIS 1.1: IF a variable-oriented morphological anal-

ysis combined with a compatibility analysis is developed THEN all feasible

alternatives can be systematically generated for further comparison and op-

timization.

This step presented a new method for the generation of variable-oriented architectures

in a way that they can be efficiently optimized and compared by an optimization process.

The next step will present the design framework required to evaluate the multi-disciplinary

performance of each architecture.
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CHAPTER VI

STEP 3: EVALUATE ALTERNATIVES

This chapter discusses the development of a design framework capable of evaluating

each concept generated in the previous chapter in terms of performance, life-cycle costs,

and safety. The complexity of such vehicles opens up an immense design space that must

be investigated by the designers to ensure that the best concept is selected. Such exploration

is based on a multi-disciplinary multi-objective optimization process, which usually requires

a large number of function calls. Hence, as discussed in Section 3.3, the design framework

must ideally benefit from the following capabilities:

• Conceptual design level: the environment needs to include design variables commonly

used at the conceptual level.

• Physics-based modeling: in addition to the architecture selection, the environment

must enable the optimization of a given architecture and the corresponding trajectory.

These capabilities implicitly require the use of physics-based modeling techniques in

addition or in place of historical data.

• Integration: the different modules must be integrated within a single environment,

which can be further integrated into a complex optimization environment.

• Automation: the environment must be able to be implemented within an automatic

loop that executes several hundreds of thousands runs to cover the entire design space

and consider requirements’ uncertainty. The environment must also be fast to run.

As detailed in Section 3.3, the design framework is composed of six modules embedded

into a modified MDF structure, as presented in Figure 61.

First, this chapter describes the atmospheric model chosen for this research, as it is

crucial for an accurate estimation of most of the aerodynamic and propulsive parameters.

200



Trajectory

Aerodynamics

Weight/Size

Propulsion

Economics

Optimizer

Safety

Figure 61: Structure of the design framework

Then, the different modules presented in Figure 61 are developed and individually validated.

Finally, the overall framework is validated using existing concepts.

6.1 Atmospheric Model

In order to accurately compute aerodynamic coefficients and simulate the vehicle’s tra-

jectory, atmospheric parameters must be modeled. Figure 62 displays the different atmo-

spheric layers that can be identified due to differences in their characteristics. Suborbital

vehicles maneuver in a range of altitudes between 0 and 100 km. Therefore, all atmospheric

parameters such as pressure, temperature, air density, Earth gravity, speed of sound, and

dynamic viscosity have to be modeled over this entire range. Using an existing atmospheric

model, a dedicated Matlab function was developed to provide an easy access to the re-

quired atmospheric parameters in the main program. This section details the models used

for each atmospheric characteristic. The models used to determine the different parameters

are detailed in Appendix B.1.

The following section discusses one of the key modules of the design framework, which

is the weight and size estimation.
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Figure 62: Atmospheric layers [74]

6.2 Weight and Size Modeling

This section aims at describing the weight/size module of the design framework. As

discussed in Section 3.3.2, the vehicle has to be physically decomposed into components so

that their weight can be individually estimated.

6.2.1 Methodology

The selection of the weight estimation models for each component is based on the evalu-

ation and comparison performed by Rohrschneider [366]. The presented approach is based

on a physical decomposition of the vehicle into 19 subsystems: fuselage, thrust structure,

nose, Thermal Protection System (TPS), wing, landing gear, horizontal tail, vertical tail,

hydraulics, parachute and retrorockets, Reaction Control System (RCS), avionics, Environ-

mental Control and Life Support System (ECLSS), primary power system, flight control,

electrical systems, seats and accessories, parachute, and unused liquids. As discussed in

Section 3.3.2, to account for solid, liquid, and hybrid engines, a specific module is devel-

oped for the weight estimation of the following components: the rocket engine propulsion

system, the rocket engine propellants, and the tanks for rocket engine propellants. This

module will be developed in Section 6.3. The latter also describes the weight estimation

approach for jet engines. Due to interdependence effects, a loop must be developed in order
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to generate a consistent design, as presented in Figure 63. The convergence is performed on

the take-off gross weight of the vehicle. The overall methodology as well as the equations

used for each component are presented in this section.

Design
variables

Initial
guess

Weight
module

Size
module

ǫ = 0

ǫ 6= 0

Figure 63: Weight/size estimation process

6.2.2 Description of the Weight Estimation Models

The body weight, which includes the fuselage, the thrust structure, and the nose, is

estimated using Brothers’ research [55]. The weight estimation of the external insulation is

based on Brady et al. [47] who propose an empirical model. The wing, landing gear, hy-

draulic system, RCS, ECLSS, primary power system, electrical system, seat, flight control

system, horizontal tail, and vertical tail weight estimation models were derived by Mac-

Conochie and Klich using aircraft data and the Space Shuttle [266]. The avionic weight can

be estimated with the empirical approach suggested by Raymer [354]. As the weight of the

parachute system is hard to estimate, historical data from both the Orion Multi-Purpose

Crew Vehicle and the Soyuz are used as a reference [85, 192]. Finally, the weight of the

unused propellant is estimated based on multiple studies [47, 55, 266, 425].

Since most of the aforementioned models have been developed between 1985 and 2000,

there is a need to take into account recent enhancement in materials. For that purpose,

Talay proposes a list of TRF that would adjust the weight of each component [425].

All the models used for the weight estimation module are further detailed in Ap-

pendix B.2.

6.2.3 Description of the Size Estimation Model

The size estimation model aims at determining the size of two main types of components:

the fuselage and the lifting/control surfaces. The different models used in this research are
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described in this section along with the corresponding assumptions.

6.2.3.1 Lifting and Control Surfaces

If present, the size of the lifting and control surfaces is driven by aerodynamic con-

straints, especially during take-off and landing. This section discusses the independent

design variables that will be changed during the design process and their relationships to

other parameters.

All surfaces are assumed to be trapezoidal and are defined by five independent design

variables: surface area S, aspect ration AR, taper ratio TR, sweep angle Λ, and thickness-

to-chord ratio tc. Figure 64 shows the geometric variables used to define the wing. These

geometric variables can be calculated using the five variables listed above.

b
2

croot

ctip

c̄

Λ

Figure 64: Geometry of a half lifting/control surface

The wing span b can be calculated using Equation 71.

AR =
b2

S
(71)

The root chord croot, which is also related to the tip chord ctip using ctip = TR croot, can be

determined using Equation 72.

croot =
2S

b (1 + TR)
(72)
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Finally, the mean aerodynamic chord c̄ can be determined using Equation 73.

c̄ = 2croot
1 + TR+ TR2

3 (1 + TR)
(73)

6.2.3.2 Fuselage

This section aims at defining the constraints that drive the size of the fuselage in or-

der to find the smallest design in terms of length and diameter that meets the following

requirements:

• To safely and comfortably carry passengers.

• To provide a working environment to pilots.

• To carry the propellant and the fuel required for the mission.

• To provide a sufficient torque to the tail (if present).

To do so, the fuselage can be decomposed into components along the longitudinal axis:

nose, cockpit, cabin, hydraulic, electrical and mechanical systems, rocket engine, and jet

engine fuel tank (if present).

Nose: The size of the nose can be estimated using historical data from similar vehicles such

as fighter aircraft. On average, typical fighter aircraft have a nose of about 50 cm [157, 375].

As a consequence, the nose of the vehicle is assumed to be an hemisphere with a radius of

50 cm.

Cockpit: The cockpit must be sized so that the pilot(s) can safely control and maneuver

the aircraft and communicate with the ground. Pilots take the central place of the cockpit

and each element must be designed to help them perform their duties. The cockpit of the

vehicle is assumed to follow the same rules as the ones of fighter aircraft, as presented in

Figure 65 provided by Sadraey [375]. Therefore, the cockpit is assumed to have a length of

150 cm along the longitudinal axis.
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Figure 65: Typical cockpit design for fighter aircraft [375]

Cabin: For comfort purposes, a cabin configuration similar to typical commercial first

class is selected. The dimensions of the seats and required spaces are provided by Sadraey

and presented in Table 24 [375]. Additional legroom is added to allow passengers to enjoy

the weightlessness period. Therefore, based on these data, the minimum fuselage diameter

is 200 cm, while adding one row of seats increases the fuselage by 150 cm. These dimensions

are very close to the ones of the SpaceShipTwo [457]. Assuming that 80% of the fuselage

volume is used for the cabin in this section, it provides about 3 m3 per passenger.

Table 24: Key cabin parameters [375]

Parameters Values (cm)

Seat width 70
Seat pitch 100
Aisle width 60
Cabin height 180

Hydraulic, electrical, and mechanical systems: All hydraulic, electrical, and me-

chanical systems are grouped together in a single portion of the fuselage. According to
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historical data from Sadraey, around 50 cm of the fuselage must be dedicated to those

systems [375].

Rocket engine: Due to their complexity, the dimensions of the rocket engine are calcu-

lated in Section 6.3, which is dedicated to propulsion systems.

Jet engine fuel tank: The volume of the fuel tank is directly related to the fuel required

for the mission. Assuming a cylindrical tank with the same diameter as the fuselage df ,

the length of this tank Ljt can be computed using Equation 74, where mf is the fuel mass,

and ρf the fuel density.

Ljt =
4mf

πd2fρf
(74)

6.2.4 Description of the Inputs and Outputs of the Weight/Size Module

The module previously described requires 28 inputs that can be categorized into 6

different categories:

• Wing: surface, thickness-to-chord ratio, taper ratio, and aspect ratio

• Configuration: presence/absence of wing, horizontal tail, vertical tail, secondary en-

gine, and number of pilots

• Rocket engine: vacuum thrust, type of propellant, chamber pressure, nozzle expansion

ratio, combustion time, propellant weight, and engine diameter

• Jet engine: thrust at sea level, number of jet engines, bypass ratio, presence/absence

of afterburner, turbine inlet temperature, and fuel weight

• Fuselage: diameter of the fuselage, length of the front fuselage, length of the rear

fuselage, and diameter of the fuselage base

• Requirements: maximum load factor, number of passengers, and seat pitch

Based on these inputs, the weight module outputs all the required weights and dimensions

of the vehicles and their components. The details of the implementation of the module can

be found in Appendix D.2.1.
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6.2.5 Application to Suborbital Vehicles

The proposed approach has been applied to the SpaceShipTwo for validation purposes,

assuming the actual propellant weight. The calculated empty weight of the vehicle is 6,381

kg and its length is 16.5 m. The distribution of the major weight contributors is presented

in Figure 66. Compared to actual values, there is a relative error of 4.2% on the empty

weight and 9% on the length of the vehicle.

Rocket engine

34%
Body

18%

Equipment

21%

Payload

12% Wing

9%

Reserve
6%

Figure 66: Calculated weight distribution of the SpaceShipTwo

Based on these results, the weight/size module is considered to be validated and accurate

enough for conceptual level considerations.

This section presented the weight/size estimation approach for all non-propulsive sub-

systems. The modeling of the propulsion system, which is a key driver of the vehicle’s

performance, weight, and size is discussed in the following section.

6.3 Propulsion Modeling

As displayed in Figure 66, the rocket engine represents a large part of the empty weight.

In addition, its performance highly impacts the fuel weight, which might represent up to

75% of the vehicle take-off gross weight. As a consequence, the sensitivity of the propulsion

system on the overall vehicle makes it crucial to model and requires more physics-based

analysis than the other components. In addition, contrary to the weight/size and the
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aerodynamic modules, there is a gap in current techniques that prevents the use of existing

techniques. Hence, this section aims at precisely modeling all three types of chemical rocket

engines as well as the various types of jet engines.

6.3.1 Rocket Engines

This section aims at developing a design framework that enables the rapid performance,

weight, and size evaluation of the main propulsion system. An accurate modeling of the

main propulsive system is crucial since it represents an important part of the overall vehicle

characteristics. This section first describes the overall methodology. Then, the performance

module is detailed and validated. Finally, the weight/size module for each type of propellant

is discussed.

6.3.1.1 Methodology

Section 3.3.3 discussed the various performance, weight, and size estimation tools. In

particular, it highlighted the lack of tools and methods that meet all the identified require-

ments for performance, weight, and size estimation. Table 25 shows that a combination of

the cycle-based and the component-based approaches provides a good starting point.

Table 25: Comparison of the existing performance and weight evaluation methods

Weight
Perfor-
mance

Fast
Enable

trade-offs
Few

inputs

Cycle-based approach !! !! !

Single parameter
approach

!! !! !!

Component-based
approach

!! !! !! !

However, they both require too many inputs. In addition, the cycle-based approach

takes too long to run. These shortcomings can be addressed by leveraging DoEs and RSM.

A DoE is a systematic and efficient process for planning experiments so that the data

obtained can be used to establish relationships between the factors affecting a process and

the responses of that process. While numerous DoEs exist to generate points in the design

space, the Latin Hypercube is selected. This space filling technique enables a rich and

highly accurate sampling of the interior of the design space. Once enough data have been
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collected, the behavior of the responses is approximated using RSM. The latter generates

deterministic relationships between the design variables and the responses. To create these

surrogate models, standard least squares regression is used based on the points generated

by the DoE. Unlike high-fidelity models, which are long to run, surrogate models allow users

to rapidly estimate the response of a process with only small losses of accuracy and with the

minimum amount of information necessary. Conducting a sensitivity analysis beforehand

also helps reduce the number of design variables necessary to capture the behavior of the

system being modeled. This section discusses in detail the implementation of the proposed

process followed to create the design framework, as illustrated in Figure 67.

DoE with
RPA

Surrogate
models

Key
variables

Performance
calibration

Statistical
regressions

Physics-based
models

gPerformance estimationg Weight estimation

Figure 67: Proposed process to develop the design framework

6.3.1.2 Performance Estimation

The performance of all chemical rocket engines can be described by their vacuum specific

impulse Ispv and their characteristic velocity c∗. The theoretical values of these parameters

are first calculated using the cycle-based software RPA [343] as a function of the following

key variables: the chamber pressure pc and the nozzle area expansion ratio ǫ. RPA, an

analysis tool suitable for the conceptual and preliminary design of chemical rocket engines,

determines chemical equilibrium product concentrations based on the propellants and cal-

culates the thermodynamic properties of the mixture. It outputs the theoretical engine

performance using the minimization of the Gibbs free energy. A DoE on RPA is performed

to help generate the necessary data. Once this is achieved, surrogate models are created

and calibrated to account for the difference between theoretical and actual performance.
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Design of Experiments: Since the propellant is a categorical variable, one surrogate

model per propellant must be developed. The first step consists in selecting all possible

propellants to capture the entire design space.

There are two categories of solid propellants: double-base and composite. In double-base

propellants, fuel and oxidizer molecules are homogeneously mixed, while in composite pro-

pellants they are heterogeneous mixed with binder compounds. Only composite propellants

are selected for this research as they have better performance and are widely used in mod-

ern engines. Humble [216] mentions three composite propellants that are commonly used:

Propellant B (18% of aluminum, 71% of ammonium perchlorate (AP), 11% of hydroxyl-

terminated polybutadiene (HTPB)), Propellant C (16% of aluminum, 70% of AP, 14% of

polybutadiene acrylonitrile (PBAN)), and Propellant D (22% of magnesium, 66% of AP,

12% of HTPB).

For liquid engines, while both monopropellants and bipropellants exist, only the lat-

ter are considered as they give higher performance and are widely used in the industry.

They can be classified into three categories: petroleum (mixture of crude oil and complex

hydrocarbons), cryogenic (liquefied gases stored at very low temperature), and hypergolic

(spontaneously ignitable fuel-oxidizer mixture). Petroleum propellants have lower perfor-

mance than cryogenic fuels but higher performance than hypergolic fuels. Based on this

classification, five liquid propellants are selected. One cryogenic propellant: liquid oxy-

gen (O2 or LOx)/liquid hydrogen (LH2), one petroleum propellant: O2/refined petroleum-

1 (RP1) (highly refined kerosene), and three hypergolic propellants: nitrogen tetroxide

(N2O4)/unsymmetrical dimethylhydrazine (UDMH), N2O4/monomethylhydrazine (MMH),

and N2O4/Aerozine 50 (50% hydrazine and 50% UDMH).

Hybrid engines store the propellant in two different states, usually the fuel is solid

and the oxidizer is liquid. Fuels are usually carbon-based polymers in the form of plastic

or rubber, typical plexiglass, polyethylene (PE), and HTPB. They can be enhanced with

metallic powder such as aluminum to increase their density and thus reduce the overall

volume. Many types of liquid oxidizers can be used, including liquid or gaseous oxygen,

hydrogen peroxide or nitrous oxide (N2O). The choice of the propellant combination must
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be done by weighing quantitative and qualitative considerations: performance, handling,

storability, toxicity, etc. Based on a review of the state-of the-art, the selected oxidizers are

liquid oxygen, for its performance, and nitrous oxide as it is non-toxic, and easy to handle

and store. Paraffin is a fuel that has a high regression rate, allowing high performance. As a

consequence, the different combinations of propellants considered are: O2/HTPB, O2/PE,

O2/Paraffin, N2O/HTPB, N2O/PE, and N2O/Paraffin.

Based on the 14 selected propellants, Matlab is used to drive RPA and generate the

points in the design space. For each propellant, 500 combinations of inputs are generated

with pc ∈ [2MPa , 12MPa] and ǫ ∈ [5 , 200]. RPA is executed for each combination, and the

results are stored in a matrix. In addition to Ispv and c∗, the optimum oxidizer-to-fuel ratio

O/F is also tracked for liquid and hybrid propellants. Figure 68 shows the user interface

of RPA. Yellow boxes correspond to the required inputs, while the red boxes represent the

tracked outputs.

Figure 68: User interface of RPA
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Surrogate models: Based on the aforementioned coverage of the design space, regres-

sions can now be performed. While second-degree polynomial models are commonly used

in the literature, they do not provide enough accuracy for the problem at hand. Instead, a

logarithmic transformation has been applied to the design variables, hence greatly improv-

ing the fits. The general form of the selected surrogate models is presented in Equation 75,

where Y is the response, αi the regression coefficients, and xi the design variables.

Y =
∑

i

αi ln(xi) (75)

To evaluate the accuracy of the models, four factors are checked: the coefficient of deter-

mination R2, the adjusted coefficient of determination R2
adj , the Model Fit Error (MFE),

and the Model Representation Error (MRE). The mean values for both R2 and R2
adj are

0.955. Both MFEs and MREs show low mean values (between -10−1 and 10−2) and their

standard deviations are lower than 0.5. The actual vs. predicted plots have also been

checked to ensure a correct behavior of the distribution. A sample of these plots is provided

in Appendix B.4.1.2 for each type of propellant.

Selection of propellants: The previously developed surrogate models are used to com-

pare the performance of the various propellants. For solid engines, Propellants B, C, and D

have similar vacuum specific impulses. The relative difference is smaller than 3% between

all propellants. Propellant C was chosen as the representative solid propellant. Tables 26

and 27 compare the Ispv of all liquid and hybrid propellants. Similar to solid propellants,

propellants with a difference in Ispv smaller than 3% are lumped together. As such, only 3

liquid propellants are kept: O2/H2, O2/RP1, and N2O4/MMH. The latter is considered as

the representative of all hypergolic propellants. For hybrid propellants, two major groups

are identified based on the oxidizer used: O2 or N2O. Because the regression rate of paraffin

is higher than that of the other fuels, the following 4 propellants are chosen: O2/HTPB,

O2/Paraffin, N2O/HTPB, and N2O/Paraffin. Response surface equations for the selected

propellants are provided in Appendix B.4.1.1.
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Table 26: Difference between the Ispv of the different liquid propellants in %.

O
2
/H

2

O
2
/R

P
1

N
2
O
4
/U

D
M
H

N
2
O
4
/M

M
H

O2/RP1 20.7
N2O4/UDMH 25.1 5.6
N2O4/MMH 24.7 5.1 0.6

N2O4/Aerozine50 24.7 5.0 0.6 0.0

Table 27: Difference between the Ispv of the different hybrid propellants in %.

O
2
/H

T
P
B

O
2
/P

E

O
2
/P
ar
affi

n
N
2
O
/H

T
P
B

N
2
O
/P

E

O2/PE 1.8
O2/Paraffin 1.8 0.0
N2O/HTPB 13.5 15.0 15.0
N2O/PE 13.2 14.8 14.8 0.3

N2O/Paraffin 13.3 14.8 14.8 0.2 0.1

Calibration and validation Performance parameters provided by RPA represent ideal

and theoretical values. In reality, the performance is deteriorated by friction effects, heat

transfer, imperfect gases, nonaxial flow, nonuniformity of the fluid, and shifting gas compo-

sition. To account for these phenomena, a correction factor λ is introduced and calculated

by calibrating the performance parameters with existing engines. These calibration factors

are determined using the optimization problem described in Equation 76, where Ispt is the

vector of the theoretical values given by the surrogate models and Ispa is the one composed

of actual values found in the literature.

min
λ

∑

i

∣

∣

∣

Ispa(i)−λIspt(i)
Ispa(i)

∣

∣

∣ (76)

The calibration factor for solid engines is equal to 0.93. For liquid engines, it varies between

0.92 and 0.96. Finally, for hybrid engines, this factor varies between 0.76 and 0.83. These

factors are in perfect agreement with various studies [5, 81, 219, 365] comparing theoretical

and actual performance. The drop in efficiency for hybrid engines is due to mixing issues
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between the liquid oxidizer and the solid fuel. Once the calibration factors have been

applied, the average error between the predicted and the actual values is found to be 2.6%

over all types of engines. This value is deemed accurate enough at the conceptual and

preliminary design stages.

6.3.1.3 Weight/Size Estimation of Solid Engines

Humble [216] proposes a component-based approach to estimate the weight of solid

engines. This approach requires seven input variables and five calibration factors that are

unknown at the conceptual design level. The approach has been implemented on three

engines whose data are provided by Lara [248]: ORION 50S, GEM 40 VN, and GEM

60. The mean relative error on the dry weight was found to be around 49%, which in

unacceptable. The other single parameter approaches [10, 494] also suffer from a lack of

accuracy and do not enable trade-off studies. Therefore, new statistical regressions are

proposed based on the data presented in Table 28.

Hence, similar to the performance estimation, surrogate models are built to help better

estimate the weight of solid engines. A sensitivity analysis is conducted on each parameter

to help identify the key design variables. The tornado plots in Figure 69 provide the

sensitivity of the weight, length, and diameter with respect to the main key drivers. From

this analysis, it appears, as expected, that the mass of propellant mprop is the main driver

of the engine weight me, diameter D, and length L. The expansion ratio ǫ mainly impacts

the weight and the diameter, which is coherent since a large expansion ratio results in a

large and heavy nozzle. The combustion time tc mainly impacts the engine diameter, which

can be explained by the fact that the regression rate has a radial direction.

Based on these design variables, second-order polynomial regressions are performed. The

resulting responses are provided in Equation 77. Figure 70 displays the actual vs. predicted

plots for each response, along with the key parameters to check for the goodness of fit.

These parameters are consistent, and even better, than that of typical statistical aerospace

weight equations such as the ones developed by Morrison [185], Glatt [174], Raymer [354],

etc.

215



Table 28: Solid engine data [248]

Engine
pc

(MPa)
ǫ

Ispv

(s)
mprop

(kg)
tc
(s)

T

(kN)
mE

(kg)
L

(m)
D

(m)

Castor 120 8.59 16.3 280 49,005 79.5 1,685.9 4,072 7.67 2.36
Orion 50S 5.61 35.3 294 12,162 75.3 465.1 1,243 8.87 1.27
Orion 50ST 5.86 26.7 286 12,157 75.0 454.4 1,249 8.46 1.27
Orion 50S

XL
7.40 34.3 294 15,023 69.1 626.3 1,150 10.26 1.27

Orion 50S
XLT

7.47 24.8 286 15,023 68.4 614.9 1,157 9.88 1.27

Orion 50S
XLG

7.47 14.2 273 15,023 68.4 588.0 1,179 9.45 1.27

Orion 50
(50T)

5.58 52.1 292 3,025 75.6 114.6 344 2.67 1.27

Orion 50 XL 6.83 43.5 291 3,924 69.7 160.6 395 3.10 1.27
Orion 38 3.94 49.3 289 771 67.7 32.2 121 1.35 0.97
Orion 32 4.55 23.0 277 1,941 41.0 128.1 200 3.07 0.81

Castor IVA 4.85 8.3 268 10,109 55.2 498.3 1,565 9.23 1.02
Castor IVA

XL
4.22 15.6 282 13,112 59.4 609.9 1,871 11.60 1.02

Castor IVB 3.16 8.0 267 9,975 65.0 423.3 1,565 8.98 1.02
Castor 30 5.25 50.0 295 12,837 143.0 258.9 1,224 3.51 2.34

GEM 40 VN 5.48 9.0 268 11,775 64.6 478.8 1,327 10.80 1.02
GEM 46 VN 6.31 13.8 280 16,865 76.9 601.4 2,275 12.55 1.17
GEM 60 5.64 11.0 274 29,697 90.8 878.7 3,940 13.16 1.52
ASAS
21-85V

7.58 13.9 241 655 24.4 62.3 96 2.43 0.52

ASAS 21-120 10.20 25.0 244 924 22.1 99.2 130 3.50 0.52
ASAS
21-120V

12.40 20.0 251 822 17.9 110.8 192 3.30 0.52

Oriole 6.50 28.4 289 976 30.0 92.5 198 3.93 0.56
ASAS 28-185 10.14 18.3 253 2,800 29.2 231.8 331 5.26 0.72

ASAS
32-58V

9.58 28.0 279 1,041 26.6 106.3 146 1.90 0.80

Star 31 4.90 58.0 296 1,286 45.0 82.3 108 2.87 2.29
ORBUS 21 4.52 63.9 296 9,707 141.6 199.8 667 3.15 2.31
Star 48 B 4.26 39.6 294 2,010 85.2 68.9 131 2.03 1.24
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Figure 69: Sensitivity analysis of the weight and size of solid engines































me = 1002.0 + 0.10mprop − 149.55pc − 0.03 (pc − 6.83) (mprop − 7857.27)

D = 0.44 + 8.10−6mprop + 0.01tc + 0.03pc + 0.01ǫ− 2.10−3Isp + 4.10−7T

L = 25.04 + 5.10−4mprop − 0.08Isp− 1.10−8 (mprop − 11333.81)2 − 8.10−4 (tc − 63.83)2

(77)
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Figure 70: Goodness of fit of the statistical regressions

Finally, to validate the proposed surrogate models, the mean relative error is computed

and compared to existing models. Surrogate models developed for the purpose of this

research have a relative error that is much lower than that of existing models. In addition

to the significant improvement in accuracy, these models, which use only a handful of design

variables, enable engine optimization at the conceptual design phase. Table 29 summarizes

these benefits.
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Table 29: Benefits of the developed model compared to existing methods

Relative
error

Lower number
of design
variables

Ability to
conduct
trade-off
analysis

Proposed
approach

15% ! !

Humble [216] 25% !

Zandbergen [494]
and Akin [10]

35% !

6.3.1.4 Weight/Size Estimation of Liquid Engines

A bipropellant liquid rocket engine is composed of a propellant feed system, two tanks

to store the fuel and the oxidizer, valves, interconnecting plumbing and components, and

a thrust chamber. The latter is made up of the propellant injectors and feed manifold, an

igniter, a combustion chamber, an exhaust nozzle, and a structural cooling system. There

are two different types of propellant feed systems: tank pressure-fed and pump pressure-fed.

Tank pressure-fed systems are usually heavier but less complex than pump pressure-fed sys-

tems. Pump pressure-fed systems are chosen for the proposed design environment because

they are used for high-thrust applications such as launch and orbit insertion. Based on this

physical decomposition, the total engine weight me can be calculated using Equation 78,

where mtc, mtkO, mtkF , and mst are the masses of the thrust chamber, oxidizer tank, fuel

tank, and support structure, respectively.

me = mtc +mtkO +mtkF +mst (78)

Similarly, the length of the engine L is defined in Equation 79, where ltc, ltkO, and ltkF are

the lengths of the thrust chamber, oxidizer tank, and fuel tank, respectively.

L = ltc + ltkO + ltkF (79)

This section details the models used to compute the weight and size of each of these com-

ponents.

Thrust chamber: To estimate the mass and dimensions of the thrust chamber, historical

data of existing liquid engines are used. Correlations between the required thrust T and
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the thrust chamber’s length ltc and mass mtc are established by Humble et al. [216], and

given in Equations 80 and 81.

ltc = 3.042× 10−5T + 327.7 (80)

mtc =
T

g0(25.2 log T − 80.7)
(81)

Tanks: The mass and dimensions of the tanks are estimated using physics-based equa-

tions, assuming aluminum cylindrical tanks with semi-spherical ends. First, the masses of

the oxidizer mox and fuel mf are calculated using Equation 82, where O/F is the optimized

oxidizer-to-fuel ratio and mprop the total propellant mass.

mprop = mf +mox = mf (O/F + 1) (82)

Each tank is assumed to have a cylindrical section of mass mc and length lc, and spherical

ends of a mass ms and length ls. Hence, each tank mass can be determined using: mtk =

mc +ms. The mass of the cylindrical section mc and the spherical ends ms are calculated

using mc = Actcρmat and ms = Astsρmat, respectively, where ρmat is the material density,

Ac the surface of the cylindrical section, and As the surface of the spherical ends. The wall

thickness of the cylindrical part tc is defined in Equation 83, with Ftu the allowable material

strength, pb the burst pressure, and dtk the tank diameter, which is assumed to be fixed

and known from airframe constraints.

tc =
0.5pbdtk

Ftu
(83)

Similarly, the wall thickness of the spherical ends ts is defined in Equation 84.

ts =
0.25pbdtk

Ftu
(84)

The burst pressure pb is calculated using a safety factor ηs equal to 2, and a ratio between

the maximum expected operating pressure and the tank pressure λb equal to 1.2. The

resulting burst pressure is presented in Equation 85, as provided by Humble et al. [216].
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Vtk is the volume of each tank determined as a function of the propellant density, assuming

a 10% ullage.

pb = ηsλbptk = ηsλb

[

10−0.1068(log(Vtk)−0.2588)
]

× 106 (85)

Each tank length can be determined using ltk = lc + ls. The length of the spherical

ends ls is equal to the diameter of the tank dtk and the length of the cylindrical section lc

is calculated using Equation 86.

lc =
Vtk − 4

3π
(

dtk
2

)3

π
(

dtk
2

)2 (86)

Support structure: To take into account the mass of the support structure and attach-

ments mst, an empirical relation provided by Rohrschneider [366] is used, as presented in

Equation 87, where T is the rocket engine thrust.

mst = 0.88.10−3 × (0.225T )1.0687 (87)

This weight estimation approach is applied to 9 existing liquid engines [38]: Vulcain,

RS-68, LE-7A, RL-10A-4-2, RD191, RD0146D, Rocketdyne J2, RD-120, and RD-58M. The

results are then compared to actual data for each engine. The average error over the 9

engines is found to be equal to 23% for the engine dry mass, and to 16% for the engine

length. These errors are similar to the ones obtained for solid engines and are deemed

acceptable at a conceptual design level.

6.3.1.5 Weight/Size Estimation of Hybrid Engines

A hybrid rocket engine is composed of a tank for the liquid oxidizer, a tank for the pres-

surization gas, a combustion chamber storing the solid fuel grain protected by an internal

insulation, and a nozzle assembly. As such, the total engine mass me is calculated using

Equation 88, where mtkO, mHe, mtkHe, mcc, mno, and mst are the masses of the oxidizer

tank, pressurant gas, pressurant tank, combustion chamber, nozzle, and support structure,

respectively.

me = mtkO +mHe +mtkHe +mcc +mno +mst (88)
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Similarly, the length of the engine L is defined in Equation 89, where lcc, ltkO, ltkHe, and

lno are the lengths of the combustion chamber, oxidizer tank, pressurant tank, and nozzle,

respectively.

L = lcc + ltkO + ltkHe + lno (89)

Oxidizer tank: The oxidizer tank mass mtkO is calculated using the same method as the

one provided for liquid engines. The only difference lies in the calculation of the tank burst

pressure pb. For a pressure fed system, the tank burst pressure is defined in Equation 90,

where δpdynamic = 0.5ρoxv
2 is the oxidizer dynamic pressure (Bernoulli equation with v the

flow velocity, typically 10 m/s), δpinj = 0.2pc the injector pressure drop, and δpfeed = 50.103

Pa the pressure drop in the feed system (upper range value suggested by Humble [216]).

pb = pc + δpdynamic + δpinj + δpfeed (90)

Pressurant gas: To be able to assume a constant pressure in the propellant tank, the

latter is pressurized with a regulated, inert-gas pressurant. Helium is selected for its low

molecular mass. The pressurant gas mass mHe is determined using the perfect gas law.

Because the combustion time is relatively short and happens in a single burn, an isentropic

expansion of the pressurant gas into a constant-pressure propellant tank is assumed. The

initial temperature of the gas is assumed to be Ti = 273 K and its initial pressure pi = 21

MPa. The final temperature of the gas is then defined in Equation 91 assuming an isentropic

change in temperature.

Tf = Ti

(

pb
pi

)
γ−1
γ

(91)

The final volume of pressurant is equal to the volume of the oxidizer tank plus the volume of

the pressurant tank. As the volume of the pressurant tank is initially unknown, an iteration

is needed.

Pressurant tank: To estimate the mass of the pressurant tank mtkHe, an empirical

approach suggested by Humble [216] is used, involving a tank mass factor φtkHe defined in

Equation 92.

g0mtkφtkHe = piVtkHe (92)
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The selected value of the tank mass factor is 12, 700 m, for a fiber-reinforced composite

material.

Combustion chamber: The mass of the combustion chamber mcc can be calculated by

adding the mass of the case mcase and the mass of the injector minj . The injector mass

is defined as the mass of a 2.5 cm thick aluminum plate spanning the chamber radius, as

presented in Equation 93, where rg is the chamber radius.

minj = 0.025ρalπr
2
g (93)

The case mass is given in Equation 94, where lcc is the length of the combustion chamber,

tcs the thickness of its wall, and ρmat the material density.

mcase = 2πrglcctcsρmat (94)

tcs is defined with a safety factor of 1.5 for the chamber burst pressure pbc, as presented in

Equation 95.

tcs =
1.5pbcrg
Ftu

(95)

The combustion chamber length lcc is calculated by adding the port length lp to an injector

section and an aft mixing section equal to the grain diameter, so the total chamber length

is lcc = lp + 2rg. The radius of the grain rg is defined in Equation 96, where w is the web

thickness and h the height of the port.

rg = h+ w +
w

sin θp
(96)

To determine both lp and w using Equation 97 and 98, a fuel grain design must be chosen

along with the number of combustion ports Np and their configuration.

lp =
ṁf

Npρf ṙ (2l + b)
(97)

w2 +
(2l + b)w

π
=

mf

Npρf lpπ
(98)

In particular, lp and w depend on the dimensions of each port defined in the next paragraph

and presented in Figure 71: θp, h, l, and b.
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𝜃𝑝𝑟𝑔

Figure 71: Geometric representation of a port

The regression rate ṙ is expressed by ṙ = a(Goi + Gfi)
n, where Goi represents initial

oxidizer mass flux rate and Gfi = Goi/(O/F ) the initial fuel mass flux rate. The two coef-

ficients a and n are determined experimentally, assuming that the regression rate variation

with the grain length is negligible. The values of a and n are presented in Table 30.

Table 30: Values of a and n with ṙ in mm/s and G0 in kg/m2.s

O2/HTPB [360] O2/Paraffin [230] N2O/HTPB [120] N2O/Paraffin [184]

a 9.26×10−6 9.10× 10−5 1.87× 10−4 1.32× 10−4

n 0.852 0.690 0.347 0.555

The simplest design for the fuel grain is a single cylindrical port. However, this con-

figuration loses efficiency and the L/D ratio becomes quite large as the engine becomes

larger. A commonly used wagon-wheel shape with a non-burning center hole and Np = 8

ports is chosen. As discussed by Humble [216], if the number of ports is greater than 7, the
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port cross section can be approximated by a triangle. As such, trigonometric considerations

can be used to determine the required parameters. The initial port area Api is defined in

Equation 99, where ṁox is the oxidizer flow rate.

Api =
ṁox

NpGoi
(99)

The half angle of each port is θp = π/Np, the triangle height is h = (Api/ tan θp)
0.5, the

length of the triangle base is b = 2h tan θp, and the length of the side is l = h/ cos θp.

Nozzle: Assuming a bell nozzle with a half angle θn = 15◦, the length of the nozzle is

defined in Equation 100, where Dt is the throat diameter and De the exit diameter.

lno = 0.8
De −Dt

2 tan(θn)
(100)

The throat diameter Dt can be calculated using the throat area At from the characteristic

velocity equation, as presented in Equation 101, where ṁ is the propellant mass flow rate.

At =
ṁc∗

pc
(101)

Then, the exit diameter De is related to the throat diameter via the expansion ratio ǫ.

To estimate the mass of the nozzle, an empirical relationship assuming a phenolic nozzle

provided by Humble [216] is used, as presented in Equation 102.

mno = 125
(mprop

5400

)2/3 ( ǫ

10

)1/4
(102)

Support structure: According to Humble [216], the mass of the support structure and

ancillary parts mst represent 10% of the total inert mass of the engine.

This weight estimation method has been applied with data from the hybrid engine of

the suborbital vehicle SpaceShipOne. The total mass of the unfuelled engine was found

to be 50% of the empty mass of the vehicle and the length 63% of the total length of the

vehicle. This is in perfect agreement with multiple studies [157, 378, 382].
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6.3.1.6 Summary

As described in this section, the proposed design environment provides the capabilities to

rapidly estimate the performance, weight, and size of all types of chemical rocket engines.

This corresponds to Experiment 3.1. Section 6.3.1.2 shows that, on average, the mean

relative error for performance evaluation is 2.6%, which is highly accurate for a conceptual

design level. Then, Sections 6.3.1.3 to 6.3.1.5 demonstrate that the average relative error on

the weight/size estimation is around 18%, which is better than other conceptual design level

weight estimation tools [10, 216, 494]. In addition, the number of design variables is equal

to seven, which is acceptable for further trade-off analyses and design space exploration.

Finally, the computation time of the proposed methodology is around several milliseconds

against several seconds using RPA combined with an existing weight estimation approach.

This validates the four criteria of Experiment 3.1 and consequently Hypothesis 3.1.

VALIDATION HYPOTHESIS 3.1: IF performance parameters found by cre-

ating surrogate models of the cycle-based software Rocket Propulsion Analysis

(RPA) are inputted into a physics-based weight prediction model THEN per-

formance and weight of liquid, solid, and hybrid rocket engines can be rapidly

predicted at a conceptual design level.

6.3.2 Jet Engines

This section aims at modeling both the performance and the weight of jet engines

at a conceptual design level. Raymer provides a series of statistical equations, listed in

Appendix B.4.2, that estimate the empty weight W , length L, diameter D, and TSFC of all

jet engines as a function of four main variables [354]. Table 31 describes the input variables

along with their ranges.

In addition to the bypass ratio and the required thrust, one of the key performance

drivers in jet engines is the allowable turbine inlet temperature. This parameter has also

an important impact on the engine cost. Indeed, a high turbine inlet temperature enables a
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Table 31: Input variables for jet engine modeling

Variables Descriptions Ranges

T Take-off thrust (kN) [0 , 100]

BPR Bypass ratio
[0 , 1] with afterburners

[0 , 6] without afterburners

M Maximum Mach number
[0 , 2.5] with afterburners
[0 , 1] without afterburners

Afterburners Presence of afterburners Yes - No

better combustion and consequently increases the efficiency of the engine. However, it also

increases the cost due to the use of state-of-the-art technologies. In order to account for

this trade-off, relationships between TSFC and T4 must be modeled and integrated in the

previous performance evaluation model. Boggia and Rud [42] have assessed the impact of

T4 on the engine fuel consumption as a function of the bypass ratio. Figure 72 shows the

results of this analysis.

Figure 72: Impact of the turbine inlet temperature on the TSFC [42]

To integrate this impact into the design framework, a mathematical model is developed

using polynomial approximations with a baseline T4 fixed at 1,500 K. Then, the impact of

a relative change in T4 on the TSFC is captured through multiple points in the provided
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simulation. Based on these points, a second order RSE is generated. It is presented in

Equation 103, where ∆T4 is the relative change in the turbine inlet temperature compared

to the baseline and ∆TSFC its relative reduction on the TSFC in percentage.

∆TSFC = −0.51 + 24.35∆T4 + 0.30BPR+ 0.83 (∆T4 − 0.23) (BPR− 17.50) (103)

As shown in Equation 104, the gradient in ∆TSFC is positive along all directions for

positive changes in T4 and positive BPR. Hence, an increase in T4 and/or in BPR would

improve the fuel efficiency of the engine.

∇∆TSFC(T4, BPR) =

(

24.35 + 0.83(BPR− 17.50)

0.30 + 0.83(∆T4 − 0.23)

)

(104)

In this research, T4 is added to the list of design variables for the jet engine and varies

between 1,500 K and 2,000 K.

This section modeled all possible types of propulsion systems that can be used for

suborbital flights. Combined with the previous section, two of the external forces acting

on the vehicle can be modeled: weight and thrust. The last two forces (lift and drag) are

discussed in the following section.

6.4 Aerodynamic Modeling

The aerodynamic modeling aims at developing a prediction model for the aerodynamic

lift and drag coefficients in all flight regimes and for all configurations. As discussed in

Section 3.3.4, the model is based on the one developed by Roskam [369]. While both

the subsonic and the supersonic regimes are well-known and can be well predicted, the

transonic regime is harder to model. Indeed, complex flow phenomena make the drag

coefficient difficult to estimate. Raymer suggests a conceptual level approach based on

experimental measurements for the flow between Mach 0.6 and Mach 1.2. This section first

describes the approach for estimating the lift coefficient. Then, the different models for

each drag component and each flight regime are developed. Finally, multiple simplifications

are discussed in order to speed up the process.
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6.4.1 Lift Coefficient Model

The vehicle lift coefficient CL can be decomposed into two different terms, as defined

in Equation 105. In this equation, α represents the angle of attack and CLα the lift-curve

slope.

CL = CLαα (105)

In this research, it is assumed that only the wing can produce lift. While the angle of

attack depends on the flight conditions, the lift-curve slope can be modeled as a function

of the Mach number and the wing configuration. In the subsonic regime, Raymer suggests

the semi-empirical formula presented in Equation 106, where AR is the aspect ratio, β =
√
1−M2 the compressibility factor, Sexposed the surface of the wing exposed to the air, Λ

the sweep angle, η the airfoil efficiency factor, F the fuselage lift factor [354], and S the

reference area.

CLα =
2πAR

2 +

√

4 + AR2β2

η2

(

1 + tan2 Λ
β2

)

Sexposed

S
F (106)

This equation is assumed to be valid up to the drag divergence Mach number MDD. The

models and values selected for the different parameters are described in Appendix B.3.1.

For the supersonic speed, usually beyond Mach 1.2, the theoretical lift-curve slope is

defined in Equation 107, corrected by an efficiency factor ηs to match actual data [354].

CLα =
4√

M2 − 1
(107)

The efficiency factor ηs is defined in Equation 108, where CLα(MDD) is the value of the

lift-curve slope at the drag divergence Mach number.

ηs = 0.141CLα(MDD) (108)

According to Raymer, there are no good initial-estimation methods for the transonic regime

and it is suggested to smoothly link both the subsonic and the transonic regimes. To do so,

a parametric interpolation is developed based on experimental data [354] and is presented

in Appendix B.3.1.
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Figure 73 shows the results of the previous model by plotting the lift-curve slope as a

function of the Mach number and the sweep angle. The plot confirms that, the higher the

sweep angle, the lower the lift coefficient at a given angle of attack.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

M

C
L
α

Λ=0
Λ=20
Λ=40
Λ=60

Figure 73: CLα with respect to the Mach number and the sweep angle

6.4.2 Maximum Lift Coefficient Model

The maximum lift coefficient CL,max is a crucial parameter for winged bodies, especially

during take-off and landing. According to Raymer [354], it can be determined using Equa-

tion 109, where Cl,max is the maximum lift coefficient of the airfoil and Λ the sweep angle.

CL,max = 0.9Cl,max cosΛ (109)

Assuming single-slotted flaps, Hoerner provides the value of Cl,max for critical phases:

Cl,max = 2.8 during take-off and Cl,max = 3 during landing [206].

6.4.3 Subsonic and Supersonic Drag Coefficient Models

Roskam decomposes the drag coefficient into 11 components: wing drag coefficient

(CDwing), fuselage drag coefficient (CDfus
), empennage drag coefficient (CDemp), nacelle/py-

lon drag coefficient (CDnp), flap drag coefficient (CDflap
), landing gear drag coefficient

(CDgear), canopy/windshield drag coefficient (CDcw), store drag coefficient (CDstore), trim
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drag coefficient (CDtrim), interference drag coefficient (CDint), and miscellaneous drag coeffi-

cient (CDmisc). The latter includes the drag caused by speed brakes, struts, inlets, antennas,

gaps, and surface roughness. In addition to this first decomposition, the model for the drag

coefficient is specific to each flight regime: subsonic and supersonic. For each combination

of component and flight regime, the multidimensional plots provided by Roskam are used

to extract data points that cover the entire design space. Based on these data points, sur-

rogate models are developed in order to create parametric relations to estimate the various

parameters needed to determine the vehicle drag coefficient. Figure 74 provides an overview

of this process, whose the implementation is further discussed in Appendix B.3.2.

𝑓 𝑥, 𝑦 = 𝑖 𝛼𝑖𝑔𝑖 𝑥, 𝑦

Figure 74: Drag coefficient estimation process

6.4.4 General Transonic Drag Coefficient

Due to the lack of accurate analytical or numerical approaches for the transonic regime,

Raymer suggests an empirical approach [354] to predict the drag coefficient between Mach

0.6 and Mach 1.2. This approach is based on several rules presented below:

• The drag coefficient at Mach 1.2 is equal to the drag coefficient at Mach 1.05.

• The drag coefficient at Mach 1 is half the drag coefficient at Mach 1.05.

• The drag coefficient has a smooth behavior over the entire transonic regime.

• The drag coefficient has a linear behavior between Mach 1 and Mach 1.05.

Following these rules, a parametric approach is developed using the aforementioned models

to compute the vehicle’s drag coefficient at Mach 0.6 and 1.2. Then, the transonic range
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is decomposed into three different ranges where different models are applied: from Mach

0.6 to Mach 1, from Mach 1 to Mach 1.05, and from Mach 1.05 to mach 1.2. The detailed

development of the three models are discussed in Appendix B.3.3.

6.4.5 Simplifications

The proposed aerodynamic model is intended to be used to optimize the trajectory.

While this model is highly accurate, it needs to be run for each combination of altitude

and Mach number during the trajectory optimization. It appears to be time consuming

when used for complex multi-objective optimization purposes. As a consequence, a series

of approximations are made in order to speed up the overall process. The general idea

is to avoid the entire model to be run at each iteration of the trajectory optimization.

To do so, several key parameters are computed once and then used to create simple and

accurate surrogate models as a function of altitude and Mach number at a vehicle level.

The dependence of the lift drag coefficient of a typical vehicle with respect to both altitude

and Mach number is displayed in Figure 75. This drag polar has been calculated with the

available data from the SpaceShipTwo.
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Figure 75: CD0 with respect to the Mach number and for different altitudes

Using Figure 75, several observations can be made. First, three distinct regions with

specific behaviors are identified in terms of Mach number dependence. Indeed, from Mach
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0 to Mach 0.6, the drag coefficient is almost constant and can be modeled with a single

coefficient. From Mach 0.6 to Mach 1.2, the behavior is more complex but its behavior

has been well described by Raymer and is already based on surrogate models. Finally, the

supersonic region follows a very smooth curve that can be modeled by a rational fraction.

Multiple interpolations with Matlab show that Equation 110 can be used with a R2 of

around 0.995, where a, b, c, and d are four constants to be parametrically determined.

CD(M) =
aM + b

M2 + cM + d
(110)

In addition, for all Mach numbers, the dependence of altitude is close to a linear model.

Based on these observations, seven coefficients have to be defined by the aerodynamic

module in order to compute the lift drag coefficient for any combination of altitude and

Mach number for a given vehicle configuration. The five-step process proposed below is

presented below.

1. Calibrate the aerodynamic model for a given configuration.

2. Compute the drag coefficient of the vehicle for five different Mach numbers: 0.6, 1.2,

3, 5, and 7 and two different altitudes: 0 and 20 km.

3. Determine the coefficients of the surrogate models for supersonic speeds as a function

of the drag coefficients at Mach 1.2, 3, 5, and 7.

4. Determine the regression coefficients of the linear interpolation of the drag coefficient

for a given Mach number as a function of altitude.

5. Pass the coefficients to the trajectory calculation program.

This section discussed the development of the aerodynamic module, which is able to

rapidly evaluate all aerodynamic coefficients. This module is then combined with the ones

developed in Sections 6.2 to 6.3 to provide all required information to optimize the vehicle

trajectory, as discussed in the next section.
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6.5 Trajectory Modeling

The objective of the trajectory module is to calculate the amount of fuel required for a

given vehicle to meet the requirements. Because the trajectory module is to be integrated

into a large and complex optimization algorithm, it needs to be fast to run. As discussed

in Section 3.3.5, a physics-based model is developed in order to optimize and simulate the

vehicle’s trajectory. Indeed, this approach represents the best trade-off between execution

time and accuracy. First, the approach used to model the traditional aircraft mission

phases is provided: take-off, landing, and climb. Then, the principles governing the ESA

approach are described along with the assumptions specific to suborbital vehicles. The

implementation and the validation of this approach into Matlab are also detailed. Finally,

the module is applied to optimize and simulate the trajectory of existing vehicles.

6.5.1 Take-Off and Landing

For horizontal take-off and/or horizontal landing vehicles, there is a need to ensure

that the required runway length meets the spaceport’s constraints. As a consequence, it is

necessary to assess the take-off and landing performance of the vehicle.

6.5.1.1 Take-Off

The take-off distance can be decomposed into four portions: ground roll, rotation, tran-

sition, and initial climb to clear the obstacle. The detailed calculation of each of these

distances requires technical data that are not available at a conceptual design level. In-

stead, the “magic line” approach, presented by Shevell [395], that consists in a simplified

formula to estimate the take-off field length, is used. Using a 15% margin to account for

safety requirements, the take-off field length LTO is defined in Equation 111 [43], where

CL,max is the maximum lift coefficient, WTO the take-off gross weight, and T0.7 the overall

thrust delivered at 70% of the take-off speed.

LTO =
0.17W 2

TO
(

ρ
ρ0

)0.8
SCL,maxT0.7

+ 27 (111)
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6.5.1.2 Landing

Similar to the take-off distance, the landing distance can be decomposed into three

phases: approach, free roll, and braking. A simplified approach presented by Boiffier [43]

and similar to the “magic line” is used. Assuming that the aircraft is equipped with an

Antilock Braking System (ABS) system and that only the braking force is considered along

the horizontal axis, the landing distance is given in Equation 112, which includes a 15%

safety margin. In this equation, Vs is the stall speed and µr = 0.5 the friction coefficient.

LLA =
1.69V 2

s

2µrg0
(112)

6.5.2 Climb with Jet Engines

The climb phase with jet engines is assumed to be performed at the maximum climb

rate. This assumption, which is commonly used for commercial aircraft, results in a climb

that reduces the time spent in this phase. Based on this assumption, the maximum rate of

climb ROCmax is defined in Equation 113, where Z is defined in Equation 114 [13].

ROCmax =

√

WZ

3SρCD0

(

T

W

) 3
2

(

1− Z

6
− 3

2Z
(

L
D

)2

max

(

T
W

)2

)

(113)

Z = 1 +

√

1 +
3
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L
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W

)2 (114)

The corresponding speed VROCmax is defined in Equation 115.

VROCmax =

√

√

√

√

√
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 (115)

As shown by the previous equations, the optimal flight conditions depend on altitude and

weight. Hence, an iterative process is developed to calculate the corresponding fuel con-

sumption from the ground to the transition altitude. For that purpose, at each iteration,

Equation 116 is used to compute the fuel consumption during a single iteration ∆W , where

nJet is the number of jet engines, T the thrust delivered by a single jet engine at the given

flight conditions (altitude and speed), ∆t the duration of the iteration, and TSFC the jet
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engine thrust specific fuel consumption.

∆W = TSFC ×∆t× T × nJet (116)

6.5.3 Ascent with Rocket Engine

In order to calculate the ascent trajectory with the main propulsion type, the ESA is

used. This approach is based on the definition of the total energy per unit mass Es as a

state variable. Its objective is to compute the fuel required to go from one energy state to

another one.

6.5.3.1 Problem Formulation

The specific total energy Es is defined in Equation 117, where V is the velocity and h

the altitude. It sums the contributions of both the potential energy and the kinetic energy.

Es = g0h+
V 2

2
(117)

Based on this definition and the general equations of motion presented in Section 3.3.5,

the time rate of change of the total energy per unit mass Ės can be calculated using

Equation 118, where T is the thrust, D the drag, m the mass, and ǫ the thrust angle.

Ės = V
T cos ǫ−D

m
(118)

The fuel consumption is modeled by the time rate of change in the vehicle’s mass ṁ, as

defined in Equation 119, where Isp is the specific impulse of the propulsion system.

ṁ = − T

g0Isp
(119)

Combining Equations 118 and 119, the relative change in the vehicle mass is defined in

Equation 120.

dm

m
= − T

g0Isp (T cos ǫ−D)V
dE (120)

Based on this equation, the optimum ascent trajectory between two energy levels in terms

of fuel consumption can be found by minimizing the objective function F (M,h) defined in

Equation 121.

F (M,h) =
g0Isp (D − T cos ǫ)V

T
(121)
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Once the optimum point has been found for each energy level, the corresponding fuel con-

sumption can be determined using Equation 120.

In addition, multiple design constraints must be met in order to output a feasible solu-

tion. These constraints are described in the next section.

6.5.3.2 Design Constraints

The theoretical optimum fuel-to-climb trajectory can be determined using the aforemen-

tioned problem formulation. However, some constraints must be set on the flight trajectory

to account for the structural and thermal limitations of the vehicle, as well as the physical

limitations of the passengers. According to Clervoy et al. [214, 252], three major con-

straints must be considered for suborbital vehicles: maximum dynamic pressure, maximum

load factor, and maximum temperature.

Maximum dynamic pressure: For high-speed flights, the kinetic energy of the fluid

particles intercepting the vehicle is extremely high. These particles create important efforts

that are applied to the structure and are proportional to the dynamic pressure. As such, the

structural design of the vehicle is mainly driven by the dynamic pressure. The latter must

thus be limited in order to ensure the structural integrity of the vehicle. For suborbital

vehicles’ technologies, the typical maximum admissible dynamic pressure is 50 kPa [214,

252]. This limitation is described in Equation 122, where qmax is the maximum admissible

dynamic pressure and ρ the density.

q =
1

2
ρV 2 ≤ qmax (122)

Maximum load factor: Since suborbital vehicles aim at carrying passengers, there is

a need to limit the maximum load factor. Indeed, the load factor directly affects human

bodies, as discussed in Section 1.3.1.1. Two different types of load factor exist: longitudinal

and vertical. However, for suborbital flight, only the longitudinal load factor must be

considered. Indeed, both the ascent and descent phases occur at high flight path angle: close

to 90◦. As a consequence, all accelerations and decelerations are in a direction parallel to

the vehicle longitudinal axis. The mathematical formulation of this constraint is presented
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in Equation 123, where T is the thrust, ǫ the thrust angle, D the drag, m the vehicle’s mass,

γ the flight path angle, and nmax the maximum admissible load factor.

n =
T cos ǫ−D

mg
− sin γ ≤ nmax (123)

The value of this maximum admissible load factor has been modeled in Section 4.2.

Maximum temperature: Thermal constraints that must be taken into account during

a suborbital flight are directly related to the Mach number and the air temperature. While

most of the thermal energy is dissipated thanks to the shock generated in front of the vehicle

at supersonic speeds, there is still a need for ensuring that the wall temperature does not

exceed its maximum admissible temperature. When coupled with a TPS, typical materials

used for suborbital vehicles can handle temperatures up to Tmax = 1, 000 K [252]. The

constraint for the maximum temperature is described in Equation 124, where T∞ is the

temperature of the incoming air, M the Mach number, and Tmax the maximum admissible

temperature.

T = T∞ + 0.2T∞M2 ≤ Tmax (124)

6.5.3.3 Assumptions

In order to reduce the computational time, a major assumption suggested by Bryson

et al. [61] is to neglect the angle of attack in the optimization process. Indeed, for rocket-

powered phases, this angle is usually very close to 0 in order to limit the drag, since the

trajectory is exclusively controlled by the thrust direction.

6.5.3.4 Development and Validation

Using the aforementioned approach, the trajectory is calculated by solving a series of

optimization problems. The trajectory is decomposed into n steps in the energy space

starting at Es(Mi, hi) and ending at Es(Mf , hf ), where hi and Mi are the initial altitude

and Mach number, respectively, and hf and Mf are the final altitude and Mach number,

respectively. For each step k, the optimization problem to be solved is presented below,
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where Equation 125a is the objective function and Equation 125b the constraints.

min
M,h

g0Isp (D − T cos ǫ)V

T
(125a)















































T∞ + 0.2T∞M2 ≤ Tmax

T cos ǫ−D
mg − sin γ ≤ nmax

1
2ρV

2 ≤ qmax

V 2

2 g0h = Es(k)

(125b)

The architecture of the trajectory module is presented in Figure 76.

Trajectory module

Optimization

p Constraints p Aerodynamic modelPropulsion model

k = 1..n

Figure 76: Architecture of the trajectory module

The main function drives the optimization loop across the successive steps in the energy

space. For each step, the trajectory module calls an optimization function that minimizes

the previously described objective function, while also ensuring that the constraints are

met. Since the vehicle’s characteristics depend on the flight conditions, a simplified version

of both the aerodynamic and propulsion modules must be called. The details about the

implementation are presented in Appendix D.2.5.

In order to validate the implemented model, the module is used to compute the perfor-

mance of a supersonic aircraft that has already been modeled by Bryson et al. [61]. The

obtained trajectory, presented in Figure 77, is similar to the one calculated in the original

research, shown in Figure 78.

The discontinuities at Mach 0.8 and 1.2 are due to approximations in the piecewise

aerodynamic model of the vehicle. The behavior and the values of the key points in the

trajectory are very similar to the ones provided by Bryson [61].
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Figure 77: Calculated optimum fuel-to-climb trajectory of the test aircraft

Figure 78: Theoretical optimum fuel-to-climb trajectory of the test aircraft [61]

6.5.4 Application to Suborbital Vehicles

The aforementioned approach has been implemented and tested for the SpaceShipTwo,

which is launched from a carrier aircraft at an altitude of about 14 km. The optimum

fuel-to-climb trajectory is presented in Figure 79.

The behavior of the trajectory that minimizes the fuel consumption is very similar to
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the ones of supersonic fighter aircraft [13]. Indeed, after performing an initial accelerated

climb, the vehicle descends around Mach 1 in order to rapidly gain speed. This reduces the

time spent in the transonic regime, where the drag increase can be very high.
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Figure 79: Optimum fuel-to-climb trajectory of the SpaceShipTwo

Sections 6.2 to 6.5 brought together the required pieces to assess the flying performance

of the vehicle. However, the design and engineering of a new product also require economic

considerations. Hence, the following section discusses the different approaches used to

estimate the various life-cycle cost components.

6.6 Life-Cycle Cost Estimation

This section aims at developing an environment for calculating the life-cycle costs of

all possible suborbital vehicles. As discussed in Section 3.3.6, the major sources of Cost

Estimating Relationships (CERs) are Suborb-TransCost [176], studies from Morrison et

al. [182, 185], and from Nieroski et al. [320]. However, a new approach has to be defined

to estimate the life-cycle costs of hybrid rocket engines. This section starts with general

economic considerations that must be taken into account when developing a cost estimation

model. Then, the various cost categories considered in this study are described along with

the relationships between each other. Finally, the estimation approaches used for each of
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these categories are described and validated against existing data.

6.6.1 General Economic Considerations

Because the various aforementioned economic models have been established at different

points in time, inflation must be considered for consistency purposes. Using data from the

U.S. Department of Labor, the cumulative Consumer Price Index (CPI) can be calculated

exactly from 1914 to 2014 [92]. A model needs to be developed for projections after 2015.

To establish this model, a linear function is used to approximate inflation. The coefficients

of this model have been evaluated by creating a linear surrogate model with data from 1975

to 2014. This linear model is displayed in Figure 80 and represented in Equation 126, where

ir(y) is the yearly average CPI relative to the baseline year 1914 and y the fiscal year.
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Figure 80: Yearly average relative CPI

The result of this regression is presented in Equation 126, where ir(y) is the yearly

average CPI relative to the baseline year 1914 and y the fiscal year.

ir(y) = 0.4627y − 907.99 (126)

The R2 related to this equation is 0.9964, which is deemed accurate. By using this equation,

it is assumed that the linear trend will remain constant in the future.
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6.6.2 Architecture of the Economic Module

Following the decomposition suggested by Goehlich [176], life-cycle costs are divided

into three main categories: development costs, manufacturing costs, and operating costs.

The components of each of these categories are described in this section.

6.6.2.1 Development Cost

The development cost is a non-recurring cost that includes testing, fabrication rigs, and

tools. For this research, its estimation is decomposed into two sub-categories: airframe

and rocket engines. It is assumed that jet engines have already been developed for other

applications so no development cost is associated with them.

6.6.2.2 Manufacturing Cost

The manufacturing cost is a recurring cost that includes prototype manufacturing and

production costs. The manufacturing cost is decomposed into three sub-categories: air-

frame, rocket engines, and jet engines. The manufacturing cost of an item tends to decrease

as the number of items produced increases. This effect called the “learning curve effect”

has two roots. First, the production setup costs are distributed over more units. Con-

sequently, its contribution to the unit cost is amortized. Then, there is a cost reduction

due to improvements in production methods and better management. The learning curve

is described by a percentage of learning LC, which usually varies between 0.85 and 0.95.

Based on this factor, the manufacturing cost of the N th unit CM is defined in Equation 127,

in which C1 corresponds to the first unit cost. In this research, the percentage of learning

is fixed and equal to 0.9.

CM = C1.N
lnLC
ln 2 (127)

6.6.2.3 Operating Costs

Operating costs are recurring costs that can be divided into several subcategories, as

described below:

• DOCs: costs that are directly related to launch operations.
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– Variable DOCs: costs that are dependent on the vehicle’s utilization.

∗ Pre-launch operating cost: includes ground transportation, vehicle assembly,

checkout, fueling, and launch preparations.

∗ Launch operating cost: includes the communication system as well as the

personnel and software efforts of the mission control center.

∗ Propellant cost: includes propellants for all engines used by the vehicle.

∗ Launch site cost: includes launch site administration, facilities maintenance,

range stations, and safety provisions.

∗ Vehicle insurance cost: considers the abort rate (launches that require a

re-launch that is not paid by the customer) and the vehicle loss rate.

∗ Vehicle amortization cost: used to spread out the capital expenses over the

entire life of a system.

∗ Transportation cost: includes emergency landing sites and ferry flights.

∗ Maintenance cost: efforts needed to keep the vehicle at the same status as a

newly built system.

– Fixed DOCs: costs that are not dependent on the vehicle’s utilization.

∗ Development amortization cost: linear distribution of the amortization cost

over all vehicles and all launches.

∗ Financing cost: originates from a loan at the beginning of the operation

phase.

∗ Product improvement cost: due to reliability, maintenance, and security

improvements.

∗ Disposal cost: costs of scrapping vehicles and ground facilities and dismissing

employees.

• IOCs: costs that are not directly related to launch operations and include marketing,

customer relations, system management, spares storage, and pilot training.

The following section describes the architecture of the economic module and how the

aforementioned costs are integrated into this module.
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6.6.3 Architecture

The only cost category that can be calculated without inputting any other cost infor-

mation is the manufacturing cost. Based on the manufacturing cost outputs and some of

the design variables, the development cost can be determined and used to calculate the

operating costs. In addition, since the insurance cost depends on the Total Operating

Cost (TOC), its contribution is added after all other components. This helps avoid a com-

putational loop and consequently speed up the overall optimization process. The general

architecture is displayed in Figure 81, with the corresponding Matlab code being provided

in Appendix D.2.3.

Design variables

Manufacturing cost

Development cost

Operating cost
without insurance

Insurance cost

Total operating cost

Total cost

Figure 81: Architecture of the economic module

Based on the aforementioned architecture of the cost module, the following sections

discuss the development of the various cost models.
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6.6.4 Manufacturing Cost

As discussed in Section 3.3.6, Goehlich’s CERs can be used to evaluate all relevant

manufacturing costs except the ones related to the propulsion systems [176]. Hence, this

section is organized around the following subsystems: airframe, rocket engines, and jet

engines.

6.6.4.1 Airframe

Goehlich’s model has been specifically developed for suborbital vehicles and can be used

for single stage, first and second stage ballistic or winged vehicles [176]. The CERs rely on

a series of assessment factors. In general, the lower the value, the lower the expenditure.

For this research, the values of these factors remain constant and correspond to average

values, as suggested by Goehlich [176]. The list of the different factors with the selected

values and all the CERs issued from Suborb-TransCost are presented in Appendix B.5, from

Equation 268 to Equation 284 [176].

6.6.4.2 Rocket Engine

Solid rocket engine cost

Graver et al. [182] developed CERs for the manufacturing cost of solid rocket engines

based on the cumulative average cost at total production quantity CAC(Q). The first unit

cost of the rocket engine C1,S is then determined using Equation 128, where LC is the

learning curve factor and Q the total production quantity.

C1,S =
CAC(Q)

Q
lnLC
ln 2

(128)

Different CERs based on either the Total Impulse (TI), the engine mass or the nozzle mass

were developed. An analysis conducted by Graver [182] shows that the CER relying on TI

is the most suitable because of its accuracy and its validity in the entire design space. The

corresponding relationship is presented in Equation 129 [182]. In this equation, D1 and D2

are two constants that are material-dependent. For the purpose of this research, D1 and D2

are set to 0 (assuming neither kevlar nor titanium is used). NN corresponds to the number
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of nozzles and Q the total produced quantity.

CAC(Q) = 77.595Q−0.3597TI0.5081N0.6116
N 1.4433D11.2939D2 (129)

Liquid rocket engine cost

Friedland et al. [320] have developed CERs for calculating the first unit cost of liquid

rocket engines. While different models are provided, the most accurate and the most stable

one relies on three input variables: the engine dry weight Wliq, its vacuum thrust TR, and

its mass flow rate ṁ. The corresponding CER (Equation 130) was developed around a

database of around 20 engines. The correlation coefficient is R2 = 0.89 and the standard

error of the logarithm is σ = 0.244.

C1,L = 374W 1.718
liq T−0.043

R ṁ−0.827 (130)

Hybrid rocket engine cost

Since no CERs exist for hybrid engines, a more physics-based approach must be imple-

mented. Hybrid engines can be broken down into 4 main parts: a typical solid engine, a

pressurization tank, an oxidizer tank, and a feed system. As such, the first unit cost of a

hybrid engine C1,H can be calculated using Equation 131, where C ′
1,S is the cost of the solid

sub-engine, C1,tkP the cost of the pressurization tank, C1,tkO the cost of the oxidizer tank,

and C1,fs the cost of the feed system. The models used for each of these components are

presented below:

C1,H = C ′
1,S + C1,tkP + C1,tkO + C1,fs (131)

• Solid sub-engine: Graver and Morrison [182] provide three different CERs for solid

engines based on the total impulse, the solid engine weight, and the nozzle weight.

According to Zandbergen [494], the weight of a solid engine can be directly linked to

its propellant weight, which can be calculated with the overall propellant weight and

the optimum oxidizer-to-fuel ratio known from the performance evaluation module

discussed in Section 6.3. The first unit cost is then determined using Equation 132,
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where Wsol is the solid engine weight including the propellant.

CAC(Q) = 22.045Q−0.3387W 0.5126
sol N0.6167

N 1.6680D11.3867D2 (132)

• Tanks: Brown et al. [56] from NASA provide CERs for both recurring Ct,r and non-

recurring Ct,nr manufacturing costs of propellant tanks that include material, tool

design labor, tool material, tool manufacturing labor, production labor, manufactur-

ing management, and quality control labor. As such, the first unit cost of each tank

C1,tk is calculated using the sum of the recurring and non-recurring costs. CERs are

developed around the area of the tank St defined in Equation 133, where Rt is defined

as the radius of the tank and Lt its length.

St = 2πRtLt + 4πR2
t (133)

Thus, the recurring cost Ct,r is defined by Ct,r = 328 St, while the non-recurring cost

Ct,nr is defined by Ct,nr = 2, 660 St.

• Feed system: Meisl [291] provides a manufacturing cost breakdown for reusable liquid

engines. The propellant feed system represents 11% of the total liquid engine cost. As

such, the feed system cost can be evaluated based on the cost of the liquid sub-engine

C ′
1,L as a function of the engine weight Wliq using the CER developed by Friedland et

al. [320]. Wliq can be determined using the process described in Section 6.3.1.4. The

final first unit cost estimation equation for the feed system is provided in Equation 134.

C1,fs = 0.11C ′
1,L = 398.2W 0.657

liq (134)

6.6.4.3 Jet Engine Cost

Suborb-TransCost suggests a CER based on only one design variable to evaluate jet

engine costs: the engine weight. Hence, a better model is needed to be able to perform

trade-off analyses. Younoussi et al. [489] provide a model based on five variables including

the learning curve factor. It is also assumed that the engine is not developed especially for

suborbital vehicles. They provide Equation 135 to evaluate the engine manufacturing cost

247



CM,J , where T4 is the turbine inlet temperature, LC the learning curve factor, ab a binary

variable (1 if the engine is an afterburning engine and 0 if it is not), and Wjet the engine

weight.

lnCM,J = −10.40− 8.55 lnLC + 0.482ab+ 1.162 lnT4 + 0.261Wjet (135)

6.6.5 Development Cost

The development cost for airframe is provided by Goehlich and follows CERs similar to

the ones for the manufacturing cost. They are also provided in Appendix B.5.

According to Morrison [185], the development cost of solid and liquid rocket engines

only depends on the number of prototypes Proto and the cumulative average cost of 150

engines CAC150, as expressed in Equation 136.

CD = 52.947CAC0.939
150 Proto0.618 (136)

CAC150 can be calculated using the first unit cost determined in the previous section and

the learning curve effect, as presented in Equation 127. The previous section also showed

that the manufacturing cost of hybrid engines can be calculated using existing relationships

developed for solid and liquid engines. As a result, it is assumed that Equation 136 is also

valid for hybrid engines.

6.6.6 Operating Costs

The operating costs related to the airframe and to the rocket engine maintenance are

provided by Goehlich. The CERs are presented in Appendix B.5. The cost of the various

propellants is provided by the Defense Logistics Agency [111] and Killian et al. [234] in 2015

U.S. $ per ton: O2 (1,761), H2 (30,764), RP1 (21,755), N2O4 (226,000), MMH (185,120),

Aerozine50 (185,120), N2O (2,773), and solid (1,110).

The jet engine maintenance cost can be estimated based on the study performed by

Liebeck et al. [257]. In their study, the authors divide the engine maintenance cost into

three different categories: labor, material, and applied maintenance burden. Equation 137

provides the final CER for estimating total maintenance cost per trip CM,jet, where Tj is
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the available thrust at sea level, tt the trip time in hours, and nj the number of jet engines.

CM,jet =

(

75

(

0.645 +
0.05Tj

104

)(

0.566 +
0.434

tt

)

+

(

25 +
0.05Tj

104

)(

0.62 +
0.38

tt

))

tt.nJ

(137)

The jet engine fuel cost is calculated based on the jet fuel consumption during the trip and

its cost. According to the U.S. Energy Information Administration, the average jet fuel

price over the next 10 years will be $24/million Btu or around $3 per gallon [95].

The flight crew cost can be estimated using the Association of European Airlines (AEA)’s

approach, which consists in allocating $245 (1989 U.S.$) per flight crew member and per

block hour [11].

6.6.7 Validation of the Economic Module

Validating the life-cycle cost estimation model is a challenging task, due to the fact that

economic data for aerospace and defense systems are often proprietary and thus very hard

to get access to.

6.6.7.1 Airframe Cost

Since there is no active suborbital vehicle, each cost component must be checked indi-

vidually with different known systems and scenarios.

Table 32: Validation of the airframe cost model [176]

Cost
components

Variables
Results
(M$)

Devia-
tions

CD,B (BETA) M0=450Mg 10,342 -10%

CD,W (Concorde) MW=65Mg, vw=2.2 11,489 +9%

CV,W (X-15) MW=7Mg 67 +7%

Cpl (STS) M0=2,000Mg, L=5, VTO 157/launch +15%

Cpl (Space
Shuttle Orbiter)

L=12, Tm=240h, nCrew=7 8.57/launch +17%

Cmaint (Space
Shuttle Orbiter)

CV,W=$4.26×109,
CV,R=$3.73×108

17.6/launch 0%
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Hence, the model has been checked using a sample of six data points provided by Koelle

as described in Table 32 with a reference year equal to 2000 [176]. It provides an accuracy

of about ±17%, which is highly accurate, especially for cost estimation. This accuracy is

similar to the one obtained with the original Transcost model for spacecraft.

6.6.7.2 Rocket Engine Cost

Only data for ten engines have been found in the literature. They represent five de-

velopment costs and seven manufacturing costs (four solid engines and six liquid engines).

Tables 33 and 34 provide the input parameters used for the validation of the rocket engine

cost estimation modules. The year mentioned corresponds to the year at which the cost has

been evaluated.

Table 33: Input parameters for the validation of the solid engine cost estimation

Engine
Propel-

lant mass
(lb)

Isp
(s)

Number
of

nozzles

Number
of proto-
types

Quantity Year

Castor 120
[131]

108,097 229 1 - 18 1997

Orion 50 [133] 6,600 292 1 - 52 1999

Orion 50S
[134]

26,782 294 1 - 24 1999

GEM 40 [132] 25,801 274 1 - 1,631 1999

Based on this comparison, a mean relative error of 19% was found. This is better

than the average error claimed by TransCost [240] and other traditional cost estimation

programs.

Even though no cost information has been found for hybrid engines, the model is as-

sumed to be validated as it originates from a process that follows a rigorous approach

validated step by step. In addition, Experiment 3.2 is performed. The proposed methodol-

ogy is used to evaluate the life-cycle costs of each type of rocket propellant. For validation

purposes, the methodology is used to calculate the life-cycle cost required for the develop-

ment, production, and operations of a single rocket engine that performs 100 flights. It is

required that the engine fits into a fuselage with a two-meter diameter, while providing a
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Table 34: Input parameters for the validation of the liquid engine cost estimation

Engine
Weight
(lb)

Isp
(s)

Thrust
(lbf)

Number
of proto-
types

Manufac-
turing cost

(Year)

RDT&E
cost

(Year)

J-2 [185] 3,942 421 232,250 38
$3.7 M
(1989)

$168 M
(1963)

RL10
[185]

298 465 14,994 -
$7.0 M
(1989)

-

Agena B
[185]

1,911 285 15,999 -
$8.5 M
(1989)

-

LE-7 [493] 3,900 446 242,000 37 -
$781 M
(1991)

LE-5 [493] 540 450 23,155 37 -
$108 M
(1986)

F-1
[185, 202]

18,498 304 1,516,898 56
$9.3 M
(1989)

$450 M
(1966)

H-1
[202, 237]

2,100 289 205,000 10 -
$17.7 M
(1962)

1,000-kN thrust during two minutes. In order to identify trends, a DoE of 1,000 points is

generated on both the chamber pressure and the nozzle expansion ratio following a Latin

Hypercube model. The distribution of costs are grouped by type of rocket engine and

presented in Table 35.

Table 35: Validation of the hybrid engine cost estimation model

Propellant
type

Mean (U.S. $

million)
Standard deviation
(U.S. $ million)

Solid 795 0.22

Liquid 31,280 16,450.21

Hybrid 1,173 134.62

As shown in Table 35, hybrid engines are more expensive than solid engines but less

expensive than liquid engines. This validates Hypothesis 3.2:

VALIDATION HYPOTHESIS 3.2: IF a hybrid rocket engine is physically

decomposed into a liquid engine without its nozzle and a conventional solid

engine THEN its life-cycle costs can be predicted using existing models de-

veloped for liquid and solid engines.
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6.6.7.3 Jet Engine Cost

The application of the CER presented in Equation 135 for estimating the manufacturing

cost of 24 engines provides a R2 of 0.97. In addition, the residual vs. predicted plot

is provided in Figure 82 and shows a good correlation, without strong patterns or large

discrepancies in the distribution [489].

Figure 82: Residual vs. calculated production cost [489]

Sections 6.2 to 6.6 have discussed the various modeling techniques used to evaluate

both the flying and the economic performance of suborbital vehicles. The following section

provides the approach for risk and safety analysis used in this research.

6.7 Safety Analysis

As discussed in Section 3.3.7, comparing and selecting architectures cannot be ac-

complished without safety considerations. Safety is defined by the United States Air

Force (USAF) as the “freedom from those conditions which can cause injury or death

to personnel, damage to or loss of equipment or property” [8]. Hence, the safety level of a

vehicle is directly related to its risk level, which needs to be reduced in order to improve

the vehicle’s safety. A modified FTA, which is a top-down or deductive approach to reli-

ability modeling, is used to evaluate the risk level. It can be calculated using the general

formulation presented in Equation 138, which includes both the failure occurrence and the
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failure severity. Based on this definition, the smaller the risk value, the safer the vehicle.

Risk = Occurrence× Severity (138)

Moreover, for this research, the FTA is decomposed into three levels:

• Top level: the vehicle architecture.

• Medium level: the different vehicle features.

• Basis level: the different options chosen to fulfill each feature.

Suborbital vehicles can be decomposed into five main features impacting the safety, which

represent the medium level: rocket propulsion, jet propulsion, launch method, landing

method, and number of pilots. Each of these features has multiple options, which populate

the basis level. For example, the rocket propulsion can be provided by solid, liquid or hybrid

engines.

Based on this general approach to risk calculation, the architecture risk level is defined

in Equation 139, where αi represents the failure rate of the ith feature and γi the failure

severity of the ith feature.

Risk level =
∑

i

(αi × γi) (139)

The coefficient α is defined as the probability that a given feature fails compared to

the others. The coefficients αi are determined historically by identifying the source of all

previous failures or accidents in both the space and aeronautic fields. In addition, it is

assumed that the feature failure rate does not depend on the selected option. This is a

simplified assumption deemed acceptable for calculations at the conceptual design phase

since no quantified information is available. The two coefficients α and γ are consequently

considered to be independent. The results of this analysis are presented in Table 36.

In order to evaluate the failure severity of each feature, the coefficient γ is introduced

based on the technical characteristic of each option. Its value varies between 0 to 10, where

0 is the safest and 10 the riskiest. In order to account for both discrete and continuous
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variables of a given feature, the value of γ is decomposed into two components: a baseline

value β that depends on discrete parameters and a variable term that depends on continu-

ous parameters.

Table 36: Failure occurrence of each feature [43, 76, 376]

Vehicle architecture
features

α

Rocket propulsion 75.95%

Jet propulsion 1.27%

Launch method 7.38%

Landing method 10.44%

Number of pilots 4.96%

For each feature, the calculation of γ is presented in Equation 140, where βk is the

baseline value of the failure severity of the kth feature, xj the jth variable parameter that

impacts the failure severity and ηj the intensity of its impact in percentage.

γ = βk



1 +
∑

j

ηjxj



 (140)

The following sections aim at determining the values of γ for all the features described in

Table 36.

6.7.1 Rocket Propulsion

6.7.1.1 Liquid Rocket Propulsion Systems

Liquid Rocket Propulsion Systems (LRPSs) are the most widely used type of rocket

propulsion. In this research, only bi-propellants LRPSs are considered and are decomposed

into two categories: tank pressure-fed and turbopump pressure-fed LRPSs [211, 215, 216,

305, 376].

For the safety assessment of bi-propellant LRPSs, no distinction is made between the

two categories. Indeed, while turbopump pressure-fed LRPSs are more complex due to a

higher number of parts, tank pressured-fed LRPSs have highly pressurized propellant tanks.
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While many sources of risk exist for LRPSs, the main one is related to pressure propellant

leaks. Indeed, leakage of propellant during the flight can lead to dramatic deterioration in

the vehicle performance and consequently compromise both the vehicle and the mission’s

integrity. On the ground, propellant leakages can also result in important damages to the

launch pad and hurt the maintenance team since many of the storable chemical propellants

are toxic and/or carcinogenic. In addition, contrary to rockets, suborbital vehicles have to

land with their LRPSs. Consequently, LRPSs need to be able to withstand the constraints

of the landing phases and have a planned post-life depressurization. Moreover, during the

microgravity phase, LRPSs residual high pressure can leak into a low pressure subsystem

that was not designed to hold over-pressure. As a result, low-pressure subsystems can

explode along with the residual propellants.

Operating conditions for LRPSs are also very stringent. A failure of the cooling and

heating systems can have dramatic consequences. Indeed, the propellant can freeze or react

with hot surfaces causing damages to the vehicle and compromising the mission.

The environment in which LRPSs operate can also cause damages. Indeed, LRPSs

are exposed to aggressive environmental conditions such as humidity, which could lead to

destructive effects. Most fluid propulsion system components are vulnerable to internal

leakage caused by particulate contamination. Hence, LRPSs have to be manufactured,

assembled, tested, and stored in a dedicated clean room.

Finally, the risk of unwanted ignition is considered to be low. Indeed, the probability

that both fuel and oxidizer valves are involuntarily opened at the same time is extremely

low and a redundancy on vital systems is present for each valve.

According to the previous studies, LRPSs are assumed to have a baseline failure severity

level of 5 out of 10. The risk level of LRPSs also depends on the propellant used. In

this research, three liquid propellant mixtures are considered: LOx/LH2, LOx/RP-1, and

LOx/Hypergolic propellant. RP-1 is a highly refined kerosene, which produces a lower

specific impulse than LH2 but is safer. LH2 is very cryogenic and has a very low density,

so LRPSs using LOx/LH2 and LOx/RP-1 mixtures have a baseline failure severity level of

5 and 4.5, respectively. Hypergolic propellants are used by simpler system because they do
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not need ignition. However, the ratio between hypergolic propellants and LOx inside the

combustion chamber has to be extremely precise. Indeed, a bad mixing directly results in

a fatal failure for the vehicle. For that reason, LRPSs using LOx/Hypergolic propellants

have a baseline failure severity level of 5.5 out of 10.

6.7.1.2 Solid Rocket Motors

Hazards due to Solid Rocket Motors (SRMs) are widely known mainly because to the

tragic fate of the Space Shuttle Challenger back in 1986 [310]. Because SRMs use solid

propellant grains composed of both the oxidizer and the fuel, the risk of unwanted ignition

is high. Combined with the inability to stop the combustion process, a failure in SRMs

ultimately results in fatal failures where the integrity of both the vehicle and the crew are

compromised [216, 305].

Electrostatic discharge, radio frequency, electromagnetic field, and lightning can also

result in unwanted ignition. To prevent electrostatic discharge, every person, equipment,

storage, and transport around SRMs have to be grounded. Every wireless equipment or cell

phone used by the team near SRMs has to be turned off or shielded to prevent inadvertent

firing caused by radio waves and electromagnetic fields. Lightning protection on SRM

storage buildings or launch pads is also necessary to avoid ignition risks.

Moreover, propellant grain cracks or high internal deformation stresses can lead to ex-

plosion. Indeed, pieces of propellant can break due to inappropriate shocks, causing nozzle

blockage, increased burning surface area, and debonding between the propellant and the

liner. The solid propellant system should be embedded into a pressurized container during

transport.

Temperature is also a critical parameter impacting the safety of SRMs. Indeed, it

changes its modulus of elasticity and the propellant becomes extremely breakable. A shock

or an excessive load at low temperatures can have a damaging effect on the integrity of

the propellant grain. Debonds can result in uncontrolled burning or local overheating.

Low temperatures weaken O-rings and seals as it happened during the Challenger accident.

These under-cooling risks are higher than the overheating ones. Storage facilities of solid
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propellant systems must be controlled in terms of temperature and humidity.

Based on the previous analysis, SRMs are considered to be the most dangerous type of

rocket engines and are assumed to have a baseline failure severity level of 8 out of 10.

6.7.1.3 Hybrid Rocket Propulsion Systems

Hybrid Rocket Propulsion Systems (HRPSs) use propellants in two different states: a

liquid oxidizer and a solid fuel. While the opposite configuration might exist, only the first

one is considered. In terms of safety, the risks related to HRPSs are not the sum of the

ones from SRMs and LRPSs [216, 376].

According to the research performed by the U.S. Department of Transportation on

hazard analysis of commercial space transportation [323], HRPSs’ inadvertent ignition is

nearly impossible due to the separation of the oxidizer and the fuel. Hence, there is no

explosion or detonation risk during HRPSs manufacturing, storage, and operation.

The risk level of HRPSs is similar to the one of jet engines. There is almost zero

probability of catastrophic failure. Nevertheless, in some cases, thrust may not be produced.

However, HRPSs can be shut down and restarted. Therefore, in case of failure, HRPSs would

be shut down and an emergency landing would be performed.

According to the previous observations, HRPSs are assumed to have a baseline failure

severity level of 3 out of 10. In addition, the risk level of HRPSs also depends on the propel-

lant used. In this research, four propellant mixtures are considered for HRPSs: LOx/HTPB,

LOx/Paraffin, N2O/HTPB, and N2O/Paraffin. Using paraffin avoids the need for complex

HTPB cross-section, casting, and multi-point injector in order to increase both the relia-

bility and the performance of the engines. When N2O is used in HRPSs, the injection is

less stable and more complex to predict and control. Hence, N2O is considered to be riskier

than LOx. Based on these observations, HRPSs using LOx/HTPB and N2O/Paraffin mix-

tures have a baseline failure severity level of 3, while LOx/Paraffin and N2O/HTPB have a

baseline failure severity level of 2 and 4, respectively.
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6.7.1.4 Conclusion

Based on the previous analysis, the different options can be classified in terms of risk

level, as displayed in Table 37 [361, 410].

Table 37: Failure severity coefficients for rocket propulsion options

Rocket engine types Propellant mixtures used β

SRMs 8

LRPSs
LOx/LH2 5
LOx/RP-1 4.5

HRPSs

N2O/HTPB 4
N2O/Paraffin 3
LOx/HTPB 3
LOx/Paraffin 2

The rocket propulsion failure severity level also depends on the chamber pressure pc.

Indeed, the higher pc, the higher the failure severity. The calculation of γ is presented in

Equation 141, where Cpc is a coefficient proportional to pc that varies between -10% and

+10% around β.

γ = β + Cpc (141)

Figure 83 illustrates the behavior of the risk level of the different types of rocket engines.

A representative propellant mixture has been chosen for each type of propellant: LOx/LH2

for liquid engines and N2O/Paraffin for hybrid engines. The figure shows the impact of the

type of propellant, chamber pressure, and thrust on risk level.

Figure 83: Behavior of the risk level of rocket engines
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6.7.2 Jet Propulsion

The risk level of the overall jet propulsion system mainly depends on the type of jet

engine and the number of jet engines. These two criteria are discussed in the following

sections.

6.7.2.1 Type of Jet Engine

During missions, jet engines are exposed to multiple risks. One of the highest hazards

is the risk of ingestion of foreign objects such as birds, sand, stones, and ice. The lack of

containment of broken blading can result in uncontrollable fires, which prompt the engine

disintegration [292, 444].

The jet engine risk level is also related to airflow disruption with flameouts, which can

result in severe power losses and minor blade damages.

The use of afterburners consists in injecting kerosene into the outlet nozzle, which im-

mediately inflames with the turbine hot gas. While they provide an additional thrust to

the vehicle, the fuel consumption highly increases and the combustion efficiency drasti-

cally decreases. Afterburners can be implemented on both turbojet and turbofan engines.

The additional combustion also highly increases the outlet nozzle temperature, creating

additional structural and mechanical constraints that cannot be sustained too long by the

nozzle. Hence, afterburners can only be turned on during a small period of time. The use

of afterburners consequently increases the risk of failure due to the extra combustion in the

outlet nozzle.

6.7.2.2 Number of Jet Engines

The higher the number of jet engines, the lower the risk of crash. Indeed, if one of the

jet engines fails, pilots can shut it down and perform a safe landing using the other engine(s)

on a diversion runway.

Moreover, having a vehicle without jet engine highly increases the risk of catastrophic

failure for two main reasons. First, the vehicle is only powered by rocket engines, which

have a higher risk of failure than jet engines. Then, if there is a loss of power from the
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rocket engine, the vehicle cannot use its jet engines to perform a safe emergency landing.

6.7.2.3 Conclusion

Based on the aforementioned observations, turbojets and turbofans are assumed to have

the same baseline failure severity level: 2. Adding afterburners increases the risk, such that

augmented turbojets and augmented turbofans have a baseline failure severity level of 5.

Finally, having no jet engine is the most dangerous option and has a baseline failure severity

level of 9. Table 38 summarizes these values.

Table 38: Failure severity coefficient for jet engines

Type of jet engine β

Turbojet
2

Turbofan

Augmented turbojet
5

Augmented turbofan

No jet engine 9

The jet engine safety level also depends on the number of jet engines, as explained in

the risk analysis. Hence, the calculation of γ presented in Equation 142 depends on Cn,jet,

which is a coefficient proportional to the number of jet engines and varies between -10%

and +10% around β.

γ = β + Cn,jet (142)

6.7.3 Launch Methods

Three take-off modes exist: vertical take-off, horizontal take-off, and air launched. Look-

ing back at previous space missions, manned space flights have always been launched ver-

tically. However, the presented concepts for suborbital vehicles have been defined around

the three different types of launch methods. The risk level of each of these launch methods

is discussed in the following sections [76, 376].
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6.7.3.1 Vertical Take-Off

The vertical take-off mode is the most widely used and most known launching technique

for spaceflights. The vehicle is launched from a small-size dedicated launch pad. Vertical

take-off vehicles have a simple design and the longitudinal control of the center of mass

is not necessary. The launch procedure that requires the vehicle to stand on its launch

pad represents the main hazard of the vertical launch method. Indeed, during this time,

the vehicle has to face environmental constraints such as rain, snow, temperature, wind,

lightning, etc. The refueling operation can also be dangerous for the flight crew, the vehicle,

and the ground maintenance teams. Finally, the engine ignition and the vehicle release from

the pad also represent a non-negligible risk.

Based on these observations, the vertical take-off method appears to be relatively safe.

Hence, it is assumed that its baseline failure severity level is equal to 4 our of 10.

6.7.3.2 Horizontal Take-Off

Horizontal take-offs impose strong constraints to the vehicle architecture. To horizon-

tally take off from a runway, wings and landing gears are needed. Hence, this results in

a more complex architecture for the vehicle compared to vertical take-off or air launched

vehicles. In addition, fuselage and wings have to be designed stiff enough to withstand tur-

bulent air, supersonic flights, and the pull-up maneuver after take-off. For a given material,

these constraints increase the vehicle structural requirements and consequently its empty

mass. Moreover, to keep the vehicle controllable, it is necessary to maintain its center of

mass in a narrow longitudinal range. Two types of horizontal take-offs can be identified

based on the engines used to take off: jet engines or rocket engines. The take-off with jet

engines is the safest since it is used by millions of aircraft every year and is well known. In

addition, the rocket engine is only used at high altitudes, once jet engines are turned off,

and during a shorter period. However, rocket-powered take-offs are riskier since they result

in the generation of a huge amount of thrust at low altitude with a type of engines that is

not commonly used for aircraft.

As a consequence, rocket-powered horizontal take-offs appear to be more dangerous
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than vertical take-offs and are assumed to have a baseline failure severity level equal to 6.

Take-offs performed with jet engines are assumed to be the safest and a baseline failure

severity level of 2 is assumed.

The risk level also depends on the take-off velocity Vto. Hence, the higher the take-off

speed, the riskier the take-off. The calculation of γ is presented in Equation 143, where

CVto is a coefficient proportional to Vto that varies between -10% and +10% around β.

γ = β + CVto (143)

6.7.3.3 Air Launch

The air launch method consists in launching the vehicle from a dedicated spacecraft

carrier from a given altitude. Hence, the mass of propellant needed for the suborbital

vehicle can be reduced. However, the geometry is constrained by the carrier capacity. The

absence of ground reflection and the low air density decrease the engine vibrations that can

cause damages to the fuselage. Moreover, launching the vehicle in the air does not impose

any constraints or requirements on the launching site as long as the spacecraft carrier can

take off safely.

The vehicle and the aircraft can be considered as two different stages. As such, the most

dangerous phase of the mission is the vehicle separation followed by the free fall engine

ignition. The separation could create hazardous debris for the vehicle and the population

underneath, such as cable or explosive bolt coming from the jettisoning system. Government

and safety regulations may require that the vehicle be launched over empty spaces such as

ocean or uninhabited territories.

If the free fall rocket engine ignition fails, the propellant tank has to be rapidly drained

so that an emergency landing can be performed. Moreover, the free fall launch requires an

extremely precise control of the longitudinal center of mass. Fuel and oxidizer tanks have to

be divided into smaller ones with dedicated transfer systems. If the vehicle uses cryogenic

propellants and is carried outside the spacecraft carrier, the propellant may boil off due to

the sun radiation or convective heating from the air stream.

262



Based on the previous observations, air launch is considered as the most dangerous

method and has a baseline failure severity level of 8.

6.7.3.4 Conclusion

According to the previous analysis, the risk levels of the different options are summarized

in Table 39.

Table 39: Failure severity coefficient for launch methods

Launch methods β

Jet-powered horizontal take-off 2

Vertical take-off 4

Rocket-powered horizontal take-off 6

Air launch 8

6.7.4 Landing Methods

During a suborbital flight, landing is the most dangerous mission phase. Three landing

modes are considered in this research: vertical landing using parachute, horizontal gliding

landing, and conventional powered horizontal landing. Both orbital and suborbital manned

flights have already landed horizontally such as the American Space Shuttle and the ex-

perimental planes X-1 and X-15 [68]. In the early era of space flights, vertical landing was

also performed. Mercury, Gemini, and Apollo spacecraft landed in the water using three

parachutes to reduce the impact speed. In contrary, Russians preferred the ground landing

technique using a single parachute and a retrorocket to soften the landing [68].

6.7.4.1 Vertical Landing using Parachute

Vertical landing using parachute has often been used for the first spaceflights and has

the advantage of not requiring a long runway. However, the main challenge of the vertical

landing using parachutes is the attenuation of the touchdown impact for the crew. Indeed,

as the vehicle only has one vertical structural load path, parachutes are used to slow down

the descent velocity. The landing maneuver does not need to be performed by a highly

trained human pilot or by a complex automated landing system, as it only requires the
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parachutes to be opened at a specific altitude [376]. A parachute opening system has to

be extremely reliable since a failure directly results in a dramatic crash and the crew’s

death, as it happened during the first Soyuz mission on April 24th 1967 with the loss of

the cosmonaut Vladimir Komarov [29]. Multiple parachutes can be deployed to ensure

redundancy. The uncertainty of the landing point is relatively high so astronauts might

land in a hostile environment. Furthermore, the area has to be large and flat to prevent

any hazard of tilting back.

Water landing is a smooth method used by NASA. Because water dampens the impact,

the weight of the parachute system can be reduced. However, this landing method requires

an expensive and complex recovery process such as ships and helicopters. The vehicles

also have to be carefully disassembled and repaired after every flight due to the contact

with corrosive salty water. These constraints might become a critical problem for reusable

vehicles with a high flight frequency.

Another technique, mostly used by Russians, consists in firing retrorockets before touch-

down in order to reduce the descent velocity and the vehicle’s impact. To perform this

maneuver, the vehicle’s heat shield has to be jettisoned, creating dangerous pieces of debris.

Similar to parachutes, retrorockets have to be very reliable because in case of failure, the

descent rate would be too high and the vehicle would be destroyed. Finally, retrorockets

can also cause a ground fire.

Based on the previous discussion, the vertical landing method is considered as the safest

recovery system and has a baseline failure severity level of 3.

6.7.4.2 Conventional Horizontal Landing and Gliding

Conventional and gliding landings are the most precise way of landing as the vehicle

touchdown is performed on a dedicated runway at a precisely known location. It is the

softest landing compared to the other landing methods, with a touchdown vertical velocity

inferior to 1 m/s [345, 376]. However, the vehicle is more complex, leading to multiple safety

concerns. Wings, landing gears, and control surfaces are necessary to modify the trajectory

of the vehicle by controlling its pitch, roll, and yaw. In addition, having a highly qualified
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pilot and/or a complex automated landing system is mandatory. If the vehicle crashes, the

area impacted by the crash would be large compared to a vertical landing crash.

For the gliding method, the vehicle needs a high lift-to-drag ratio. The main risk

is caused by the absence of engine since the vehicle only has one chance to safely land.

Moreover, the trajectory correction range is smaller than for a conventional landing.

During a conventional landing, jet engines are turned on again to provide more con-

trollability to the vehicle with respect to its longitudinal flight path. This allows for the

landing to be aborted and a go-around maneuver performed. Jet engines present the main

source of risk as the propellant is stored in the tanks during the re-entry phase and can

explode. A jet engine failure ignition could also force the pilot to perform an emergency

gliding landing.

Based on the previous study, horizontal landings are definitively more dangerous due

to the complexity of the systems needed. Conventional horizontal landings have a baseline

failure severity level of 5 while gliding is considered as the most dangerous method, with a

baseline failure severity level of 9.

The risk level also depends on the landing velocity Vla. Indeed, the higher Vla, the higher

the risk level. The calculation of γ is presented in Equation 144, where CVla
is a coefficient

proportional to Vla that varies between -10% and +10% around β.

γ = β + CVla
(144)

6.7.4.3 Conclusion

Based on this discussion, the baseline failure severity level of the different landing meth-

ods are presented in Table 40.

Table 40: Failure severity coefficient for landing methods

Landing methods β

Vertical landing 3

Horizontal conventional landing 5

Horizontal gliding landing 9
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6.7.5 Pilots

Despite recent developments in complex automated pilot systems and the number of

automated mission phases, the presence of a pilot is considered to be safer. Indeed, during

an emergency situation, highly trained and qualified pilot(s) can identify, analyze, and

handle failures in order to perform a safe and emergency landing.

As the number of pilots in the cockpit increases, it becomes easier and faster to treat

failures since the individual workload is reduced. Nevertheless, this requires pilots to be

highly trained in order to avoid misunderstandings. Table 41 displays the failure severity

coefficient selected for each option.

Table 41: Failure severity coefficient for the number of pilots

Number of pilots β

No pilot 8

One pilot 5

Two pilots 2

6.7.6 Passengers

In case of failure, the number of passengers is directly related to the number of human

losses. Hence, the more passengers on board, the higher the severity of the failure. However,

because this does not represent a technical risk, it will not be taken into account in this

research.

6.7.7 Conclusion

Figure 84 displays the final FTA developed in this research. It includes the failure

occurrence rate of each feature and provides all alternatives that have been considered

when calculating the safety level of the vehicle. The proposed approach is implemented

into Matlab, as detailed in Appendix D.2.6.
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Vehicle

Type of
rocket engine

Type of
jet engine

Number
of pilots

Type of
glaunchg

Type of
landing

4.96% 1.27% 7.38% 10.44%75.95%

0

1

2

Augmented
turbojet

Augmented
turbofan

Turbojet

Turbofan

Vertical
take-off

Horizontal
take-off

Air launch

Vertical
landing

Conventional
landing

Horizontal
gliding

LiquidHybrid Solid

LOx/LH2

LOx/RP1

N2O4/MMH

LOx/HTPB

LOx/Paraffin

N2O/HTPB

N2O/Paraffin

Figure 84: Safety analysis
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6.8 Validation

The design framework developed in this chapter has to be validated in order to be

used for the overall optimization. This validation corresponds to Experiment 3. For that

purpose, results obtained from the design framework are compared to actual data from

existing vehicles. To fully validate the modeling and simulation environment, three vehicles

are selected that cover a large portion of the design space:

• SpaceShipTwo from Virgin Galactic

• The New Shepard from Blue Origin

• The Rocketplane XP from Rocketplane Global Inc.

These vehicles are representative of the entire design space as the technologies used

for these three vehicles cover most of the options identified in the morphological ma-

trix, as shown in Table 42. The options chosen for each concept are identified by colors:

SpaceShipTwo , New Shepard , and Rocketplane XP .
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Table 42: Morphological matrix cover by the three existing vehicles

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8

Type of
launch

Horizontal Vertical
Aircraft
launched

Balloon
launched

Type of
landing

Horizontal
powered

Gliding Rocket Parachute

Lift
generation

Delta Swept wing
Straight
wing

None

Longitudi-
nal

stability

Horizontal
stabilizer

Canards None

Lateral
stability

Vertical
stabilizer

Wing tip None

Type of
rocket
engine

Pressurized
liquid

Pump-fed
liquid

Solid Hybrid

Number of
jet engines

0 1 2 3 4

Type of jet
engines

Typical
turbojet

Augmented
turbojet

Typical
turbofan

Augmented
turbofan

None

Number of
pilots

0 1 2

Number of
passengers

1 2 3 4 5 6 7 8

Attitude
control

Cold gas Liquid

269



The validation process consists in inputting the geometric characteristics of the afore-

mentioned vehicles along with their mission profile in the proposed design framework and

comparing the results with actual data. The input data are displayed in Table 43.

The design framework outputs key parameters in terms of life-cycle costs and safety.

However, due to the lack of information available in those fields, the take-off gross weight is

used for the comparison, as it includes both the empty and fuel weights. The data used for

the comparison are mostly taken from the vehicles’ manufacturers databases [41, 362, 379].

The characteristics that have not been found are estimated using vehicles’ 3-view drawings

along with geometric and trigonometric considerations. For example, the length of both the

front and the back parts have been estimated using the length of the entire vehicle. The

comparison is based on relative errors on weight and length. The relative error on weight

ǫr,w is calculated using Equation 145, where Wto,a is actual take-off gross weight and Wto,c

the calculated take-off gross weight. The relative error on length ǫr,l is calculated using

Equation 146, where La is the actual length and Lc the calculated length. The results of

this comparison are presented in Tables 44 and 45.

ǫr,w =
|Wto,c −Wto,a|

Wto,a
(145)

ǫr,l =
|Lc − La|

La
(146)

For the three existing vehicles, the design framework provides very good results. Indeed,

the mean relative error is equal to 11.2% with a maximum relative error of 22%. This

accuracy is deemed acceptable for conceptual design level considerations. This validates

the design framework.

Even though no data have been found to validate both the life-cycle costs and the risk

level, the calculated values are analyzed to verify the consistency of the results. The latter

are presented in Table 46. The program cost is calculated assuming that the three vehicles

have been built and used once a month for 10 years.
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Table 43: Inputs for the three existing suborbital vehicles [41, 252, 362, 379, 461]

Input parameters
New

Shepard
Rocketplane

XP
Space-

ShipTwo

Maximum altitude (m) 132,000 104,000 100,000

Maximum load factor (g) 5.4 4 4

Space between two seats (m) 0.74 0.91 1.5

Number of passengers 4 5 6

Number of launches per year 12 12 12

Number of units built 3 3 3

Number of operating years 10 10 10

Wing No Yes Yes

Take-off mode Vertical Horizontal Air launch

Landing mode Vertical Gliding Gliding

Transition altitude (m) - 12,000 -

Number of pilots 2 1 2

Horizontal tail No Yes Yes

Vertical tail No Yes Yes

Jet engine No Yes No

Chamber pressure (MPa) 3 4 3.3

Nozzle expansion ratio 50 20 25

Engine diameter (m) 6.98 1.7 2

Type of propellant LOx/NH2 LOx/RP1 N2O/HTPB

Maximum thrust at sea level (N) 489,304 160,000 270,000

Number of jet engines - 2 -

Maximum thrust per engine (N) - 14,000 -

Bypass ratio - - -

Afterburner No Yes No

Turbine Inlet Temperature (K) - 1,250 -

Fuselage diameter (m) 6.98 1.7 2

Fuselage base diameter (m) 1 1 1

Back part length (m) 0.5 0.5 0.5

Front part length (m) 2.22 0.5 0.5

Wing surface area (m2) - 30 35.82

Wing thickness-to-chord ratio - 0.1 0.1

Sweep angle (rad) - 0.78 0.96

Wing aspect ratio - 6 1.88

Wing taper ratio - 0.13 0.13

Vertical tail sweep angle (rad) - 0.35 0.61

Vertical tail aspect ratio - 3 3

Horizontal tail sweep angle (rad) - 0.35 0.61

Horizontal tail aspect ratio - 3 5
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Table 44: Results of the weight validation of the design framework [41, 362, 379]

New
Shepard

Rocketplane
XP

SpaceShipTwo

Calculated mass (kg) 74,842 11,100 14,903

Actual mass (kg) 65,043 9,072 13,154

Relative error (%) 13 22 13

Table 45: Results of the length validation of the design framework [41, 362, 379]

New
Shepard

Rocketplane
XP

SpaceShipTwo

Calculated length (m) 24.2 13.27 17.7

Actual length (m) 21.1 13.41 18.3

Relative error (%) 14.7 1.0 3.3

Table 46: Estimated cost and risk level given by the design framework

New Shepard
Rocketplane

XP
SpaceShipTwo

Estimated program
cost per passenger

(Billions 2015 U.S. $)
25.5 1.91 0.92

Estimated risk level 462 458 394

Based on Table 46, the New Shepard appears to be the most expensive concept as it

starts using its main rocket propulsion system from the ground. Moreover, its rocket engine

needs to produce a very high thrust to move the new Shepard heavy structure, which results

in expensive refuelings. In addition, it only carries four passengers, compared to five for the

Rocketplane XP and six for the SpaceShipTwo, so the required take-off gross weight per

passenger is larger, and consequently less efficient. The most economically viable solution is

the SpaceShipTwo because it uses low-cost hybrid rocket engines and a carrier. In addition,

the SpaceShipTwo also appears as the safest concept because it uses hybrid rocket engines.

For comparison purposes, the risk level of the Space Shuttle has also been computed and

is equal to 1,773. As expected, the various proposed concepts are safer than the Space

Shuttle.
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This section provides all the pieces necessary to evaluate the criteria identified for Ex-

periment 3:

1. The calculated vehicles’ performance is consistent with the literature, as the mean

relative error on both weight and size is around 11%.

2. The execution time is acceptable, as it takes around 10 seconds to evaluate a single

concept.

3. The modeling and simulation environment outputs flying, economic, and safety per-

formance metrics as well as a complete geometric description of the vehicle. This

provides a complete multi-disciplinary picture of the vehicle.

4. The modeling and simulation environment is capable of evaluating all types of subor-

bital vehicles.

These observations lead to the validation of Hypothesis 3:

VALIDATION HYPOTHESIS 3: IF a sizing and synthesis environment based

on a modified Multi-Disciplinary Feasible (MDF) approach and using both

empirical relations and surrogate models is created THEN performance of

the various alternatives of suborbital vehicles can be evaluated for further

comparison and optimization.

6.9 Identification of Key Trends

This section aims at demonstrating the key capabilities of the proposed modeling and

simulation environment by making new observations and providing key results about subor-

bital vehicles. As described in Section 6.3, the propulsion module bridges an important gap

in the conceptual design of future chemical rocket engines. Hence, this module is used to

provide insights in the performance, weight, and safety evaluation. As the proposed design

framework is the first of its sort able to quantify the safety level of all suborbital vehicles,

it is used to provide trends and insights in this domain.
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6.9.1 Chemical Rocket Engine Design

One of the key contributions provided by the propulsion module is its ability to perform

quantitative trade-offs among the various chemical rocket engines in terms of performance,

empty weight, and safety. This section starts by providing important trends in the perfor-

mance estimation of the three types of chemical rocket engines. Then, trade-offs that must

be made between weight and performance are identified.

6.9.1.1 Performance of Chemical Rocket Engines

The use of surrogate models allows designers to identify new trends and perform both

sensitivity and trade-off analyses among all types of rocket engines. It allows for the exe-

cution time to be reduced by a factor of 105. This provides a great improvement when this

performance estimation module is embedded in a large and complex optimization process.

Figures 85 to 87 display the sensitivity of the performance parameters with respect to the

key design variables for each type of propellant. As expected, liquid engines generally have

better performance than solid and hybrid propellants. While the trends are similar for all

liquid and hybrid propellants, one major difference can be noticed for solid propellants: ǫ

has no impact on c∗ since O/F does not vary. Moreover, the chamber pressure pc mainly

drives c∗ and only has a small positive impact on Isp for all engine types. One should note

that the variation of O/F ∗ with ǫ is overestimated since a shifting equilibrium is assumed.

With a frozen equilibrium during the expansion in the nozzle, the real curve of the variation

of O/F ∗ with ǫ has the same shape but with smaller values of O/F ∗.
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Figure 85: Sensitivity analysis of the performance of solid engines (Propellant C)
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Figure 86: Sensitivity analysis of the performance of liquid engines (O2/RP1)
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Figure 87: Sensitivity analysis of the performance of hybrid engines (N2O/HTPB)

For solid propellant, the higher pc and ǫ, the better the performance but the heavier

and larger the engine. For liquid and hybrid engines, the trade-off is more complex. As ǫ

and pc increase, the vacuum specific impulse Ispv improves. However, c∗ decreases when ǫ

increases. Usually c∗ is independent of the nozzle conditions, but as O/F ∗ increases with

ǫ and c∗ decreases with O/F ∗, c∗ decreases with ǫ. However, the term ǫ × c∗ increases as

epsilon increases because c∗ does not decrease much with ǫ. Thus, the term ǫ× c∗ impacts

the variations of the Isp(pa) with the ambient pressure pa, or altitude via Eq. 147, where

pa is the atmospheric pressure.

Isp(pa) = Ispv −
ǫc∗pa
pcg0

(147)

Consequently, a larger ǫ results in a less important improvement of Isp(pa) with altitude

because of the increase of the second term in Eq. 147. Hence, there is a trade-off between

high vacuum specific impulse Ispv and smaller improvement of Isp(pa) with altitude driven
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by ǫ× c∗. In addition to these considerations, the impact of pc and ǫ on the engine weight

must also be considered, as discussed in the next section.

6.9.1.2 Trade-Offs Between Weight and Performance

Using the approach described in Section 6.3, trade-offs between performance, weight,

and length of rocket engines can be performed, as shown in Figure 88. In general, pc mainly

impacts the weight, while ǫ drives the length. For ǫ = 55, as pc increases from 2 to 12

MPa, even though the engine weight always increases, there is an optimum value L∗ for the

engine length, which occurs for a small value of pc (4.57 MPa), as displayed in Figure 88(a).

For pc = 5 MPa, as ǫ increases from 5 to 200, both the engine weight and the engine

length increase, so the lower the expansion ratio, the smaller and the lighter the engine

(Figure 88(b)). This illustrates that the design of an optimized hybrid rocket engine is far

from being trivial and requires that in-depth trade-off analyses be conducted between the

weight and performance of the engine.
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Figure 88: Trade-offs between performance and weight for hybrid engines

6.9.1.3 Application of the Propulsion Module

When combined with the safety module, the propulsion module can support multi-

disciplinary trade-offs among and across the different types of chemical rocket engines. To

demonstrate this capability, the modules are used to find the best configuration of chemical

rocket engine that fits into a fuselage with a two-meter diameter, while providing a 1,000-kN
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thrust during two minutes. Three decision criteria are considered: engine weight, propellant

cost, and risk. In order to identify potential trends, a DoE of 1,000 points has been generated

following a Latin Hypercube model. The trade-offs that must be made between the different

metrics are presented in Figures 89 and 90.

Figure 89: Propellant cost vs. engine weight

As expected, solid engines outscore both liquid and hybrid engines in terms of empty

weight and propellant cost. However, since they are extremely risky and cannot be restarted,

they are rarely used for manned vehicles. Comparing the other types of propellants, liquid

engines tend to be lighter but more expensive in terms of propellant cost than hybrid

engines. Figure 89 also shows the high sensitivity of hybrid engine weight and liquid engine

operating costs with respect to changes in the chamber pressure and the nozzle expansion

ratio.

Figure 90 demonstrates that, among hybrid engines, the mixture LOx/Paraffin is the

safest but tends to require heavier engines. For liquid engines, Figures 89 and 90 show that

the mixture LOx/RP1 is the safest and requires the lighter engines. However, this mixture

is the most expensive. As a consequence, there are crucial trade-offs that must be made

between the different objectives according to the design priorities.
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Figure 90: Risk level vs. engine weight

In order to find the best trade-off among these criteria, a probabilistic TOPSIS, as

described in Section 7.3, is performed. An equal importance is given to each of the three

aforementioned criteria, along with an uncertainty modeled with a standard deviation of

30%. The best engine appears to be a hybrid engine using LOx/Paraffin with a chamber

pressure of 2.96 MPa and a nozzle expansion ratio of 71.

6.9.1.4 Identification of the Key Drivers and Trends

As described in the previous section, there are three main design variables when devel-

oping a new rocket engine: the mixture of propellants, the nozzle expansion ratio, and the

chamber pressure. The relative impact of each of these variables on the three key metrics

is presented in Figure 91. As demonstrated by the presence of clusters represented by the

different colors, the major design driver is the propellant mixture.

In addition to the mixture selected, the key weight and safety driver appears to be the

combustion chamber pressure, while the nozzle expansion ratio mainly drives the propellant

cost. Trade-offs between the different propellant mixtures can also clearly be identified. For
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example, the three engines that provide the lowest engine weight (solid propellant, LOx/-

Paraffin, and N2O/HTPB) are the riskiest.

Figure 91: Sensitivity analysis of the propulsion system parameters

6.9.2 Safety Analysis

The safety module developed in Section 6.7 is used to identify the key safety drivers and

perform new observations. In addition, those results will be used to check the consistency

and the correct behavior of the safety module.

First, a Latin Hypercube DoE is developed to generate points that cover the entire de-

sign space. Based on this sampling of the design space, the key safety drivers are identified

through a screening with JMP. The main safety drivers are presented in Figure 92. As

shown, the main safety drivers are the type of propellant Propellant, the type of land-

ing LAmode, the type of take-off TOmode, the number of pilots nPilots, the rocket engine
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chamber pressure pc, and the rocket engine thrust Tr. As expected, the type of propellant

is, from far, the main safety driver. Indeed, it is the most probable cause of catastrophic

failure in a spacecraft.

Propellant

LAmode

TOmode

nPilots

pc

Tr

Figure 92: Relative importance of the design variables on the risk level

Figure 93 displays the risk level as a function of the type of propellant and for the

different take-off modes. As expected, three clusters emerge, which can be directly linked

to three main levels of risk:

• High: solid propellants with a risk level above 650

• Medium: liquid propellants with a risk level between 400 and 650

• Low: hybrid propellants with a risk level below 400

Moreover, for each propellant, the type of take-off highly impacts the risk level: launched

from an aircraft appears to be the riskiest take-off mode, while the vertical is the safest.

Figure 93 clearly shows that a vehicle powered by a solid engine would not be able to

reach a good safety level, whatever the other design choices. It also shows the sensitivity of

the mixture on safety within each propellant category: liquid and hybrid. In particular, hy-

pergolic mixtures are the riskiest among all liquid mixtures, while the mixture N2O/HTPB

is the riskiest among all hybrid mixtures. As displayed, the type of mixture within each

propellant category has approximately the same impact as all other variables put together.

Indeed, the maximum difference between the mean safety level of each mixture is close to

the range of safety levels of each mixture.
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Figure 93: Risk level vs. type of propellant

Finally, once a mixture of propellants has been selected by the designers, the uncertainty

on the safety level remains relatively low. Table 47 provides the mean value, the standard

deviation, and the range for the distribution of risk level for each mixture.

Table 47: Risk level distributions

Propellant Mean risk level
Standard
deviation

Range

Solid 742 37.5 650 - 839

LOx/LH2 512 32.6 432 - 606

LOx/RP1 475 30.0 390 - 550

Hypergolic 590 31.6 507 - 666

LOx/HTPB 285 29.8 217 - 359

LOx/Paraffin 211 27.9 150 - 281

N2O/HTPB 364 28.6 294 - 439

N2O/Paraffin 286 27.8 221 - 358

This chapter discussed the development of the individual modules that compose the

design framework. They have been embedded into a single sizing and synthesis environment,

which will be used by a decision-making process, as described in the next chapter.
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CHAPTER VII

STEP 4: MAKE INFORMED DECISIONS

This chapter discusses the development of a decision-making environment capable of

helping designers with the different phases of the design process. Indeed, as mentioned

in Section 3.4, this environment must facilitate the decision process by providing deci-

sion makers with information regarding the performance, economic viability, safety, and

robustness of the different alternatives of interest. While this environment has to support

trade-off analyses and rapid prioritization, it should also allow decision makers to have a

rapid overview of the selected architectures. As a consequence, three capabilities must be

integrated into the decision-making environment:

1. Trade-off capabilities: enable the visualization of Pareto frontiers and multidimen-

sional data to highlight trades between the multiple objectives. In particular, such

visuals are critical to the identification of dominant architectures or technologies in

the various regions of the solution space.

2. Ranking and prioritization capabilities: a ranking is obtained by fixing the relative

importance of each objective and evaluating each alternative against the formulated

objective function.

3. A parametric visualization CAD model: to provide decision makers with a three-

dimensional rendering of the concepts considered.

Figure 94 describes the overall architecture of the decision-making framework, where the

specific capabilities that will be used by decision makers are displayed in blue and the mod-

ules that must be developed in yellow. The development of these aforementioned modules is

discussed in the next sections, followed by the application of the proposed decision-making

environment to the design of affordable and safe suborbital vehicles.
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Figure 94: Architecture of the decision-making environment

7.1 Uncertainty Propagation

As discussed in Section 2.2, when dealing with emerging markets, a large amount of

uncertainty is present in the requirements. Hence, there is a need to include robustness

in the decision-making process. For that purpose, fuzzy set theory is used to model and
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propagate uncertainty throughout the design framework. The approach used to model the

degree of uncertainty in requirements has already been discussed in Section 4.2. This section

aims at discussing the approach chosen to propagate uncertainty.

For a problem with n uncertain design variables xi, each variable is characterized by a

mean value µi and a standard deviation σi. IfX is defined as the objective function such that

X = f (x1, x2, ...xn), then the variance of X, Var(X), can be defined using Equation 148,

where gi =
∂f
∂xi

is the partial derivative of f with respect to xi and σij is the covariance of

xi and xj .

Var(X) =

n
∑

i=1

n
∑

j=1

gi(µ)gj(µ)σij (148)

In addition, the covariance σij , which is a measure of how much two variables change

together, can be calculated using Equation 149. In particular, the covariance of xi and xj

is 0 if xi and xj are independent.

σij =















cov (xi, xj) if i 6= j

σ2
i if i = j

(149)

Since there is no available analytical solution for gi, a numerical approach is necessary.

For that purpose, the Newton’s difference quotient, also known as the first-order divided

difference, is used, as illustrated in Equation 150. In this equation, h is a small number

fixed at 10−3 and hi is a vector with zero for each component except for the ith component,

which is equal to h.

gi(µ) =
∂f(µ)

∂xi
≈ f(µ+ hi)− f(µ)

h
(150)

This uncertainty model has to be called by the multi-objective optimization algorithm,

when evaluating the objective function. The development of this multi-objective optimiza-

tion framework is further discussed in the next section.

7.2 Evolutionary Multi-objective Multi-architecture Algorithm (EMMA)

The goal of this section is to develop an approach that allows designers to efficiently

optimize concepts that are not described by the same design variables against multiple and
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competing objectives. As discussed in Section 2.1.3.4, the proposed algorithm called EMMA

can be described using the following four-step process:

1. Individually optimize each architecture using specifically configured NSGA-II with an

initial number of generations common to all architectures.

2. Evaluate the performance of each architecture compared to others based on their

location on the overall Pareto frontier.

3. Re-execute each NSGA-II with a specific number of generations given by an evolu-

tionary algorithm as a function of the performance of its corresponding architecture.

4. Repeat steps 2 and 3 until the convergence criterion is met.

The overall optimization process is summarized in Figure 95. The following sections describe

both the NSGA-II and the new evolutionary algorithm, as well as their integration and

validation.

Evolutionary
algorithm

Architecture 2

Architecture 1

...

Architecture k

Req. 2

Req. 1

...

Req. m

NSGA-II

NSGA-II

...

NSGA-II

Figure 95: Multi-objective multi-architecture optimization process

7.2.1 Non-Dominated Sorting Genetic Algorithm-II

As discussed in Section 3.4, the NSGA-II is chosen to optimize each architecture. First,

it is able to handle both discrete and continuous variables, and can deal with complex

and thus potentially non-convex design spaces. Moreover, it is independent of predefined

settings, which is a great advantage since the behavior of the response is completely unknown

at this point. The NSGA-II enables an evenly-spaced sampling of the Pareto frontier and

is very efficient when dealing with unconventionally-shaped solution spaces. Even though
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this approach is relatively resource and time consuming, it has the capability of handling

all kinds of design spaces originating from complex problems. The general procedure of the

NSGA-II is described by Deb in Figure 96 [110].

Figure 96: General NSGA-II process [110]

The NSGA-II starts with a population Pt of n individuals randomly generated within the

design space. Then, using the same operating principles as the genetic algorithm, crossovers

and mutations are performed on the population Pt in order to generate a new population

Qt composed of n new individuals. The population Rt, composed of 2n individuals, is then

created by combining both the populations Pt and Qt. Then, the selection of the individuals

that will be part of the new population is based on their fitness. The latter depends on

two measures: the non-domination level (measure of relative dominance) and the crowding

distance (measure of relative isolation). These two measures are performed following two

steps:

• Non-dominated sorting: individuals are grouped and ranked based on their domina-

tion level (F1, F2, etc.).

• Crowding distance sorting: individuals are ranked within each domination level Fi.

Following these two steps, only the top n individuals are kept and compose the new popu-

lation Pt+1. The next sections discuss the two sorting steps.
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7.2.1.1 Non-Dominated Sorting

For the non-domination sorting step, the fitness (or performance) of each individual is

evaluated based on its domination level (1 is the best level, 2 the next best level, etc.). To do

so, an algorithm is first executed on all points to find all non-dominated solutions. A fitness

of 1 is assigned to those points and they are “set aside” from the population. Then, the

algorithm is executed again to find the non-dominated points and a fitness of 2 is assigned to

the non-dominated points. This process is executed until a fitness value has been assigned

to all individuals. As a consequence, all individuals are grouped and ranked based on their

domination level. Once grouped into non-domination level categories, individuals need to

be ranked within each category, as described in the following section.

7.2.1.2 Crowding Distance Sorting

The crowding distance sorting aims at measuring how isolated each point of the popu-

lation is. The crowding distance of a given point corresponds to the average distance of its

two neighboring points, as shown in Figure 97.

Figure 97: Crowding distance calculation [110]

By preferring isolated points (the ones with the largest crowding distance), the final

points on the Pareto frontier tend to be more evenly spaced. Hence, individuals are ranked

based on their crowding distance within each domination level from the largest to the

smallest.

This two-step process is repeated until the convergence criterion is reached. This results
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in providing the best set of configurations for each architecture with respect to several

objectives. In order to drive this process across the different architectures, an evolutionary

algorithm is developed, as discussed in the next section.

7.2.2 Evolutionary Algorithm

While the NSGA-II can be individually applied to each architecture, there is a need to

combine all architectures. For that purpose, a new evolutionary algorithm, inspired by the

Simulated Annealing [53, 54], is developed that drives multiple NSGA-IIs based on their

performance. The objective is to favor promising architectures without neglecting others.

The new algorithm is defined by a four-step process:

1. Execute the NSGA-II for each architecture with an initial number of generations N0

similar for all architectures.

2. For each architecture i, evaluate the fitness fi equal to the number of non-dominated

points originating from architecture i in the overall Pareto frontier.

3. Determine the number of generations Ni of each architecture for the next iteration of

the primary algorithm based on the following principle:

• If fi 6= 0: Ni is proportional to fi, as described in Equation 151.

Ni =

⌊

fi
∑

i fi

⌋

N0 (151)

• If fi = 0: Ni has a probability p to reach N0. The parameter p is defined

in Equation 152, where m is the number of fruitless iterations and T a given

constant.

p = 1− exp

(−m

T

)

(152)

4. Repeat steps 2 and 3 until the convergence criterion is met.

7.2.3 Integration

In order to link these two optimization algorithms, a dedicated optimization framework

is developed, as presented in Figure 98. The general optimization parameters along with
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the number of architectures N , the population size, the number of design objectives, and

the number of iterations are integrated into the main optimization function.

Figure 98: Architecture of the overall multi-disciplinary optimization framework
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For consistency purposes, the population size is fixed at a given value for all architec-

tures. The main optimization function then drives the multiple NSGA-IIs viaN architecture

files. Those files detail the distinctive characteristics of each architecture such as the num-

ber of constraints as well as the number of design variables along with their ranges. Then,

the NSGA-II is executed for each architecture using the design framework developed in the

previous chapter. While the design framework might be specific to certain architectures,

the structure of the optimization algorithm is common to all architectures. This facilitates

the interchangeability and the potential updates of the optimization platform. Each of the

NSGA-II algorithms outputs a file with a detailed description of all points on the Pareto

frontier.

These files are combined to generate the new population, which is inputted into a non-

domination algorithm. This algorithm extracts the non-dominated points, while keeping

track of their original architecture. This algorithm provides the evolutionary algorithm with

the fitness of every architecture. Then, the evolutionary algorithm determines the number

of generations assigned to each NSGA-II for the next iteration. Finally, based on both the

number of generations and the initial points, the multi-objective optimization algorithm is

executed until the convergence criterion, which is fixed by designers, is met.

This optimization platform has been developed in Matlab, as described in Appendix D.3.

In order to speed up the process, the overall algorithm has been parallelized on multiple

computers. Indeed, each architecture is optimized by a given computer in parallel. In

addition, the optimization of each architecture has been parallelized using the different

cores of each computer. Hence, the objective functions are evaluated in parallel. The next

section applies the proposed process on multiple test functions in order to both validate

and quantify the benefits of the proposed algorithm.

7.2.4 Validation and Results

For validation purposes, Experiment 1.2 is set using the proposed algorithm to find

the Pareto frontier of well-known test functions. To account for the fact that multiple

architectures must be simultaneously optimized, each test function is duplicated and slightly
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modified. In order to assess the benefits of the new approach, the results are compared to the

Pareto frontier that would be provided using a DoE with the same number of function calls.

In order to benefit from a rich sampling of the interior of the design space, a Latin Hypercube

DoE is chosen. The objective is to show that the proposed algorithm provides a better and

more accurate sampling of the Pareto frontier than the DoE. To quantify the benefits, the

Pareto frontiers determined with both approaches are combined and only the non-dominated

points are kept. Two evaluation criteria are found relevant for this comparison: accuracy

and quality of the sampling. First, the accuracy is measured by comparing the number of

points on the Pareto frontier originating from the proposed algorithm with the number of

points originating from the DoE. This comparison is quantified using the ratio ηo, which

represents the percentage of non-dominated points coming from the proposed algorithm

over the number of points coming from the DoE. Then, the quality of the sampling is also

evaluated by looking at the distribution of points on the Pareto frontier. The goal is to

show that the points generated by the proposed algorithm are more evenly sampled than

the ones generated with the DoE. The following sections discuss the results obtained for

two different test functions.

7.2.4.1 Two-Dimensional Problem with a Large Solution Space

The efficiency of the proposed algorithm is tested on a two-dimensional function with

a relatively large design space. For that purpose, Poloni’s two objective function [91] is

selected as the baseline, as presented in Equation 153, where a1, b1, a2, b2, c2, d2, a3, b3,

c3, and d3 are ten constants.

min















f1(x, y) = 1 + (a1 − g(x, y))2 + (b1 − h(x, y))2

f2(x, y) = (x+ 3)2 + (y + 1)2

where































g(x, y) = a2 sin(x)− b2 cos(x) + c2 sin(y)− d2 cos(y)

h(x, y) = a3 sin(x)− b3 cos(x) + c3 sin(y)− d3 cos(y)

−π ≤ x, y ≤ π

(153)

291



Four different architectures are created by changing the set of variables (a1, b1, a2, b2, c2,

d2, a3, b3, c3, d3). Figure 99 shows the results of both the DoE and the proposed optimiza-

tion algorithm as well as the optimal Pareto frontier.
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Figure 99: Validation of the algorithm for a two-dimensional problem

As expected, the proposed algorithm results in a better and more evenly-spaced sampling

of the Pareto frontier. The calculation of the benefits leads to ηo = 93%.

7.2.4.2 Three-Dimensional Problem with a Large Design Space

In order to test the algorithm on a three-dimensional problem, a set of functions with

three objectives is created based on the Viennet function [91]. The design objectives are

defined as a function of two design variables x and y, as described in Equation 154, where

a1, b1, a2, b2, a3, and b3 are six constants.

min































f1(x, y) = a1
(

x2 + y2
)

+ b1 sin
(

x2 + y2
)

f2(x, y) = a2 (3x− 2y + 4)2 + b2 (x− y + 1)2 + 15

f3(x, y) =
1

x2+y2+a3
− b3 exp

(

−
(

x2 + y2
))

where− 3 ≤ x, y ≤ 3

(154)

Four different architectures are created by changing the different variables from the following

set (a1, b1, a2, b2, a3, b3). Figure 100 shows the results of both the DoE and the proposed

optimization algorithm as well as the optimal Pareto frontier.
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Figure 100: Validation of the algorithm for a three-dimensional problem

As expected, the proposed algorithm also results in a better and more evenly-spaced

sampling of the Pareto frontier. The calculation of the benefits leads to ηo = 67%.

7.2.5 Quantification of the Benefits

The proposed algorithm might be complicated to implement and might have some lim-

itations. Indeed, for small and low-complexity problems, the benefits of the proposed algo-

rithm might not be significant. Hence, this section aims at providing a quantitative measure

of the complexity of the problem Cp so that designers have an easy way to evaluate the

usefulness of the proposed algorithm for their specific problems. The development of this

complexity factor is based on two main observations:

• The larger the design space, the smaller the probability for the DoE to select a com-

bination of design variables on the Pareto frontier.

• The larger the solution space, the smaller the probability for the DoE to produce an

accurate and evenly-spaced Pareto frontier.

Based on these two observations, the complexity factor mainly depends on the size of both

the solution and the design spaces. As a consequence, the general form of the complexity

factor is presented in Equation 155, where Cp,d is the design space complexity factor and
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Cp,s the solution space complexity factor.

Cp = Cp,d × Cp,s (155)

The size of the normalized design space is proportional to its number of dimensions, so

that Cp,d is assumed to be proportional to the number of dimensions k of the design space.

In addition, in order to obtain an order of magnitude of the size of the solution space, both

the number of dimensions and the size of each dimension must be taken into account. The

size of each dimension can be evaluated using the range of possible solutions defined by

fi,max − fi,min. If the range of solutions on one dimension is close to zero, this dimension

should neither decrease nor increase the size of the solution space. As such, 1 is added to

the previous difference. As a consequence, Cp,s is modeled using Equation 156, where fi,max

and fi,min are the maximum and minimum of the ith objective, respectively.

Cp,s =
n
∏

i=1

(fi,max − fi,min + 1) (156)

Thus, combining the models for both the solution space and the design space complexity

factors, Cp can be described using Equation 157.

Cp = k ×
n
∏

i=1

(fi,max − fi,min + 1) (157)

In order to assess the accuracy of the proposed criterion, a series of tests is performed

on Zitzler-Deb-Thiele’s test function. The latter is particularly useful as it allows for both

the dimensions of the design space and the size of the solution space to be parametrically

modified. In order to assess the relationships between the value of the complexity factor

and the benefits of the proposed algorithm, the results are compared to the Pareto frontier

that would be provided using a DoE with the same number of function calls. To account for

the fact that multiple architectures must be simultaneously optimized, each test function

is duplicated and slightly modified. Figures 101 to 103 display the results for an increasing

value of the complexity factor due to either an increase in the design space or an increase

in the solution space.
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(b) Small solution space

Figure 101: Results for small complexity factors
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Figure 102: Results for medium complexity factors

As shown in the previous figures, increasing the complexity of the problem highly im-

proves the performance of the proposed algorithm compared to a DoE. The points generated

by the proposed algorithm are closer to the real Pareto frontier than the ones generated by

the DoE. Moreover, the sampling of the Pareto frontier generated by the algorithm is more
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Figure 103: Results for large complexity factors

evenly spaced compared to the one generated by the DoE, especially for highly complex

problems. It can be noted that the performance of the proposed algorithm is not sensitive

to the problem’s complexity and mainly depends on the selected population size. However,

the performance of the DoE is highly deteriorated when the complexity of the problem

increases. As a consequence, the proposed algorithm is considered to be a more stable way

to determine the Pareto frontier. Finally, as the complexity of current aerospace optimiza-

tion problems tends to rapidly increase, the benefits and the usefulness of the proposed

algorithm are undeniable.

7.2.5.1 Conclusion

Implementing EMMA has numerous advantages. First, it enables promising architec-

tures to be favored in the selection process. Indeed, an architecture with a large number of

non-dominated points on the overall Pareto frontier has a high probability of being further

optimized. Moreover, the proposed algorithm still enables less promising architectures to be

studied using a probabilistic approach. Indeed, if a given architecture does not have at least

one point on the overall Pareto frontier, it still has a probability p of being further opti-

mized. This ensures that all promising configurations have been investigated. As discussed
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in this section, the proposed algorithm greatly improves the accuracy of the Pareto frontier

sampling, especially when the size of the design space and/or the solution space increases.

Indeed, the Pareto frontiers obtained using the proposed algorithm are more evenly spaced

and closer to the theoretical ones, especially when the complexity factor increases. These

observations result in the validation of the three criteria related to Experiment 1.2:

• Most of the designs from the DoE are dominated by points from the proposed algo-

rithm.

• The proposed algorithm provides an evenly-sampled Pareto frontier.

• The benefits of the proposed algorithm improve with the complexity of the problem.

This leads to the validation of Hypothesis 1.2:

VALIDATION HYPOTHESIS 1.2: IF an evolutionary multi-architecture

multi-objective algorithm based on architecture fitness is developed to drive

a sequential use of multiple NSGA-IIs THEN the Pareto frontier of solutions

defined by different sets of continuous, discrete, and categorical variables can

be efficiently generated.

7.3 Objective Prioritization and Concept Ranking

The goal of the decision-making environment is not only to provide rapid trade-off

analysis capabilities but also to enable a systematic and rigorous selection of the best

concept(s) with respect to a given set of design objectives. Therefore, a MADM technique

must be used to rank the different concepts according to the stated criteria. As discussed in

Section 3.4, the TOPSIS appears to be the most suitable technique for this research [247].

This section first discusses the process used to identify and weigh the importance given to

each design objective. Then, it provides the methodology used to rank the concept based

on the objective prioritization.
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7.3.1 Objective Identification and Prioritization

In a complex multi-objective decision space, it is crucial to adequately identify and

prioritize the design objectives according to stakeholders’ expectations. While surveys are

often used in collaboration with social networks [107, 115] to identify the degree of accep-

tation or satisfaction, there is a need to ask for customers’ opinions earlier in the design

process and to include them all along the process to decrease cost of change, to improve

products, and to have solutions that better fit their expectations. Indeed, in traditional

approaches, all the costs incurred become useless and the design process has to start over,

leading to higher costs [275]. For that purpose, the stakeholders’ point of view is retrieved

via a systematic survey that designers can send to potential stakeholders. By adding this

stakeholder-centric prioritization, it is ensured that stakeholders’ requirements are validated

throughout the entire design process. The proposed five-step process is detailed below:

1. Stakeholders are identified and grouped into categories such as consumers, investors,

regulators, etc.

2. All stakeholders are asked to grade the potential objectives according to the impor-

tance they want to give to each of them. The questions are formulated as follows:

“How important is Objective A?”. Stakeholders have five possible answers that map

to a normalized numerical scale: very important (10), important (5), somewhat im-

portant (0), not very important (-5), and not important at all (-10).

3. The average of all grades assigned by stakeholders within each category is then cal-

culated for each objective.

4. The relative importance of each category of stakeholders is determined by decision

makers.

5. The weighted average of the relative importance assigned to each objective is calcu-

lated based on the relative importance of each objective in each category and the

importance of the given category.
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Based on these identified and prioritized objectives, concepts are then ranked, as dis-

cussed in the next section.

7.3.2 Concept Ranking

The TOPSIS ranks alternatives based on their Euclidean distance to the utopia solution.

The ranking of all alternatives is then obtained: from the best (closest to the utopia point)

to the worst (farthest from the utopia point). The distance is computed using a utility

function, as presented in Equation 158 for each concept. In this equation, the weighting

factor wi represents the importance of the ith design objective, ȳi represents the normalized

grade of the studied alternative with respect to the ith objective, and δi represents the

direction of improvement of the ith design objective (δi = +1 for maximization and δi = −1

for minimization).

U(y) = wi

∑

i

ȳiδi (158)

For consistency purposes, the values of the design objectives must be normalized. The

normalization is made using Equation 159, where yi represents the grade of the studied

alternative with respect to the ith objective, ymin the minimum value of the ith objective,

and ymax the maximum value of the ith objective.

ȳi =
yi − ymin

max (ymax − ymin, 10−5)
(159)

This technique allows designers to develop multiple scenarios by changing their design

priorities and assessing the impact of this change on the best(s) concept(s).

In order to account for uncertainty in design priorities, a three-step approach that selects

the most robust design(s) is developed:

1. Uncertainty definition: instead of using a single values for the multiple design prior-

ities, probability distributions are developed. In particular, Gaussian distributions,

characterized by both the most probable value and the standard deviation are imple-

mented.
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2. Uncertainty propagation: to propagate uncertainty in the process, a Monte Carlo

simulation is used. The latter samples the previously modeled Gaussian distributions

for each variable in order to produce a large number of possible sets of priorities, also

called scenarios. For each scenario, a ranking of alternatives is obtained using the

aforementioned TOPSIS.

3. Concept selection: the concept selection is performed by outputting a final ranking.

The latter is calculated by averaging the rank of each alternative over all generated

scenarios.

This approach provides a probabilistic way to model, propagate, and include uncertainty in

the design priorities. As a consequence, not only has the best concept optimal performance

but it also is robust to changes in design priorities.

7.4 Visualization

When designing new unconventional vehicles such as suborbital vehicles, designers usu-

ally face a lack of historical data. Since designs can rapidly become overwhelming, the

designers’ ability to fully understand the problem to be solved can be limited. According

to Kamdar et al., “a very large number of variables and physics behind the system are too

profound or esoteric to be fully understood” [228]. This might result in the design of non-

optimal concepts and consequently in the loss of both time and money [232]. To overcome

this difficulty, visualizing the generated concepts would bridge the gap between the infor-

mation provided by the optimization algorithm and the human cognitive and perceptual

systems [279]. In addition, visualization capabilities facilitate the integration of designers’

past experience, knowledge, and cognitive capabilities in the analysis. It also supports a

better, easier, and faster decision-making process. Designing complex vehicles subject to

uncertainty in requirements and a large design space usually involves multi-disciplinary

teams. Collaboration and communication within each team and between teams are crucial

to the success of the program. The people involved in the projects usually have different

backgrounds and work experiences so they tend to have their own specific interpretation

and perception of the problem. Hence, having a visualization tool might help reach a
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consensus and limit potential misunderstandings and conflicts during the decision-making

process [197]. In particular, the visualization module has to provide parametric visualiza-

tion capabilities as it is necessary to avoid re-iterating on the design process. According

to De Beats, it is important to have “a parametric model of the airplane to allow quick

changes in the shape and size of the vehicle” [109].

Nevertheless, the visualization module cannot be limited to a communication or presen-

tation tool. It has to be considered as a way to explore and understand the structure of

the design space [450]. The data inputted into the visualization module should enable the

identification of relationships, trends, clusters, etc. [231]. In addition, according to Meyer et

al. [294], “visualization of information alone does not provide new insight”. Hence, in order

to make informed decisions, a parallel between the systematic optimization process and the

human cognitive system has to be made to further sharpen the human reasoning and the

knowledge synthesis. An interactive platform would thus present the optimization process

results and allow designers to automatically visualize the corresponding CAD model. De-

signers would therefore have access to the original data in order to step back and interpret

the data from multiple angles in order to get the big picture of the problem. By following

the given process, potential problems and new perspectives can be highlighted, bringing out

new types of innovative solutions.

Allowing decision makers to visualize the various generated concepts becomes a key

enabler of the design space exploration of unconventional concepts. In order to facilitate

the link between the visualization module and the optimization platform and to provide

an ergonomic platform to decision makers, a user interface is developed in Excel. This

dashboard is directly fed with the optimization results and drives the visualization based

on concepts selected from either the ranking or the Pareto frontier. This section discusses

the development of the visualization platform, the CAD model, and their integration into

the vehicle.

While the optimization process provides a description of the vehicle using a list of

design variables, it is difficult to have a quick overview and understanding of the optimum

solution(s). In addition, designers might not be able to easily assess the differences between
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two different architectures. In order to bridge the gap between the theoretical optimization

process and the decision-making process, there is a need for rapidly visualizing the various

solutions proposed.

As a consequence, an extended visualization environment is proposed in association

with the design framework. The visualization environment aims at converting the outputs

of the optimization process into a high-level CAD model of the vehicle. It facilitates the

understanding of the technical solutions and their presentation to customers and decision

makers by providing a 3D view. It also gives insight into the actual shape and size of

the vehicle. Finally, it allows designers to check the consistency and the feasibility of the

obtained concept(s). The proposed visualization dashboard is discussed in the next section.

7.4.1 Visualization Dashboard

The visualization dashboard, presented in Figure 104, allows decision makers to drive

the visualization in the CAD software. Users can select the concept(s) of interest from

either a ranking based on the prioritization algorithm or from the Pareto frontier.

Figure 104: Dashboard of the visualization tool

Slider bars are present to provide decision makers with convenient ways to prioritize their
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objectives. Changes in priorities automatically update the ranking of the top 10 concepts.

In addition, a parametric Pareto frontier is developed so that decision makers can select

the metrics among which they want to perform trade-off analyses. This aims at providing

decision makers with more flexibility when performing trade-offs. Once the concept of

interest has been selected for visualization, a Visual Basic for Applications (VBA) function

selects the corresponding values in the Excel file generated by the optimization algorithm

and outputs them in the Excel file linked to the CAD model. The development of the

parametric CAD model is discussed in the next section.

7.4.2 Parametric CAD Model

In order to facilitate decisions and trade-off analyses, all possible configurations must

be modeled. Hence, a method needs to be developed that enables each architecture to

be modeled and its design variables parametrically changed. For that purpose, a flexible

and parametric CAD model is developed. To cover all potential alternatives, the vehicle is

broken down into physical components, as described by the tree presented in Figure 105.
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Figure 105: Physical breakdown of the vehicle
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To develop the different components, a CAD software suite must be chosen. For that

purpose, a survey is performed to identify the most commonly used software in the aerospace

industry, as presented in Table 48.

Table 48: CAD software suites used by the main aerospace company [106, 348, 396]

Aerospace companies CAD software suites used

Boeing Catia

Airbus Catia

NASA Siemens NX, PTC Creo

Space X Siemens NX

Lockheed Martin PTC Creo, Catia

Northrop Grumman PTC Creo, Siemens NX

Bombardier Catia

General Dynamics Siemens NX

Pratt & Whitney Siemens NX, Catia

Jet Propulsion Laboratory Siemens NX

Thales Alenia Space Catia

As shown in Table 48, two CAD software are mainly used: Catia developed by Dassault

Systemes and NX developed by Siemens. Both meet all research requirements for the

visualization module and are able to link architecture parameters provided by Matlab to

CAD geometric parameters via an Excel file. Catia is chosen for the following reasons:

• Catia licenses are available at the ASDL.

• Contrary to NX, Catia is used by both American and European companies, which

makes it more generic.

• Most designers are familiar with Catia and could use the provided model to adjust

and adapt the proposed vehicle to their specific geometric requirements.

Thus, the various components will be modeled in Catia, as described in Appendix C.

7.4.3 Integration

Once each component has been modeled, boolean logic is used to create feasible concepts.

In addition, the vehicle parameters can be varied in order to model every vehicle of interest
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generated by the optimization algorithm. Three representative vehicles are provided in

order to visualize all architectures:

• Winged vehicle with jet engines (Figure 106)

• Winged vehicle without jet engines (Figure 107)

• Slender vehicle without jet engines (Figure 108)

Figure 106: Winged vehicle with jet engines
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Figure 107: Winged vehicle without jet engines
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Figure 108: Slender vehicle without jet engines

This chapter discussed the development of the last step of the proposed methodology,

which consists in providing decision makers with the capabilities required to make informed

decisions. Hence, all the pieces of the proposed methodology have been discussed in Chap-

ters 4 to 7 and are summarized in the next chapter.
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CHAPTER VIII

SUMMARY OF THE PROPOSED METHODOLOGY

This chapter aims at summarizing the key elements of the methodology developed in

Chapters 4 to 7 that support the Overarching Hypothesis formulated in Section 2.3:

IF a variable-oriented morphological analysis is used to feed an evolutionary

multi-objective multi-architecture optimization algorithm AND IF fuzzy set

theory is used to parametrically propagate requirements’ uncertainty through a

multi-disciplinary physics-based modeling and simulation environment THEN

large multi-architecture design spaces can be better explored AND informed

decisions can be made under evolving uncertainty in requirements.

The proposed methodology is decomposed into four main steps that follow the generic

top-down design decision support process:

• Step 1: Establish the decision criteria

• Step 2: Define the design space

• Step 3: Evaluate alternatives

• Step 4: Make informed decisions

The relationships between the key elements of each step are provided in Figure 109,

which summarizes the proposed methodology named ASCEND: Architecture Selection un-

der multiple Criteria and Evolving Needs for improved Decision-making. Step 1 aims at

identifying the metrics of interest, which can be decomposed into two categories: constraints

and objectives. During the optimization process, constraints are used to limit the design

space and objectives are used to formulate the objective functions of the optimization algo-

rithm. In addition, priorities are defined along with their uncertainty for further objective

prioritization. Step 2 aims at generating all feasible alternatives, which can be used for
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further comparison and optimization. For that purpose, the system to be designed is de-

composed into functions, and options are identified for each function. Then, all feasible

alternatives are generated and design variables are infused in the process. This enables

alternatives to be grouped into variable-oriented architectures. Those architectures, along

with their design variables, are inputted into Step 3, which aims at evaluating all possible

concepts. Architectures can be evaluated using different modeling and simulation environ-

ments, depending on the complexity of the problem, the level of fidelity required, and the

availability of existing design frameworks. The latter are used in Step 4, which supports

the overall decision-making process. For that purpose, the process optimizes the various

architectures against multiple criteria. It uses an evolutionary algorithm, which drives par-

allel multi-objective optimization algorithms. Once the overall Pareto frontier is obtained,

non-dominated concepts are ranked based on a probabilistic TOPSIS and are used to per-

form important trade-offs between the various technological solutions. In addition, informed

decisions are supported by a visualization dashboard, which enables rapid and parametric

visual trade-offs among the best concepts.
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Figure 109: Overview of ASCEND
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The following chapter further discusses the validation of the Overarching Hypothesis

by implementing ASCEND and applying it to the design of a profitable, safe, and robust

suborbital program.
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CHAPTER IX

CLOSING THE LOOP

This chapter aims at closing the loop of the overall research. Chapter 1 identified key

assertions that resulted in the establishment of the following two research objectives:

• To enable a broad and informed design space exploration for optimized vehicle selec-

tion at a conceptual design level.

• To support decisions under unclear objectives and evolving uncertainty in require-

ments.

Based on these two research focuses, the following overarching research objective has been

formulated:

To establish a methodology that enables a broad design space exploration

at a conceptual level to select solutions against unclear objectives and under

evolving uncertainty in requirements.

The present chapter focuses on the validation of the proposed methodology by comparing

its performance against each of the three existing approaches identified in Section 2.1:

• Typical aircraft design approach

• Architecture comparison approach

• Architecture optimization approach

For that purpose, key validation criteria are first established. Then, experiments are

developed and set up. Based on the results of these experiments, the validation criteria

established are evaluated for the proposed methodology as well as for the other approaches.

Finally, the performance of the proposed methodology is benchmarked against the other

approaches.
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9.1 Establishment of the Validation Criteria

The objectives of the proposed methodology are both to improve the exploration of

large design spaces and to support informed decisions under evolving uncertainty in re-

quirements. In order to test and validate the Overarching Hypothesis, a list of criteria must

be established that enable a methodology to be evaluated with respect to both objectives,

as discussed in this section.

9.1.1 Objective 1: Exploring Large Design Spaces

Four criteria can be established to evaluate the ability of the proposed methodology to

support the exploration of large design spaces.

Criterion 1: Alternatives evaluated with different modeling and simulation

environments can be systematically compared and optimized. When solving trans-

portation problems, multiple architectures must be considered, modeled, optimized, and

compared. This is especially true for new types of missions or markets such as suborbital

tourism and flying cars for which experience is rare. As a consequence, it is crucial to han-

dle new complex design problems using a systematic, rigorous, and traceable approach that

has the ability to ensure that the best solution is found. To avoid sub-optimal solutions or

missing opportunities, bias from expert judgment must be avoided. For that purpose, all

possible configurations must be considered during the design process. In order to consider

all possible design alternatives, the capability to evaluate their performance must be devel-

oped. However, there is a natural trade-off between breadth and depth in the evaluation

process; while a modeling and simulation environment based on first principles is usually

able to handle a large portfolio of concepts, its modeling accuracy is poor. In contrast,

CFD or Finite Element Method (FEM) codes tend to be extremely accurate but specific to

a given configuration or set of concepts. Hence, increasing the fidelity of the models requires

designers to use an increasing number of modeling and simulation environments. However,

as demonstrated in Chapter 2, there is a lack of methodology that enables a systematic

comparison and optimization of concepts modeled by different modeling and simulation
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environments.

Criterion 2: The proposed methodology improves the total computational

time without reducing the number of alternatives considered. Accounting for

all design alternatives results in the evaluation of an extremely large number of concepts.

For instance, the high-level decomposition of suborbital vehicles performed in Section 5.3

shows that the number of alternatives to be considered rapidly increases and can easily

reach several millions. In addition, improving the fidelity of the modeling and simulation

environment tends to increase the time it takes to evaluate each alternative. When using

a morphological analysis to identify the possible options, Equation 160 can be used to

compute the total time Tt required to evaluate all alternatives, where ts is the average time

of a single concept evaluation, Nf the number of functions, and ni the number of options

for the ith function.

Tt = ts

Nf
∏

i=1

ni (160)

Assuming an average number of options for each function equal to five, Table 49 provides

the total required evaluation time for different combinations of number of functions and

concept evaluation time.

Table 49: Execution time (years) for various problem sizes

Single alternative execution time (s)

1 5 10 15 20

N
u
m
b
e
r
o
f
fu
n
c
ti
o
n
s

8 0.01 0.06 0.12 0.19 0.25

10 0.31 1.55 3.10 4.45 6.19

15 968 4,838 9,677 14,516 19,354

20 3 million 15 million 30 million 45 million 60 million

25 9 billion 47 billion 95 billion 142 billion 189 billion
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As described in Table 49, the total time required to evaluate all possible alternatives

rapidly reaches impractical values. Even for the simplest problems, several days are re-

quired to explore all alternatives. As a consequence, reducing the execution time is critical

to improve current design space exploration approaches.

Criterion 3: The proposed methodology provides a better coverage of the

design space than current design space exploration approaches. The ultimate goal

of improving the design space exploration is to generate the best possible designs. While the

notion of “best designs” might be complicated to define in a multi-objective environment,

some metrics can be established to measure how well the design space is covered. One of

such metrics is the average distance of the points on the Pareto frontier compared to the

ideal solution. The ideal solution is defined as the combination of the best values for each

objective. Hence, the smaller the average distance, the better the coverage. This average

distance can be calculated using Equation 161, where k is the number of points on the

Pareto frontier, yi,m the value of the ith point with respect to each objective m, y∗m the best

possible value of each objective m, and y−m the worst possible value of each objective m.

δ∗ =
∑

m

1

k

k
∑

i=1

|yi,m − y∗m|
∣

∣y∗m − y−m
∣

∣

(161)

In addition, the number of non-dominated concepts can also be used as an evaluation

criterion: the larger the number of non-dominated points, the better the coverage. Finally,

for a fixed set of priorities, the performance of the best concept can be evaluated and used as

an evaluation criterion: the better the performance of the vehicle, the better the coverage.

Hence, Criterion 3 can be quantified using the following three metrics:

• The average distance between the points on the Pareto frontier and the ideal solution.

• The number of non-dominated points in the solution space.

• The performance of the vehicle optimized for given sets of design priorities.

Criterion 4: The methodology provides the capabilities to both perform
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quantitative trade-offs and identify key trends among all alternatives. As previ-

ously mentioned, systems tend to become more and more complex and current economic

conditions result in a shortened time-to-market and an increasing demand for flexibility and

adaptability. However, the difficulty of making good decisions does not only stem from the

aleatory aspect of the performance of a vehicle or the health of the market. The multiplic-

ity of objectives and disciplines involved in the full life-cycle of complex aerospace vehicle

programs complicates the task of key decision makers. In order to build an optimized and

profitable suborbital program, designers do not only need to consider flying performance,

but also economic, safety, and robustness metrics. Usually, most of these objectives are

concurrent, and therefore, cross-functional trade-offs have to be made. In addition, in early

phases of a market, some technologies are still in development. For that reason, there is a

need to identify the most promising technologies and key design drivers in order to align

and optimize the budget allocated to research and development departments.

The validation of the four aforementioned validation criteria would enable the validation

of the part of the research objective related to the design space exploration. The following

section focuses on assessing the methodology’s performance with respect to its ability to

support key decisions under evolving uncertainty in requirements.

9.1.2 Objective 2: Supporting Informed Decision-Making Under Evolving Un-
certainty in Requirements

Three additional criteria can be established to assess the ability of the proposed method-

ology to support informed decision-making under evolving uncertainty in requirements.

Criterion 5: The proposed methodology provides decision makers with a

complete picture from both a physical and a business standpoints, hence sup-

porting informed decision-making. Large and innovative aerospace endeavors such as

space tourism tend to present both an important potential and a growing interest from the

general public. While they might be highly profitable, such complex aerospace programs

are considered to be among the most costly and risky projects [316]. Indeed, a lot of money

has to be committed to the development of a single vehicle. In addition, such programs are
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exposed to a broad range of significant risks (customer requirements, demand, etc.), and to

potentially harsh competition. They also often have a late payback period and require a

large amount of funding. Moreover, as discussed in Section 1.3, requirements’ uncertainty

tends to be extremely present, especially at the dawn of emerging markets. While this

uncertainty tends to decrease over time, there is a need to support well-founded decisions

under evolving uncertainty in requirements.

One of the key characteristics of informed decisions is their ability to be supported by

quantifiable and pertinent metrics at each point in time. Three metrics help alleviate the

bias provided by the designers’ experience and consequently avoid missing any opportunities.

In addition, quantifying some of the decision metrics allows for more rational and traceable

decisions. This also allows for results to be concisely and efficiently presented to upper

management and key stakeholders. Finally, with quantitative information, it is possible

to manipulate the information in consistent and reproducible ways, by combining figures,

comparing data, examining rates of change, etc., hence improving the accuracy of the

decisions made.

As discussed in Section 7.4, designing complex vehicles subject to uncertainty in their

requirements and a large design space usually involves multi-disciplinary teams. Collabora-

tion and communication within each team and between teams are crucial to the success of

the program. Hence, having a visualization environment might help reach a consensus and

limit potential misunderstandings and conflicts during the decision-making process [197].

In particular, the methodology has to provide parametric visualization capabilities in order

to avoid having to re-iterate on the design process. Finally, a visualization environment

is usually necessary to check the consistency of the design provided by the optimization

algorithm.

Criterion 6: The methodology provides the ability to easily trade performance

against robustness to alleviate the program risk.

It is common that for emerging markets the regulatory frameworks necessary to informed

decision-making in general and the concept selection in particular are usually not fully de-

fined at the early development stages. For instance, suborbital flights are performed by
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either an aircraft or a spacecraft but independently of the concept used, they need to reach

the limit between the atmosphere and outer space. Therefore, an important question is nat-

urally raised: should the space law, the air law or even both laws be applied? The answer to

this question will have significant legal implications on suborbital space tourism. Indeed, as

mentioned by Axelle Cartier and Ioana Cristoiu [71], “suborbital flights are at present the

major issue to be dealt with under the current legislation. [...] It is not clear what will be

the applicable law. It is to be expected that issues will depend on different national legisla-

tions.” Moreover, this legal framework is not complete yet and will continuously evolve with

the introduction of new vehicles, new countries and new companies [143, 252]. Also, at the

dawn of a new vehicle development, its applications might not be clearly defined. Similarly,

customers’ requirements are extremely uncertain, especially in early phases. Therefore,

in order to support informed decisions and alleviate the program’s risk, the methodology

needs to identify designs that are robust to changes in requirements, market constraints, etc.

Criterion 7: The methodology generates the information required to support

informed go/no-go decisions.

While the degree of uncertainty tends to be high at the early stages, it tends to decrease

with the progressive establishment of the regulatory framework and the identification of po-

tential applications. Hence, decision makers constantly face an important dilemma: freeze

the design and start the program or continue the development and wait until more informa-

tion becomes available about the market. The first strategy allows a firm to benefit from the

first-mover advantage. However, the probability of developing an optimized and successful

design is lower because of the lack of knowledge about the requirements and the market. In

contrast, the second strategy reduces the program risk but also reduces the potential NPV

due to the time value of money: money now is worth more than money in the future. As a

consequence, there is a need for the methodology to support decision makers navigate such

dilemmas.

In order to evaluate and validate each of the aforementioned criteria, an experiment
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needs to be set up, as discussed in the following section. The goal is to generate results that

will be used to assess each criterion, and consequently validate the Overarching Hypothesis.

9.2 Experiment Setup

The proposed methodology aims at improving the development of emerging markets by

supporting both the exploration of large design spaces and decisions under evolving uncer-

tainty in requirements. As discussed in Chapter 1, suborbital vehicles are representative of

such emerging markets. Consequently, they are used as a test bed to validate the Overar-

ching Hypothesis. In particular, the objective of the experiments is to assess the ability of

the proposed methodology to meet the aforementioned criteria and consequently support

decision makers in developing a profitable suborbital program. This section first provides an

overview of the different steps of the experimental apparatus. Finally, the implementation

of each of these steps is detailed.

9.2.1 Overview of the Experimental Apparatus

The experimental apparatus is based on the methodology discussed in Chapter 8 and

displayed in Figure 110. The following sections discuss how the relevant experiments are set

up within the context of each of the steps of the proposed methodology: establishment of the

decision criteria, definition of the design space, alternative evaluation, and decision-making.

9.2.2 Step 1: Establish the Decision Criteria

While numerous potential decision criteria have been identified in Chapter 4, this ex-

periment focuses on safety, NPV, and passenger experience. Indeed, those three metrics

will ensure that the program is compliant with the regulations, while being attractive, and

economically viable. It is assumed that all the phases of the vehicle life-cycle (research and

development, manufacturing, and operations) are handled by a single company.

Five uncertainty sources are considered: maximum acceptable load factor, maximum

altitude reached by the vehicle, demand, duration of the development phase, and risk of

catastrophic failure. The models developed for the first four sources of uncertainty are pro-

vided in Table 50. In order to reduce the computational time, the membership functions
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Figure 110: Overall methodology

are modeled by only parameters: the mean value and the standard deviation. In addition,

only the standard deviation is modeled with a time-dependent scaling factor.

Table 50: Model of the various uncertainty sources

Parameters
Maximum
altitude

Maximum
load factor

Demand
Development

time

Distribution Trapezoidal Trapezoidal Triangular Triangular

Mean 100 km 4.5 g
15,000

passengers
6 years

Standard
deviation

16 km 0.3 g
4,000

passengers
0.5 year

Time-
dependence

Exponential
with a 3-year

half life

Exponential
with a 3-year

half life

Exponential
with a 10-year

half life
Constant

Figure 111 displays the notional evolution of the standard deviation over time for a

three-year and a ten-year half life evolution. As shown, uncertainty distributions with a

three-year half life only have a 10% uncertainty after ten years, while the ones with a

ten-year half life still have 50% of their uncertainty at that time.
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Figure 111: Evolution of the different standard deviations over time

The risk of catastrophic failure is modeled as a simple event with a probability of oc-

currence pf , which is a function of the risk level. It results in a standard deviation SDf on

the NPV as described in Equations 162 and 163, where RL is the risk level of the vehicle

and Cf the impact of the failure on the NPV [313].

pf =
1

105
RL (162)

SDf =
√

pf (1− pf )Cf (163)

Finally, it is assumed that all variables that are subject to uncertainty are independent

so that their covariances are equal to zero. As a consequence, Equation 148, which is used

to propagate uncertainty through the design framework, can be simplified and rewritten as

Equation 164, where σ2
i is the variance of xi and gi the partial derivative of f with respect

to xi.

Var(X) =
n
∑

i=1

g2i (µ)σ
2
i (164)
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9.2.3 Step 2: Define the Design Space

Based on the methodology described in Chapter 5, the definition of the design space

follows a five-step process that will be detailed in this section. Once the system has been de-

composed, the software ENVISAGE is used to define all possible options, ensure feasibility,

infuse design variables, and generate feasible variable-oriented architectures.

9.2.3.1 Decompose the System

The system decomposition consists in breaking down the main objective into functions.

Figure 112: Functional decomposition of the system
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For this experiment, the main objective is to develop a profitable suborbital program.

This objective is then broken down into two main sub-objectives: to carry passengers and

to ensure profitability. Figure 112 displays the detailed functional decomposition of the

problem based on the analysis performed in Section 5.3.

9.2.3.2 Define Possible Options

The different options specific to each function can be easily identified through a mor-

phological analysis. Figure 113 shows the morphological matrix created using the software

ENVISAGE. Compared to the work done in Section 5.3, some options have been removed

to match the capabilities of the developed design framework. New program and business-

related features such as the number of vehicles used, the number of launches per month, the

debt ratio, and the ticket price have also been added. The updated morphological analysis

opens a design space of around 900 million possible combinations.

Figure 113: Morphological matrix created with ENVISAGE
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9.2.3.3 Ensure Feasibility

The compatibility between options is set based on the authors’ knowledge and judgment.

For example, a slender body cannot take off or land horizontally. In addition, there is no

incentive to carry jet engines if the vehicle is launched from an aircraft or from a balloon.

Other similar considerations are made to build the compatibility matrix (Figure 114). Once

completed, ENVISAGE is executed in order to extract all feasible alternatives.

Figure 114: Compatibility matrix created with ENVISAGE

A list of around 47 million feasible alternatives is provided, as displayed in Figure 115.

Accounting for the compatibility between options results in dividing the number of alter-

natives to be investigated by around 20.
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Figure 115: List of feasible alternatives generated with ENVISAGE

9.2.3.4 Infuse Design Variables

This step aims at defining the design variables useful to define each function and to

allocate these variables to their specific option. Figure 116 displays the allocation of the

wing variables to the different options. The same process is repeated for each function.

9.2.3.5 Generate Feasible Variable-Oriented Architectures

Once the design variables are listed and assigned to the corresponding options, EN-

VISAGE is executed and four feasible architectures are identified. A summary of the ar-

chitecture generation process is provided in Figure 117. Starting with about 900 million

total combinations, the integration of the compatibility matrix within the process allows

designers to divide the number of alternatives to be investigated by a factor of 20. Grouping
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Figure 116: Infusion and allocation of design variables

all alternatives defined by the same design variables into architectures further enables to

reduce the number of architectures to be optimized to four. Doing so allows for the number

of discrete algorithms to be set to be reduced by a factor of 2× 108.

895 million total
combinations

47 million feasi-
ble alternatives

4 feasible
architectures

Create architectures

Ensure feasibility

Figure 117: Summary of the architecture generation process

The application of the proposed approach on suborbital vehicles shows that all suborbital

vehicles can be grouped into four architectures, as described below:

• Architecture 1: slender vehicles that take off vertically without jet engines

• Architecture 2: winged vehicles that take off from the ground horizontally or vertically
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without jet engines

• Architecture 3: winged vehicles that take off from the ground with jet engines

• Architecture 4: winged vehicles without jet engines launched from an aircraft and

that lands horizontally

9.2.4 Step 3: Evaluate Alternatives

All generated alternatives are evaluated using a two-step process. The design framework

developed in Chapter 6 is first used to evaluate passenger experience, vehicle safety, and

vehicle life-cycle costs. Then, a program framework is used to determine the NPV based

on the outputs from the design framework and additional business variables. Figure 118

summarizes the modeling and simulation environment used for this experiment.
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Figure 118: Overview of the modeling and simulation environment
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9.2.4.1 Design Framework

As described in Chapter 6, the design framework follows a modified MDF structure

and is composed of six disciplinary modules: weight/size, aerodynamics, trajectory, propul-

sion, economics, and safety. The design framework requires 27 vehicle variables, 7 mission

variables, and 4 constraints, as described below:

• Vehicle variables: presence of wing, presence of horizontal tail, presence of vertical

tail, presence of jet engines, fuselage base diameter, length of the back part, length

of the front part, chamber pressure, nozzle expansion ratio, propellant, thrust of the

rocket engine, number of jet engines, thrust of the jet engines, bypass ratio, presence

of afterburner, turbine inlet temperature, wing surface area, wing thickness-to-chord

ratio, wing sweep angle, wing aspect ratio, wing taper ratio, vertical tail sweep angle,

vertical tail aspect ratio, horizontal tail sweep angle, horizontal tail aspect ratio, seat

pitch, and fuselage diameter.

• Mission variables: take-off mode, landing mode, transition altitude, number of pilots,

maximum altitude, number of passengers, and duration of the program.

• Constraints: maximum load factor, maximum dynamic pressure, maximum tempera-

ture, and length of the runway.

The six disciplinary modules are described below:

• Weight/size: determine both the weight and the dimensions of each component of the

vehicle.

• Aerodynamics: determine the aerodynamic coefficients of the vehicle.

• Trajectory: determine the best trajectory for a given vehicle and propulsion system.

• Propulsion: determine the propulsion characteristics required to compute the trajec-

tory.

• Economics: determine all life-cycle cost components of the vehicle.
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• Safety: determine the risk level of the vehicle.

An intermediate optimizer that groups the trajectory and the propulsion modules is also

developed to enforce the design constraints and reduce the number of feedback loops. The

design framework is able to characterize the flying, safety, and economic performance of

each vehicle. In addition, a program framework is needed to optimize the overall suborbital

program with respect to profitability, as described in the next section.

9.2.4.2 Program Framework

In order to process the business-related and program-related parts of the analysis and

optimization, a program framework composed of four modules is developed. In order to op-

timize the program at a high-level, four business-related variables are selected, as described

below:

• Ticket price: the price to pay per person per flight.

• Number of flights per year: the number of flights performed by each vehicle each year

in order to best fit the demand. This number is limited to 104 (or 2 flights per week).

• Number of vehicles: the number of vehicles to produce.

• Debt proportion: the relative amount of debt taken by the company compared to the

sum of debt and equity taken. While taking on some debt can have advantages, it

can become unprofitable as the interest rates become higher.

This section describes the model used for each discipline: demand forecast, production,

life-cycle costs and revenues, and financial analysis.

Pricing and Demand Forecast

As presented in Section 1.1.1.1, the demand for commercial suborbital flights is highly

sensitive to ticket price. In order to find the optimum design, it is important to quantify

the potential demand and its sensitivity. For that purpose, many studies have already been

conducted to assess the short and medium-term suborbital market for space tourism [31, 86,
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163, 188, 250, 435]. Results from surveys conducted by Airbus Group (previously EADS),

Virgin Galactic, and the Futron Corporation are used, as shown in Figure 119.
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Figure 119: Potential market growth for suborbital flights [31, 163, 250]

While these data are outdated, it is assumed that the demand will follow the same trend

once the first vehicle has been certified. This forecast assumes a ticket price that drops from

$100,000 to $50,000 per flight and per passenger during the first five years. Based on these

data and the price sensitivity identified by the Tauri Group [435], Equation 165 provides

the model of the annual demand Nd as a function of the ticket price tp in 2015 U.S. k$ used

in the proposed scenario.

Nd (tp) = 30.894 [739 exp (−0.01149tp) + 74.1 exp (−0.001286tp)] (165)

Figure 120 shows the developed model for the price sensitivity of the demand for the com-

mercial suborbital market.

The revenues that can potentially be generated by the commercial suborbital market are

displayed in Figure 121. Ideally, around $930 million can be generated annually with 8,500

passengers for a ticket price at around $110k. Figure 121 also shows that two attractive

segments can be identified. The first segment corresponds to high-frequency and relatively
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Figure 120: Price sensitivity of the demand for the commercial suborbital market

affordable flights (around $110k). Assuming a capacity of four to five passengers per vehicle,

this segment corresponds to about 1,850 flights per year (or five flights per day performed

by all available vehicles).

Figure 121: Potential revenues generated by the commercial suborbital market

The second segment corresponds to low-frequency and expensive flights (around $750k).

Based on the same assumptions, this segment only requires 200 flights per year (or one flight
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every two days). The potential revenues generated by 880 passengers can reach around $660

million. Based on this analysis, two major strategies tend to emerge:

• Affordable and high-frequency flights that aim at democratizing the suborbital market.

• Expensive and low-frequency flights that aim at keeping the suborbital market for

wealthy customers.

Production and Capacity

The production model implemented in this experiment relies on a simplified approach.

Given a requested number of vehicles to produce, the company starts producing them

sequentially from Year 6 (after 5 years needed for R&D), while respecting a constrained

maximum production rate per year (5 vehicles/year).

As production dictates capacity, the overall capacity can then be computed using Equa-

tion 166 that states that the demand NPAX,k the company can fulfill at year k is the product

of the passenger capacity of the aircraft nPAX , the number of flights per vehicle per year

nflights, and the number of suborbital vehicles nvehicles,k available at year k.

NPAX,k = nPAX .nflights.nvehicles,k (166)

At the end of the program cycle, at Year 17, the number of vehicles available is assumed

to decrease by a quarter of the maximum capacity, as vehicles start being retired.

Life-Cycle Costs and Revenues

Once demand, production, and capacity are known, it is possible to determine the time

distribution of the costs and revenues during the life-cycle of the program using the distri-

bution of all life-cycle cost components outputted by the design framework, as described

below:

• Costs: Costs stem from four different categories: RDT&E, production, operations,

and carrier aircraft.
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– RDT&E costs: the total amount of RDT&E costs is directly given by the design

framework. By emulation from ALCCA [307], the development period is assumed

to be six years, with the cost distribution being 5%, 20%, 20%, 20%, 20%, and

15%, as displayed in Figure 122.
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Figure 122: Distribution model of RDT&E costs

– Production costs: production costs model the cost of manufacturing the different

vehicles that are created during the program life-cycle. The design framework

provides the production cost per unit assuming that 20 vehicles are produced in

order to ensure that the maximum demand can be satisfied with a one-passenger

vehicle. In order to account for the learning curve effect, the unit cost is corrected,

by moving up or down along the learning curve. Once the unit cost is known, the

distribution of costs from ALCCA is replicated, by setting the cost of producing

each aircraft to 40% of the unit cost the year preceding production, and 60% the

year the vehicle is produced.

– Operating costs: operating costs represent all the costs needed to operate the

vehicles during the operation phase of the life-cycle. While the operating cost

components per flight are provided by the design framework, it assumes a fleet

of 20 vehicles flying a given number of flights per vehicle per year. These costs
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are corrected, and the total operating costs per year are calculated.

– Carrier aircraft costs: carrier aircraft costs represent a non-recurring expense

related to the purchase of an aircraft that will carry the vehicle to a sufficient

altitude before releasing it.

• Revenues: revenues directly depend on demand Nd and capacity NPAX , as well as

the ticket price per passenger tp. For each year k, revenues Rk are determined using

Equation 167.

Rk = min(NPAX,k, Nd,k)× tp (167)

Financial Analysis

The goal of the financial analysis is to compute the NPV, as well as some other financial

metrics of interest.

As discussed in Chapter 4, the NPV can be computed using Equation 168, where N is

the number of periods, FCFk the cash flow at each period k, and i the discount rate.

NPV =
N
∑

k=1

FCFk

(1 + i)k
(168)

FCFk can be computed from the life-cycle costs and revenues obtained in the previous

module. Indeed, the general equation for FCF is given in Equation 169, where EBITDA

is the Earnings Before Interests, Taxes, Depreciation, and Amortization (EBITDA) (which

can be assumed to be revenues minus operating costs), Ctax the amount of taxes paid,

∆NWC the change in Net Working Capital (NWC), which is assumed to be equal to zero,

and Capex the capital expenditure, which is the production costs plus the RDT&E costs.

FCF = EBITDA− Ctax −∆NWC − Capex (169)

As a result, FCFk can be expressed as a function of revenues at period k (Rk), and

total costs at period k (Ck), as shown in Equation 170. As the free cash flow equation does
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not include interest rates, depreciation, and amortization, they should not be included in

the total costs.

FCFk = Rk − Ck (170)

As commonly done by investors, the discount rate i is assumed to be equal to the

Weighted Average Cost of Capital (WACC). The latter represents the cost of a firm’s

capital where each category of capital is proportionately weighted (common stock, preferred

stock, bonds, long-term debt, etc.). It can be calculated using Equation 171, where E is

the equity, D the debt, re the cost of equity, rd the cost of debt, and τ the corporate tax

rate.

WACC =
E

D + E
re +

D

D + E
rd(1− τ) (171)

While the official corporate tax rate is fixed at 35% in the U.S., the actual corporate tax

rate paid by the company can be different. For example, a company making zero profits

before interests and taxes on a specific period will not pay any tax for this period, and

therefore will not be able to deduct any debt interest from its taxes. Companies also have

various ways and tools to decrease the amount of tax they pay. The calculation of the

WACC also involves the costs of debt and equity.

The cost of equity re is commonly determined using the Capital Asset Pricing Method

(CAPM) introduced by Sharpe [394] and Lintner [260]. The coefficient “beta” β of the

company has to be known initially (measure of the volatility, or systematic risk, of a security

or a portfolio in comparison to the market as a whole), as well as the market risk premium

E [rm − rf ], which represents the surplus of return that investors are expecting from the

market compared to U.S. treasury bonds, due to its riskiness. The CAPM method is

presented in Equation 172.

re = rf + β E [rm − rf ] (172)

If the beta coefficient is not known, it is possible to find the levered beta βL using the
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average unlevered beta βU of equivalent companies using Equation 173. The unlevered

beta, or asset beta, is the beta of a company assuming zero debt, while the levered beta, or

equity beta, includes financial leverage as there is a positive correlation between beta and

the amount of debt a company has in its initial financial structure [102]. This method also

enables trade studies to find the optimal capital structure of a company.

βL = βU

(

1 + (1− τ)
D

E

)

(173)

In this particular problem, as most suborbital companies are private, it is hard to find

comparable companies’ betas. For that reason, an unlevered beta of 1.1 is assumed, which

reflects a higher risk for these companies, even before being indebted.

In order to determine the cost of debt rd, the ratings given to the company by ma-

jor credit rating agencies such as Standard and Poor’s, Moody’s, and Fitch Group are

used [299]. Based on these ratings, it is then possible to determine the expected yield

spread for the corporate bonds, as displayed in Table 51. Fairly intuitively, the better the

credit rating, the lower the yield spread. This yield spread ∆r is then added to the yield of

the U.S. treasury bonds’ yield, often considered as a representation of the risk-free rate rf ,

as displayed in Equation 174 [129, 147]. As the debt is assumed to be issued for the whole

duration of the project, the most recent estimates of the default spreads are used.

rd = rf +∆r (174)

Table 51: Yield spreads based on credit ratings on November 2015 [147]

AAA AA A BBB BB B

0.76% 0.95% 1.20% 2.18% 3.88% 6.20%

While this method is sufficient to compute rd for a rated company, it does not account

for the variations of credit rating when a company significantly changes its debt level, and

does not enable to compute the yield spread for a notional company without official ratings.

In this experiment, the company does not have yet a rating. Thus, an additional analysis
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has to be made.

To overcome this problem, the notion of Interest Coverage Ratio (ICR) is introduced.

The ICR can be computed as the ratio of the Earnings Before Interests and Taxes (EBIT)

of a company over the amount of interests it pays, as shown in Equation 175.

ICR =
EBIT

Interests
(175)

In other terms, the ICR shows the ability of a firm to pay for its interests at every

period. The ICR can be directly related to credit rating and default spread. Indeed, the

easier for them it is to pay, the more confident creditors are that the company will not

default. Table 52 shows the relation between ICR, credit rating, and default spreads [102].

Table 52: Credit rating and default spread in January 2016 [102]

Interest coverage ratio is
Rating Spread

Greater than ≤ to

12.5 100000 Aaa/AAA 0.75%
9.5 12.499999 Aa2/AA 1.00%
7.5 9.499999 A1/A+ 1.10%
6 7.499999 A2/A 1.25%
4.5 5.999999 A3/A- 1.75%
4 4.499999 Baa2/BBB 2.25%
3.5 3.9999999 Ba1/BB+ 3.25%
3 3.499999 Ba2/BB 4.25%
2.5 2.999999 B1/B+ 5.50%
2 2.499999 B2/B 6.50%
1.5 1.999999 B3/B- 7.50%
1.25 1.499999 Caa/CCC 9.00%
0.8 1.249999 Ca2/CC 12.00%
0.5 0.799999 C2/C 16.00%

-100000 0.499999 D2/D 20.00%

To simulate a suborbital vehicle company, it is assumed that creditors will not have

great confidence in the chances of success. Therefore, they would not grant more than a

BBB rating, which still belongs to the investment grade category.

One can note that, in this implementation, a series of linear functions is used to ensure
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continuity, rather than the suggested step functions. Moreover, an iterative calculation

must be adopted. Indeed, the ICR depends on the amount of interests paid. The amount

of interests paid depends on the default spread, itself depending on the ICR. Therefore, the

computation of ICR and default spread is circularly run until convergence and the results are

presented in Figure 123 for both average companies (with a market capitalization smaller

than $5 billion) and a suborbital company.
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Figure 123: Model of the default spread as a function of the interest coverage ratio

The integration of all the aforementioned modules into a single modeling and simulation

environment allows designers to estimate the flying, economic, and safety performance of

all suborbital vehicles. This information will be used by the decision-making environment

to support decision makers in the development of future suborbital programs, as discussed

in the next section.

9.2.5 Step 4: Make Informed Decisions

Each piece of the decision-making process has been developed and discussed in Chap-

ter 7. First, based on the architecture definition given by the design space definition step,

all non-dominated solutions are determined using the evolutionary multi-architecture multi-

objective optimization algorithm developed in Section 7.2. Then, requirement uncertainty

is infused in the process using fuzzy set theory. This technique allows designers to model
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each uncertainty source by a mean value and a standard deviation. The last step of the

analysis consists in adding time dependence to the standard deviation of each uncertainty

source. All these optimization steps feed into a decision module that provides traceable

and quantitative information to decision makers. The information presented provides the

ability to conduct trade-offs, identify trends, and prioritize objectives using MADM tech-

niques. Finally, a dynamic and parametric visualization environment is developed to help

designers get an overview of the selected concept(s). The overall decision-making process is

presented in Figure 124. The implementation of each of these elements is provided in this

section.

σ

𝜎 = 𝑓(𝑡)

𝜎, 𝜇

σ

Figure 124: Overview of the decision-making process

9.2.5.1 Evolutionary Multi-Architecture Multi-Objective Optimization Algorithm

The optimization is based on 30 variables: 21 vehicle variables, 5 mission variables, and

4 business variables. Table 53 presents all variables used in the optimization along with their

ranges and corresponding architectures. As discussed in Section 6.5, three main constraints

are added to the optimization: maximum dynamic pressure, maximum load factor, and

maximum temperature.

Two series of optimization have been executed in order to produce both two-dimensional

and three-dimensional Pareto frontiers. The configuration parameters specific to each series

are described in Table 54.
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Table 53: Definition of the design variables used in the optimization

Variables Ranges
Architectures

1 2 3 4
V
e
h
ic
le

Propellant 1, 2, 3, 4, 5, 6, 7, 8 ! ! ! !

Nozzle expansion ratio [2; 100] ! ! ! !

Rocket engine chamber pressure (MPa) [2; 12] ! ! ! !

Rocket engine thrust (kN) [50; 700] ! ! ! !

Number of jet engines 1, 2, 3, 4 !

Jet engine thrust (kN) [5; 100] !

Bypass ratio [0; 1] !

Afterburner Yes, No !

Turbine inlet temperature (K) [1, 500; 2, 500] !

Diameter of the fuselage base (m) [0; 1] ! ! ! !

Length of the aft fuselage (m) [0.1; 1] ! ! ! !

Length of the front fuselage (m) [1; 5] ! ! ! !

Wing surface (m2) [10; 100] ! ! !

Wing thickness-to-chord ratio [0.08; 0.14] ! ! !

Wing sweep angle (rad) [0; 1.4] ! ! !

Wing aspect ratio [1; 6] ! ! !

Wing taper ratio [0; 1] ! ! !

Vertical tail aspect ratio [1; 6] ! ! !

Vertical tail sweep angle (rad) [0; 1] ! ! !

Horizontal tail aspect ratio [1; 6] ! ! !

Horizontal tail sweep angle (rad) [0; 1] ! ! !

M
is
si
o
n

Take-off mode 1, 2 !

Landing mode 0, 1 !

Transition altitude (km) [5; 18] ! !

Number of pilots 0, 1, 2 ! ! ! !

Number of passengers 1, 2, 3, 4, 5, 6, 7, 8 ! ! ! !

B
u
si
n
e
ss Debt proportion (%) [0; 100] ! ! ! !

Number of vehicles [0; 20] ! ! ! !

Ticket price (2016 U.S. k$) [20; 1, 500] ! ! ! !

Flights per month per vehicle [1; 10] ! ! ! !

9.2.5.2 Uncertainty Propagation

As discussed in Section 7.1, fuzzy set theory is used to propagate uncertainty through

the design and program frameworks.

The first step consists in using the uncertainty parameters defined in Step 1 to compute
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Table 54: Setup parameters of the optimization algorithm

Parameters 2D optimization 3D optimization

Objectives NPV, safety NPV, safety, passenger experience

Population 100 500

Maximum generations 60 100

the standard deviation of the NPV, which is used as another objective for the optimization

problem. The first derivative required to calculate the gradient is determined using the

Newton’s difference quotient, as suggested in Section 7.1, with a calculation-step h equal to

5%. Based on these data, the probability of having a positive NPV is also evaluated as it

can be used as a metric for program risk.

The second step consists in scaling each uncertainty source using time-based scaling

factors. Hence, time becomes another dimension of the optimization.

9.2.5.3 Decision Platform

The decision platform is composed of various types of plots that support multi-objective

trade-off analyses and trends identification:

• Pareto frontiers: two and three-dimensional plots that display the Pareto frontier of

solutions are created to highlight trade-offs between objectives. In addition, grouping

solutions with respect to different parameters such as architecture, propellant mixture,

and number of passengers supports the identification of key trends.

• Ternary plot: ternary plots facilitate the identification of dominant concepts.

• Multi-Attribute Decision Making: the probabilistic TOPSIS developed in Section 7.3

is applied to various scenarios.

• Parametric and dynamic visualization dashboard: the concepts of interest can be

visualized using the dashboard developed in Section 7.4, which links the results of the

selection process to the CAD software Catia.

• Concept description: once concepts of interest have been identified, a multi-disciplinary
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description is provided to quantify their performance and facilitate discussions.

The results generated by the proposed experiment are provided in the next section. The

performance of the proposed methodology will then be assessed using the validation criteria

identified in Section 9.1.

9.3 Results

In order to validate the proposed methodology and the Overarching Hypothesis, the

validation criteria identified in Section 9.1 are evaluated using the results provided by the

overall experiment.

9.3.1 Methodology Flexibility

To assess the first criterion, the flexibility of the methodology is evaluated. In partic-

ular, one must determine if alternatives evaluated using different design frameworks can

be systematically compared and optimized. From an optimization process’ perspective, a

design framework is exhaustively defined by four key elements:

• A set of inputs: each design framework requires a specific set of inputs. Each input

is characterized by a variable along with its specific range, within which the design

framework is valid.

• A set of outputs: the objective of the design framework is to perform an analysis in

order to provide a set of outputs to the users.

• A set of constraints: the design space that can be handled by a design framework

might be limited using a set of constraints.

• A black box: the models embedded are represented by a black box that uses both the

set of inputs and the set of constraints to generate the desired outputs.

By definition and for consistency purposes, if alternatives are compared, they must be eval-

uated against the same metrics. Hence, all design frameworks must have the same outputs.

In addition, the variable-oriented morphological analysis allows designers to systematically
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generate variable-oriented architectures that will feed into the proposed evolutionary multi-

architecture multi-objective optimization algorithm. This enables each architecture, char-

acterized by a specific set of variables and evaluated with a specific design framework, to be

embedded into a single optimization process to be systematically compared and optimized.

As a consequence, by construction, the proposed optimization algorithm can handle multi-

ple design frameworks and systematically compare and optimize all alternatives. This leads

to the validation of the first criterion:

Validation Criterion 1: Alternatives evaluated with different modeling and

simulation environments can be systematically compared and optimized.

9.3.2 Computational Efficiency of the Methodology

The validation of Criterion 2 requires the evaluation of the computational time required

for exploring the design space with both the proposed methodology and a full factorial

DoE of all alternatives identified during the design space definition. Indeed, those two

methodologies are the only ones capable of exhaustively covering the design space.

As detailed in Figure 115, there are 895,795,200 possible solutions. The evaluation of

each solution takes around four seconds if no design variables are infused. As a consequence,

using a full factorial DoE, the evaluation of all possible combinations would take around

3,583,180,800 seconds, or 114 years. If the proposed methodology is partially used to remove

all unfeasible combinations, the evaluation would still take around six years.

The time required to explore the design space with the proposed methodology depends

on two parameters selected by designers: maximum number of generations Ng and popu-

lation (number of individuals) of each stochastic optimization algorithm Np. Equation 176

provides the maximum evaluation time T ∗ required for the proposed methodology, where

tse is the time required to evaluate a single concept, and Na the number of architectures.

T ∗ = NgNaNptse (176)

While the infusion of design variables increases the evaluation time of a single alternative

from four seconds to twelve seconds, it also allows designers to consider an infinite number
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of solutions. Since four architectures have been identified for suborbital vehicles, Table 55

shows the computational time required for multiple combinations of population and maxi-

mum number of generations. This assumes that all architectures have been optimized with

the maximum number of generations.

Table 55: Required execution time of the proposed methodology (days)

Maximum number of generations

100 200 500 1,000

P
o
p
u
la
ti
o
n

100 5 11 28 56

200 22 56 111

500 139 278

1,000 555

Based on the guidelines provided by German [171], one can assume that 200 individuals

are enough to get accurate results. In addition, a maximum number of generations equal to

500 is also suggested by Michalewicz et al. [183, 295]. Using these guidelines, the evaluation

of the four architectures requires around 56 days. Hence, the proposed methodology highly

decreases the computational time while also increasing the number of concepts considered.

This leads to the validation of the second criterion:

Validation Criterion 2: The proposed methodology decreases the compu-

tational time by a factor of 750 while also increasing the number of concepts

investigated.

9.3.3 Design Space Coverage Capabilities

In order to validate Criterion 3, the capabilities of the proposed methodology are com-

pared to two other approaches: the DoE and the single-architecture optimization. The first

approach simulates a high-level qualitative exploration of the design space and the second

one an optimization based on a baseline selected by experts.
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9.3.3.1 Comparison with a Design of Experiments

One of the most popular techniques for design space exploration is the DoE. This

technique consists in optimally covering the design space by generating points, which follow

a specific patterns. Latin Hypercube DoEs are usually used as they provide a good coverage

of the interior of the design space. In order to compare the performance of such methodology

with the proposed methodology, a DoE of 6,000 points is individually performed for each

architecture. This corresponds to the maximum number of points that can be reached

by the proposed algorithm. While surrogate models are usually created to improve the

performance of DoEs, it is not suitable for complex problems. Since there are discrete and

categorical variables, one set of surrogate models would have to be created and validated

for each combination of categorical/discrete variables. As a consequence, the results of the

DoE are directly compared to the ones obtained with the proposed algorithm. In particular,

the Pareto frontiers of points optimized with respect to both NPV and safety using both

techniques are displayed in Figure 125.
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Figure 125: Comparison between the proposed methodology (blue) and the DoE (red)
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As shown in Figure 125, the Pareto frontier generated by the proposed algorithm (blue)

provides better results. Indeed, none of the points generated by the DoE is non-dominated.

In addition, the average distance of the points on the Pareto frontier to the ideal solution

is 39% smaller for the proposed algorithm. The Pareto frontier generated by the proposed

methodology also has more that four times as many points as the one generated by the DoE

(44 against 10).

Focusing individually on each objective, it can be noticed that the application of the

proposed algorithm provides an improvement of $1.6 billion in NPV and 1.7 in risk level. In

particular, the DoE does not present any profitable concept, while the proposed algorithm

highlights a concept that can make up to $1.3 billion in NPV. This shows the additional

value that can be captured by the proposed methodology when compared to a DoE.

9.3.3.2 Comparison with a Single Architecture Optimization

In this section, the Pareto frontier of solutions obtained with the proposed algorithm is

compared to the one obtained using a single-architecture optimization methodology. This

approach consists in finding the best solution(s) for a given architecture that has been

defined by experts or based on high-level qualitative analyses. This approach is similar

to the results that can be obtained using the architecture optimization approach if two or

three architectures are selected. Figure 126 displays the Pareto frontiers obtained for each

architecture (·) along with the one obtained with the proposed methodology and colored by

architecture (◦).

As shown in Figure 126, none of the architecture results in a coverage as accurate and

extensive as the one provided by proposed methodology. Each architecture populates a

given region of the design space: Architecture 1 is the safest, Architecture 4 is the most

profitable, and Architecture 3 is an intermediate solution. Due to the complexity of the

problem, such information is not available at the beginning of the design process. Hence,

selecting an architecture based on experts’ judgment would have resulted in missing some

portions of the design space. For instance, if designers had selected Architecture 1, no

profitable solution would have been found. To quantify the differences between the two

348



200 300 400 500 600 700 800

−2

−1.5

−1

−0.5

0

0.5

1

x 10
9

Risk level

N
et

 P
re

se
n

t 
V

al
u

e 
($

)

 

 

Architecture 1

Architecture 2

Architecture 3

Architecture 4

Figure 126: Proposed methodology (◦) vs. single-architecture optimizations (·)

approaches, the metrics identified in Section 9.1.1 are calculated and compared in Table 56.

Table 56: Proposed algorithm versus single-architecture optimization

Parameters
Single-architecture optimization applied to ... Proposed

Architecture 1 Architecture 2 Architecture 3 Architecture 4 methodology

Best NPV

($ billion)
-0.6 0.6 0.8 1.3 1.3

Best risk

level
162 209 192 238 162

Number of

points
7 16 31 25 44

Average

distance
1.10 1.00 0.55 0.54 0.31

As shown in Table 56, the proposed methodology, which considers all architectures,
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outperforms all single-architecture optimizations. Indeed, the number of points on the final

Pareto frontier is larger for the proposed methodology. Similarly, the average distance to

the ideal solution is smaller. On average, selecting a single architecture for the comparison

would decrease the potential program NPV by 140% and the potential safety level of the

vehicle by 20%. Hence, this confirms that the proposed methodology highly improves the

coverage of the design space.

As shown in this section, the proposed methodology provides a better coverage of the

design space compared to other available approaches, as demonstrated by the comparison

of the different metrics: extremum values, average distance, and number of points. This

leads to the validation of the third criterion:

Validation Criterion 3: The proposed methodology provides a better cover-

age of large design spaces than current approaches.

9.3.4 Ability to Perform Trade-Offs and Identify Trends

When dealing with complex vehicles and multiple objectives, it is extremely important

for decision makers to be able to perform quantitative trade-off analyses. This capability

allows them to make traceable and informed decisions about which technologies to further

investigate and where to focus their research.

To evaluate those capabilities, this section focuses on the observations that can be made

using the results provided by the proposed methodology. First, a series of two-dimensional

Pareto frontiers are presented. Then, a series of Ternary plots are provided. Finally,

dominant concepts are identified through a probabilistic multi-attribute plot.

9.3.4.1 Two-Dimensional Trade-Offs

Figure 127 provides the final set of optimal vehicles identified from the Pareto frontier

of each architecture. The vehicles are colored by number of passengers and marked by

architecture. Figure 127 shows the diversity of possible configurations in the final set of

points, and illustrates the lack of clear trends that would facilitate any rapid decisions. One

can also note that not all vehicles are economically viable. In particular, among the 3,200

vehicles, only 37% provide a positive NPV, and 3% provide an NPV greater than $1 billion.
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These observations demonstrate the importance of providing decision makers with the

ability to perform quantitative trade-offs and to rigorously select the best concept(s) with

respect to their requirements. In order to identify various trends and make new observa-

tions, the vehicles are categorized based on their important features: type of propellant,

architecture, and number of passengers. The results are presented in Figures 128 to 133.
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Figure 127: Combination of Pareto frontiers originating from the different architectures
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Figure 128 provides the combination of all Pareto frontiers originating from the different

architectures colored by mixture of propellants. There are three main clusters, which corre-

spond to the type of propellant: solid, liquid, and hybrid. As expected, the most profitable

vehicles are powered by solid engines. However, these vehicles are also extremely risky. The

safest vehicles are powered by hybrid engines and some of them appear to be profitable. It

can also be noticed that none of the vehicles powered by liquid engines are profitable, while

all other propellant types are able to power profitable vehicles.
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Figure 128: Combination of Pareto frontiers colored by propellant

While all mixtures of hybrid propellants are present in the final set, LOx/Paraffin seems

to be the best. Indeed, this mixture outscores all other hybrid mixtures in terms of NPV

and risk level. Among all the liquid propellant mixtures, only one mixture is present on the

final set of vehicles.

Figure 129 shows the non-dominated points colored by type of propellant. Only two

mixtures are present on this Pareto frontier: LOx/Paraffin and solid propellant. Solid

engines show a higher NPV potential while LOx/Paraffin engines are safer. One can also

notice that even though there is a huge gap in risk level between those two mixtures, the
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difference in NPV is smaller (only 2% between the best vehicle powered by a LOx/Paraffin

engine and the worst powered by a solid engine). Therefore, research should be emphasized

on those two mixtures in order to improve future suborbital vehicles.
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Figure 129: Pareto frontier of solutions colored by propellant

Figure 130 provides the combination of all Pareto frontiers from each architecture. One

can notice that all architectures are represented in each of the two propellant clusters

previously identified. The trends are the same in both clusters: Architecture 1 is the

safest but the least profitable, Architecture 4 is the most profitable but the riskiest and

Architectures 2 and 3 are in-between. Figure 130 also demonstrates that Architecture 1 is

never profitable.

Figure 131 only displays the non-dominated points colored by architecture. It can be

noticed that Architecture 2 is not in the final set of optimum solutions. In addition, the

trends previously identified among architectures for each cluster remain identical for the

final Pareto frontier. Indeed, vehicles built around Architecture 1 appear to be the safest

but are not profitable. Concepts built around Architecture 4 are more profitable but riskier.

Figure 132 provides the combination of all Pareto frontiers from each architecture colored
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Figure 130: Combination of Pareto frontiers colored by architecture
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Figure 131: Pareto frontier of solutions colored by architecture

by number of passengers. Compared to other parameters, there is a lack of clear trends

and all capacities are present in both clusters. Figure 133 only displays the non-dominated
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Figure 132: Combination of Pareto frontiers colored by capacity

points colored by number of passengers. One can notice that there is an optimum around

a six or seven-passenger vehicle and that one and two-passenger vehicles are not present on

the final Pareto frontier. As a consequence, increasing the size of the vehicle to improve

its economic performance has its limit. The safest vehicles are characterized by an even

number of passengers. This can be explained by the presence of the two pilots and the

symmetry of the vehicle. Indeed, since vehicles are built around two-seat sections, having

an odd number of passengers and pilots would result in sub-optimal solutions.

9.3.4.2 Three-Dimensional Trends

In order to identify trends in a three-objective environment, ternary plots are used.

These barycentric plots display three variables, which sum to a constant value. The ad-

vantage of using a ternary plot for depicting dominance is that three variables can be

conveniently and continuously plotted in a two-dimensional graph. This allows decision

makers to identify trends and promising technological solutions (the ones that occupy a

large region of the priority space).
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Figure 133: Pareto frontier of solutions colored by capacity

Figure 134 displays the regions of the priority space dominated by each architecture.

For that purpose, the concept selection methodology developed in Section 7.3 has been used

to find the best concept for each combination of design priorities.

0 20

Figure 134: Ternary plot colored by architecture
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Figure 134 demonstrates that Architecture 3 covers the broader region of the solution

space, especially in the interior. In addition, Architecture 1 is suitable in the region where

the NPV is not important. Finally, Architecture 4 dominates the region where NPV is the

most important.

Figure 135 displays the regions of the priority space for which each propellant is consid-

ered to be the most suitable. It clearly shows that LOx/Paraffin (Propellant 6) is the most

robust propellant with respect to changes in design priorities. Indeed, it appears to be the

best everywhere, except for the region where safety does not have a high importance.

Figure 135: Ternary plot colored by propellant

Figures 136 and 137 display the best fleet size and the best ticket price, respectively with

respect to different combinations of design priorities. In general, the fleet is characterized

by a small number of vehicles (one or two), except for the highly profitable region where a

fleet of eight/nine vehicles is needed. For a large fleet, the ticket price can be lower: around

$175k. However, for one and two-vehicle fleets, the optimum ticket price rapidly increases,

mostly around $800k. This is perfectly consistent with the two potential segments identified

in Section 9.2.

Figure 138 displays the expected NPV in the priority space. As expected, for higher

NPV importance and lower safety and passenger experience importances, the expected NPV

358



Figure 136: Ternary plot colored by fleet size

Figure 137: Ternary plot colored by ticket price (U.S. k$)

increases. It can also be seen that for most of the combinations, the program can reach a

positive NPV, which is promising for the future suborbital market.

While this section aimed at facilitating the identification of the most promising tech-

nological solutions as well as some trends about the different concepts, the next section

focuses on the identification of dominant families of solutions that can be used as baselines
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for further analysis.

Figure 138: Ternary plot colored by NPV

9.3.4.3 Baseline Identification

In this section, it is assumed that the two main objectives of interest are the expected

program NPV and the risk level. As demonstrated in the previous sections, the importance

given to each objective highly impacts the optimum vehicle configuration. In order to

identify and highlight dominant configurations, a full factorial DoE is performed on the

importance of each objective. For each combination, the best concept is selected using the

ranking algorithm developed in Section 7.3. Figure 139 shows the evolution of both the

program NPV and the safety level with respect to design priorities.

The range covered by the potential values of NPV goes from -$1.3 billion to $1.25 billion.

Similarly, the safety level, defined as the maximum risk level minus the risk level of the given

concept, varies from 161 to 738.

As shown in Figure 139, there are four dominant concepts defined by four important

parameters: architecture, number of passengers, propellant, and number of vehicles in the

fleet. The four concepts are described in Table 57.
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Figure 139: Identification of dominant options with respect to design priorities

Table 57: Identification of dominant baselines

Parameters
Safe

concept

Mixed-safe

concept

Mixed-

profitable

concept

Profitable

concept

Architecture 1 3 4

Number of

passengers
8 6 7

Propellant LOx/Paraffin Solid

Number of vehicles 1 7

This table summarizes the key characteristics of the four baselines identified for future

suborbital vehicles along with the most promising technological solutions.
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As a consequence, this section demonstrates the capabilities of the proposed methodol-

ogy to perform quantitative trade-offs between objectives, to identify trends among options

and technological solutions, and to provide decision makers with the ability to extract dom-

inant configurations. This leads to the validation of the fourth criterion:

Validation Criterion 4: The methodology provides the capabilities to both

perform quantitative trade-offs and identify key trends among all alternatives.

9.3.5 Providing a Complete Picture of the Solutions to Support Informed De-
cisions

Supporting informed decisions requires to have pertinent and quantitative information

about potential solutions readily accessible. To assess the capabilities of the proposed

methodology to provide such solutions compared to other methodologies, the number and

the type of data output by each approach are compared. The methodologies considered

and compared include the typical aircraft design approach, the architecture comparison

approach, the architecture optimization approach, and the proposed methodology.

9.3.5.1 Typical Aircraft Design Approach

The typical aircraft design approach has been applied by numerous authors to design,

size, and optimize new suborbital vehicles. In general, they provide well-described solutions

along with 3D models or detailed analyses. For instance, Flittie et al. [149] have developed

and optimized a ground-launched, single-stage, hybrid propulsion suborbital launch vehicle

capable of providing up to ten minutes of microgravity. In this context, a Catia model has

been developed based on precise geometric data, as displayed in Figure 140.

Similarly, Gong et al. [177] have designed a Suborbital Reusable Launch Vehicle (SRLV)

concept powered by a RBCC engine that takes off and lands horizontally. The design and

optimization of the vehicle use a MDO articulated around eight modules: weight/size, pa-

rameter study, aerodynamic shape design, RBCC propulsion design, aerodynamics/propul-

sion integration, trajectory optimization, structural design and sizing, and TPS design and

sizing. Each module relies on extremely high-fidelity and accurate analysis codes such as
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CFD and FEM techniques. The optimized vehicle is described by a large number of pa-

rameters and various models have been generated throughout the design process. However,

safety and profitability considerations are often forgotten or made a posteriori. As a con-

sequence, even though the level of detail is sufficient to support well-founded solutions, the

type of analyses and data generated do not capture all critical program metrics.

Figure 140: Catia model of the HyFlyer [149]

9.3.5.2 Architecture Comparison Approach

The architecture comparison approach has been used by Sarigul et al. [377] to provide

recommendations about the best architecture for manned suborbital reusable launch ve-

hicles. For that purpose, they decomposed the problem into multiple functions: take-off

mode, atmospheric entry, landing mode, and propulsion type. For each of these functions,

they identified possible solutions based on a review of the state of the art. They also pro-

vided qualitative considerations about the performance of each possible solution in order to

highlight “four promising architectures that can successfully win the X-Prize:

• Vertical take-off, aerodynamic decelerator

• Vertical take-off, wings with wheel landing

• Some air launch, aerodynamic decelerator
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• Some air launch, wings with wheel landing”

They also provide vague considerations about safety and affordability. For example, based

on their qualitative analysis, they have concluded that: “there is no clear resolution at this

point on the architecture that would have the lowest cost to develop and operate”. Finally,

no quantitative data was provided about the size, weight, and configuration of the best

vehicle(s). Only scaling parameters such as the thrust-to-weight ratio and the propellant

mass fraction were considered. As a consequence, this approach does not provide sufficient

data to make quantitative, traceable, and informed decisions.

9.3.5.3 Architecture Optimization Approach

The architecture optimization approach, which consists in optimizing few architectures

and manually comparing them, has been developed and used by Villeneuve et al. [455] and

applied to the design of launch vehicles. Their analysis focuses on flying performance and

life-cycle costs. While this approach represents a first step towards the design of profitable

vehicles, it lacks program and financial variables. In addition, the optimization is based

on three architectures arbitrarly selected by experts. The number of design variables, and

consequently the accuracy of the modeling and simulation environment, does not supply

enough information to provide a complete picture of the vehicle from both a physical and

a business standpoints. Moreover, their methodology does not provide visualization capa-

bilities, as the concepts are only described using a list of design variables.

9.3.5.4 Proposed Methodology

Combining the data obtained from the different analysis modules, the proposed method-

ology provides detailed information about both the vehicle and the program configurations.

In addition, it outputs all the required data needed to make informed decisions in terms of

profitability and safety. To demonstrate these capabilities, a complete description output by

the proposed methodology is presented in Figures 141 to 144 for the four concepts identified

in Section 9.3.4: safe, mixed-safe, mixed-profitable, and profitable concepts.

364



Figure 141: Safe concept
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Figure 142: Mixed-safe concept
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Figure 143: Mixed-profitable concept
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Figure 144: Profitable concept
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The description provides all necessary decision metrics in terms of vehicle, economic,

and safety performance. In particular, the vehicle performance is described by the time

spent in microgravity, the seat pitch, etc. The economic performance is modeled by key

financial metrics used by investors to make important decisions: the program Internal Rate

Of Return (IRR), the expected NPV, the payback period, the sunk cost, the ticket price,

etc. Finally, the safety level of the vehicle is defined by a specifically developed scale that

evaluates the risk of catastrophic failure. As a consequence, the proposed methodology

provides decision makers with all the important metrics necessary to make informed and

traceable decisions.

In addition, as described in Section 7.4, a dynamic and parametric visualization platform

is developed to assist designers in their analyses, selections, and decisions. Indeed, the 3D

model provides designers with a high-level overview of the selected vehicle(s). By linking

the optimization results generated by the Matlab code to the CAD software, the Excel

dashboard helps multi-disciplinary teams work together and reach a consensus about the

decisions. As presented below, the 3D Catia model can be used for various and specific

purposes:

• Advertising and marketing images: the 3D view can be used for advertising and

marketing purposes as it presents the global aspect of the vehicle.

Figure 145: Example of 3D marketing image that can be generated
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Indeed, this platform provides decision makers with communication contents that can

be used to make promotional images or movies for fundraising or marketing purposes.

In addition, exploded views enable an exploration of all the subsystems and are also

often used for marketing purposes. In particular, it helps companies highlight the key

success factors and competitive advantages of their products. An example of such

images is displayed in Figure 145.

• Further analysis: the developed Catia model can also be used to perform further

analyses on the vehicle, as displayed in Figure 146.

Figure 146: Possible analysis using the Catia model [128]

Indeed, based on the specifications provided by the Matlab optimization, preliminary

and detailed designs can be conducted using Catia. A structural and stress analysis

module enables mechanical analyses on the different subsystems and on the system

as a whole. Hence, designers benefit from a preview of the structural resistance at a

conceptual level of the design. In addition, 3-views can be created to provide detailed

drawings. Section cuts also help visualize the interior subsystems and of the layout

of the different parts. Finally, producibility and manufacturability considerations can

also be made. An example of detailed drawings available is presented in Figure 147.

370



Figure 147: Vertical lateral section of the vehicle

• Rapid prototyping: the developed parametric CAD model can be used for rapid pro-

totyping. Indeed, the Catia model generated using the visualization dashboard can

be easily converted into a stereolithography (stl) file, which can be read by most 3D

printers. Examples of printed concepts are displayed in Figures 148 and 149. They

have been generated with the 3D-printer available at the ASDL.

Figure 148: 3D model of a winged-body vehicle with jet engines

All these observations result in the validation of the fifth criterion:

Validation Criterion 5: The proposed methodology provides decision makers

with a complete picture from both a physical and a business standpoints, hence

supporting informed decision-making.

371



Figure 149: 3D model of a slender-body vehicle

9.3.6 Performing Trade-Off Analyses Between Performance and Robustness

When dealing with emerging markets, the risk taken by stakeholders and decision makers

is usually important as the requirements’ uncertainty is high. To alleviate this risk, there

is a need for concepts to be robust to changes in requirements. However, increasing the

robustness tends to decrease the overall performance of the vehicle. As a consequence,

decision makers must have the capabilities to identify the key uncertainty sources, trade

performance against robustness, select a robust concept, and assess the risk related to each

decision.

9.3.6.1 Identifying the Key Uncertainty Sources

When starting a program, it is important to identify the main sources of risk. For that

purpose, a Latin Hypercube DoE is performed on the five uncertainty sources described in

Section 4: maximum altitude, maximum acceptable load factor, development time, demand,

and risk of catastrophic failure. Then, based on this DoE, a sensitivity analysis is performed

to highlight the big hitters. Figure 150 presents the sensitivity of the standard deviation of

the NPV with respect to the uncertainty sources. In particular, the relative impact of the

three key sources is presented. One can notice that uncertainty in mission requirements has

a higher impact than the one linked to the program.
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Figure 150: Sensitivity analysis of the uncertainty sources

9.3.6.2 Providing an Overview of the Time-Dependent Robustness of the Vehicles

Figure 151 displays the trade-offs that must be made between the concepts’ performance,

represented by the NPV, and its robustness (modeled by its standard deviation) at different

points in time. Indeed, as discussed in Section 9.2.2, uncertainty in requirements decreases

with time. As a consequence, the degree of requirements’ uncertainty in Year 1 is higher

than the one in Year 10. This results in an overall decrease of performance uncertainty over

time. Figure 151 provides the non-dominated concepts for multiple years into the program.

These time-dependent Pareto frontiers clearly show that concepts with a higher NPV are

riskier as the standard deviation of their NPV is higher.
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Figure 151: Uncertainty evolution with time

As expected, the standard deviation of the solutions tends to decrease with time. Indeed,

for a fixed value of NPV equal to $1 billion, its corresponding standard deviation decreases

from $2.7 billion in Year 1 to $1.7 billion in Year 3, and to $1 billion in Year 6. Over
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time, the new Pareto frontiers tend to dominate the previous ones and offer a better set of

solutions with respect to the two objectives: NPV and standard deviation of the NPV.

In addition, the proposed methodology also allows decision makers to identify points of

interest in the Pareto frontier at different points in time. In particular, in early stages of the

market, the Pareto frontier is characterized by a flat region around a NPV of $800 million

(Figure 151). This shows that, in this region, a small improvement in NPV results in an

important deterioration of its standard deviation. Hence, designers might want to select a

design in the left-hand side of this region. Similarly, all Pareto frontiers are characterized

by a sharp increase in NPV for small standard deviation concepts. This shows that a

great improvement in NPV can be made in this region for a small deterioration in standard

deviation (robustness). Moreover, it can be noted that for these concepts, time does not

help decrease uncertainty. Indeed, in order to decrease the program risk, the number of

vehicles built and the number of flights are to be reduced. Hence, even if there are important

changes in demand or in requirements, the impact on the NPV will not be too important.

This analysis is crucial for decision makers as it helps them trade the overall program

risk against the expected performance.

9.3.6.3 Selecting a Robust Concept

The application of the selection algorithm developed in Section 7.3 allows decision mak-

ers to easily include robustness in the set of decision criteria. In particular, the same

importance is given to expected NPV and robustness. The best concept is built around

Architecture 3 with one jet engine and carries five passengers with one pilot. The detailed

description of the robust concept is provided in Figure 152.
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Figure 152: Robust concept
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9.3.6.4 Comparing the Performance and Evaluating the Robustness of Selected Con-
cepts

Once several concepts of interest have been selected for further analysis, the method-

ology enables trades to be conducted between performance and standard deviation of the

performance. In particular, Figure 153 displays both the evolution of the probability to

have a positive NPV and the standard deviation of the NPV with time, for the five selected

concepts: safe, mixed-safe, mixed-profitable, profitable, and robust.
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Figure 153: Probability of positive NPV and standard deviation over time

Figure 153 shows that the standard deviation decreases over time for all the concepts

considered. In addition, one can notice that, while the safe concept has the highest standard

deviation at the beginning, its standard deviation becomes smaller than the ones of other

concepts when the requirements start to freeze. At that time, the profitable concept becomes

the most uncertain.

Figure 153 also highlights the fact that the probability of having a positive NPV does not
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always increase over time. Indeed, for concepts with an initial low probability of having a

positive NPV (safe concept), this probability decreases over time. On the contrary, concepts

with a high probability of having a positive NPV at the beginning tend to see this probability

increase over time. This can be explained by the fact that concepts with an initial low

probability of making profit have a negative average NPV. As uncertainty decreases, the

standard deviation tends to be smaller and the distribution tends to draw closer around

this negative value, consequently decreasing the probability of having a positive NPV. The

opposite phenomenon occurs for concepts with a high probability of having a positive NPV.

Finally, while the profitable concept has the highest probability of having a positive

NPV at the end (when requirements’ uncertainty is low), it only outperforms the robust

concept after Year 7. This analysis provides the best trade-off between risk and return in

terms of NPV at each point in time. This information is crucial when selecting the best

concept in the presence of a large amount of uncertainty in requirements. Indeed, using the

proposed methodology allows decision makers to highly increase the probability of designing

a profitable concept under uncertainty. In particular, at Year 1, the probability of designing

a profitable suborbital program is increased by around 10% when robustness is included in

the set of decision criteria.

9.3.6.5 Assessing the Impact of Including Robustness as a Decision Criterion

For simplicity, the previous concept selection only relied on two objectives: NPV and

standard deviation of the NPV. However, in complex solution spaces, more than one objec-

tive have to be traded against robustness. In this section, the methodology is used to select

the best concept with respect to multiple objectives. Table 58 summarizes the impact of

including more objectives on the overall characteristics of the vehicles.

Based on these data, the radar plot presented in Figure 154 has been created. The data

have been normalized from 0 (worst value of a given objective) to 1 (best value of a given

objective) in order to compare each objective.
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Table 58: Impact of including more decision criteria on the selected concepts

Parameters Safe Profitable
Profitable-

safe
Mixed

Importance NPV (%) 0 100 50 33

Importance safety (%) 100 0 50 33

Importance standard

deviation (%)
0 0 0 33

NPV ($ billion) -1.4 1.3 0.4 0.3

Risk level 162 738 193 193

Standard deviation of

NPV ($ billion)
4.04 3.89 3.84 1.06

Figure 154 shows the importance of including robustness in order to decrease the stan-

dard deviation of the selected concept. Figure 154 also demonstrates that including robust-

ness highly decreases the standard deviation of the best concept without deteriorating the

expected NPV and the safety by more than several percents. Hence, using the proposed

methodology allows decision makers to highly reduce the overall program risk without de-

teriorating its performance. Figure 155 presents the description of the mixed concept.
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Figure 154: Trade-off between performance metrics and robustness
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Figure 155: Mixed concept
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This section illustrated the ability of the proposed methodology to perform important

trade-offs between robustness and performance. In particular, its benefits in alleviating a

program risk due to customer uncertainty have been clearly demonstrated. This leads to

the validation of the sixth criterion:

Validation Criterion 6: The methodology provides the ability to easily trade

performance against robustness in order to alleviate the program risk.

9.3.7 Supporting Go/No-Go Decisions

One of the key capabilities of the developed methodology is to support informed go/no-go

decisions in the presence of evolving uncertainty in requirements. This section discusses and

illustrates such capabilities by evaluating the best possible performance under a maximum

risk, estimating the best start date of the program, and conducting time-dependent risk

and return analyses.

9.3.7.1 Evaluating the Best Possible Performance under a Maximum Risk Limit

Usually, decision makers tend to agree on a maximum program risk and then select the

best corresponding concept. In this section, the capabilities of the proposed methodology

in supporting such tasks is evaluated. For that purpose, a maximum standard deviation

of $1 billion is arbitrarily fixed and the best concept is selected over time that meets this

constraint. This aims at helping decision makers in evaluating the potential ROI of a specific

program while accepting a given risk.

For that purpose, Figure 156 provides the evolution of both the maximum potential

program NPV and its corresponding standard deviation over time. Indeed, at each point in

time (under a given degree of uncertainty), a constrained optimization problem is solved to

find the concept with the highest expected NPV whose standard deviation remains within

the limits.

As expected, the maximum potential NPV increases over time. The curve follows a

step function, where each jump corresponds to a change in the optimum concept. Indeed,

as time increases, more profitable concepts become feasible with respect to the uncertainty

constraint. Similarly, the standard deviation curve follows a saw-tooth pattern. For a given
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concept (flat region on the maximum NPV curve), the corresponding standard deviation

decreases with time. When a better concept is found, there is a jump in both curves and the

standard deviation curve reaches its maximum allowed value before decreasing again. The

large number of jumps in the curves shows that, when the degree of uncertainty decreases,

the optimum concept rapidly changes. As a consequence, it is crucial to benefit from a

flexible methodology that supports decisions over time.
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Figure 156: Optimum NPV under a maximum standard deviation of $1 billion

Figure 157 combines both the standard deviation and the expected return to evaluate

the corresponding probability of having a positive NPV.

As expected, on average, the probability of having a positive NPV tends to increase

over time. However, there are several drops in the curve, which show that optimizing for

the best NPV and for the highest probability of having a positive NPV is different.
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Figure 157: Probability of having a positive NPV for an optimum NPV

To evaluate this difference, Figure 158 presents the evolution of the highest probability

of having a positive NPV while meeting the aforementioned constraint on the standard

deviation of the NPV. Figure 158 shows that the optimum probability curve is monotonous

with respect to time, as the degree of uncertainty in requirements decreases.

The analysis performed in this section is crucial to support decision makers in their

trade-offs between risk and return when making go/no-go decisions. Hence, these results

demonstrate the ability of the proposed methodology to quantify the benefits of waiting

to start the program on the program profitability. In particular, the obtained results show

that waiting to start the program seems to allow for better and more profitable concepts.

However, this does not take into account the time value of money. Indeed, money now is

worth more than money in the future. The consequence of this observation is discussed in

the next section.

383



0 2 4 6 8 10
5

6

7

8

9

10

11

12

13

14
x 10

8

Years

M
ax

im
u
m

 N
et

 P
re

se
n
t 

V
al

u
e 

(U
S

D
)

0 2 4 6 8 10
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

M
ax

im
u
m

 p
ro

b
ab

il
it

y
 o

f 
p
o
si

ti
v
e 

N
P

V

Figure 158: Optimum profit probability under a maximum $1 billion standard deviation

9.3.7.2 Estimating the Best Program Start Date

The goal of this section is to assess the capabilities of the proposed methodology to

estimate the best start date of the program by trading potential returns with risks.

The effect of time on the objectives is ambivalent. On the one hand, waiting before

starting a program leads to better defined requirements, and consequently less risk. On the

other hand, delaying a program results in an opportunity cost, modeled by a reduction in

NPV. Hence, time has two adverse effects that need to be captured and traded.

In order to perform such trade-offs, a simple scenario is studied. Using the set of optimal

designs that was previously identified, an optimization is run. At each period of time within

a timeframe of 10 years, the maximal feasible NPV is computed, while enforcing an arbitrary

$1 billion standard deviation constraint on the NPV. Figure 159 shows the results of this

analysis.
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Figure 159: Evolution of the best expected NPV of future programs

As time goes by, the uncertainty associated with each concept progressively decreases,

and concepts with greater profitability become feasible, which in turn results in a step in

the largest feasible NPV. However, as time also reduces the NPV of each concept, it is

not certain that the maximum feasible NPV would increase with time. In the case of this

study, the maximum allowable NPV stems from a concept whose development should be

started in a bit less than three years, when regulations will become more predictable. This

optimum start date is highlighted by the red dashed line.

9.3.7.3 Conducting Time-Dependent Risk and Return Analyses

As mentioned in the previous section, the adverse behaviors of the risk (standard devi-

ation of the NPV) and return (NPV) with time require trade-offs to be made. On the one

hand, uncertainty decreases with time, as regulations and markets become more certain.

On the other hand, delaying a program results in an opportunity cost intrinsically captured
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by the NPV. This requires decision makers not only to select the best concept, but also to

determine the best start date of the program. The previous section discussed this type of

selection for a constraint representing an acceptable level of risk for the program. This idea

is extended beyond this analysis to support the selection of the best set of expected NPV

and NPV standard deviation for any program start time without constraint. In order to

better understand the underlying behavior of the optimum NPV and standard deviation

with time, Figure 160 displays the evolution of the Pareto frontiers for different values of

the program start time.

Figure 160: Pareto frontiers for different program start dates

As expected, waiting to start the program helps reduce its risk, but also limits the

maximum potential profits. Indeed, as time goes by, the curves are shifted both to the

left-hand side (smaller standard deviation) and to the bottom (smaller expected NPV).

Delaying a program can result in a significant enough reduction in uncertainty, making it
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relevant to consider the option of waiting.

In order to enable time-dependent trade-offs between risk and NPV, a single Pareto

frontier is computed. All the curves generated in Figure 160 are combined and only the

non-dominated points are kept. Figure 161 shows the result and provides the overall time-

dependent Pareto frontier between Year 0 and Year 10.
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Figure 161: Time-dependent Pareto frontier of risk and return

The obtained Pareto frontier is fairly continuous, facilitating sound decision-making.

Indeed, it provides decision makers with all the information required to make informed

go/no-go decisions at any point in time. In particular, this analysis helps them trade risk

against return while also supporting them in the selection of the best concept and start

date of the program. As expected, concepts with a low standard deviation (left-hand side

of the curve) tends to correspond to a late start date while concepts with a higher NPV

tend to have an earlier start date. As decision makers agree on a maximum risk (standard

deviation of the NPV) and a minimum return, Figure 161 helps them both optimize the

start date of the program and find the corresponding optimum vehicle. As aforementioned,

this analysis allows decision makers to find the vehicle corresponding to each point of the

Pareto frontier. For that purpose, the selection methodology described in Section 7.3 is

applied to find the best concepts for all possible combinations of relative importance given
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to the NPV and its standard deviation.

Figure 162: Identification of the baselines while trading performance against robustness

Figure 162 provides the main characteristics of such vehicles along with the start date.

Given the importance of the NPV (x-axis) compared to its standard deviation, both the risk

(standard deviation of the NPV) and the return (NPV) are displayed, along with the key

vehicle parameters. Figure 162 demonstrates that the Pareto frontier is mostly composed of

a few concepts with variable program start date. In other words, each concept represents a

segment of the Pareto frontier, rather than a single point. It also clearly shows, as expected,

that increasing the vehicle financial performance results in increasing the overall program

risk. Finally, this analysis shows that smaller vehicles with two or three passengers could

help alleviate the program risk by increasing the program robustness. Indeed, decreasing

the vehicle size alleviates the uncertainty related to the demand.

To conclude, throughout this section, it was demonstrated that the proposed methodol-

ogy has the capabilities required to support decision makers in making complex and risky

go/no-go decisions in presence of evolving uncertainty in requirements. In particular, it

allows them to both evaluate the best reachable performance under a maximum risk limit

and estimate the best start date of the program, along with the corresponding optimum
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vehicle. These observations lead to the validation of the last criterion:

Validation Criterion 7: The proposed methodology is capable of generating

the information required to support informed go/no-go decisions.

9.4 Summary

This section aims at summarizing both the characteristics and the capabilities of the

proposed methodology when compared to other existing design space exploration method-

ologies. For that purpose, the Overarching Hypothesis is first validated, along with the two

main Hypotheses established in Chapter 2. A parallel is then made between the steps of

the different methodologies. Next, the capabilities are compared with respect to the criteria

identified in Section 9.1. Finally, the new observations highlighted by the application of the

proposed methodology to suborbital vehicles are presented.

9.4.1 Hypothesis Validation

The Overall Experiment described in Section 9.2 implicitly incorporates Experiments 1

and 2. Hence, this section aims at validating Hypotheses 1 and 2, as well as the Overarching

Hypothesis.

9.4.1.1 Hypothesis 1: Design Space Exploration

As discussed in Section 2.1, validating Hypothesis 1 requires to ensure that the proposed

methodology enables new promising concepts to be rapidly identified in a design space

where alternatives are not necessarily defined by the same variables and/or evaluated with

the same modeling and simulation environment. In this context, Section 9.3.1 demonstrates

the ability of the proposed methodology to systematically optimize and compare alternatives

that are not defined by the same design variables and/or the same modeling and simulation

environment. In addition, Section 9.3.2 shows that the proposed methodology is more

efficient than other approaches in providing a complete coverage of the design space. Finally,

it has been demonstrated in Section 9.3.5 that the methodology has generated several

innovative and promising alternatives that have not been found in the literature. For

example, none of the existing concepts was built around a winged body powered by a
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hybrid rocket engine and three jet engines. All these observations lead to the validation of

Hypothesis 1.

VALIDATION HYPOTHESIS 1: IF all feasible alternatives are systemat-

ically generated using a variable-oriented morphological analysis AND IF

they are simultaneously compared and optimized using an evolutionary multi-

architecture multi-objective algorithm based on architecture fitness THEN

large design spaces can be better explored at a conceptual design level.

9.4.1.2 Hypothesis 2: Decision-Making Under Evolving Uncertainty in Requirements

As discussed in Section 2.2, to validate Hypothesis 2, one must ensure that the pro-

posed methodology is capable of both addressing evolving uncertainty in requirements and

supporting critical decisions. For that purpose, Section 9.3.4 demonstrates the ability of

the proposed methodology to perform important trade-offs that allow decision makers to

identify key design drivers and key trends. Section 9.3.5 also shows that informed decisions

are supported through the generation of well-described solutions that provide precious per-

formance, design, financial, and program information. It has been shown in Section 9.3.6

that the proposed methodology is able to perform rapid trade-offs between performance and

robustness, as well as forecasting the impact of decreasing uncertainty on these trade-offs.

Finally, Section 9.3.7 demonstrates the ability of the methodology to help critical go/no-go

decisions in the presence of evolving uncertainty in requirements. These observations result

in the validation of Hypothesis 2.

VALIDATION HYPOTHESIS 2: IF fuzzy set theory is used to propagate

requirements’ uncertainty whose magnitude has been modeled by scalable

time-dependent membership functions AND IF a Design of Experiments of

these scaling parameters is used to further create a TOPSIS THEN informed

decisions can be made under fuzzy objectives and evolving uncertainty in

requirements.

390



9.4.1.3 Overarching Hypothesis

Finally, the successful evaluation of all validation criteria presented in Sections 9.3.1

to 9.3.7 results in the validation of the Overarching Hypothesis.

VALIDATION OVERARCHING HYPOTHESIS: IF a variable-oriented mor-

phological analysis is used to feed an evolutionary multi-objective multi-

architecture optimization algorithm AND IF fuzzy set theory is used to para-

metrically propagate requirements’ uncertainty through a multi-disciplinary

physics-based modeling and simulation environment THEN large multi-

architecture design spaces can be better explored AND informed decisions

can be made under evolving uncertainty in requirements.

9.4.2 Methodology Comparison

While most of the design approaches are built around the generic top-down design

decision support process [67, 270, 384, 385], each of them has its specific methods to address

the different steps. This section aims at comparing the founding pillars of the existing

approaches with the ones of the proposed methodology, as displayed in Figure 163.

None of the existing approaches includes a method to efficiently model the degree of

uncertainty in both the requirements and the design constraints. Most of the robustness

analyses rely on Monte Carlo analyses based on uniform or normal uncertainty distributions.

In addition, none of the existing approaches supports a systematic generation of all feasible

alternatives, which can then be directly optimized and compared. In addition, there is a

lack of approaches that enable decision makers to both conduct trade-off analyses and rank

the concepts with respect to a given set of fuzzy objectives. Finally, only the proposed

methodology generates the required data to allow decision makers to dynamically visualize

all concepts of interest. As shown, the proposed methodology addresses more challenges

of the design problem and provides deeper analysis capabilities. As a consequence, the

proposed methodology offers a better approach for designing complex vehicles in both depth

and breadth.
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Figure 163: Comparison of the proposed methodology with existing approaches

9.4.3 Capability Comparison

This section benchmarks the capabilities of the different approaches with respect to the

seven criteria identified in Section 9.1, as described below and summarized in Table 59.
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• Criterion 1: optimizing and comparing different concepts with enough accuracy re-

quires the design approach to be flexible, which means that it is able to evaluate al-

ternatives with different modeling and simulation environments. The typical aircraft

design approach is specific to a single baseline and cannot be extended to multiple

design frameworks. The architecture comparison approach does not include a design

framework as it is based on qualitative data. Hence, only the architecture optimization

approach and the proposed methodology benefit from the required flexibility.

• Criterion 2: in order for the entire design space to be explored, the design approach

must be fast to run. As the architecture comparison approach is based on qualitative

data, it is computationally efficient. The typical aircraft design approach only analyzes

one concept but it uses high-fidelity tools, which are extremely long to set up and run.

All the other approaches have a medium computational efficiency as they have a lower

level of detail than the typical aircraft design approach but evaluate more concepts.

• Criterion 3: avoiding the risk of missing any opportunity requires the approach to

have a good design space coverage. The typical aircraft design approach only

covers a tiny region of the design space located around the baseline. On the one

hand, the architecture comparison approach generates points everywhere in the design

space but lacks of quantitative analysis. On the other hand, while the architecture

optimization approach alleviates the drawbacks of the two other methods, it only

generates a handful of baselines so that the coverage is not exhaustive. Hence, the

proposed methodology is the only one able to exhaustively cover the entire design

space.

• Criterion 4: to support decision makers, it is crucial to help them conduct trade-off

analyses. This requires quantifiable data, so the architecture comparison approach

cannot be used. In addition, both the typical aircraft design approach and the archi-

tecture optimization approach do not cover enough concepts to support such analysis.

The proposed methodology is the only one capable of generating quantifiable informa-

tion about enough concepts to enable such trade-off analyses and trend identification.
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• Criterion 5: to support informed decision-making, a complete picture must be pro-

vided. However, only the typical aircraft design approach and the proposed method-

ology generate enough data and are accurate enough to output a complete description

of the optimized concept from both a physical and a business standpoints.

• Criterion 6: when a large amount of uncertainty is present in the requirements, there

is a need to trade performance against robustness. This requires the uncertainty

to be modeled and propagated, as partially done in the architecture optimization

approach and the typical aircraft design approaches. The architecture comparison

approach is not accurate enough to enable such analysis. The proposed methodology

provides the modeling, propagation, and analysis capabilities to conduct such trade-

offs.

• Criterion 7: in order to alleviate the program risk, there is a need for the approach to

support informed go/no-go decisions. In particular, the evolving nature of require-

ments’ uncertainty has to be considered and analyzed to help decision makers find

the best start date of the program along with the corresponding vehicle. This type of

analysis has not been conducted yet in any existing approach.

Table 59: Comparison of the capabilities of the different methodologies

Criteria

Typical

aircraft design

approach

Architecture

comparison

approach

Architecture

optimization

approach

Proposed

methodology

Flexible !! !!

Fast to run ! !! ! !

Design space coverage ! ! !!

Trade-off analyses ! ! !!

Complete picture !! ! !!

Performance vs.

robustness
! ! !!

Go/no-go decisions !!
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In order to visualize the capabilities of the proposed methodology against the other

aforementioned methodologies, a radar plot is created and presented in Figure 164.

Flexible

Fast to run

Design
space

coverage

Trade-off
analyses

Complete
picture

Performance
vs.

robustness

Go/no-go
decisions

Typical aircraft design Architectures comparison
Optimization of few architectures Proposed methodology

Figure 164: Capabilities of the proposed methodology compared to existing approaches

Applying the proposed methodology allows decision makers to make new crucial obser-

vations about emerging markets, as discussed in the next section.

9.4.4 New Observations

The proposed methodology has been applied to the design of a profitable commercial

suborbital program and has provided new insights.

Indeed, the overall Pareto frontier provided in Figure 127 shows that the demand is

strong enough for a suborbital program to be profitable. In particular, the maximum

expected NPV that can be generated after 15 years is estimated at about $1.25 billion.

In addition, no technology gaps that would prevent the success of such market has been

395



identified. Even though the most profitable concepts tend to be risky, there is still a cluster

of relatively safe and profitable concepts. These concepts are built around Architectures

3 and 4, powered by a hybrid LOx/Paraffin engine, and carrying 6-7 passengers. The

analysis demonstrates that, while being the safest, vertical take-off and vertical landing

vehicles cannot be profitable for commercial suborbital tourism. The results also show that

both Architecture 2 and liquid propellants are not promising for such applications and can

be abandoned in favor of other types of technologies.

The robustness analysis demonstrates the importance of accounting for the program

risk, especially at the dawn of this new market. Indeed, using the proposed methodology to

select a robust concept would enable decision makers to increase the probability of making

profit by around 10% if they start the design early. Besides, including the variance of the

performance in the list of decision criteria enables to highly decrease the project risk by

around 72%, while only reducing its performance by around 10%.

The application of the proposed methodology to support go/no-go decisions also shows

that, if the uncertainty in requirements follows the assumed trends, the best start date of

the commercial suborbital program would be in 2019. This date provides the best trade-off

between opportunity and uncertainty-related risks.

Finally, a total of six concepts of interest have been identified as being potential baselines

for further detailed analyses. The performance-focused analysis highlights four dominant

concepts depending on the importance given to either safety or NPV. Accounting for either

robustness or passenger experience leads to two additional promising concepts.

As a consequence, the proposed methodology provides key insights on the future subor-

bital market. The previous analysis also demonstrates the additional value captured by the

proposed methodology when compared to traditional design space exploration approaches.
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CHAPTER X

CONCLUSION

10.1 Summary of the Research

Recent technological developments have resulted in the emergence of innovative and

complex advanced vehicles such as flying cars, suborbital vehicles, and hypersonic aircraft.

As discussed in Chapter 1, there are many challenges associated with the development

of the markets opened up by these new vehicles. In particular, these new markets are

characterized by a large multi-objective decision environment, where flying performance is

competing against economical viability, passenger safety, program risk, etc. The impact of

such objectives on the program’s ability to enter a new market requires economic, safety,

and robustness metrics to be considered in early design phases. In addition, the complexity

of these new vehicles gives rise to a large combinatorial space of possible configurations for

which no baseline has been established and experts’ judgment is highly limited by the lack

of experience. A successful market penetration requires designers to define an optimized

baseline and to identify both the main design drivers and potential technology gaps. An-

other major challenge is the presence of evolving uncertainty in requirements due to the

lack of experience and established regulations. Hence, flexible decision-making techniques

are needed to alleviate risks inherent to the launch of new programs. This research aims

at supporting the development of emerging markets by establishing a methodology that

enables a broad design space exploration at a conceptual level to select solutions against

unclear objectives and under evolving uncertainty in requirements.

A review of current design approaches in Chapter 2 highlighted a lack of efficient design

space exploration techniques. Current methods are indeed only capable of either comparing,

at a high-level, numerous architectures or optimizing a handful of alternatives with respect

to more detailed parameters. Moreover, while numerous robust design techniques have
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been developed in the literature, none has been found efficient enough to support informed

decisions under time-dependent uncertainty in requirements.

To bridge these gaps, a four-step methodology described in Chapter 3 and further de-

tailed in Chapters 4 to 7 is developed. The founding pillars of this methodology can be

directly mapped to the ones commonly used in the generic top-down design decision sup-

port process. Hence, while the approach followed in this research is generic, the specificity

of the proposed methodology and its unique capabilities rely on the methods implemented

to address each step. To demonstrate these capabilities, a proof-of-concept was developed

around the design of a profitable commercial suborbital program.

In Step 1 (establish the decision criteria), decision criteria are established that both

limit the available design space and are used to evaluate and compare the various design

alternatives. This step consists in mapping customer requirements to quantifiable and pre-

cise metrics. Design objectives are clearly defined, along with their evaluation methods. In

a multi-objective solution space, the relative importance given to each objective is modeled,

as well as its level of confidence. The design constraints that limit the design space are also

modeled using time-dependent membership functions. In particular, each constraint is de-

fined by a mean value, a standard deviation, and the evolution of these parameters over time.

In Step 2 (define the design space), alternatives covering the entire design space are

generated to be further optimized and compared. For that purpose, a new variable-oriented

morphological analysis combined with a compatibility analysis has been developed and

implemented into a generic tool named ENVISAGE. This method is built around a five-

step process, as described below:

1. Decompose the system into functions using a tree diagram: starting from the high-

level goal, functions are identified using a top-down functional breakdown.

2. Generate all possible combinations: a morphological matrix is used to list all possible

options for each function. This matrix is a two-dimensional representation of the
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system, where each row represents a function/feature of the system and each column

represents an option.

3. Ensure feasibility via a compatibility matrix: this square symmetric matrix is used to

define compatibility between each couple of options.

4. Define design variables for each function and assign them to their corresponding op-

tion(s).

5. Generate feasible architectures by grouping alternatives that are described by the

same variables.

When applied to suborbital vehicles, this method demonstrates great capabilities. Indeed,

starting with around 900 million possible combinations, the method identified 47 million

feasible concepts grouped into four architectures. While all existing concepts are included

in the list of feasible generated alternatives, the number of discrete optimization problems

that have to be executed are reduced by several hundred thousands. Moreover, the concepts

can be further optimized as concepts described by the same design variables are grouped

into well-described variable-oriented architectures.

In Step 3 (evaluate alternatives), the alternatives identified have to be systematically

evaluated in order to support quantitative analyses and trade-offs. A thorough literature re-

view revealed a lack of readily available modeling and simulation environments that enable

an accurate and rapid evaluation of flying, economic, and safety performance of all types of

suborbital vehicles at a conceptual design level. To bridge this gap, a sizing and synthesis

environment based on a modified MDF approach and using both empirical relations and

surrogate models was developed. This environment consists in six disciplinary modules:

weight/size, aerodynamics, trajectory, propulsion, economics, and safety. In addition, 26

design variables are required to define a concept. The environment was validated using

three existing concepts (New Shepard, RocketPlan XP, and SpaceShipTwo). The results

were deemed accurate for a conceptual design level as the mean error is around 15% for

both size and weight. In addition, the environment only takes about ten seconds to run

399



and is capable of considering all types of suborbital vehicle configurations. Finally, it pro-

vides all the required information: flying, economic, and safety performance metrics. When

developing this design framework, the main challenge to be overcome was the modeling of

all types of chemical rocket engines. As such, a design methodology was presented that

supports the design of future rocket-powered aerospace vehicles. In particular, it provides

the capabilities to rapidly evaluate the performance, weight, size, and life-cycle costs of all

chemical rocket engines at a conceptual level.

In Step 4 (make informed decisions), a decision-making process has been developed.

A literature review demonstrated a lack of techniques able to systematically optimize and

compare alternatives that are defined by different sets of design variables and/or by differ-

ent modeling and simulation environments. For that purpose, a new evolutionary multi-

architecture multi-objective optimization algorithm called EMMA was developed. It con-

sists in a four-step process:

1. Individually optimize each architecture using specifically configured NSGA-II with an

initial number of generations common to all architectures.

2. Evaluate the performance of each architecture compared to others based on their

location on the overall Pareto frontier.

3. Re-execute each NSGA-II with a specific number of generations calculated with an

evolutionary algorithm as a function of the performance of its corresponding architec-

ture.

4. Repeat steps 2 and 3 until the convergence criterion is met.

This approach has been validated on multiple test functions and provide significant im-

provements when determining complex multi-architecture Pareto frontiers.

The goal of the decision-making environment is not only to provide rapid trade-off

analysis capabilities but also to enable a systematic and rigorous selection of the best

concept(s) with respect to a given set of design objectives. This is achieved by implementing

400



a MADM technique to rank the different concepts according to the stated criteria. In

particular, the TOPSIS appeared to be the most suitable technique for this research. In

order to account for uncertainty in design priorities, a three-step approach to select the most

robust design(s) was developed. First, uncertainty is defined using probability distributions

in place of single values to represent the multiple design priorities. In particular, Gaussian

distributions, characterized by both the most probable value and the standard deviation,

are used. Second, uncertainty is propagated using a Monte Carlo simulation. It samples

the previously modeled Gaussian distributions for each variable in order to produce a large

number of possible sets of priorities, also called scenarios. For each scenario, alternatives

are ranked using the aforementioned TOPSIS. Third, the concept selection is performed

by outputting a final ranking. The latter is calculated by averaging the rank of each

alternative over all generated scenarios. This approach provides a probabilistic way to

model, propagate, and capture uncertainty in design priorities. It also supports the selection

of concepts that are both optimally performant and robust to changes in design priorities.

When dealing with emerging markets, a large amount of uncertainty is present in re-

quirements. Hence, there is a need to include robustness in the decision-making process. For

that purpose, fuzzy set theory is used to model and propagate time-dependent uncertainty

throughout the design framework.

Finally, a parametric and dynamic visualization platform is developed to both bridge

the gap between the information provided by the optimization algorithm and the human

cognitive and perceptual systems and facilitate the integration of designers’ past experience,

knowledge, and cognitive capabilities in the analysis. It also supports a more traceable and

faster decision-making process.

Through its application to the design of a profitable commercial suborbital program, this

methodology has demonstrated that it provides the seven key features needed to support

the exploration of large design spaces in presence of evolving uncertainty in requirements.

First, alternatives evaluated with different modeling and simulation environments can be

systematically compared and optimized. Second, the computational time of a complete
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design space exploration is decreased while also increasing the number of concepts inves-

tigated. Third, the region of the design space covered is larger than current approaches.

Fourth, quantitative trade-off analyses can be performed and key trends can be identified

among all alternatives. Fifth, informed decision-making is supported by a complete picture

of the selected concepts from both the physical and the business standpoints. Sixth, the

program risk can be easily alleviated by the ability to trade performance against robustness

in early design phases. Finally, all the information required to support critical go/no-go

decisions can be generated.

Ensuring that the proposed methodology benefits from all the aforementioned capabili-

ties results in the validation of the overarching research hypothesis: if a variable-oriented

morphological analysis is used to feed an evolutionary multi-objective multi-

architecture optimization algorithm and if fuzzy set theory is used to parametri-

cally propagate requirements’ uncertainty through a multi-disciplinary physics-

based modeling and simulation environment then large multi-architecture de-

sign spaces can be better explored and informed decisions can be made under

evolving uncertainty in requirements.

The development and the application of the proposed methodology result in the numer-

ous key contributions, as discussed in the following section.

10.2 Research Contributions

The methodology developed in this research, named ASCEND, is generic and can be

applied to any kind of problems characterized by a large multi-architecture design space

and in presence of evolving uncertainty in requirements. To demonstrate its capabilities,

it has been applied to suborbital vehicles. The work presented herein provides multiple

contributions in several domains: design space exploration, decision-making under evolving

uncertainty in requirements, and conceptual design of suborbital vehicles.

10.2.1 Design Space Exploration

Current approaches are limited by their inability to systematically optimize and com-

pare alternatives that are not defined by the same design variables and/or modeled by the
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same design framework. Either the quantity of considered alternatives or the quality of the

optimization is lacking. As a consequence, these approaches cannot support the develop-

ment of emerging markets opened by new advanced vehicles. The proposed methodology

overcomes this flaw by improving both alternative generation and alternative selection pro-

cesses. Indeed, the proposed variable-oriented morphological analysis is capable of including

design variables in the concept generation algorithm. Hence, the number of distinct archi-

tectures generated is greatly reduced while the number of possible alternatives considered

is implicitly increased. This novel methodology has been implemented into ENVISAGE,

which is a generic user-friendly software developed with Matlab. The application of the

proposed approach to suborbital vehicles demonstrated great benefits. Indeed, the number

of discrete optimization problems to be executed is reduced by a factor of 105. This results

in crucial improvements in the number of function calls, when used to explore large design

spaces.

To simultaneously compare and optimize these architectures, a new evolutionary multi-

objective multi-architecture optimization algorithm named EMMA is proposed based on

the notion of architecture fitness. EMMA provides designers with the ability to efficiently,

systematically, and rigorously optimize concepts that are not described by the same design

variables and/or evaluated with the same modeling and simulation environment. In addi-

tion, EMMA is capable of generating more accurate and better sampled Pareto frontiers

than existing design space exploration techniques.

As a result, the risk of missing promising concepts is greatly reduced compared to con-

ventional architecture optimization methods. Similarly, the promising highlighted architec-

tures are described more precisely and more quantitatively, leading to decisions that are

less subjective and better documented. The decision traceability is also strongly improved.

Finally, another benefit of this quantification is the resulting capability to identify the key

design drivers and to assess the sensitivity of each parameter to the different objectives.

When compared with existing approaches, the proposed methodology allows decision mak-

ers to find solutions 40% more performant for the same execution time or 40 times faster

for the same accuracy.
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10.2.2 Decision-Making Under Evolving Uncertainty in Requirements

Conventional robust design methodologies usually provide static capabilities to model

uncertainty in requirements. Either distributions are assigned around most probable values

or requirements’ values are varying within a given range. However, these approaches do not

match the dynamic behavior of uncertainty in emerging markets. Indeed, both the degree

of uncertainty and the mean values are subject to changes throughout the establishment

of the market. Hence, there is a need for more flexible capabilities, as the ones developed

in this research, that better match this evolving behavior of uncertainty. In particular,

fuzzy set theory enables the modeling and propagation of time-dependent uncertainty in

requirements. As a result, the risk of selecting a design at different points in time can be

assessed. In particular, the trade-off between waiting for more precise requirements and

starting the detailed design can be quantified.

By quantifying the trade-off between risk and expected performance, this methodology

also helps designers make challenging go/no-go decisions and provides them with the best

start date of a program. In particular, in the context of suborbital vehicles, it provides

a robust solution that increases the probability of success by 10% compared to the ones

generated by traditional approaches.

Hence, scenarios can be developed in order to find how much should be known about

requirements to ensure the success of a program. In addition, new questions can be ad-

dressed:

• Is it worth to design a single vehicle for two slightly different applications? What are

the characteristics of such vehicle?

• Which uncertain requirements have the highest impact on the design?

• Which requirements must be addressed first to strongly narrow down possible config-

urations?

• When should the program be started to maximize the expected return while minimiz-

ing the risk?
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ASCEND also allows designers to update objectives and requirements to match available

market information. Thus, market analysis can be more efficiently included in the design

process. In addition, the methodology helps decision makers communicate about risk and

performance trade-offs with customers and regulatory entities. Finally, the visualization

capabilities developed in the context of this research greatly facilitate collaboration among

multi-disciplinary teams and present great marketing capabilities.

10.2.3 Conceptual Design of Suborbital Vehicles

The application of this methodology to suborbital vehicles requires new evaluation ca-

pabilities in terms of flying, economic, and safety performance. For that purpose, a new

modeling and simulation environment has been developed around six disciplinary modules:

weight/size, aerodynamics, trajectory, propulsion, economics, and safety. Nevertheless, the

two major challenges were the development of the propulsion and the safety modules as

they required capabilities that have not been found in the literature yet.

First, a new framework for performance, weight, and life-cycle cost estimation of rocket

engines at a conceptual level has been developed. By leveraging cycle-based approaches and

surrogate modeling techniques, the performance of all chemical rocket engines can be evalu-

ated with an accuracy of 3%, while dividing the execution time by a factor of 105 compared

to current physics-based models. New mass estimating relationships have been developed

for estimating the weight and size of solid engines with an improved accuracy compared

to existing models. In addition, physics-based models built around the key design drivers

are used for the weight and size estimation of liquid and hybrid engines. While existing

cost estimating relationships are used to evaluate the life-cycle costs of solid and liquid

engines, a more physics-based model was developed for hybrid engines. While supporting

complex multi-objective optimization and rapid trade-off analysis, this environment is also

the first of its sort able to estimate the life-cycle costs of hybrid rocket engines. Second,

to overcome the lack of safety evaluation technique, a new method has been developed to

enable a quantitative assessment of the risk of catastrophic failure. Finally, the integration

of all the disciplinary modules enables the development of a new integrated modeling and
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simulation environment more flexible than existing framework as it is the first of its sort

able to accurately estimate the flying, economic, and safety performance of all types of

suborbital vehicles at a conceptual design level.

The application of the proposed methodology to suborbital vehicles shows that a com-

mercial suborbital program might be profitable if well designed. Among the most promising

vehicles, air launched vehicles powered by solid engines appear to be the most profitable, yet

risky. Horizontal take-off and horizontal landing vehicles powered by both a hybrid rocket

engine and jet engines seem to be the most robust type of concepts. Finally, vertical take-off

and landing vehicles powered by hybrid rocket engines are not profitable but seem to be

the safest. Based on assumed requirements’ uncertainty models, the proposed methodology

suggests an optimum start date of the suborbital program in 2019.

10.3 Current Limitations and Recommendations for Future Work

As the proposed methodology is intended to be generic, the next step would be to assess

its capabilities using other design problems such as flying cars, hypersonic commercial air-

craft, delivery drones, etc. For that purpose, the methodology could be implemented into a

software that provides designers with a user interface and the computational efficiency re-

quired to tackle larger problems with more accurate modeling and simulation environments.

In addition, for more accurate results, interfaces between systems and interfaces between

the system of systems and human operators must be taken into account when decomposing

the problem. Indeed, such considerations might highly impact the life-cycle costs, safety,

and performance of the designed vehicles.

For validation purposes, the methodology has been applied to suborbital vehicles and

a medium-fidelity modeling and simulation framework was developed in Matlab. However,

the methodology could be linked to existing design frameworks that enable either a higher

fidelity analysis of the proposed concepts or a faster and even broader design space explo-

ration. A problem that requires multiple design frameworks could also be implemented to

better demonstrate the flexibility of the proposed methodology. Besides, operational func-

tions can be included in the functional decomposition in order to reduce the probability of
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missing risks related to the vehicle operations.

While this research only focuses on the integration of multiple architectures, it can be ex-

tended to the integration of multi-fidelity tools. Indeed, instead of driving the optimization

of multiple architectures based on the architecture fitness, the algorithm could be modified

to drive environments with different levels of fidelity based on the fitness of the previous

analysis. This would not only favor the optimization of promising concepts but also increase

their level of fidelity.

While the modeling and simulation environment has been developed in Matlab, its im-

plementation into a more efficient language would enable both more accurate results and

more interesting studies. In particular, the time-dependent part of the uncertainty has only

been applied to its standard deviation. However, the mean value of the uncertainty mem-

bership functions might also change. Consequently, multiple scenarios could be analyzed by

changing both the degree of uncertainty and the most probable value of each requirement.

Finally, if a more accurate description of the vehicle is available, the methodology could

be extended downstream with techniques such as 3D meshing and CFD analyses. For some

concepts, rapid prototyping could also be included within the methodology.
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APPENDIX A

DEVELOPMENT OF ENVISAGE

A.1 Development of the EfficieNt Variable-orIented Software for Ar-
chitecture GEneration (ENVISAGE)

The general structure of the tool is based on the method described in the previous

section. First, the users input their morphological matrix based on a functional decompo-

sition. Then, to ensure the feasibility of the generated concept, they complete a pre-filled

compatibility matrix. After this point, two analysis options are proposed:

• Alternative-based analysis: users can generate the list of all feasible alternatives.

• Architecture-based analysis: after defining the design variables specific to each func-

tion and option, users can generate the list of all feasible architectures.

Welcome window

Define possible options
Morphological matrix

Ensure feasibility
Compatibility matrix

Generate
feasible alternatives

Define and assign
design variables

Generate
feasible architectures

Figure 165: General architecture of ENVISAGE

While the general architecture of the tool is displayed in Figure 165, this section de-

scribes the main functions of the software. A notional case has been used to demonstrate
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the capabilities of the software and this section refers to matlab functions presented in

Appendix D.1.

A.1.1 Welcome Window

The welcome window (welcome.m), displayed in Figure 166 presents the software and

its author. It allows the user to start the program through the button “Start”.

Figure 166: Welcome window of ENVISAGE

A.1.2 Define Possible Options

This function is fulfilled by the matlab function morphologicalMatrix.m displayed in

Figure 167. It allows users to build their morphological matrix. A first 2×2 matrix is

presented with predefined feature names. Users can add features and options using the

corresponding buttons. They can also change the name of each feature using the pop-up

menu in the top right-hand corner. The selection of one of the features in the pop-up menu

opens a small window changeFeatureName.m also displayed in Figure 167. Through this

window, the users can change the name of the different features. To populate the matrix,

users input the different options in the displayed table.

An option also allows users to upload a morphological matrix using an Excel file and

to modify it. In addition, they can save their morphological matrix into an Excel file using

the “Save” button.

Once the morphological matrix has been fully defined, the “Ensure compatibility” but-

ton allows users to define the compatibility between each option. If this button is pressed

while the morphological matrix is empty, an error window (noMorpho.m) is displayed.
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Figure 167: Morphological matrix of ENVISAGE

A.1.3 Ensure Feasibility

To only generate feasible alternatives, the compatibility between each option must be

defined through the function compatibility.m. Hence, based on the previously defined

morphological matrix, a square compatibility matrix is automatically created. The names

of all the features defined in the previous window are automatically reported in the new

matrix. Since the compatibility matrix is symmetric, only the upper triangular is considered

in this tool (Figure 168).

In addition, the compatibility matrix is automatically prefilled using the function Pre-

FillCompa.m to account for the fact that two options of the same feature are necessarily

incompatible. Users can load a predefined matrix and save the modifications to this ma-

trix. If the loaded compatibility matrix does not have the correct dimensions, an error is

displayed through the window wrongCompat.m.

Once the compatibility has been defined, two different analyses are proposed. The first
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one corresponds to the traditional approach and lists all feasible alternatives. The second

one allows users to define design variables and generate architectures based on the new

approach.

Figure 168: Compatibility matrix of ENVISAGE

A.1.4 Generate Feasible Alternatives

The list of feasible alternatives (Figure 169) is displayed in the window Alternatives-

Display.m. This window calls the main function GenerateFeasibleAlternatives.m,

which is in charge of generating all feasible alternatives based on both the morphologi-

cal matrix and the compatibility matrix. While this function uses GenerateCompatibil-

ity.m to convert the morphological matrix into a list of alternatives, it mainly relies on the

function AlgoCompa.m. Indeed, the latter is a recursive function that searches for feasible

combinations of options. This recursive function calls CheckCompat.m in order to check the

compatibility between an option and all other options from a given list.
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Figure 169: List of feasible alternatives of ENVISAGE

A.1.5 Define and Assign Design Variables

The function architectureDefinition.m allows users to define the elements required

to generate architectures. It displays the initial morphological matrix and allows users to

choose the features they want to characterize through a pop-up menu. Once all features

have been fully defined, the button “Generate Architectures” allows users to see the list of

architectures.

Once a feature has been selected from the previous window, the window defineFea-

tures.m allows users to define the feature (Figure 171). Users can add variables and a

description of each variable through the panel “Variables”. Variables are then added to the

table on the left-hand side and users can allocate the variables to the corresponding options
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Figure 170: Architecture definition window of ENVISAGE

through check-boxes. The toolbar also allows users to save and load the variables/descrip-

tion table.

Figure 171: Variable assignment window of ENVISAGE
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A.1.6 Generate Feasible Architectures

The window ArchitecturesDisplay.m displays the list of feasible architectures. Simi-

larly to AlternativesDisplay.m, it first determines the list of feasible alternatives. Then,

the function detectArchitectures.m re-orders the aforementioned list in order to group

alternatives that are defined by the same variables. Hence, the attributed variables and their

description are needed and are provided by the function GenerateMorphoVar.m and Gen-

erateMorphoVar2.m. Users can save the final table through the toolbar and can display the

list of all variables along with their description through the button “Variable description”.

The window is displayed in Figure 172.

Figure 172: List of feasible architectures of ENVISAGE
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APPENDIX B

DEVELOPMENT OF THE DESIGN FRAMEWORK FOR

SUBORBITAL VEHICLES

B.1 Description of the Atmospheric Model

This section describes the models used to determine each atmospheric parameter.

B.1.1 Temperature

The model used for the temperature evolution T is taken from the ISA [73]. The

latter describes the temperature’s behavior in the different atmospheric layers up to the

mesopause. ISA provides a linear temperature model distribution through the atmospheric

layers, as described in Equation 177, where the different coefficients are detailed in Table 60

for altitudes up to 90 km [9].

T (h) = T1 + a (h− h1) (177)

Table 60: Coefficients of the atmospheric temperature model [9]

Layers
Altitude (km) Temperature (◦C) Slope (◦C/km)
h1 hupper T1 Tupper a

Troposphere 0 11 15.0 -56.5 -6.5

Tropopause 11 20 -56.5 -56.5 0.0

Stratosphere
20 32 -56.5 -56.5 +1.0
32 47 -44.5 -2.5 +2.8

Stratopause 47 51 -2.5 -2.5 0.0

Mesosphere
51 71 -2.5 -58.5 -2.8
71 85 -58.5 -86.2 -2.0

Mesopause 85 90 -86.2 -86.2 0.0

In particular, this model provides standardized values such as the standard temperature

and air pressure values at sea level: 15◦C and 1,013.25 hPa. It is important to understand
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that the difficulty to reach such high altitudes makes the modeling of the thermosphere

very challenging. Moreover, the solar activity has a huge impact on the thermosphere’s

parameters. Studies performed by Rees [357] are used, where values given in standard con-

ditions follow a linear evolution starting from 93 km. These equations have been embedded

in order to create a consistent and complete temperature model, as displayed in Figure 173.
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Figure 173: Temperature evolution with respect to altitude

B.1.2 Pressure

The international barometric formula presented in Equation 178 provides the tropo-

sphere pressure p (in hPa) in standard conditions, as suggested by the International Civil

Aviation Organization (ICAO).

p(h) = 1013.25

(

1− 0.0065h

288.15

)5.255

(178)

For the other layers, this equation is only partially valid. Hence, values and tendency

curves are taken from dedicated studies, which approximate the pressure evolution with

an exponential model [75, 357]. Figure 174 displays the pressure evolution with respect to

altitude.
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Figure 174: Pressure evolution with respect to altitude

B.1.3 Density

The ideal gas law is used to calculate the density ρ, as presented in Equation 179, where

R=8.314 J/K.mol is the universal gas constant and M=28.9644 kg/kmol, the air molar

mass. Figure 175 displays the density evolution with respect to altitude.

ρ =
Mp

RT
=

p

287.058T
(179)
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Figure 175: Density evolution with respect to altitude
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B.1.4 Acceleration of Gravity

The acceleration of gravity g follows an empirical law presented in Equation 180, where

g0 = 9.81m.s−2. For low altitude flights, the acceleration of gravity is usually considered

as a constant and equal to g0. However, since suborbital vehicles reach altitudes up to 100

km, its variations must be taken into account. Figure 176 illustrates how the acceleration

of gravity changes with respect to altitude.

g(h) =
g0

1 + 2h
6378000

(180)
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Figure 176: Acceleration of gravity evolution with respect to altitude

B.1.5 Speed of Sound

The speed of sound a is an important parameter since it relates velocity and Mach

number. The speed of sound is only a function of temperature. Hence, using the aforemen-

tioned, temperature model, the speed of sound can be computed using Equation 181, where

R is the universal gas constant and γ = 1.4, the heat capacity ratio.

a =
√

γRT (181)

The speed of sound has the same behavior as the temperature with respect to altitude.
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B.1.6 Dynamic Viscosity

Sutherland’s law is used to model the air dynamic viscosity µ. The latter is completely

independent of the pressure and only depends on the temperature. The viscosity model

provided by Sutherland’s law is presented in Equation 182, where T0 = 273.15 K is the ref-

erence temperature, S = 110.56 K the Sutherland constant, and µ0 = 1.71× 10−5 kg/(m.s)

the reference viscosity [44].

µ = µ0

(

T

T0

) 3
2
(

T0 + S

T + S

)

(182)

Figure 177 illustrates how the viscosity changes with altitude.

0 20 40 60 80 100
0

1

2

3
·10−4

Altitude (km)

D
y
n
am

ic
v
is
co
si
ty

(N
.s
/m

2
)

Figure 177: Dynamic viscosity evolution with respect to altitude

The presented atmospheric model has been implemented into a Matlab function pre-

sented in Appendix D.2.7.

B.2 Weight Estimation Module

B.2.1 Fuselage, Nose, and Thrust Structure

Brothers [55] developed an empirical model for body weight estimation based on aircraft,

the Space Shuttle, and various expendable vehicles. This model decomposes the body into

three parts: fuselage Wfus, thrust structure Wthrust−str, and nose Wnose. The fuselage
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weight estimation model includes the weight of the fuselage with its base, as presented in

Equation 183, where Sfus is the fuselage area.

Wfus = 2.167S1.075
fus (183)

Assuming an ellipsoidal nose, its weight can be estimated using Equation 184, where Snose

is the surface area of the nosecone, qmax the maximum dynamic pressure during the flight,

and dnose the diameter of the nosecone base.

Wnose = Snose

(

2.499× 10−4qmax + 1.7008 +
(

3.695qmax10
−5 − 3.252× 10−3

)

dnose
)

(184)

Finally, the thrust structure weight model is presented in Equation 185, where Kthrust =

1.949 × 10−3 is the thrust structure constant, and Tr the maximum vacuum thrust of the

propulsion system.

Wthrust−str = KthrustT
1.0687
r (185)

B.2.2 Thermal Protection System (TPS)

Brady et al. [47] propose an empirical model for the weight estimation of the external

insulation WTPS of a lifting body second stage. This model is presented in Equation 186,

where Sbody is the body planform area.

WTPS = 1.51Sbody (186)

B.2.3 Wing

MacConochie and Klich [266] propose an empirical model for the wing weight Wwing

estimation derived from aircraft data and the Space Shuttle. The model is presented in

Equation 187, where nu is the ultimate load factor, Wland the landing mass, Sbody the

body planform area, Sexp the wing exposed area, tc the wing thickness-to-chord ratio, b the

wing span, df the fuselage diameter, η the wing/body efficiency factor, Kw the exposed

wing material/configuration constant, and Kct the wing carry-thru constant. According to

MacConochie, η = 0.2, Kw = 0.214, and Kct = 0.05.

Wwing =





nuWland

1 +
ηSbody

Sexp





0.386
(

Sexp

tc

)0.572
(

Kwb
0.572 +Kctd

0.572
f

)

(187)
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B.2.4 Landing Gear

The landing gear weightWlg can be calculated using the models from MacConochie [266]

and Brothers [55]. The complete model including nose and main gears, gear bays, and

attachment is presented in Equation 188, where Wland is the landing weight.

Wlg = 0.010784W 1.0861
land + 0.0028Wland (188)

B.2.5 Horizontal and Vertical Tails

Both the horizontal and the vertical tail weights Wt are assumed to follow the same

estimation method, which is a function of the tail area St and the tail constant Kt = 1.108,

as provided by MacConochie and Klich [266]. This model is presented in Equation 189.

Wt = KtS
1.24
t (189)

B.2.6 Hydraulic System

The weight of the hydraulic system Whyd depends on size of the control surfaces Scs and

the amount of the gimbaled thrust Tr [266]. The model is presented in Equation 190.

Whyd = 2.1Scs + 1.68× 10−4Tr (190)

B.2.7 Parachute and Retrorockets

The weight of the parachute system is hard to estimate so historical data from both

the Orion Multi-Purpose Crew Vehicle and the Soyuz are used as a reference. Indeed, for

both spacecraft, the parachute represents around 4% of the vehicle’s empty mass [85, 192].

The retrorockets that must be added to the spacecraft to enable a safe landing are also

assumed to weigh 4% of the vehicle’s empty mass [135]. In addition, a margin of 10% of

the parachute and retrorocket weights is added to account for the pyrotechnic system.

B.2.8 Reaction Control System (RCS)

The weight of the RCS, Wrcs, is described by MacConochie [266] as a function of the

vehicle mass during the re-entry Wre and length lf , as presented in Equation 191. Krcs =
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1.36× 10−4 is the RCS constant.

Wrcs = KrcsWrelf (191)

B.2.9 Avionics

The weight of the avionic system Wav is assumed to be proportional to the vehicle empty

weight We, as suggested by Raymer [354]. In addition, the avionic technology is assumed

to be similar to the one used for fighter aircraft so that Equation 192 can be used to predict

its weight.

Wav = 0.055We (192)

B.2.10 Environmental Control and Life Support System (ECLSS)

The weight of the ECLSS is provided by MacConochie as a function of the volume of

the crew module Vcrew, the number of days spent in space Ndays, the weight of the avionic

system Wav, as well as the number of passengers nPAX and the number of pilots npilots, as

presented in Equation 193 [266].

Weclss = 5.85V 0.75
crew + 10.9 (nPAX + npilots)Ndays + 0.44Wav (193)

B.2.11 Primary Power and Electrical Systems

The weights of the primary power system Wpp and the electrical system Welec can be

estimated based on the empirical model derived by MacConochie and Klich [266] using

data from various aircraft and the Space Shuttle. The model is presented in Equation 194,

where Kpc = 0.712 is the hydraulic system constant, Scs the area of the control surfaces,

Kpe = 9.7.10−5 the engine gimbal power constant, Tr the vacuum thrust of the rocket

engine, Kpb = 0.405 the battery power demand constant, and Wav the avionics weight.

Wpp = KpcScs +KpeTr +KpbWav (194)

Similarly, the weight of the electrical system including electrical conversion and distribution

is presented in Equation 195, where Kecd = 0.02 represents the technology level of the

electrical system.

Welec = KecdWland (195)
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B.2.12 Flight Control

The flight control system includes actuators, surface control systems, and all systems

useful to control the vehicle. Its weight Wfc is provided by MacConochie and Klich [266],

as presented in Equation 196, where Scs is the area of the control surfaces.

Wfc = 3.32Scs + 200 (196)

B.2.13 Seats and Accessories

The weight of the seats and other pilot/crew related items Wacc is assumed to be 167

lbs per person, as suggested by MacConochie and Klich [266].

B.2.14 Unused Propellant

Unused propellant includes multiple sources and can be estimated as a percentage of

the total propellant mass, as described below:

• Start-up losses: 1% [425]

• In-flight losses and vents: 0.43% [266]

• Ascent reserve propellant: 0.75% [55]

• RCS reserve propellant: 0.75% [55]

• Residual propellant: 1.5% [47]

Combining all the losses, a safety margin for unused propellant is chosen as being 5% of the

total propellant mass.

B.2.15 Technology Reduction Factors

Since most of the aforementioned models have been developed between 1985 and 2000,

there is a need to take into account recent enhancement in materials. For that purpose,

Talay proposes a list of TRFs so that the updated weight Wn of each component can be

calculated using Equation 197, where Wo is the original component weight [425]. The list

of all TRFs is provided in Table 61.

Wn = Wo (1− TRF ) (197)
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Table 61: TRF for the various components [425]

Wing Tail Body TPS
Landing
gear

Avion-
ics

ECLSS

TRF 0.44 0.44 0.38 0.35 0.09 0.5 0.1

B.3 Aerodynamic Modeling

This section aims at describing the development of the different models used in the

aerodynamic module, which are mainly based on Roskma and Raymer’s research [354, 369].

B.3.1 Lift Coefficient Model

The vehicle lift coefficient CL can be decomposed into two different terms, as defined

in Equation 198. In this equation, α represents the angle of attack and CLα the lift-curve

slope.

CL = CLαα (198)

In this research, it is assumed that only the wing can produce lift. While the angle of

attack depends on the flight conditions, the lift-curve slope can be modeled as a function

of the Mach number and the wing configuration. In the subsonic regime, Raymer suggests

the semi-empirical formula presented in Equation 199, where AR is the aspect ratio, β =
√
1−M2 the compressibility factor, Sexposed the surface of the wing exposed to the air, Λ

the sweep angle, η the airfoil efficiency factor, F the fuselage lift factor [354], and S the

reference area.

CLα =
2πAR

2 +

√

4 + AR2β2

η2

(

1 + tan2 Λ
β2

)

Sexposed

S
F (199)

Raymer suggests a value of 0.95 for the airfoil efficiency factor and provides Equation 200

to calculate F , where d is the fuselage diameter, and b the wing span.

F = 1.07

(

1 +
d

b

)2

(200)

This equation is assumed to be valid up to the drag divergence Mach number MDD. While

the latter has multiple definitions, the one proposed by Boeing is used [354]. Hence, MDD
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is defined as the Mach number at which the drag rise reaches 20 counts, which is usually

about 0.08 Mach above the critical Mach number Mc. To compute MDD, Raymer provides

Figure 178, which links MDD to the sweep angle Λ and the thickness-to-chord ratio tc [354].

Figure 178: Wing drag-divergence Mach number [354]

Based on this figure, a surrogate model can be created in order to benefit from a parametric

estimation. The result is provided in Equation 201, for which R2 and R2
adj are greater than

0.998. Because the MRE has a mean of 10−3 and a standard deviation close to 0.25, the

approximation was considered accurate enough for conceptual design level considerations.

MDD = 0.79 + 4.10−3Λ− 0.64tc + 3.10−5(Λ− 41.00)2 + 0.01(Λ− 41.00)(tc − 0.08) (201)

For supersonic speed, usually beyond Mach 1.2, the theoretical lift-curve slope is defined

in Equation 202, corrected by an efficiency factor ηs to match actual data [354].

CLα =
4√

M2 − 1
(202)
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The efficiency factor ηs is defined in Equation 203, where CLα(MDD) is the value of the

lift-curve slope at the drag divergence Mach number.

ηs = 0.141CLα(MDD) (203)

According to Raymer, there are no good initial estimation methods for the transonic

regime and it is suggested to smoothly link both the subsonic and the transonic regimes.

To do so, a parametric interpolation is developed based on experimental data [354]. It is

assumed that the maximum of the lift-curve slope occurs at Mach 0.98 and reaches a value

10% higher than the one at MDD. In addition, the curve follows a second-order polynomial

equation defined in Equation 204, where a, b, and c are three constants to be determined.

CLα(M) = aM2 + bM + c (204)

Based on this assumption, a matrix form of the problem is set, as presented in Equation 205.
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(205)

Upon solving this system, the three constants a, b, and c are determined and presented in

Equations 206 to 208.

a = −22.3
55CLα(MDD) + 50MDDCLα(1.2)− 49CLα(1.2)− 55MDDCLα(MDD)

250M2
DD + 294− 545MDD

(206)

b = 0.45
2761CLα(MDD)− 2401CLα(1.2)− 2750CLα(MDD)Mdd2 + 2500M2

DDCLα(1.2)

250M2
DD + 294.− 545MDD

(207)

c = −0.09
−3234CLα(MDD)− 12005MDDCLα(1.2) + 19800MDDCLα(MDD)

250M2
DD + 294.− 545MDD

×

(

−16500CLα(MDD)M
2
DD + 12250M2

DDCLα(1.2)
)

(208)
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Figure 179 shows the results of the previous model by plotting the lift-curve slope as a

function of the Mach number and the sweep angle. The plot confirms that, the higher the

sweep angle, the lower the lift coefficient at a given angle of attack.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

M

C
L
α

Λ=0
Λ=20
Λ=40
Λ=60

Figure 179: CLα with respect to the Mach number and the sweep angle

B.3.2 Subsonic and Supersonic Drag Coefficient Models

Roskam decomposes the drag coefficient into 11 components: wing drag coefficient

(CDwing), fuselage drag coefficient (CDfus
), empennage drag coefficient (CDemp), nacelle/py-

lon drag coefficient (CDnp), flap drag coefficient (CDflap
), landing gear drag coefficient

(CDgear), canopy/windshield drag coefficient (CDcw), store drag coefficient (CDstore), trim

drag coefficient (CDtrim), interference drag coefficient (CDint), and miscellaneous drag coeffi-

cient (CDmisc). The latter includes the drag caused by speed brakes, struts, inlets, antennas,

gaps, and surface roughness. In addition to this first decomposition, the model for the drag

coefficient is specific to each flight regime: subsonic and supersonic.

B.3.2.1 Wing Drag Coefficient

The wing drag coefficient is decomposed into two components, as shown in Equation 209.

In this equation, CD0,w is the wing zero-lift drag coefficient and CDL,w
is the wing drag

coefficient due to lift.

CDwing = CD0,w + CDL,w
(209)
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Subsonic wing zero-lift coefficient

For subsonic speeds, CD0,w is modeled in Equation 210, where Rwf is the wing/fuselage

interference factor, RLS the lifting surface correction factor, Cf,w the wing skin friction

coefficient, L′ the airfoil thickness location parameter, tc the thickness ratio, Swet,w the

wing wetted area, and S the reference surface area. This paragraph aims at defining each

of these parameters.

CD0,w = Rwf .RLS .Cf,w.
(

1 + L′tc + 100t4c
) Swet,w

S
(210)

Rwf is modeled as a function of the fuselage Reynolds number by Finck [148], as presented

in Figure 180.

Figure 180: Wing-fuselage interference factor [369]

Based on this plot, a mathematical model is established that enables a more parametric

estimation of Rwf . Around 275 data points have been selected from the seven curves in

order to create a RSE. R2 and R2
adj are around 0.95. In addition, the MRE shows a mean

equal to 0.01 and a standard deviation close to 1.1. The values of these parameters confirm
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the accuracy of the developed model presented in Equation 211.

Rwf = 1.06− 0.08M − 0.004 (logRe− 17.42)2 + 0.15 (logRe− 17.41) (M − 0.59)

− 0.35 (M − 0.59)2 + 0.001 (logRe− 17.42)3 − 0.001 (logRe− 17.42)3 (M − 0.59)

+ 0.42 (M − 0.59)3 (log Re− 17.42) (211)

The wing skin friction coefficient Cf,w can be calculated by first determining its value in

an incompressible flow and then by evaluating the compressible effect. Assuming that the

flow is entirely turbulent, the incompressible skin-friction coefficient Cf,inc can be modeled

using Equation 212 [466].

Cf,inc =
0.074

Re0.2
(212)

However, in addition to the Reynolds number, the Mach number and the temperature also

have an effect on the skin friction coefficient. A method for determining this effect has been

established by Sommer and Short [406]. The ratio between the actual skin friction coefficient

Cf and the incompressible skin friction coefficient Cf,inc can be found using the free-stream

temperature T∞ and the free-stream Mach number M∞. The system of equations to be

solved is defined in Equation 213.































T ′

T∞

= 1 + 0.1151M2
∞

R′

R∞

=
(

T∞

T ′

)2.5 T ′+216
T∞+216

Cf

Cf,inc
=
(

T∞

T ′

) (

R∞

R′

)0.2

(213)

Based on this model, the wing skin friction coefficient Cf,w is modeled as a function of the

wing’s Reynolds number with its mean geometric chord.

The lifting surface correction factorRLS is defined in Figure 181 provided by Roskam [369].

Based on this plot, a mathematical model is established that enables a more parametric

estimation of RLS . Around 100 data points have been selected from the four curves in order

to create a RSE. R2 and R2
adj are equal to 0.9971 and 0.9970, respectively. In addition, the

MRE shows a mean equal to 0.002 and a standard deviation close to 0.67, which confirms

a relatively good accuracy.
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Figure 181: Lifting surface correction factor [369]

Hence, RLS can be modeled in Equation 214, where Λ is the sweep angle at the location

of the maximum thickness-to-chord ratio.

RLS = 0.32 + 0.57 cosΛ + 0.52max (M, 0.25)− 0.89 (cosΛ− 0.74)2

+ 0.72 (max (M, 0.25)− 0.64)2 (214)

For traditional supersonic airfoils such as the NACA 64A, the location of the maximum

thickness-to-chord ratio (tc) is behind the third of the chord [354]. Hence, according to

Roskam, L′ = 1.2 [369]. In addition, the wing wetted area Swet,w is assumed to be twice

the wing reference area S.

Subsonic wing drag coefficient due to lift

For subsonic speeds, CDL,w
is modeled using Equation 215. In this equation, the last

two terms represent the drag due to the linear twist of the wing, which is neglected in this

study.

CDL,w
=

C2
L,w

πARe
+ 2πCL,wǫtv + 4π2ǫ2tw (215)
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As suggested by Roskam, CL,w can be modeled at a conceptual design level using Equa-

tion 216 [369].

CL,w = 1.05CL (216)

The span efficiency factor e has been modeled by equations from various sources. A review

and comparison of these models are provided by Nita and Scholz [321]. In this review,

Howe’s model was found to be one of the most accurate and general formulations [209].

Assuming that no engines are mounted on the wings, the span efficiency factor is presented

in Equation 217, where AR is the wing aspect ratio, λ the wing taper ratio, φ the wing

sweep angle, and tc the wing thickness-to-chord ratio. In addition, it is assumed that there

is no twist angle so that ǫt = 0.

e =
(

1 + 0.12M6
)−1



1 +
0.142 + 0.005

(

1 + 1.5 (λ− 0.6)2
)

AR (10tc)
0.33

cos2 φ
+

0.1

(4 +AR)0.8





−1

(217)

Supersonic wing zero-lift drag coefficient

Assuming wings with a supersonic leading edge, the supersonic wing zero-lift drag coeffi-

cient CD0,w is defined in Equation 218, where Cfw is the wing skin friction coefficient, Swet

the wing wetted area, CDLE
the leading edge pressure drag coefficient, β =

√

|1−M2| the

compressibility factor, and tceff the effective thickness-to-chord ratio.

CD0,w = Cfw

Swet

S
+ CDLE

+
16

3β
t2ceff (218)

The effective thickness-to-chord ratio tceff is defined in Equation 219, where cbw is the mean

aerodynamic chord.

tceff =

(

´ b/2
0 t2ccbwdy

)1/2

(

S
2

)2 (219)

CDLE
is modeled by Roskam using Equation 220 [369]. In this equation, rLE is the
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leading edge radius.

CDLE
= 1.28

M3 cos6 Λ

1 +M3 cos3 Λ

2rLE
b

cosΛ

S
(220)

Supersonic wing drag coefficient due to lift

According to Roskam, the supersonic wing drag coefficient due to lift can be evaluated

using Equation 221 [369].

CDL,w
=

CDL

C2
L

C2
L (221)

To determine the ratio on the right hand side of Equation 221, the planform shape parameter

p = S
bcr

and the planform slenderness parameter b
2cr

must first be calculated. From there,

the ratio
CDL

C2
L

can be determined using Figure 182 provided by Roskam [369].

Since these two curves are very close, they have been merged. The resulting curve is defined

as the mean of the two original curves in order to account for the uncertainty in the type

of leading edges. The curve is then modeled by a piecewise linear equation, as presented in

Equation 222.















πA
CDL

C2
L

p
1+p = 0.55 if βbw

2crw
< 0.375

πA
CDL

C2
L

p
1+p = 0.9333 βbw

2crw
+ 0.23 if βbw

2crw
> 0.375

(222)

B.3.2.2 Fuselage Drag Coefficient

Similarly to the wing, the fuselage drag coefficient can be decomposed into two different

components, as described in Equation 223. CD0,fus
is the fuselage zero-lift drag coefficient

and CDL,fus
is the fuselage drag coefficient due to lift.

CDfus
= CD0,fus

+ CDL,fus
(223)
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Figure 182: Supersonic drag due to lift [369]

Subsonic fuselage zero-lift drag coefficient

In the subsonic regime, Roskam models the fuselage zero-lift drag coefficient using Equa-

tion 224 [369].

CD0,fus
= RwfCffus

(

1 + 60

(

lf
df

)−3

+ 0.0025

(

lf
df

)

)

Swet,fus

S
+ CDb,fus

(224)

For winged vehicles, Rwf can be calculated using Equation 211. Otherwise, it can be set

to 1. Cffus can be calculated using Equations 212 and 213 with lf the reference length for

the fuselage. CDb,fus
is the fuselage base drag coefficient as described in Equation 225 [369],

where Sfus is the fuselage maximum frontal area and CD0,fus−base
the zero-lift drag coefficient

of the fuselage exclusive of the base. The latter corresponds to the first term on the right
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hand side of Equation 224.

CDb,fus
= 0.029

(

db
df

)3(

CD0,fus−base

Sfus

S

)−0.5 Sfus

S
(225)

Subsonic fuselage drag coefficient due to lift

The subsonic fuselage drag coefficient due to lift CDL,fus
is presented in Equation 226 [369].

α is the angle of attack and Sbfus the fuselage base area.

CDL,fus
=

2α2Sbfus

S
+ ηcdcα

3
Splffus

S
(226)

The ratio of the drag of a finite cylinder to the drag of an infinite cylinder η is modeled by

Roskam as a function of the body fineness ratio
lf
df

through Figure 183 [369].

Figure 183: Ratio of the drag of a finite cylinder to the drag an infinite cylinder [369]

The curve in Figure 183 is mathematically modeled using a general power model as described

in Equation 227. This model has a R2 and a R2
adj above 0.995. The MRE also provides a

mean of -0.0003 and a standard deviation of 0.7.

η = 0.4964

(

lf
df

)0.1407

(227)

Similarly, cdc is presented in Figure 184 [369]. The curve in Figure 184 is mathematically

modeled using two different equations based on Gaussian models, as presented in Equa-

tion 228. This model has a R2 and a R2
adj above 0.9994. The MRE also provides a mean

around 0.5 and a standard deviation around 0.35.
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Figure 184: Steady state cross-flow drag coefficient for 2D circular cylinders [369]

In these equations, Mc = M sinα represents the cross flow Mach number.

cdc(Mc < 1) = 0.1986 exp

(

−
(

Mc − 1.05

0.121

)2
)

+ 0.567 exp

(

−
(

Mc − 0.8343

0.2867

)2
)

+ 7.182 exp

(

−
(

Mc − 218.3

163.2

)2
)

cdc(Mc > 1) = 0.2642 exp

(

−
(

M−1
c − 1.062

0.3659

)2
)

+ 3.87 exp

(

−
(

M−1
c − 9.531

8.874

)2
)

(228)

Supersonic fuselage zero-lift drag coefficient

The supersonic fuselage zero-lift drag coefficient is modeled using Equation 229 from

Roskam [369], where Cffus is the turbulent flat plate skin-friction coefficient of the fuselage,

CDA(NC)
the interference drag coefficient acting on the aft-fuselage due to the center fuselage,

CDb,fus
the fuselage base drag coefficient, and CDN2

and CDA
the wave drag coefficients of

the fuselage nose and afterbody, respectively. They can be determined using Figure 185,

assuming both the nose and the afterbody are conical.

CD0,fus
= Cffus

Swet,fus

S
+
(

CDN2
+ CDA

+ CDA(NC)
+ CDb,fus

) Sfus

S
(229)

To enable a rapid parametric analysis, data from Figure 185 are modeled through Equa-

tion 230. The latter is a surrogate model generated with a R2=0.99.
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Figure 185: Drag of slender bodies, conical forebodies, and conical afterbodies [369]

CDN2/A

(

2l

d

)2

= 2.28 + 0.068
2l

βd
− 4.298

(a

d

)2
− 4.10−3

(

2l

βd
− 9.23

)2

− 0.27

(

2l

d
− 9.23

)(

(a

d

)2
− 0.39

)

+ 6.81

(

(a

d

)2
− 0.39

)2

+ 0.01

(

2l

d
− 9.23

)2(
(a

d

)2
− 0.39

)

+ 0.29

(

2l

d
− 9.23

)(

(a

d

)2
− 0.39

)2

− 5.78

(

(a

d

)2
− 0.39

)3

(230)

CDA(NC)
is the interference drag coefficient acting on the aft-fuselage due to the center-

fuselage. It can be found in Figure 186, which has been modeled using Equation 231 with

a R2 of 0.998.

CDA(NC)

(

2lA
d

)2

= exp

[

0.69− 0.69
lA
d

− 1.49
lC
lA

+ 0.28

(

lN
lA

− 1.15

)2

+0.33

(

lN
lA

− 1.15

)(

lC
lA

− 0.60

)

+ 0.61

(

lC
lA

− 0.60

)2
]

(231)
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Figure 186: Fuselage interference drag [369]

CDb,fus
is modeled in Figure 187 and has been approximated using the double exponential

model, as detailed in Equation 232. The R2 of this surrogate model is 0.999.

CDb,fus
= 0.2508 exp (−0.5768M) + 0.104 exp (−0.2178M) (232)

Supersonic fuselage drag coefficient due to lift

The supersonic fuselage drag coefficient due to lift can be calculated using Equation 233

given by Roskam [369], where Sb,fus is the fuselage base area, cdc the steady state cross-flow

drag coefficient for two-dimensional circular cylinders, and Splf,fus the fuselage planform

area.

CDL,fus
= 2α2Sb,fus

S
+ cdc

Splf,fus

S
α3 (233)
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Figure 187: Base drag coefficient for bodies of revolution [369]

B.3.2.3 Empennage Drag Coefficient

Similar to the wing and the fuselage, the empennage drag coefficient can be decomposed

into two different components, as described in Equation 234. CD0,emp is the empennage zero-

lift drag coefficient and CDL,emp
is the empennage drag coefficient due to lift.

CDemp = CD0,emp + CDL,emp
(234)

However, all horizontal surfaces are not designed to create lift and consequently their in-

duced drag component is assumed to be negligible. In addition, vertical surfaces are assumed

to be symmetric and do not create lift either. Hence, their induced drag component is also

negligible.
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Subsonic empennage zero-lift drag coefficient

The calculation of the zero-lift drag coefficient of horizontal tail surfaces, canard, and

vertical tail surfaces is similar and can be done using Equation 210. In this equation, Swet,w

is replaced by Swet,emp, Cf,w is replaced by Cf,emp, Rwf is set to 1, and tc is the maximum

thickness-to-chord ratio of the empennage. Finally, RLS is determined using Equation 214.

Supersonic empennage zero-lift drag coefficient

The supersonic drag coefficient of all empennage surfaces can be calculated using Equa-

tion 235.

CD0,emp = CDempf
+ CDemp,wave (235)

The first term on the right hand side of Equation 235 can be found using Equation 236,

where Cfemp can be calculated using Equation 213 and substituting wing parameters for

empennage parameters.

CDempf
= Cfemp

Swet,emp

S
(236)

Moreover, CDemp,wave can be determined following the same procedure as for the wing by

replacing wing parameters by empennage parameters.

B.3.2.4 Nacelle/Pylon Drag Coefficient

Raymer provides an approach to evaluate the nacelle drag coefficient based on its com-

ponent form factor FFn, as presented in Equation 237, where Qn is the interference factor

between the nacelle and the fuselage, Swet,n the wetted area of the nacelle, and Cf,n the

nacelle skin-friction coefficient.

CDnp = Cf,nFFnQn
Swet,n

S
(237)

According to Raymer, FFn can be determined using Equation 238, where d is the nacelle

diameter and l its length [354]. In addition, as suggested by Raymer, Qn can be set to a

value equal to 1.3.

FFn = 1 +
0.35d

l
(238)
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Windmilling drag and propeller drag coefficients

If the engine is not running, a drag increment due to engine windmilling must be con-

sidered. It is defined in Equation 239 provided by Roskam [369]. In this equation, Snoz is

the nozzle section area and λnoz is the ratio of the average flow velocity in the nozzle to

the steady state flight speed. Roskam provides its value as a function of the inlet diameter

dinl and the type of jet engine installed: 0.25 for turbojet engines and 0.42 for low bypass

turbofan engines.

∆CDwmj = 0.0785
d2inl
S

+

(

2

1 + 0.16M2

)

λnoz (1− λnoz)
Snoz

S
(239)

B.3.2.5 Flap Drag Coefficient

It is assumed that flaps are only used for take-off, approach, and landing. Two different

deflection angles δf are considered: 15◦ for take-off and approach and 30◦ for landing.

McCormick [287] then provides Equation 240 to estimate the drag increment due to the

flaps, where Sflap and cflap are the surface and the length of the flap in the longitudinal

direction, respectively, and c the wing chord.

∆CDflap
= 0.9

(cflap
c

)1.38
(

Sflap

S

)

sin2 δ (240)

B.3.2.6 Landing Gear Drag Coefficient

If a landing gear is needed, it is assumed to be tricycle with one nose landing gear and

two main landing gears. In this case, the landing gear drag coefficient can be decomposed

into two different terms, as presented by Roskam in Equation 241 [369]. The subscript m

represents the main landing gear, and the subscript n represents the nose landing gear.

CDgear =
(

CDgearCL=0,n
+ pnCL

) Sgear,n

S
+
(

CDgearCL=0,m
+ pmCL

) Sgear,m

S
(241)

CDgearCL=0
is defined as the zero-lift drag coefficient of the landing gear based on the ref-

erence area Sgear defined by the product of the tire diameter Dt and the tire width bt.

Based on the data provided by Roskam, a mean value is taken for the two zero-lift drag

440



coefficients, as shown in Equation 242.















CDgearCL=0,n
= 0.5

CDgearCL=0,m
= 1.3

(242)

In addition, Roskam also provides models for pm and pn as described in Equation 243.















pn = −0.25CDgearCL=0,n

pm = −0.4CDgearCL=0,m

(243)

Finally, in order to determine Sgear, a model is needed to compute the tire dimensions.

Raymer provides a way to estimate the diameter and the width of aircraft tires as a function

of the weight carried by the wheel [354]. At a conceptual design level, it is assumed that

the main landing gear carries 90% of the aircraft weight [427]. Based on this assumption,

Equation 244 can be used to estimate the size of the tires. Table 62 shows the values of

the different parameters. Finally, it is assumed that there are two tires per landing gear.

Wto corresponds to the Take-Off Gross Weight (TOGW) for Horizontal Take-Off (HTO)

vehicles and to the landing weight for Vertical Take-Off (VTO) vehicles. Then, according

to Raymer, the nose landing gear tires measure around 60% of the main landing gear tires.

Lt/bt = AWB
to (244)

Table 62: Parameters for dimension estimation of the main landing gear tires [354]

Landing gear Wto
Dt (cm) bt(cm)
A B A B

Main 0.45W 5.1 0.302 0.36 0.467

B.3.2.7 Canopy/Windshield Drag Coefficient

The drag coefficient due to the canopy and the windshield is assumed to be negligible

in this research.
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B.3.2.8 Store Drag Coefficient

It is assumed that there is no external storage attached to the vehicle and consequently

the store drag coefficient will be reduced to zero.

B.3.2.9 Trim Drag Coefficient

The trim drag coefficient due to both the lift and the profile drag generated on the

trimming surface is assumed to be negligible.

B.3.2.10 Interference Drag Coefficient

The interference drag originating from the fact that the drag of two components in-

tegrated in a single configuration is always larger than the sum of the individual drag

components. The major interference drag factors have already been accounted for in the

previous models: wing-fuselage, horizontal tail-vertical tail, empennage-fuselage, landing

gear, nacelle-fuselage, and nacelle-wing. Any other contributors to the interference drag

coefficient are thus neglected.

B.3.2.11 Miscellaneous Drag Coefficient

The contribution to the drag coefficient of the spoilers, the surface roughness, surface

gaps, struts, antennas, and spillage are neglected in this research.

B.3.3 General Transonic Drag Coefficient

Due to the lack of accurate analytical or numerical approaches for the transonic regime,

Raymer [354] suggests an empirical approach to predict the drag coefficient between Mach

0.6 and Mach 1.2. This approach is based on several rules presented below:

• The drag coefficient at Mach 1.2 is equal to the drag coefficient at Mach 1.05.

• The drag coefficient at Mach 1 is half the drag coefficient at Mach 1.05.

• The drag coefficient has a smooth behavior over the entire transonic regime.

• The drag coefficient has a linear behavior between Mach 1 and Mach 1.05.
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Following these rules, a parametric approach is developed using the aforementioned models

to compute the vehicle’s drag coefficient at Mach 0.6 and 1.2. Then, the transonic range is

decomposed into three different ranges where different models are applied.

B.3.3.1 From Mach 0.6 to Mach 1

A second-order polynomial model is assumed for this range, as defined in Equation 245.

CD = a0M
2 + b0M + c0 (245)

Using the same approach as the one implemented for the lift-curve slope, the matrix form

of the problem to be solved is presented in Equation 246, where CD(1) is defined as the

mean between CD(0.6) and CD(1.2). In addition, the minimum of that curve is assumed to

be at Mach 0.6.












CD(1)

CD(0.6)

0













=













12 1 1

0.62 0.6 1

1.2 1 0

























a0

b0

c0













(246)

The resolution of this system provides parametric values for a0, b0, and c0, as described in

Equation 247.






























a0 = 6.25 (CD(1)− CD(0.6))

b0 = 7.5 (CD(1)− CD(0.6))

c0 = 2.25CD(1)− 1.25CD(0.6)

(247)

B.3.3.2 From Mach 1 to Mach 1.05

As suggested by Raymer, a linear model is developed between Mach 1 and Mach 1.05,

as presented in Equation 248.

CD = 20M (CD(1.2)− CD(1)) + 21CD(1)− 20CD(1.2) (248)

B.3.3.3 From Mach 1.05 to Mach 1.2

A second-order polynomial approximation is also selected for this range, as presented in

Equation 249.

CD = a2M
2 + b2M + c2 (249)
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The corresponding system of equations to be solved is presented in Equation 250. In order

to develop this system of equations, it is assumed that the maximum of the drag coefficient

occurs at Mach 1.25, as suggested by Raymer. Hence, the curve has a symmetric behavior

in this range.












CD(1.2)

CD(1.2)

1.1CD(1.2)













=













1.22 1.2 1

1.052 1.05 1

1.1252 1.125 1

























a2

b2

c2













(250)

The resolution of this system provides parametric values for a2, b2, and c2 as described in

Equation 251.






























a2 = −17.77CD(1.2)

b2 = 40CD(1.2)

c2 = −21.4CD(1.2)

(251)

B.4 Propulsion Modeling

B.4.1 Rocket Engine Modeling

This section first provides the RSEs developed to evaluate the performance parameters

of the selected propellants. Then, the actual vs. predicted plots as well as other key metrics

used to check the goodness of fit are also presented.

B.4.1.1 Response Surface Equations for Performance Estimation

Equations 252 to 259 provide the RSEs developed to estimate the performance param-

eters of all selected rocket engines.

Propellant C:















Ispv = 255.43 + 0.20 log pc + 15.54 log ǫ

c∗ = 1569.53 + 9.34 log pc − 4.10−3 log ǫ

(252)

O2/H2:































Ispv = 388.51 + 0.60 log pc + 17.09 log ǫ

c∗ = 2460.58 + 6.39 log pc − 22.68 log ǫ

O/F = 2.86 + 0.086 log pc + 0.44 log ǫ

(253)
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O2/RP1:































Ispv = 283.72 + 1.76 log pc + 18.59 log ǫ

c∗ = 1784.90 + 17.13 log pc − 9.63 log ǫ

O/F = 2.20 + 0.05 log pc + 0.12 log ǫ

(254)

N2O4/MMH:































Ispv = 279.41 + 0.91 log pc + 15.68 log ǫ

c∗ = 1747.24 + 7.51 log pc − 10.72 log ǫ

O/F = 1.52 + 0.07 log pc + 0.15 log ǫ

(255)

O2/HTPB:































Ispv = 277.33 + 2.17 log pc + 18.49 log ǫ

c∗ = 1751.93 + 17.40 log pc − 9.45 log ǫ

O/F = 1.93 + 0.05 log pc + 0.11 log ǫ

(256)

O2/Paraffin:































Ispv = 283.02 + 2.33 log pc + 18.59 log ǫ

c∗ = 1787.97 + 16.72 log pc − 9.54 log ǫ

O/F = 2.24 + 0.05 log pc + 0.12 log ǫ

(257)

N2O/HTPB:































Ispv = 251.96 + 1.09 log pc + 13.57 log ǫ

c∗ = 1769.52 + 12.13 log pc − 8.03 log ǫ

O/F = 6.22 + 0.09 log pc + 0.44 log ǫ

(258)

N2O/Paraffin:































Ispv = 255.14 + 0.50 log pc + 13.14 log ǫ

c∗ = 1576.11 + 12.02 log pc − 7.11 log ǫ

O/F = 7.31 + 0.05 log pc + 0.42 log ǫ

(259)

B.4.1.2 Regression Results

The behavior of all actual vs. predicted plots are very similar so only one per type of

propellant is provided in this section. They all benefit from good characteristics and are

considered to be accurate enough for the purpose of this research, as displayed in Figures 188

to 190.

445



300 310 320 330

300

310

320

330

Predicted Isp (s)

A
ct
u
al

Is
p
(s
)

R2 = 0.99 σ = 0.4

Figure 188: Actual vs. Predicted plot for Propellant C (solid)
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Figure 189: Actual vs. Predicted plot for O2/RP1 (liquid)
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Figure 190: Actual vs. Predicted plot for O2/HTPB (hybrid)

B.4.2 Jet Engine Modeling

Jet engines are modeled based on the research conducted by Raymer [354]. In particular,

Equations 260 to 267 provide a way to determine the jet engine dry weight Wjet, length
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Ljet, diameter Djet, and Specific Fuel Consumption (SFC) SFCjet, respectively. These

models are based on the available thrust Tj , the bypass ratio BPR, and the maximum

Mach number M .

B.4.2.1 Non-Afterburning Engines

Wjet = 14.7T 1.1
j exp−0.045BPR (kg) (260)

Ljet = 0.49T 0.4
j M0.2 (m) (261)

Djet = 0.15T 0.5
j exp0.04BPR (m) (262)

SFCjet = 19 exp−0.12BPR (mg/Ns) (263)

B.4.2.2 Afterburning Engines

Wjet = 11.1T 1.1
j M0.25 exp−0.81BPR (kg) (264)

Ljet = 0.68T 0.4
j M0.2 (m) (265)

Djet = 0.11T 0.5
j exp0.04BPR (m) (266)

SFCjet = 60 exp−0.12BPR (mg/Ns) (267)

B.5 Description of the Cost Estimating Relationships

This section describes the CERs provided by Goehlich [176] and used to evaluate the

life-cycle costs of the airframe of all suborbital vehicles.
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B.5.1 Variable Description

The CERs provided in this section rely on the following variables:

• Project System Engineering Factor (fPS): 1.075

• Technical Development Factor (fTD): 1

• Technical Quality Factor:

– Slender body (fTQ,s): 1

– Winged body (fTQ,w): M
0.16
m , where Mm is the maximum Mach number

• Team Experience Factor (fTE): 1

• Integration Factor (fI): 1.025

• Cost Reduction Factor (fCR): 1

• Commercial Factor:

– Rocket (fC,r): 0.2

– Jet (fC,j): 1

– Airframe (fC,a): 0.5

• Cost Conversion Value (d): −7.905 × 10−6y2 + 37.31 × 10−3y − 42.78 in which y

represents the fiscal year

In addition, Mg is used as a baseline value for one tonne and MY represents the average

effort of one-year labor in the American aerospace industry.

B.5.2 Development Cost

The development costs of a winged-body CD,W and a slender body CD,B are provided

in Equations 268 and 269, respectively. In these equations, MW is the winged vehicle dry

mass, nR,V the number of rocket engines, MR the dry mass of each rocket engine, nJ,V the
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number of jet engines, MJ the dry mass of each jet engine, and M0,B the take-off gross

weight of the vehicle.

CD,W = 11, 350
MY

Mg0.335
(MW − nR,V MR − nJ,V MJ)

0.335 fPS .fTD,W .fTQ,W .fTE,W .fCD,W .d

(268)

CD,B =

(

42
MY

Mg
.M0,B + 30000MY

)

.fCD,B.d (269)

B.5.3 Manufacturing Cost

The manufacturing costs of a winged-body CV,W and a slender body CV,B are provided

in Equations 271 and 270, respectively. In these equations, MW is the winged vehicle dry

mass, M0,B the dry mass of the vehicle, nR,V the number of rocket engines, MR the dry

mass of each rocket engine, nJ,V the number of jet engines, and MJ the dry mass of each

jet engine.

CV,W = 84.3
MY

Mg0.669
M0.669

W .fN
I .fCR,W .fCP,W .d (270)

CV,B = 638.6
MY

Mg0.485
(MB − nR,V MR − nJ,V MJ)

0.485 fN
I .fCR,B.fCP,B.d (271)

B.5.4 Variable Direct Operating Cost

All variable operating cost components are provided in Equations 272 to 279: the pre-

launch operating cost for horizontal launch CPL,H , the pre-launch operating cost for vertical

launch CPL,V , the launch operating cost CLO, the launch site cost CLS , the vehicle insurance

cost CIns, the vehicle amortization cost CV A, the transportation cost CT , and the airframe

maintenance cost CM .

In these equations, L is the number of launches per year for the total fleet, M0 the

total vehicle launch mass, Tm the mission duration, nc the number of crew members, np the

number of passengers, Rabort the insurance abort rate, TOC the total operating cost, Rloss
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the insurance loss rate, Cv the vehicle manufacturing cost, rB/W the number of reuses of

the airframe, rR the number of reuses of the rocket engines, rJ the number of reuses of the

jet engines, CV,B/W the airframe manufacturing cost, CV,R the rocket engine manufacturing

cost, CV,J the jet engine manufacturing cost, and Mv the vehicle dry mass.

CPL,H = 1.409
MY

launch0.46.year0.54.Mg0.75
L−0.54M0.75

0 d (272)

CPL,V = 6.618
MY

launch0.39.year0.61.Mg0.75
L−0.61M0.75

0 d (273)

CLO =

(

20
launch−0.35

year0.65
L−0.65 + 0.42

launch−0.2

hour.year0.8
Tm (nc + np)

0.5

)

d (274)

CLS = 0.1.
MY

launch
.d (275)

CIns = RabortTOC.launch+RlossCV (276)

CV A =

(

1

rB/W
.CV,B/W +

1

rR
.CV,R +

1

rJ
.CV,J

)

.
1

launch
(277)

CT = 72.1× 10−3 MY

Mg0.5.launch
.M0.5

v d (278)

CM =















0.004CV,B/W . 1
launch for single stage vehicles

0.0001CV,B/W . 1
launch for second stage vehicles

(279)

B.5.5 Fixed Direct Operating Cost

All fixed direct operating cost components are provided in Equations 280 to 283: the

development amortization cost CDA, the financing cost CF , the product improvement cost

CPI , and the abolition cost CAB.

In these equations, CD is the total development cost, IR the interest rate, TIR the

years of the interest rate, RR the repayment rate, TRR the years of the repayment rate, L
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the number of launches per year, U the duration of the program, nB/W,F the number of

produced vehicle, and DOCvar the variable direct operating cost.

CDA =
1

L.U
.CD (280)

CF = CV

(

(1 + IR)TIR
RR

1− (1 +RR)−TRR
TRR − 1

)

1

L.U
(281)

CPI = 0.045
1

year0.33
1

L.U

(

nB/W,F .U
)0.33

CD (282)

CAB =
nV

L.U
.DOCvar.launch (283)

B.5.6 Indirect Operating Cost

The indirect operating cost is directly represented by the administration cost CA, as

described in Equation 284.

CA = 0.9
MY

launch
d (284)
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APPENDIX C

DEVELOPMENT OF THE VISUALIZATION PLATFORM

This section aims at describing the model developed for each component of the vehicle

using Catia.

C.0.6.1 Propulsion Systems

Nozzle: In order to make the CAD simpler, no distinction is made between the nozzle

used with solid, liquid, and hybrid rocket engines. The geometric shape of the nozzle is

based on a bell-shaped rocket engine and cooling tubes are added on the external surface

of both the nozzle and the combustion chamber, as displayed in Figure 191. The nozzle

model is driven by three parameters: the combustion chamber diameter, the nozzle length,

and the external nozzle diameter.

Figure 191: Model of the rocket engine nozzle

Propellant tank: The propellant tank section can be modeled by three technological

solutions based on the type of propellant used: solid, liquid, and hybrid. Each solution is

displayed or hidden using a Boolean parameter defined by the selected architecture. The
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different models are discussed below:

• Solid engine model: the model of the solid engine is composed of the propellant grain

and the corresponding fuselage section. The propellant grain is directly linked to

the fuselage wall and the thermal protection thickness is neglected. A “star” pattern

hole is chosen for the engine port shape, as described in Figure 192. The solid engine

module is driven by two parameters: the vehicle fuselage diameter and the solid engine

length.

Figure 192: Model of the solid engine

• Liquid engine model: the liquid engine is composed of a fuel tank, an oxidizer tank,

and a section of the fuselage, as presented in Figure 193. The model is driven by 5

parameters: the fuel tank diameter and length, the oxidizer tank diameter and length,

and the diameter of the fuselage.

Figure 193: Model of the liquid engine tanks
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• Hybrid engine model: the hybrid engine is composed of both liquid and solid pro-

pellants. Hence, the geometric shapes described in the previous sections are used to

model the hybrid engine, as shown in Figure 194. The model is driven by five param-

eters: the oxidizer tank diameter and length, the solid engine diameter and length,

and the diameter of the fuselage.

Figure 194: Model of the hybrid engine tanks

Jet engines: Two models of jet engine configurations are considered in this design: side

jet engines (directly linked to the fuselage) and central jet engines (integrated into structure

of the vertical tail) when an odd number of jet engines is selected:

• Side jet engines: to display each potential architecture using Boolean parameters, four

different side jet engines are created. Each part is composed of four components: the

engine body, the inlet fan with blades, the outlet nozzle, and the mechanical junction

between the engine body and the fuselage of the vehicle, as displayed in Figure 195.

The shape of the side engines is determined by three parameters: the inside engine

diameter, the engine length, and the fuselage diameter.
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Figure 195: Model of the side engines

• Central jet engines: the central jet engine has to be integrated into the vertical tail.

In order to have the nozzle behind the trailing edge of the vertical tail, the engine

is extended, adding a new parameter: the vertical tail root chord, as presented in

Figure 196.

Figure 196: Model of the central jet engines

C.0.7 Lifting and Control Surfaces

For winged vehicles, three different lifting/control surfaces must be considered: wing,

vertical tail, and horizontal tail. All these surfaces are assumed to have a trapezoidal shape

defined by the same parameters: the root chord, the tip chord, the span, and the thickness-

to-chord ratio. The design of such surfaces is done following a three-step process. First, a

shape of the airfoil is modeled to generate both the root and the tip airfoils. Then, a surface

is created that links the two airfoils, and finally, the volumetric body part is generated. If

necessary, a symmetric geometry is created.

To model the airfoil, the symmetric four-digit NACA airfoil developed by the National

455



Advisory Committee for Aeronautics (NACA) is chosen and modified with a paramet-

ric thickness-to-chord ratio. An airfoil shape surface is created with Catia’s generative

shape design module using Equation 285, where tc is the thickness-to-chord ratio, x the

x-coordinate, and c the chord. The modeling of the airfoil is based on a discretization of

the airfoil into 20 points, as shown in Figure 197.

ytc (x) = 5tcc

(

0.2969

√

x

c
− 0.1260

(x

c

)

− 0.3516
(x

c

)2
+ 0.2843

(x

c

)3
− 0.1015

(x

c

)4
)

(285)

Figure 197: Symmetric four-digit NACA airfoil model

Once the different surfaces have been created, a volumetric body part is generated for

each lifting surface model: wing, vertical tail, and horizontal tail. These parts are described

in the following sections.

C.0.7.1 Wing

A symmetry is performed on the previously generated half wing. An additional part is

designed to smoothly link the wing to the fuselage, as displayed in Figure 198. Two more

parameters are added to the ones inherent to all lifting surfaces: the fuselage diameter and

the length between the wing trailing edge and the back of the fuselage in order to locate

the wing along the horizontal axis.
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Figure 198: Wing model with junction

C.0.7.2 Vertical and Horizontal Tails

In order to model the empennage, a symmetric horizontal tail is attached to the non-

symmetric vertical tail, as shown in Figure 199. In order to fix the height of the horizontal

tail, a constraint is applied that requires the horizontal tail root chord to be equal to the

vertical tail chord at the junction. Similar to the wing, two parameters are added: the

junction height and the fuselage diameter.

Figure 199: Empennage model

C.0.8 Fuselage

The fuselage is composed of three sections: the equipment bay, the cabin, and the

cockpit. The modeling of each of these sections is discussed below:

• Equipment bay: the equipment section contains all electrical, hydraulic, and pneu-

matic systems. It is located above the vehicle floor and its size is assumed to be fixed,

as displayed in Figure 200. Hence, the only parameter is the fuselage diameter.
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Figure 200: Model of the equipment bay

• Cabin: the cabin corresponds to the habitable and is composed of the passengers

sections, the seats, and the cockpit:

– Passenger sections: passenger sections are decomposed into the fuselage part with

large observation windows (which allow passengers to see the Earth from space,

making their flight an incredible experience), and the vehicle floor, as described

in Figure 201(a). The vehicle can carry up to four passenger sections with a full

capacity of eight passengers. Each passenger section is driven by two parame-

ters: the fuselage diameter, and the seat pitch. The latter defines the passenger

available space to enjoy the weightlessness phase, which is representative of the

passenger comfort.

– Seats: as displayed in Figure 201(b), seats are designed to make the passenger

experience as comfortable as possible. In order to reduce the acceleration effects

on the passenger body, passenger seats can also take a lie down position. The

vehicle can carry up to two pilot seats and eight passenger seats. The dimensions

of those seats are fixed, so only Boolean parameters drive them.
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(a) Model of the passenger section (b) Model of the seats

– Cockpit: the cockpit has two versions: a capsule version used for slender bodies,

and a aircraft version for winged-body configurations. Due to the complexity of

the geometrical shapes, only the vehicle fuselage diameter varies for these parts.

Both versions are discussed below:

∗ Capsule: the capsule is composed of a conical shape structure and a floor. A

trapdoor, attitude thrusters, and two small windows are added to the design,

as displayed in Figure 201.

Figure 201: Model of the capsule cockpit
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∗ Cockpit: the aircraft cockpit is composed of an external shape and a floor.

Due to its complexity, the external shape is created with the Catia’s gener-

ative shape design module, and then transformed into volumetric parts, as

illustrated in Figure 202.

Figure 202: Development of the aircraft cockpit model

Then, all surfaces that compose the aircraft cockpit are joined and trans-

formed into a volumetric part body. Large windows are added to the design

in order to help pilots during the landing phase, as shown in Figure 203.

Figure 203: Model of the aircraft cockpit
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APPENDIX D

MATLAB CODE

D.1 Implementation of ENVISAGE

D.1.1 Architecture of the Matlab Program

The architecture of the software is presented in Figure 204. It is composed of 23 func-

tions, whose 12 are linked to user interfaces (gray boxes). This section describes the main

functions that are linked to the user interface and their relationships with the other func-

tions.
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welcome.m

morphologicalMatrix.m

compatibility.m

noMorpho.m

changeFeatureName.m

helpWindow.m

helpText.m

wrongCompat.m

PreFillCompa.m architectureDefinition.m defineFeatures.m

ArchitecturesDisplay.m

GenerateFeasible-
Architectures.m

Generate-
Compatibility.m

AlternativesDisplay.m

GenerateFeasible-
Alternatives.m

AlgoCompa.m

CheckCompat.m GenerateMorphoVar.m

DisplayDescription.m

GenerateVariable-
Description.m

detectArchitectures.m

GenerateMorphoVar2.m

Figure 204: Architecture of the software ENVISAGE
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D.1.2 Matlab Functions

D.1.2.1 welcome.m

1 function varargout = welcome(varargin)

2 %Function that opens the welcom window

3

4 %Initialisation of the window

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @welcome OpeningFcn, ...

9 'gui OutputFcn', @welcome OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function welcome OpeningFcn(hObject, eventdata, handles, varargin)

23 %Opening function (executes just before welcome is made visible)

24

25 %Display asdl logo

26 imshow('asdl.png')

27

28 %Choose default command line output for welcome

29 handles.output = hObject;

30

31 %Update handles structure

32 guidata(hObject, handles);

33

34 %UIWAIT makes welcome wait for user response

35 uiwait(handles.figure1);

36

37 function varargout = welcome OutputFcn(hObject, eventdata, handles)

38 %Output fucntion (returns what is needed)

39

40 function pushbutton1 Callback(hObject, eventdata, handles)

41 %Start button (open next window)

42 morphologicalMatrix(handles.figure1);

43

44 function figure1 CloseRequestFcn(hObject, eventdata, handles)
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45 %Close request function (executes when user attempts to close figure1)

46 delete(hObject);

D.1.2.2 morphologicalMatrix.m

1 function varargout = morphologicalMatrix(varargin)

2 %Definition of the morphological matrix

3

4 % Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @morphologicalMatrix OpeningFcn, ...

9 'gui OutputFcn', @morphologicalMatrix OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function morphologicalMatrix OpeningFcn(hObject, eventdata, handles,...

23 varargin)

24 %Opening function (executes just before welcome is made visible)

25

26 %Close previous window

27 delete(varargin{1});

28

29 %Display picture

30 imshow('logo.png')

31

32 %Define column names

33 handles.columnNames={'Option 1','Option 2'};

34 set(handles.uitable3, 'columnname', handles.columnNames);

35

36 %Define row names

37 handles.rowNames={'Feature 1','Feature 2'};

38 set(handles.uitable3, 'rowname', handles.rowNames);

39

40

41 set(handles.popupmenu2,'String', handles.rowNames);
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42

43 % Choose default command line output for test

44 handles.output = hObject;

45

46 % Update handles structure

47 guidata(hObject, handles);

48

49 % UIWAIT makes test wait for user response (see UIRESUME)

50 uiwait(handles.figure1);

51

52 function varargout = morphologicalMatrix OutputFcn(hObject, eventdata,...

53 handles)

54 %Output fucntion (returns what is needed)

55

56 function pushbutton3 Callback(hObject, eventdata, handles)

57 %Add features to the matrix

58 data=get(handles.uitable3, 'data');

59 newline=cell(1,size(data,2));

60 newline(:)={''};

61 data=cat(1,data,newline);

62 handles.strHeadersRow=cat(2, 'Feature ',num2str(size(data,1)));

63 handles.rowNames=get(handles.uitable3,'rowname');

64 handles.rowNames=cat(2,handles.rowNames',handles.strHeadersRow);

65 set(handles.uitable3,'data', data);

66 set(handles.uitable3, 'rowname', handles.rowNames);

67

68 %Update popup menu

69 set(handles.popupmenu2,'String', handles.rowNames);

70

71 %Update handles structure

72 guidata(hObject, handles);

73

74 function pushbutton4 Callback(hObject, eventdata, handles)

75 %Add options to the matrix

76 data=get(handles.uitable3, 'data');

77 newcolumn=cell(size(data,1),1);

78 newcolumn(:)={''};

79 data=cat(2,data,newcolumn);

80 handles.columnNames=get(handles.uitable3,'columnname');

81 handles.strHeaders=cat(2, 'Option ',num2str(size(data,2)));

82 handles.columnNames=cat(2,handles.columnNames',handles.strHeaders);

83 set(handles.uitable3,'data', data);

84 set(handles.uitable3, 'columnname', handles.columnNames);

85 guidata(hObject, handles);

86

87 function pushbutton6 Callback(hObject, eventdata, handles)

88 %Ensure compatibility between options: open a new window and close this one

89 varargout{1} = get(handles.uitable3, 'data');

90 MMatrix=get(handles.uitable3, 'data');
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91 emptyCells = cellfun(@isempty,MMatrix);

92 MMatrix(emptyCells) = [];

93

94 %Check if morpho is empty

95 if length(MMatrix)==0

96 noMorpho(); %Error message

97 else

98 handles.columnNames=get(handles.uitable3,'columnname');

99 handles.rowNames=get(handles.uitable3,'rowname');

100 compatibility(varargout{1},handles.figure1,handles.rowNames,...

101 handles.columnNames); %Executes compatibility.m

102 end

103

104 function figure1 CloseRequestFcn(hObject, eventdata, handles)

105 %Executes when user attempts to close figure1.

106 delete(hObject);

107

108 function uipushtool1 ClickedCallback(hObject, eventdata, handles)

109 %Load existing morphologocial matrix

110 warning('off','MATLAB:table:ModifiedVarnames');

111 possiblefile={'*.xlsx';'*.xls'};

112 [FileName,PathName] = uigetfile(possiblefile,'Select an Excel file');

113

114 if FileName == 0

115

116 else

117 filePathName=cat(2,PathName,FileName);

118 T=readtable(filePathName);

119 Tdata1=table2cell(T);

120 Tdata=Tdata1(:,[2:size(T,2)]);

121

122 for i=1:size(Tdata,2)

123 columnHead{i}= cat(2, 'Option ',num2str(i));

124 end

125 set(handles.uitable3,'data',Tdata);

126 set(handles.uitable3, 'rowname', T{:,1});

127 set(handles.uitable3, 'columnname', columnHead);

128 handles.rowNames= T{:,1};

129 end

130

131 %Update popup menu

132 set(handles.popupmenu2,'String', handles.rowNames);

133 guidata(hObject, handles);

134

135 function uipushtool2 ClickedCallback(hObject, eventdata, handles)

136 %Save morphological matrix in Excel

137 possiblefile={'*.xlsx';'*.xls'};

138 [FileName,PathName] = uiputfile(possiblefile);

139
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140 if FileName == 0

141

142 else

143 filePathName=cat(2,PathName,FileName);

144 headers=get(handles.uitable3, 'columnname');

145 dataToBeWritten=get(handles.uitable3, 'data');

146 oldNames=get(handles.uitable3, 'rowname');

147 rowHeader=cat(2,' ',oldNames');

148 matrixToBeWritten=cat(1,headers',dataToBeWritten);

149 matrixToBeWritten=cat(2,rowHeader',matrixToBeWritten);

150 a = dir(PathName);

151 b = struct2cell(a);

152 if any(ismember(b(1,:),FileName)) == 1

153 EraseExcelSheets(filePathName);

154 end

155 xlswrite(filePathName,matrixToBeWritten);

156 end

157

158 function popupmenu2 Callback(hObject, eventdata, handles)

159 %Executes on selection change in popupmenu2.

160 val = get(hObject,'Value');

161 name=get(handles.uitable3,'rowname');

162 outputtt=changeFeatureName(name((val)));

163 name(val)={outputtt{1}};

164 set(handles.uitable3,'rowname',name);

165 set(handles.popupmenu2,'String', get(handles.uitable3,'rowname'));

166 guidata(hObject,handles);

167

168 function popupmenu2 CreateFcn(hObject, eventdata, handles)

169 %Executes during creation of the popupmenu2

170 if ispc && isequal(get(hObject,'BackgroundColor'),...

171 get(0,'defaultUicontrolBackgroundColor'))

172 set(hObject,'BackgroundColor','white');

173 end

174

175 function uipushtool4 ClickedCallback(hObject, eventdata, handles)

176 %Help window

177 helpWindow('morpho');

D.1.2.3 compatibility.m

1 function varargout = compatibility(varargin)

2 %Display compatibility matrix that allows users to define compatibility

3 %between all features

4

5 %Begin initialization code
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6 gui Singleton = 1;

7 gui State = struct('gui Name', mfilename, ...

8 'gui Singleton', gui Singleton, ...

9 'gui OpeningFcn', @compatibility OpeningFcn, ...

10 'gui OutputFcn', @compatibility OutputFcn, ...

11 'gui LayoutFcn', [] , ...

12 'gui Callback', []);

13 if nargin && ischar(varargin{1})

14 gui State.gui Callback = str2func(varargin{1});

15 end

16

17 if nargout

18 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

19 else

20 gui mainfcn(gui State, varargin{:});

21 end

22

23

24 function compatibility OpeningFcn(hObject, eventdata, handles, varargin)

25 %Executes just before compatibility is made visible.

26

27 %Close previous window

28 delete(varargin{2});

29

30 %Display picture

31 imshow('logo.png')

32

33 %Generate empty compatibility matrix

34 handles.uitable2=[];

35 handles.Morpho=varargin{1};

36 handles.rowNames=varargin{3};

37 handles.columnNames=varargin{4};

38 listOptions=GenerateCompatibility(varargin{1},varargin{1});

39 handles.listOp=listOptions;

40

41 %Prefill compatibility matrix with 0 for options from the same feature

42 handles.sizeCompat=length(listOptions);

43 handles.uitable2=cell(handles.sizeCompat,handles.sizeCompat);

44 handles.uitable2(:)={''};

45 handles.uitable2 = PreFillCompa(handles.uitable2,varargin{1});

46 data=get(handles.uitable1, 'data');

47 set(handles.uitable1,'data', handles.uitable2);

48

49 %Row title

50 set(handles.uitable1, 'rowname', listOptions);

51 %Column title

52 set(handles.uitable1, 'columnname', listOptions);

53

54 %Choose default command line output for compatibility
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55 handles.output = hObject;

56

57 %Update handles structure

58 guidata(hObject, handles);

59

60 %UIWAIT makes compatibility wait for user response

61 uiwait(handles.figure1);

62

63 function varargout = compatibility OutputFcn(hObject, eventdata, handles)

64 %Outputs from this function are returned to the command line.

65

66 function pushbutton1 Callback(hObject, eventdata, handles)

67 %Executes on button press in "Generate Alternatives".

68 varargout{1} = get(handles.uitable1, 'data');

69 AlternativesDisplay(handles.Morpho, varargout{1}, handles.figure1,...

70 handles.rowNames);

71

72 function figure1 CloseRequestFcn(hObject, eventdata, handles)

73 %Executes when user attempts to close figure1.

74 delete(handles.figure1);

75

76

77 function uipushtool1 ClickedCallback(hObject, eventdata, handles)

78 %Load compatibility matrix

79 warning('off','MATLAB:table:ModifiedVarnames');

80 possiblefile={'*.xlsx';'*.xls'};

81 [FileName,PathName] = uigetfile(possiblefile,'Select an Excel file');

82

83 if FileName == 0

84

85 else

86 filePathName=cat(2,PathName,FileName);

87 T=readtable(filePathName);

88 Tdata1=table2cell(T);

89 Tdata=Tdata1(:,[2:size(T,2)]);

90

91 %Transform into a cell of strings

92 d=size(Tdata);

93 for i=1:d(1)

94 for j=1:d(2)

95 a=cell2mat(Tdata(i,j));

96 if a==0 && i<=j

97 Tdata{i,j}='0';

98 elseif a==1 && i<=j

99 Tdata{i,j}='1';

100 else

101 Tdata{i,j}='';

102 end

103 end
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104 end

105

106 %Test dimensions of the compatibility matrix compared to morphological.

107 %If ok proceed, otherwise error message

108 if size(Tdata,1)==handles.sizeCompat && ...

109 size(Tdata,2) == handles.sizeCompat

110 set(handles.uitable1,'data',Tdata);

111 set(handles.uitable1, 'rowname', T{:,1});

112 set(handles.uitable1, 'columnname', T{:,1});

113 guidata(hObject, handles);

114 else

115 wrongCompat();

116 end

117 end

118

119 function uipushtool2 ClickedCallback(hObject, eventdata, handles)

120 %Save compatibility matrix

121 possiblefile={'*.xlsx';'*.xls'};

122 [FileName,PathName] = uiputfile(possiblefile);

123

124 if FileName == 0

125

126 else

127 filePathName=cat(2,PathName,FileName);

128 headers=get(handles.uitable1, 'columnname');

129 dataToBeWritten=get(handles.uitable1, 'data');

130 oldNames=get(handles.uitable1, 'rowname');

131 rowHeader=cat(2,' ',oldNames');

132 matrixToBeWritten=cat(1,headers',dataToBeWritten);

133 matrixToBeWritten=cat(2,rowHeader',matrixToBeWritten);

134 a = dir(PathName);

135 b = struct2cell(a);

136 if any(ismember(b(1,:),FileName)) == 1

137 EraseExcelSheets(filePathName);

138 end

139 xlswrite(filePathName,matrixToBeWritten);

140 end

141

142 function pushbutton2 Callback(hObject, eventdata, handles)

143 %Executes on button press in pushbutton2.

144 architectureDefinition(handles.Morpho,handles.rowNames,...

145 handles.columnNames,handles.listOp, handles.uitable1, handles.figure1);

146

147 function uipushtool4 ClickedCallback(hObject, eventdata, handles)

148 %Executes when pressing the help button

149 helpWindow('compat');
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D.1.2.4 AlternativesDisplay.m

1 function varargout = AlternativesDisplay(varargin)

2 %Display list of feasible alternatives

3

4 %Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @AlternativesDisplay OpeningFcn, ...

9 'gui OutputFcn', @AlternativesDisplay OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function AlternativesDisplay OpeningFcn(hObject,eventdata,handles,varargin)

23 %Executes just before AlternativesDisplay is made visible.

24

25 %Display picture

26 imshow('logo.png')

27

28 %Create table

29 MorphoTest=varargin{1};

30 CompatMatrix1=varargin{2};

31 handles.rowNames=varargin{4};

32 d=size(CompatMatrix1);

33 for i=1:d(1)

34 for j=1:d(2)

35 a=cell2mat(CompatMatrix1(i,j));

36 CompatMatrix{i,j}=num2str(a);

37 end

38 end

39

40 %Generate feasible alternatives

41 temp=GenerateFeasibleAlternatives(MorphoTest,CompatMatrix);

42 handles.ListFeasibleAlternatives=temp{1};

43 numOp=temp{2};

44

45 %Fill table

46 set(handles.uitable1,'data', handles.ListFeasibleAlternatives);
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47 set(handles.uitable1, 'columnname',handles.rowNames);

48

49 %Write total number of alternatives

50 textToBeWritten1='Number of feasible alternatives: ';

51 textToBeWritten2='Number of possible alternatives: ';

52 textToBeWrittenTop=cat(2,textToBeWritten1,...

53 num2str(size(handles.ListFeasibleAlternatives,1)));

54 textToBeWrittenDown=cat(2,textToBeWritten2,num2str(numOp));

55 set(handles.text2, 'String', textToBeWrittenTop);

56 set(handles.text3, 'String', textToBeWrittenDown);

57

58 % Choose default command line output for AlternativesDisplay

59 handles.output = hObject;

60

61 % Update handles structure

62 guidata(hObject, handles);

63

64 % UIWAIT makes AlternativesDisplay wait for user response

65 uiwait(handles.figure1);

66

67 function varargout = AlternativesDisplay OutputFcn(hObject,...

68 eventdata, handles)

69 %Outputs from this function are returned to the command line.

70

71 function uipushtool2 ClickedCallback(hObject, eventdata, handles)

72 %Save lsit of feasible alternatives

73 possiblefile={'*.xlsx';'*.xls'};

74 [FileName,PathName] = uiputfile(possiblefile);

75

76 if FileName == 0

77

78 else

79 filePathName=cat(2,PathName,FileName);

80 headers=get(handles.uitable1, 'columnname');

81 dataToBeWritten=get(handles.uitable1, 'data');

82 rowHeaders=[];

83 rowHeaders{1}='';

84 for i=1:size(dataToBeWritten,1)

85 rowHeaders{i+1}=num2str(i);

86 end

87 matrixToBeWritten=cat(1,headers',dataToBeWritten);

88 matrixToBeWritten=cat(2,rowHeaders',matrixToBeWritten);

89 a = dir(PathName);

90 b = struct2cell(a);

91 if any(ismember(b(1,:),FileName)) == 1

92 EraseExcelSheets(filePathName);

93 end

94 xlswrite(filePathName,matrixToBeWritten);

95 end
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96

97 function figure1 CloseRequestFcn(hObject, eventdata, handles)

98 %Executes when user attempts to close figure1.

99 delete(handles.figure1);

D.1.2.5 helpWindow.m

1 function varargout = helpWindow(varargin)

2 %Display the help window as a function of the parent window

3

4 % Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @helpWindow OpeningFcn, ...

9 'gui OutputFcn', @helpWindow OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function helpWindow OpeningFcn(hObject, eventdata, handles, varargin)

23 %Executes just before helpTest is made visible.

24

25 %helpID

26 helpID=varargin{1};

27

28 %Pick the corresponding text to be displayed on the window

29 textToBeWritten=helpText(helpID);

30

31 %Display text

32 set(handles.text1,'string',textToBeWritten);

33

34 % Choose default command line output for helpTest

35 handles.output = hObject;

36

37 % Update handles structure

38 guidata(hObject, handles);

39
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40 % UIWAIT makes helpTest wait for user response (see UIRESUME)

41 uiwait(handles.figure1);

42

43 function varargout = helpWindow OutputFcn(hObject, eventdata, handles)

44 %Outputs from this function are returned to the command line.

45

46 function pushbutton1 Callback(hObject, eventdata, handles)

47 %Executes on button press in pushbutton1.

48 delete(handles.figure1);

49

50 function figure1 CloseRequestFcn(hObject, eventdata, handles)

51 %Executes when user attempts to close figure1.delete(hObject);

52 delete(hObject)

D.1.2.6 architectureDefinition.m

1 function varargout = architectureDefinition(varargin)

2 %Display initial morphological matrix and allows users to define variables

3 %for each feature

4

5 %Begin initialization code

6 gui Singleton = 1;

7 gui State = struct('gui Name', mfilename, ...

8 'gui Singleton', gui Singleton, ...

9 'gui OpeningFcn', @architectureDefinition OpeningFcn, ...

10 'gui OutputFcn', @architectureDefinition OutputFcn, ...

11 'gui LayoutFcn', [] , ...

12 'gui Callback', []);

13 if nargin && ischar(varargin{1})

14 gui State.gui Callback = str2func(varargin{1});

15 end

16

17 if nargout

18 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

19 else

20 gui mainfcn(gui State, varargin{:});

21 end

22

23 function architectureDefinition OpeningFcn(hObject, eventdata, ...

24 handles, varargin)

25 %Executes just before architectureDefinition is made visible.

26

27 %Display picture

28 imshow('logo.png');

29

30 %Load inputs
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31 handles.Morpho=varargin{1};

32 handles.rowNames=varargin{2};

33 handles.columnNames=varargin{3};

34 handles.listOptions=varargin{4};

35 handles.CompatMat=varargin{5};

36

37 %Assign inputs to their corresponding tables

38 set(handles.uitable1,'data',handles.Morpho);

39 set(handles.uitable1,'rowname',handles.rowNames);

40 set(handles.uitable1,'columnname',handles.columnNames);

41

42 %Define vector that represents the number of options of each feature

43 handles.numberOptions=[];

44 for i=1:size(handles.Morpho,1)

45 counter=0;

46 for j=1:size(handles.Morpho,2)

47 if strcmp(handles.Morpho{i,j},'')

48

49 else

50 counter=counter+1;

51 end

52 end

53 handles.numberOptions(i)= counter;

54 end

55

56 %Create a big matrix for variables/description

57 numbVariables=200;

58 d=length(handles.rowNames);

59 C=cell(numbVariables,d);

60 C(:)={''};

61 set(handles.uitable4, 'data', C);

62 set(handles.uitable5, 'data', C);

63

64 %Create a big matrix for variables assignment

65 set(handles.uitable6,'ColumnFormat',{'logical'},'ColumnEditable', true);

66 listOptions=GenerateCompatibility(get(handles.uitable1,'data'),...

67 get(handles.uitable1,'data'));

68 dataVariables=cell(length(listOptions),numbVariables);

69 dataVariables(:)={false};

70 set(handles.uitable6,'data',dataVariables);

71 set(handles.uitable6,'rowname',listOptions);

72

73 %Create popup menu

74 set(handles.popupmenu1,'String', handles.rowNames);

75

76 %Choose default command line output for architectureDefinition

77 handles.output = hObject;

78

79 %Update handles structure
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80 guidata(hObject, handles);

81

82 function varargout = architectureDefinition OutputFcn(hObject, eventdata,...

83 handles)

84 %Outputs from this function are returned to the command line.

85 %Get default command line output from handles structure

86 varargout{1} = handles.output;

87

88 function popupmenu1 Callback(hObject, eventdata, handles)

89 %Executes on selection change in popup menu

90 %Identify selected feature

91 val = get(hObject,'Value');

92 listOptions=GenerateCompatibility(get(handles.uitable1,'data'),...

93 get(handles.uitable1,'data'));

94

95 %Update tables

96 set(handles.uitable6,'rowname',listOptions);

97 outputtt=defineFeatures(handles.uitable1, handles.uitable4,...

98 handles.uitable5, val, handles.uitable6,handles.numberOptions);

99 set(handles.uitable4,'data',outputtt{1});

100 set(handles.uitable5,'data',outputtt{2});

101 set(handles.uitable6,'data',outputtt{3});

102 guidata(hObject,handles);

103

104 function popupmenu1 CreateFcn(hObject, eventdata, handles)

105 %Executes during creation of popup menu

106 if ispc && isequal(get(hObject,'BackgroundColor'),...

107 get(0,'defaultUicontrolBackgroundColor'))

108 set(hObject,'BackgroundColor','white');

109 end

110

111 function pushbutton1 Callback(hObject, eventdata, handles)

112 %Executes on button press in "Generate Architectures"

113 ArchitecturesDisplay(handles.Morpho, get(handles.CompatMat,'data'),...

114 handles.figure1,handles.rowNames,get(handles.uitable4,'data'),...

115 get(handles.uitable6,'data'),get(handles.uitable5,'data'));

D.1.2.7 defineFeatures.m

1 function varargout = defineFeatures(varargin)

2 %Display feature name and allows users to add variables, descriptions and

3 %assign variables to the corresponding features

4

5 % Begin initialization code

6 gui Singleton = 1;

7 gui State = struct('gui Name', mfilename, ...
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8 'gui Singleton', gui Singleton, ...

9 'gui OpeningFcn', @defineFeatures OpeningFcn, ...

10 'gui OutputFcn', @defineFeatures OutputFcn, ...

11 'gui LayoutFcn', [] , ...

12 'gui Callback', []);

13 if nargin && ischar(varargin{1})

14 gui State.gui Callback = str2func(varargin{1});

15 end

16

17 if nargout

18 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

19 else

20 gui mainfcn(gui State, varargin{:});

21 end

22

23 function defineFeatures OpeningFcn(hObject, eventdata, handles, varargin)

24 %Executes just before defineFeatures is made visible.

25

26 %Display picture

27 imshow('logo.png')

28

29 %Load inputs

30 handles.morphoInitial=varargin{1};

31 handles.variableTable=varargin{2};

32 handles.descriptionTable=varargin{3};

33 handles.currentFeature=varargin{4};

34 handles.variableAssignment=varargin{5};

35 handles.numberOptions=varargin{6};

36 handles.listFeatures=get(handles.morphoInitial,'rowname');

37

38 %Set current strings to text editors

39 textToBeWritten='Name: ';

40 textToBeWritten2=handles.listFeatures(handles.currentFeature);

41 set(handles.text2,'String',cat(2,textToBeWritten,textToBeWritten2{1}));

42 set(handles.edit2,'String','');

43 set(handles.edit3,'String','');

44

45 %Build variable description table based on current variables

46 variables=get(handles.variableTable,'data');

47 description=get(handles.descriptionTable,'data');

48 combination=[variables(:,handles.currentFeature) ...

49 description(:,handles.currentFeature)];

50 set(handles.uitable1,'data',combination);

51

52 %Build variable assignement table based on current data

53 handles.listOptions=get(handles.morphoInitial,'data');

54 listOptions=handles.listOptions(handles.currentFeature,:);

55 listOptionsWithoutEmpty=listOptions;

56 emptyCells = cellfun(@isempty,listOptionsWithoutEmpty);
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57 listOptionsWithoutEmpty(emptyCells) = [];

58 listOptions=listOptionsWithoutEmpty;

59 set(handles.uitable3,'columnname',variables(:,handles.currentFeature));

60 set(handles.uitable3,'rowname',listOptions);

61

62 jCol=0;

63 while 1-(strcmp(variables{jCol+1,handles.currentFeature},''))

64 jCol=jCol+1;

65 end

66 iRow=length(listOptions);

67 data=cell(iRow,jCol);

68

69 %Load uitable6 with variable assignment

70 if jCol==0

71 set(handles.uitable3,'visible','off');

72 set(handles.uitable3,'data', data,'ColumnFormat',{'logical'},...

73 'ColumnEditable', true);

74 else

75 set(handles.uitable3,'visible','on');

76 entireVariableAssignment=get(handles.variableAssignment,'data');

77 Idx=1;

78 finalIdx=0;

79 if handles.currentFeature==1

80 Idx=1;

81 finalIdx=Idx+handles.numberOptions(1)-1;

82 else

83 for i=1:handles.currentFeature-1

84 Idx=Idx+handles.numberOptions(i);

85 finalIdx=Idx+handles.numberOptions(i+1)-1;

86 end

87 end

88

89 for k=Idx:finalIdx

90 for m=1:jCol

91 tempp=entireVariableAssignment(k,m);

92 data{k-Idx+1,m}=tempp{1};

93 end

94 end

95 set(handles.uitable3,'data', data,'ColumnFormat',{'logical'},...

96 'ColumnEditable', true,'visible','on');

97 end

98

99 % Choose default command line output for defineFeatures

100 handles.output = hObject;

101

102 % Update handles structure

103 guidata(hObject, handles);

104

105 % UIWAIT makes defineFeatures wait for user response
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106 uiwait(handles.figure1);

107

108 function varargout = defineFeatures OutputFcn(hObject, eventdata, handles)

109 %Outputs from this function are returned to the command line.

110

111 %Load data that are currently in variable table, description tables and

112 %assignment table

113 out1=get(handles.variableTable,'data');

114 out2=get(handles.descriptionTable, 'data');

115 dataAss=get(handles.variableAssignment,'data');

116 temp=get(handles.uitable3,'data');

117

118 %Create the output structure: 1. list of variables, 2. description, 3.

119 %assignment

120 Idx=1;

121 if handles.currentFeature==1

122 Idx=1;

123 else

124 for i=1:handles.currentFeature-1

125 Idx=Idx+handles.numberOptions(i);

126 end

127 end

128

129 for i=1:size(temp,1)

130 for j=1:size(temp,2)

131 dataAss(i+Idx-1,j)=temp(i,j);

132 end

133 end

134 set(handles.variableAssignment,'data',dataAss);

135 out3=get(handles.variableAssignment, 'data');

136 handles.output={out1,out2,out3};

137 varargout{1} = handles.output;

138 delete(handles.figure1);

139

140 function edit2 Callback(hObject, eventdata, handles)

141 %Object declaration for variable name

142

143 function edit2 CreateFcn(hObject, eventdata, handles)

144 %Executes during object creation of edit2 (variable name)

145 if ispc && isequal(get(hObject,'BackgroundColor'),...

146 get(0,'defaultUicontrolBackgroundColor'))

147 set(hObject,'BackgroundColor','white');

148 end

149

150 function edit3 Callback(hObject, eventdata, handles)

151 %Object declaration for description

152

153 function edit3 CreateFcn(hObject, eventdata, handles)

154 %Executes during object creation of edit3 (description)
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155 if ispc && isequal(get(hObject,'BackgroundColor'),...

156 get(0,'defaultUicontrolBackgroundColor'))

157 set(hObject,'BackgroundColor','white');

158 end

159

160 function edit4 Callback(hObject, eventdata, handles)

161 %Object declaration for edit4

162

163 function edit4 CreateFcn(hObject, eventdata, handles)

164 %Executes during object creation of edit4

165 if ispc && isequal(get(hObject,'BackgroundColor'),...

166 get(0,'defaultUicontrolBackgroundColor'))

167 set(hObject,'BackgroundColor','white');

168 end

169

170 function figure1 CloseRequestFcn(hObject, eventdata, handles)

171 %Executes when user attempts to close figure1.

172 guidata(hObject,handles);

173 uiresume();

174

175 function pushbutton1 Callback(hObject, eventdata, handles)

176 %Executes on button press in "Submit".

177

178 %Change variables and description

179 content=get(handles.uitable1,'data');

180 newVariables=content(:,1);

181 newDdescriptions=content(:,2);

182

183 variables=get(handles.variableTable,'data');

184 descriptions=get(handles.descriptionTable,'data');

185

186 for i=1:size(newVariables,1)

187 variables(i,handles.currentFeature)=newVariables(i);

188 descriptions(i,handles.currentFeature)=newDdescriptions(i);

189 end

190

191 set(handles.variableTable,'data',variables);

192 set(handles.descriptionTable,'data',descriptions);

193 set(handles.uitable3,'columnname',variables);

194

195 guidata(hObject,handles);

196 uiresume();

197

198 function pushbutton2 Callback(hObject, eventdata, handles)

199 %Executes on button press in "Add variable".

200

201 %Load text in variable characteristics

202 handles.varNames=get(handles.edit2,'String');

203 handles.varDes=get(handles.edit3,'String');
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204

205 if 1-strcmp(handles.varNames,'') && 1-strcmp(handles.varNames,' ') &&...

206 1-strcmp(handles.varNames,' ') ...

207 && 1-strcmp(handles.varNames,' ') &&...

208 1-strcmp(handles.varNames,' ') &&...

209 1-strcmp(handles.varNames,' ') &&...

210 1-strcmp(handles.varNames,' ')

211

212 %Store characteristics in uitable

213 data=get(handles.uitable1,'data');

214 %newRow={handles.varNames,handles.varDes};

215 Idx=1;

216 allVar=[];

217 while strcmp(data{Idx,1},'')==0 && strcmp(data{Idx,1},'')==0

218 allVar{Idx}=data{Idx,1};

219 Idx=Idx+1;

220 end

221 %WhereToStore=data;

222 data{Idx,1}=handles.varNames;

223 data{Idx,2}=handles.varDes;

224 set(handles.uitable1,'data',data);

225 allVar{Idx}=data{Idx,1};

226

227 dataTemp=get(handles.uitable3,'data');

228 addCol=cell(size(dataTemp,1),1);

229 addCol(:)={false};

230 dataTemp=[dataTemp addCol];

231

232 set(handles.uitable3,'visible','on');

233 set(handles.uitable3,'columnname',allVar);

234 set(handles.uitable3,'data',dataTemp);

235 end

236

237 %Empty text editors

238 set(handles.edit2,'String','');

239 set(handles.edit3,'String','');

240

241 %Update guidata

242 guidata(hObject, handles);

243

244 function uipushtool1 ClickedCallback(hObject, eventdata, handles)

245 %Load table with variables

246 warning('off','MATLAB:table:ModifiedVarnames');

247 possiblefile={'*.xlsx';'*.xls'};

248 [FileName,PathName] = uigetfile(possiblefile,'Select an Excel file');

249

250 if FileName == 0

251 panda = 0;

252 else
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253 filePathName=cat(2,PathName,FileName);

254 T=readtable(filePathName);

255 set(handles.uitable1,'data',table2cell(T));

256 handles.rowNames= T{:,1};

257 end

258

259 %Update assignment matrix

260 handles.listOptions=get(handles.morphoInitial,'data');

261 listOptions=handles.listOptions(handles.currentFeature,:);

262 listOptionsWithoutEmpty=listOptions;

263 emptyCells = cellfun(@isempty,listOptionsWithoutEmpty);

264 listOptionsWithoutEmpty(emptyCells) = [];

265 listOptions=listOptionsWithoutEmpty;

266 variables=get(handles.uitable1,'data');

267 set(handles.uitable3,'columnname',variables(:,1));

268 set(handles.uitable3,'rowname',listOptions);

269 jCol=size(variables,1);

270 iRow=length(listOptions);

271 data=cell(iRow,jCol);

272 data(:)={false};

273

274 %Load existing assignment table with variable assignment

275 if jCol==0

276 set(handles.uitable3,'visible','off');

277 set(handles.uitable3,'data', data,'ColumnFormat',...

278 {'logical'},'ColumnEditable', true);

279 else

280 set(handles.uitable3,'visible','on');

281 set(handles.uitable3,'data', data,'ColumnFormat',...

282 {'logical'},'ColumnEditable', true,'visible','on');

283 end

284

285 guidata(hObject, handles);

286

287 function uipushtool2 ClickedCallback(hObject, eventdata, handles)

288 %Save table with variables

289 possiblefile={'*.xlsx';'*.xls'};

290 [FileName,PathName] = uiputfile(possiblefile);

291

292 if FileName == 0

293

294 else

295 filePathName=cat(2,PathName,FileName);

296 headers=get(handles.uitable1, 'columnname');

297 dataToBeWritten=get(handles.uitable1, 'data');

298 matrixToBeWritten=cat(1,headers',dataToBeWritten);

299 a = dir(PathName);

300 b = struct2cell(a);

301 if any(ismember(b(1,:),FileName)) == 1
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302 EraseExcelSheets(filePathName);

303 end

304 xlswrite(filePathName,matrixToBeWritten);

305 end

306

307 function uipushtool3 ClickedCallback(hObject, eventdata, handles)

308 %Help window

309 helpWindow('assignVariables');

D.1.2.8 ArchitecturesDisplay.m

1 function varargout = ArchitecturesDisplay(varargin)

2 %Display feasible architectures

3

4 %Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @ArchitecturesDisplay OpeningFcn, ...

9 'gui OutputFcn', @ArchitecturesDisplay OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function ArchitecturesDisplay OpeningFcn(hObject, eventdata, handles,...

23 varargin)

24 %Executes just before ArchitecturesDisplay is made visible

25

26 %Display picture

27 imshow('logo.png')

28

29 %Load inputs

30 MorphoTest=varargin{1};

31 CompatMatrix1=varargin{2};

32 handles.rowNames=varargin{4};

33 handles.variableMat=varargin{5};

34 handles.varAss=varargin{6};

35 handles.varDes=varargin{7};
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36 d=size(CompatMatrix1);

37 for i=1:d(1)

38 for j=1:d(2)

39 a=cell2mat(CompatMatrix1(i,j));

40 CompatMatrix{i,j}=num2str(a);

41 end

42 end

43

44 %Generate feasible architectures

45 tempp=GenerateFeasibleArchitectures(MorphoTest,CompatMatrix,...

46 handles.varAss,handles.variableMat);

47 possAlt=tempp{2};

48 feasAlt=tempp{3};

49 temp=tempp{1};

50

51 %Display feasible architectures

52 handles.ListFeasibleAlternatives=temp{1};

53 set(handles.uitable1,'data', handles.ListFeasibleAlternatives);

54 set(handles.uitable1, 'columnname',handles.rowNames);

55 set(handles.uitable1,'rowname',temp{3});

56 handles.finalRow=temp{3};

57

58 %Write total number of alternatives and architectures

59 textToBeWritten='Number of feasible architectures: ';

60 textToBeWritten=cat(2,textToBeWritten,num2str(temp{2}));

61 set(handles.text2, 'String', textToBeWritten);

62 textToBeWritten1='Number of feasible alternatives: ';

63 textToBeWritten2='Number of possible alternatives: ';

64 textToBeWrittenTop=cat(2,textToBeWritten1,num2str(feasAlt));

65 textToBeWrittenDown=cat(2,textToBeWritten2,num2str(possAlt));

66 set(handles.text3, 'String', textToBeWrittenTop);

67 set(handles.text4, 'String', textToBeWrittenDown);

68

69 % Choose default command line output for ArchitecturesDisplay

70 handles.output = hObject;

71

72 % Update handles structure

73 guidata(hObject, handles);

74

75 function varargout = ArchitecturesDisplay OutputFcn(hObject, eventdata,...

76 handles)

77 %Outputs from this function are returned to the command line.

78 %Get default command line output from handles structure

79 varargout{1} = handles.output;

80

81 function uipushtool1 ClickedCallback(hObject, eventdata, handles)

82 %Save data table

83 possiblefile={'*.xlsx';'*.xls'};

84 [FileName,PathName] = uiputfile(possiblefile);
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85

86 if FileName == 0

87

88 else

89 filePathName=cat(2,PathName,FileName);

90 headers=get(handles.uitable1, 'columnname');

91 dataToBeWritten=get(handles.uitable1, 'data');

92 rowHeader=[' ';handles.finalRow'];

93 matrixToBeWritten=cat(1,headers',dataToBeWritten);

94 matrixToBeWritten=cat(2,rowHeader,matrixToBeWritten);

95 a = dir(PathName);

96 b = struct2cell(a);

97 if any(ismember(b(1,:),FileName)) == 1

98 EraseExcelSheets(filePathName);

99 end

100 xlswrite(filePathName,matrixToBeWritten);

101 end

102

103 function pushbutton1 Callback(hObject, eventdata, handles)

104 %Executes on button press in "Variable description".

105 DisplayDescription(handles.variableMat,handles.varDes);

D.1.2.9 changeFeatureName.m

1 function varargout = changeFeatureName(varargin)

2 %Change the name of a feature

3

4 %Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @changeFeatureName OpeningFcn, ...

9 'gui OutputFcn', @changeFeatureName OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function changeFeatureName OpeningFcn(hObject,eventdata,handles,varargin)
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23 %Executes just before changeFeatureName is made visible.

24 %Load current feature name

25 handles.featureName=varargin{1};

26 set(handles.edit1,'String',handles.featureName);

27

28 %Choose default command line output for changeFeatureName

29 handles.output = hObject;

30

31 %Update handles structure

32 guidata(hObject, handles);

33

34 %UIWAIT makes changeFeatureName wait for user response

35 uiwait(handles.figure1);

36

37 function varargout = changeFeatureName OutputFcn(hObject,eventdata,handles)

38 %Outputs from this function are returned to the command line.

39 %Get default command line output from handles structure

40 varargout{1} = handles.output;

41 delete(handles.figure1);

42

43 function edit1 Callback(hObject, eventdata, handles)

44 %Declaration of the field for text edition

45

46 function edit1 CreateFcn(hObject, eventdata, handles)

47 %Executes during edit1 creation

48 if ispc && isequal(get(hObject,'BackgroundColor'),...

49 get(0,'defaultUicontrolBackgroundColor'))

50 set(hObject,'BackgroundColor','white');

51 end

52

53 function pushbutton1 Callback(hObject, eventdata, handles)

54 %Executes on button press in "Ok"

55 %Load text from edit1

56 handles.featureName=get(handles.edit1,'string');

57

58 %Output text loaded

59 handles.output=handles.featureName;

60 guidata(hObject,handles);

61 uiresume();

62

63 function figure1 CloseRequestFcn(hObject, eventdata, handles)

64 %Executes when user attempts to close figure1.

65 handles.output=handles.featureName;

66 guidata(hObject,handles);

67 uiresume();

D.1.2.10 noMorpho.m
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1 function varargout = noMorpho(varargin)

2 %Error message when the morphological matrix is empty

3

4 %Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @noMorpho OpeningFcn, ...

9 'gui OutputFcn', @noMorpho OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function noMorpho OpeningFcn(hObject, eventdata, handles, varargin)

23 %Executes just before noMorpho is made visible.

24

25 % Choose default command line output for noMorpho

26 handles.output = 'Yes';

27

28 % Update handles structure

29 guidata(hObject, handles);

30

31 % Insert custom Title and Text

32 if(nargin > 3)

33 for index = 1:2:(nargin-3),

34 if nargin-3==index, break, end

35 switch lower(varargin{index})

36 case 'title'

37 set(hObject, 'Name', varargin{index+1});

38 case 'string'

39 set(handles.text1, 'String', varargin{index+1});

40 end

41 end

42 end

43

44 % Determine the position of the dialog - centered on the callback figure

45 % if available, else, centered on the screen

46 FigPos=get(0,'DefaultFigurePosition');

47 OldUnits = get(hObject, 'Units');

48 set(hObject, 'Units', 'pixels');

49 OldPos = get(hObject,'Position');
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50 FigWidth = OldPos(3);

51 FigHeight = OldPos(4);

52 if isempty(gcbf)

53 ScreenUnits=get(0,'Units');

54 set(0,'Units','pixels');

55 ScreenSize=get(0,'ScreenSize');

56 set(0,'Units',ScreenUnits);

57

58 FigPos(1)=1/2*(ScreenSize(3)-FigWidth);

59 FigPos(2)=2/3*(ScreenSize(4)-FigHeight);

60 else

61 GCBFOldUnits = get(gcbf,'Units');

62 set(gcbf,'Units','pixels');

63 GCBFPos = get(gcbf,'Position');

64 set(gcbf,'Units',GCBFOldUnits);

65 FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...

66 (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];

67 end

68 FigPos(3:4)=[FigWidth FigHeight];

69 set(hObject, 'Position', FigPos);

70 set(hObject, 'Units', OldUnits);

71

72

73 % Make the GUI modal

74 set(handles.figure1,'WindowStyle','modal')

75

76 % UIWAIT makes noMorpho wait for user response (see UIRESUME)

77 uiwait(handles.figure1);

78

79 function varargout = noMorpho OutputFcn(hObject, eventdata, handles)

80 %Outputs from this function are returned to the command line.

81

82 function pushbutton1 Callback(hObject, eventdata, handles)

83 %Executes on button press in pushbutton1.

84 delete(hObject);

85

86 function figure1 CloseRequestFcn(hObject, eventdata, handles)

87 %Executes when user attempts to close figure1.

88 delete(hObject);

89

90 function pushbutton3 Callback(hObject, eventdata, handles)

91 %Executes on button press in "Ok"

92 delete(handles.figure1);

D.1.2.11 wrongCompat.m
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1 function varargout = wrongCompat(varargin)

2 %Display error message when an inconsistent compatibility matrix is

3 %provided by the user

4

5 %Begin initialization code

6 gui Singleton = 1;

7 gui State = struct('gui Name', mfilename, ...

8 'gui Singleton', gui Singleton, ...

9 'gui OpeningFcn', @wrongCompat OpeningFcn, ...

10 'gui OutputFcn', @wrongCompat OutputFcn, ...

11 'gui LayoutFcn', [] , ...

12 'gui Callback', []);

13 if nargin && ischar(varargin{1})

14 gui State.gui Callback = str2func(varargin{1});

15 end

16

17 if nargout

18 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

19 else

20 gui mainfcn(gui State, varargin{:});

21 end

22

23 function wrongCompat OpeningFcn(hObject, eventdata, handles, varargin)

24 %Executes just before wrongCompat is made visible.

25

26 %Choose default command line output for wrongCompat

27 handles.output = 'Yes';

28

29 %Update handles structure

30 guidata(hObject, handles);

31

32 %Insert custom Title and Text

33 if(nargin > 3)

34 for index = 1:2:(nargin-3),

35 if nargin-3==index, break, end

36 switch lower(varargin{index})

37 case 'title'

38 set(hObject, 'Name', varargin{index+1});

39 case 'string'

40 set(handles.text1, 'String', varargin{index+1});

41 end

42 end

43 end

44

45 %Determine the position of the dialog - centered on the callback figure

46 %if available, else, centered on the screen

47 FigPos=get(0,'DefaultFigurePosition');

48 OldUnits = get(hObject, 'Units');

49 set(hObject, 'Units', 'pixels');
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50 OldPos = get(hObject,'Position');

51 FigWidth = OldPos(3);

52 FigHeight = OldPos(4);

53 if isempty(gcbf)

54 ScreenUnits=get(0,'Units');

55 set(0,'Units','pixels');

56 ScreenSize=get(0,'ScreenSize');

57 set(0,'Units',ScreenUnits);

58

59 FigPos(1)=1/2*(ScreenSize(3)-FigWidth);

60 FigPos(2)=2/3*(ScreenSize(4)-FigHeight);

61 else

62 GCBFOldUnits = get(gcbf,'Units');

63 set(gcbf,'Units','pixels');

64 GCBFPos = get(gcbf,'Position');

65 set(gcbf,'Units',GCBFOldUnits);

66 FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...

67 (GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];

68 end

69 FigPos(3:4)=[FigWidth FigHeight];

70 set(hObject, 'Position', FigPos);

71 set(hObject, 'Units', OldUnits);

72

73 %Make the GUI modal

74 set(handles.figure1,'WindowStyle','modal')

75

76 %UIWAIT makes wrongCompat wait for user response

77 uiwait(handles.figure1);

78

79 function varargout = wrongCompat OutputFcn(hObject, eventdata, handles)

80 %Outputs from this function are returned to the command line.

81

82 function pushbutton1 Callback(hObject, eventdata, handles)

83 %Executes on button press in pushbutton1.

84

85 handles.output = get(hObject,'String');

86

87 %Update handles structure

88 guidata(hObject, handles);

89

90 %Use UIRESUME instead of delete because the OutputFcn needs

91 %to get the updated handles structure.

92 uiresume(handles.figure1);

93

94 function figure1 CloseRequestFcn(hObject, eventdata, handles)

95 %Executes when user attempts to close figure1.

96 delete(hObject);

97

98 function pushbutton3 Callback(hObject, eventdata, handles)
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99 %Executes on button press in pushbutton3.

100 delete(handles.figure1);

D.1.2.12 DisplayDescription.m

1 function varargout = DisplayDescription(varargin)

2 %Display the description of all variables

3

4 %Begin initialization code

5 gui Singleton = 1;

6 gui State = struct('gui Name', mfilename, ...

7 'gui Singleton', gui Singleton, ...

8 'gui OpeningFcn', @DisplayDescription OpeningFcn, ...

9 'gui OutputFcn', @DisplayDescription OutputFcn, ...

10 'gui LayoutFcn', [] , ...

11 'gui Callback', []);

12 if nargin && ischar(varargin{1})

13 gui State.gui Callback = str2func(varargin{1});

14 end

15

16 if nargout

17 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

18 else

19 gui mainfcn(gui State, varargin{:});

20 end

21

22 function DisplayDescription OpeningFcn(hObject, eventdata, handles,...

23 varargin)

24 %Executes just before DisplayDescription is made visible.

25

26 %Load data data table

27 variablesTable=varargin{1};

28 descriptionTable=varargin{2};

29 tableToBeDisplayed=generateVariableDescription(variablesTable,...

30 descriptionTable);

31 set(handles.uitable1,'data',tableToBeDisplayed);

32

33

34 %Choose default command line output for DisplayDescription

35 handles.output = hObject;

36

37 % Update handles structure

38 guidata(hObject, handles);

39

40 function varargout = DisplayDescription OutputFcn(hObject, eventdata,...

41 handles)
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42 %Outputs from this function are returned to the command line.

43

44 function pushbutton1 Callback(hObject, eventdata, handles)

45 %Executes on button press "Ok"

46 delete(handles.figure1);

47

48 function figure1 CloseRequestFcn(hObject, eventdata, handles)

49 %Executes when user attempts to close figure1.

50 delete(hObject);

51

52 function uipushtool1 ClickedCallback(hObject, eventdata, handles)

53 %Save table with variables

54 possiblefile={'*.xlsx';'*.xls'};

55 [FileName,PathName] = uiputfile(possiblefile);

56

57 if FileName == 0

58

59 else

60 filePathName=cat(2,PathName,FileName);

61 headers={'Variables' 'Description'};

62 dataToBeWritten=get(handles.uitable1, 'data');

63 matrixToBeWritten=cat(1,headers,dataToBeWritten);

64 a = dir(PathName);

65 b = struct2cell(a);

66 if any(ismember(b(1,:),FileName)) == 1

67 EraseExcelSheets(filePathName);

68 end

69 xlswrite(filePathName,matrixToBeWritten);

70 end

D.1.2.13 helpText.m

1 function helpText = helpText(helpID)

2 %Define texts that are loaded to the help window depending on the helpID

3 %that is called

4 switch helpID

5 case 'morpho'

6 helpText={

7 'A morphological matrix is a systematic and rigorous method';

8 'for generating all possible alternatives of a given system.';

9 ' ';

10 'The system must first be decomposed into features';

11 '(or functions). You can edit the feature names using the';

12 'popup menu in the top right-hand corner of the window.';

13 ' ';

14 'Once, all features have been added to the matrix, start';
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15 'adding options for each feature. These options correspond to';

16 'the different ways the feature (function) can be fulfilled.';

17 ' ';

18 'Using the toolbar, you can easily load an existing';

19 'morphological matrix from an Excel sheet and save your own';

20 'matrix in an Excel file.';

21 ' ';

22 'Once the morphological matrix has been completed, press';

23 'Ensure compatibility to define the compatibility between';

24 'each option of the system.'};

25 case 'compat'

26 helpText={

27 'A compatibility matrix is a systematic and rigorous method';

28 'for defining the compatibility between all options of';

29 'a system.';

30 ' ';

31 'If the options k and m are compatible, write 1 in the';

32 'cell (k,m). If these options are not compatible, write 0 . ';

33 'The compatibility matrix is symmetric so that you only need';

34 'to complete the upper triangular (note that the lower';

35 'triangular will not be considered in the calculation and';

36 'that all values other than 1 will be converted to 0 for';

37 'the calculation. The compatibility matrix has been';

38 'automatically prefilled in order to account for the';

39 'incompatibility between the options of the same feature.';

40 ' ';

41 'Using the toolbar, you can easily load an existing';

42 'compatibility matrix from an Excel sheet and save your own';

43 'matrix in an Excel file.';

44 ' ';

45 'Once the compatibility matrix is completed, press either';

46 'Generate alternatives to generate the list of feasible';

47 'alternatives or Generate architectures to define design';

48 'variables and generate the list of feasible architectures.'};

49 case 'assignVariables'

50 helpText={

51 'This window allows you to define all design variables';

52 'corresponding to the selected feature along with their';

53 'description.';

54 ' ';

55 'Once all design variables have been added to the list,'

56 'assign variables to the corresponding options using the';

57 'checkboxes. Using the toolbar, you can easily load an';

58 'existing list of variables from an Excel sheet and save your';

59 'own list in an Excel file.';

60 ' ';

61 'Once all variables have been added and assigned, press';

62 ' Submit to save your modification and go back to the';

63 'previous window.'};
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64 end

65

66 end

D.1.2.14 PreFillCompa.m

1 function compatMat = PreFillCompa(compatMatEmpty,Morpho )

2 %Prefill the morphological matrix with 1 on the diagonal and 0 for options

3 %from the same feature

4

5 %Add 1 on diagonal

6 d=size(compatMatEmpty);

7 for i=1:d(1)

8 compatMatEmpty{i,i}='1';

9 end

10

11 %Put 0 for options from the same feature

12 dM=size(Morpho);

13 VectorAlternatives=[];

14 for i=1:dM(1)

15 compatRowsWithoutEmpty = Morpho(i,:);

16 emptyCells = cellfun(@isempty,compatRowsWithoutEmpty);

17 compatRowsWithoutEmpty(emptyCells) = [];

18 VectorAlternatives(i)=length(compatRowsWithoutEmpty);

19 end

20 counter2=0;

21 for i=1:length(VectorAlternatives)

22 for j=1:VectorAlternatives(i)

23 for k=1:VectorAlternatives(i)-j

24 compatMatEmpty{j+counter2,j+counter2+k}='0';

25 end

26 end

27 counter2=counter2+VectorAlternatives(i);

28 end

29

30 compatMat=compatMatEmpty;

31 end

D.1.2.15 GenerateCompatibility.m

1 function listOptions = GenerateCompatibility( MorphoTest, MorphoVar )

2 %Create a list of options from a matrix

3
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4 d=size(MorphoTest);

5 compatRows=[];

6 compatRows2=[];

7 for i=1:d(1)

8 compatRows=cat(2,compatRows,MorphoTest(i,:));

9 compatRows2=cat(2,compatRows2,MorphoVar(i,:));

10 end

11

12 %Remove empty cells

13 compatRowsWithoutEmpty=compatRows;

14 compatRowsWithoutEmpty2=compatRows2;

15 emptyCells = cellfun(@isempty,compatRowsWithoutEmpty);

16 compatRowsWithoutEmpty2(emptyCells) = [];

17 listOptions=compatRowsWithoutEmpty2;

18 end

D.1.2.16 GenerateFeasibleAlternatives.m

1 function output = GenerateFeasibleAlternatives( MorphoTest,compatMat )

2 %Generate the list of feasible alternatives

3

4 %Create the list of possible options based on the morphological matrix

5 listOptions=GenerateCompatibility( MorphoTest,MorphoTest );

6

7 global endSet

8 endSet=[];

9

10 %Set of compatible options

11 numberOptions=[];

12 for i=1:size(MorphoTest,1)

13 counter=0;

14 for j=1:size(MorphoTest,2)

15 if strcmp(MorphoTest{i,j},'')

16

17 else

18 counter=counter+1;

19 end

20 end

21 numberOptions(i)= counter;

22 end

23

24 %Waiting bar

25 h = waitbar(0,'Please wait...');

26 steps=numberOptions(1);

27 for fLine=1:numberOptions(1)

28 waitbar(fLine / steps)
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29 AlgoCompa( compatMat,MorphoTest, 2,[fLine],numberOptions);

30 end

31 close(h)

32

33 %Create the matrix of strings to be displayed in GUI from endSet

34 finalSetOfCombinations=[];

35

36 for i=1:size(endSet,1)

37 for j=1:size(endSet,2)

38 temp=endSet(i,j);

39 finalSetOfCombinations{i,j}=listOptions{temp};

40 end

41 end

42

43 %Generate outputs

44 out1=finalSetOfCombinations;

45 out2=prod(numberOptions);

46 output={out1,out2};

47 end

D.1.2.17 GenerateFeasibleArchitectures.m

1 function output = GenerateFeasibleArchitectures( MorphoTest,...

2 compatMat,varAss,variableMat )

3

4 %Initialization of list of options from morphological matrix

5 listOptions=GenerateCompatibility( MorphoTest,MorphoTest );

6

7 global endSet

8 endSet=[];

9

10 %Set of compatible options

11 numberOptions=[];

12 for i=1:size(MorphoTest,1)

13 counter=0;

14 for j=1:size(MorphoTest,2)

15 if strcmp(MorphoTest{i,j},'')

16

17 else

18 counter=counter+1;

19 end

20 end

21 numberOptions(i)= counter;

22 end

23

24 %Generate morphological matrix of variables
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25 MorphoVar=GenerateMorphoVar(varAss,numberOptions,variableMat);

26 MorphoVarVar=GenerateMorphoVar2(varAss,numberOptions,variableMat);

27

28

29 %If no variable has been selected for a given feature, put ' '

30 emptyIndex = cellfun(@isempty,MorphoVar); %# Find indices of empty cells

31 MorphoVar(emptyIndex) = {' '}; %# Fill empty cells with ' '

32 emptyIndex = cellfun(@isempty,MorphoVarVar);

33 MorphoVarVar(emptyIndex) = {' '};

34

35 listOptions2=GenerateCompatibility( MorphoTest, MorphoVar );

36 listOptionsVar=GenerateCompatibility( MorphoTest, MorphoVarVar );

37

38 %Waiting bar

39 h = waitbar(0,'Please wait...');

40 steps=numberOptions(1);

41 for fLine=1:numberOptions(1)

42 waitbar(fLine / steps)

43 AlgoCompa( compatMat,MorphoTest, 2,[fLine],numberOptions);

44 end

45 close(h)

46 %Create the matrix of strings to be displayed in GUI from endSet

47 finalSetOfCombinations=[];

48 finalSetOfCombinations2=[];

49 finalSetOfCombinationsVar=[];

50 for i=1:size(endSet,1)

51 for j=1:size(endSet,2)

52 temp=endSet(i,j);

53 finalSetOfCombinations{i,j}=listOptions{temp};

54 finalSetOfCombinations2{i,j}=listOptions2{temp};

55 finalSetOfCombinationsVar{i,j}=listOptionsVar{temp};

56 end

57 end

58

59 %Create the table with architecture

60 variableFeasible= detectArchitectures( finalSetOfCombinations,...

61 finalSetOfCombinations2,finalSetOfCombinationsVar );

62 out1=variableFeasible;

63 out2=prod(numberOptions);

64 out3=size(finalSetOfCombinations,1);

65 output={out1, out2, out3};

66 end

D.1.2.18 generateVariableDescription.m

1 function outputTable = generateVariableDescription( variablesTable,...
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2 descriptionTable )

3 %Generate the table of variables and the corresponding descriptions

4

5 %Load data and initialize table

6 d=size(variablesTable);

7 listVar=[];

8 listDes=[];

9

10 %Create a list based on a matrix

11 for i=1:d(2)

12 listVar=cat(2,listVar,variablesTable(:,i));

13 listDes=cat(2,listDes,descriptionTable(:,i));

14 end

15

16 %Remove empty cells from the list

17 listVarWithoutEmpty=listVar;

18 listDesWithoutEmpty=listDes;

19 emptyCells = cellfun(@isempty,listVarWithoutEmpty);

20 listVarWithoutEmpty(emptyCells) = [];

21 listDesWithoutEmpty(emptyCells) = [];

22

23 %Save the final lists

24 listVariables=listVarWithoutEmpty;

25 listDescription=listDesWithoutEmpty;

26

27 %Create the table

28 outputTable=cell(2,length(listVariables));

29 outputTable(1,:)=listVariables;

30 outputTable(2,:)=listDescription;

31 outputTable=outputTable';

32

33 end

D.1.2.19 AlgoCompa.m

1 function AlgoCompa( compatMat,MorphoTest, currentLevel, previousSet,...

2 numberOptions)

3 %Recursive function that searches for compatible combinations of options

4

5 global endSet

6

7 %%Search loop

8 %Bottom of the morphological matrix reached?

9 if currentLevel== (size(MorphoTest,1)+1)

10

11 %We reach the bottom of the morphological matrix. Search is stopped and
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12 %the combination of compatible options is saved in the final set

13 endSet=[endSet ; previousSet];

14

15 else

16 %1st element in the compatibility matrix to be investigated

17 startCompat=1;

18 for k=1:currentLevel-1

19 startCompat=startCompat+numberOptions(k);

20 end

21

22 %Check compatibility between new element and elements from the previous

23 %set

24 for j=1:numberOptions(currentLevel)

25 if checkCompat( previousSet,compatMat,j,startCompat )==1

26 currentSet=cat(2,previousSet,startCompat+j-1);

27 AlgoCompa( compatMat,MorphoTest, currentLevel+1, currentSet,...

28 numberOptions);

29 end

30 end

31

32 end

33

34 end

D.1.2.20 detectArchitectures.m

1 function out = detectArchitectures( finalSetOfCombinations,...

2 finalSetOfCombinations2,finalSetOfCombinationsVar )

3 %Sort the list of feasible alternatives so that alternatives with the same

4 %design variables (same architecture) are grouped together

5

6 %Initialization

7 toBeCompared=cell(size(finalSetOfCombinations2,1),1);

8

9 %Load matrix to be compared

10 for i=1:length(toBeCompared)

11 for j=1:size(finalSetOfCombinations2,2)

12 temp=strcat(toBeCompared{i},finalSetOfCombinations2(i,j));

13 toBeCompared{i}=temp{1};

14 end

15 end

16

17 %Re-order everything

18 [storageOrdered, order] = sort(toBeCompared);

19

20 if isempty(storageOrdered)
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21 storageOrderedFinal=[];

22 finalRows=[];

23 numberArchi=0;

24 else

25 %Reorder alternatives

26 reorderedAlter=cell(size(finalSetOfCombinations,1),...

27 size(finalSetOfCombinations,2));

28

29 %Reorder variables

30 reorderedVar=cell(size(finalSetOfCombinationsVar,1),...

31 size(finalSetOfCombinationsVar,2));

32

33 for i=1:size(finalSetOfCombinations,1)

34 reorderedAlter(i,:)=finalSetOfCombinations(order(i),:);

35 reorderedVar(i,:)=finalSetOfCombinationsVar(order(i),:);

36 end

37

38 %Re-order everything and put architecture number

39 storageOrderedFinal=[];

40 offsetIdx=0;

41

42 %storageOrderedFinal(1,:)=reorderedVar(1,:);

43 finalRows{1}='Architecture 1';

44

45 for j=1:size(reorderedAlter,2)

46 storageOrderedFinal{1,j}=reorderedVar{1,j};

47 end

48

49 for j=1:size(reorderedAlter,2)

50 storageOrderedFinal{2,j}=reorderedAlter{1,j};

51 end

52

53 for i=1:size(storageOrdered,1)-1

54 if 1-strcmp(storageOrdered(i),storageOrdered(i+1))

55 storageOrderedFinal(i+offsetIdx+1,:)=reorderedAlter(i,:);

56 offsetIdx=offsetIdx+1;

57 storageOrderedFinal(i+offsetIdx+1,:)=reorderedVar(i+1,:);

58 finalRows{i+offsetIdx+1}=strcat('Architecture ',...

59 num2str(offsetIdx+1));

60 else

61 storageOrderedFinal(i+offsetIdx+1,:)=reorderedAlter(i,:) ;

62 finalRows{i+offsetIdx+1}=' ';

63 end

64 end

65 numberArchi=offsetIdx+1;

66 if 1-isequal(size(storageOrdered,1),1)

67 storageOrderedFinal(size(storageOrdered,1)+...

68 offsetIdx+1,:)=reorderedAlter(i+1,:) ;

69 finalRows{size(storageOrdered,1)+offsetIdx+1}=' ';
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70 end

71

72 end

73

74 %Generate output structure

75 out1=storageOrderedFinal;

76 out2=numberArchi;

77 out3=finalRows;

78 out = {out1, out2,out3};

79

80 end

D.1.2.21 checkCompat.m

1 function output = checkCompat( previousSet, compatMat,j,currentLevel )

2 %Function that checks the compatibility between an option and the ones that

3 %are stored in the vector

4

5 %Initialization

6 output=1;

7

8 %Product of all cells with the new one. Output is 1 if compatible, 0

9 %otherwise

10 for i=1:length(previousSet)

11 output=output*str2num(compatMat{previousSet(i),currentLevel+j-1});

12 end

13

14 end

D.1.2.22 GenerateMorphoVar.m

1 function morphoVar = GenerateMorphoVar(varAss,numberOptions,variableMat)

2 %Generate a matrix similar to the morphological matrix but replace options

3 %with variable in binary code

4

5 %Initialization

6 morphoVar=[];

7 Idx=1;

8

9 %Loop on the line

10 for i=1:length(numberOptions); %1st line of the morphological matrix

11 nmbVar=1;

12 while 1-strcmp(variableMat(nmbVar,i),'')
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13 nmbVar=nmbVar+1;

14 end

15 %loop on the column

16 for j=1:numberOptions(i)

17 temp=[];

18

19 %Fill the matrix

20 for k=1:nmbVar-1

21 tempp=varAss(Idx+j-1,k);

22 temp=cat(2,temp,num2str(tempp{1}));

23 end

24 morphoVar{i,j}=temp;

25 end

26 Idx=Idx+numberOptions(i);

27 end

28 end

D.1.2.23 GenerateMorphoVar2.m

1 function morphoVar2 = GenerateMorphoVar2(varAss,numberOptions,variableMat)

2 %Generate a matrix similar to the morphological matrix but replace options

3 %with variable names

4

5 %Initialization

6 morphoVar2=[];

7 Idx=1;

8

9 %Loop on the line

10 for i=1:length(numberOptions); %1st line of the morphological matrix

11 nmbVar=1;

12 while 1-strcmp(variableMat(nmbVar,i),'')

13 nmbVar=nmbVar+1;

14 end

15

16 %loop on the column

17 for j=1:numberOptions(i)

18 temp=[];

19 virg=0;

20

21 %Fill the matrix

22 for k=1:nmbVar-1

23 tempp=varAss{Idx+j-1,k};

24 if tempp==1

25 virg=virg+1;

26 temp=cat(2,temp,variableMat{k,i});

27 temp=cat(2,temp,', ');
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28 end

29 end

30 if 1-isequal(virg,0)

31 temp=temp(1:end-2);

32 end

33 morphoVar2{i,j}=temp;

34 end

35 Idx=Idx+numberOptions(i);

36 end

37 end

D.2 Implementation of the Design Framework

D.2.1 Weight Module

1 function output= weightModule(Swing, tc, TRwing, ARwing, dfus,...

2 wing, nmax, nPilots, nPAX, qmax, tmission, propellantWeight,...

3 JetEngine, Tj, nJet, BPR, MmaxJet, afterburner, TIT, fuelWeight,...

4 Tr, pc, epsilon, combTime, engineDiameter, Propellant, seatPitch,...

5 la, ln, db, verticalTail, horizontalTail)

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % Weight module: compution of the weight of the vehicle by decomposing it

8 % into components

9 % Author: Christopher Frank

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

12 %% Jet propulsion module

13 if JetEngine == 1

14 jetEngine=JetEngines(Tj, BPR, MmaxJet, afterburner, TIT);

15 jetEngineWeight=nJet*jetEngine.weight*2.20462; %kg -> lbs

16 jetEngineDiameter=jetEngine.diameter;

17 jetEngineLength=jetEngine.length;

18 jetEngineTSFC=jetEngine.SFC;

19 else

20 jetEngineDiameter=[];

21 jetEngineLength=[];

22 jetEngineTSFC=[];

23 jetEngineWeight=0;

24 end

25

26 %% Rocket propulsion module

27 mProp=propellantWeight; %Propellant mass (kg)

28 thrust=Tr; %Convert Tr in Newtons

29 rocketEngineWeightStruct=RocketEngines(pc, epsilon, mProp, combTime,...

30 thrust, engineDiameter, Propellant);

31 rocketEngineWeight=rocketEngineWeightStruct.weightEngine*2.20462; %kg->lbs
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32 rocketEngineLength=rocketEngineWeightStruct.lengthEngine;

33

34 %% Conversion (from SI to British)

35 Swing=Swing*10.76391;

36 qmax=qmax*0.0208854342;

37 dfus=dfus*3.280840;

38 la=la*3.280840;

39 ln=ln*3.280840;

40 db=db*3.280840;

41 fuelWeight=fuelWeight*2.204623;

42 propellantWeight=propellantWeight*2.204623;

43 Tr=Tr*0.224808943;

44 b=sqrt(Swing*ARwing);

45 rootChord=2*Swing/(b*(1+TRwing)); %Wing root chord

46

47 %% Coefficients used in the weight estimation model

48 Kwing=0.214; %Wing material coefficient (assuming composite)

49 Kct=0.05; %Wing carry-thru constants

50 eta=0.2; %Wing/body efficiency factor (conventional vehicle)

51 Kt=1.108; %Tail material coefficient (assuming composite)

52 Kpc=0.712; %Standard hydraulic system coefficient

53 Kpe=0.97e-4; %Engine gimbal power demand

54 massPAX=198; %lbs per PAX

55 Kpb=0.405; %Battery power demand constant

56 Khyd=2.1; %Technology base for hydraulic system

57 Kecd=0.02;

58 Ksca=3.32; %Coefficient for surface control

59 cockpitPitch=1.5;

60 rhoFuel=719; %Fuel density (kg/mˆ3)

61

62 %% Coefficients for near-term improvement provided by Rohrschneider

63 etaNewTechno=1;

64 TRFwing=0.44*etaNewTechno;

65 TRFtail=0.44*etaNewTechno;

66 TRFbody=0.38*etaNewTechno;

67 TRFtps=0.35*etaNewTechno;

68 TRFlg=0.09*etaNewTechno;

69 TRFavionics=0.5*etaNewTechno;

70 TRFeclss=0.1*etaNewTechno;

71

72 %% Intermediate calculations

73 Ndays=tmission/(3600*24);

74 payloadWeight=massPAX*(nPAX+nPilots);

75 Nz=1.5*nmax;

76 troot=tc*rootChord;

77 propulsionWeight=rocketEngineWeight+jetEngineWeight;

78 fuelPropellantWeight=propellantWeight+fuelWeight;

79

80 %% Loop
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81 %%Initialization

82 unFuelledMass=1;

83 totalWeight=1e3;

84 %%Begin loop

85 while abs((unFuelledMass-totalWeight)/totalWeight)>0.001

86 unFuelledMass=totalWeight;

87 if (verticalTail==1)

88 SvTail=0.2*Swing; %Surface of the vertical tail (Sadraey)

89 else

90 SvTail=0;

91 end

92 if (horizontalTail==1)

93 ShTail=0.2*Swing; %Surface of the vertical tail (Sadraey)

94 else

95 ShTail=0;

96 end

97

98 %%Length

99 if nPilots==0

100 lCockpit=0;

101 lCabin=(floor(nPAX/2)+1)*seatPitch;

102 else

103 lCockpit=cockpitPitch;

104 lCabin=seatPitch*floor((1+nPAX-(2-nPilots))/2);

105 end

106 if JetEngine==1

107 lfueltank=4*fuelWeight/(pi*rhoFuel*dfusˆ2);

108 else

109 lfueltank=0;

110 end

111 Lmeter=rocketEngineLength+lCockpit+lCabin+la+lfueltank+0.5;

112 L=Lmeter*3.280840;

113 lcyl=(rocketEngineLength+lCabin+lfueltank+0.5)*3.280840;

114 Sbody=dfus*lcyl+0.5*la*dfus+0.5*ln*(dfus+db);%Body planform area (ftˆ2)

115 Snose=0.5*dfus*pi*(sqrt((0.5*dfus)ˆ2+laˆ2));%Nose wetted area (ftˆ2)

116 Scyl=pi*dfus*lcyl;

117 Sback=pi*0.5*(dfus+db)*sqrt((dfus-db)ˆ2+lnˆ2);

118 Sfus=Scyl+Snose+Sback; %Fuselage wetted area (ftˆ2)

119 Vcrew=0.8*dfus*pi*(lCabin+lCockpit);

120

121 %%Structural weight

122 fuselageWeight=2.167*Sfusˆ1.075;

123 thrustStructureWeight=1.949e-3 * Trˆ1.0687;

124 noseWeight=Snose*(2.499e-4*qmax +1.7008+ (3.695e-5*qmax-3.252e-3)*dfus);

125

126 %Body weight

127 bodyWeight=fuselageWeight+thrustStructureWeight+noseWeight;

128 bodyWeight=bodyWeight*(1-TRFbody);

129
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130 tpsWeight=1.51*Sbody;

131 tpsWeight=tpsWeight*(1-TRFtps);

132

133 if (wing == 1)

134 wingWeight=(Nz*unFuelledMass/(1+eta*Sbody/Swing))ˆ0.386 *...

135 (Swing/troot)ˆ0.572 * (Kwing*bˆ0.572+Kct*dfusˆ0.572);

136 wingWeight=wingWeight*(1-TRFwing);

137 Scs=0.05*Swing+0.3*SvTail; %Control surface area (Raymer p.124+125)

138 landingGearWeight=0.010784*unFuelledMassˆ1.0861+...

139 0.0028*unFuelledMass; %ref 4b+6

140 landingGearWeight=landingGearWeight*(1-TRFlg);

141

142 hTailWeight=Kt*ShTailˆ1.24; %toBeDone

143 hTailWeight=hTailWeight*(1-TRFtail);

144

145 vTailWeight=Kt*SvTailˆ1.24;

146 vTailWeight=vTailWeight*(1-TRFtail);

147

148 hydraulicsWeight=Khyd*Scs+1.68e-4*Tr;

149 parachuteWeight=0;

150 else

151 wingWeight=0;

152 Scs=0;

153

154 landingGearWeight=0;

155 vTailWeight=0;

156 hTailWeight=0;

157 hydraulicsWeight=1.68e-4*Tr;

158 parachuteWeight=0.088*unFuelledMass;

159 end

160

161 structuralWeight=wingWeight+bodyWeight+...

162 landingGearWeight+hTailWeight+vTailWeight+tpsWeight+...

163 parachuteWeight;

164

165 %%Equipment weight

166 attitudeControlWeight=1.36e-4*unFuelledMass*L;

167 avionicsWeight=0.055*(unFuelledMass-payloadWeight);

168 avionicsWeight=avionicsWeight*(1-TRFavionics);

169

170 eclssWeight=5.85*Vcrewˆ0.75+10.9*(nPAX+nPilots)*Ndays+...

171 0.44*avionicsWeight;

172 eclssWeight=eclssWeight*(1-TRFeclss);

173

174 primaryPowerWeight=Kpc*Scs+Kpe*Tr+Kpb*avionicsWeight;

175

176 flightControlWeight=Ksca*Scs+200;

177 electricalWeight=Kecd*unFuelledMass;

178 seatsAndOtherAccessoriesWeight=167*(nPilots+nPAX);

506



179

180 equipmentWeight=attitudeControlWeight+avionicsWeight+eclssWeight+...

181 primaryPowerWeight+hydraulicsWeight+flightControlWeight+...

182 electricalWeight+ seatsAndOtherAccessoriesWeight;

183

184 %%Reserve weight

185 reserveWeight=0.05*fuelPropellantWeight;

186

187 %%Total weight

188 totalWeight=structuralWeight+propulsionWeight+payloadWeight+...

189 equipmentWeight+reserveWeight;

190

191 end

192

193 output.EmptyWeight=totalWeight*0.453592; %(kg)

194 output.fuelPropellantWeight=fuelPropellantWeight*0.453592; %(kg)

195 output.length=Lmeter; %(m)

196 output.rocketPerfo=rocketEngineWeightStruct.rocketPerfo; %(SI)

197 output.jetEngineWeight=jetEngineWeight*0.453592; %(kg)

198 output.rocketEngineWeight=rocketEngineWeight*0.453592; %(kg)

199 output.SOtank=rocketEngineWeightStruct.SOtank; %(mˆ3)

200 output.SPtank=rocketEngineWeightStruct.SPtank; %(mˆ3)

201 output.jetEngineDiameter=jetEngineDiameter; %(m)

202 output.jetEngineLength=jetEngineLength; %(m)

203 output.jetEngineTSFC=jetEngineTSFC;

204 end

D.2.2 Aerodynamic Module

1 function output = aeroLiftModuleSubsonic(M, alpha, Sref, wing, ARwing,...

2 sweepWing, tcWing, TRwing, dfus, db, lcyl, la, ln, CL)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Aerodynamic module: calculation of the drag coefficient due to lift in

5 % the subsonic regime

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %% Wing

10 if wing==1

11 %Span efficiency factor

12 e = spanEfficiency(sweepWing, ARwing, TRwing, tcWing, M);

13 CdWing=CLˆ2/(pi*ARwing*e);

14 else

15 CdWing=0;

16 end

17
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18 %% Fuselage

19 lfus=la+lcyl+ln;

20 Sbfus=(pi/4)*dbˆ2; %Fuselage base area (mˆ2)

21 Splffus=dfus*0.5*(la+ln+2*lcyl); %Fuselage planform area (mˆ2)

22 eta=0.4964*(lfus/dfus)ˆ0.1407;%Surrogate from Matlab

23 cdc=CdcModel(M,alpha);

24 CdFuselage=2*alphaˆ2*Sbfus/Sref + eta*cdc*alphaˆ3*Splffus/Sref;

25

26 %% Total

27 output=CdWing+CdFuselage;

28

29 end

1 function output = aeroLiftModuleSupersonic(M, alpha, Sref, wing,...

2 ARwing, TRwing, dfus, db, lcyl, la, ln, CL)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Aerodynamic module: calculation of the drag coefficient due to lift in

5 % the supersonic regime

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %% Wing

10 if wing==1

11 spanWing=sqrt(ARwing*Sref); %Wing span (m)

12 rootWing=2*Sref/(spanWing*(1+TRwing)); %Wing root chord (m)

13 beta=(Mˆ2-1)ˆ0.5;

14 slope=slopeCDLCL2(Sref, spanWing, beta, rootWing, ARwing);

15 CdWing=slope*CLˆ2;

16

17 else

18 CdWing=0;

19 end

20

21 %% Fuselage

22 Splffus=dfus*0.5*(la+ln+2*lcyl); %Fuselage planform area (mˆ2)

23 Sbfus=(pi/4)*dbˆ2; %Fuselage base area (mˆ2)

24 cdc=CdcModel(M, alpha);

25 CdFuselage=2*alphaˆ2*Sbfus/Sref+cdc*Splffus*alphaˆ3/Sref;

26

27 %Output

28 output=CdWing+CdFuselage;

29 end
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1 function output = aeroModule(Sref, wing, ARwing, sweepWing, tcWing,...

2 TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail, dnac, lnac,...

3 JetEngine, sweepVTail, ARVTail, horizontalTail, verticalTail)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Aerodynamic module: main file for the calculation of the aerodynamic

6 % coefficients

7 % Author: Christopher Frank

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %% Calculation of the coefficents for future regressions

11 Cd06h0=aeroModuleSubsonic(0, 0.6, Sref, wing, ARwing, sweepWing,...

12 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

13 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

14 horizontalTail, verticalTail);

15 Cd06h1=aeroModuleSubsonic(20000, 0.6, Sref, wing, ARwing, sweepWing,...

16 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

17 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

18 horizontalTail, verticalTail);

19 Cd12h0=aeroModuleSupersonic(0, 1.2, Sref, wing, ARwing, sweepWing,...

20 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

21 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

22 horizontalTail, verticalTail);

23 Cd12h1=aeroModuleSupersonic(20000, 1.2, Sref, wing, ARwing,...

24 sweepWing, tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail,...

25 ARHTail, dnac, lnac, JetEngine, sweepVTail, ARVTail,...

26 horizontalTail, verticalTail);

27 Cd3h0=aeroModuleSupersonic(0, 3, Sref, wing, ARwing, sweepWing,...

28 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

29 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

30 horizontalTail, verticalTail);

31 Cd3h1=aeroModuleSupersonic(20000, 3, Sref, wing, ARwing, sweepWing,...

32 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

33 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

34 horizontalTail, verticalTail);

35 Cd5h0=aeroModuleSupersonic(0, 5, Sref, wing, ARwing, sweepWing,...

36 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

37 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

38 horizontalTail, verticalTail);

39 Cd5h1=aeroModuleSupersonic(20000, 5, Sref, wing, ARwing, sweepWing,...

40 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

41 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

42 horizontalTail, verticalTail);

43 Cd7h0=aeroModuleSupersonic(0, 7, Sref, wing, ARwing, sweepWing,...

44 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

45 dnac, lnac, JetEngine, sweepVTail, ARVTail,...

46 horizontalTail, verticalTail);

47 Cd7h1=aeroModuleSupersonic(20000, 7, Sref, wing, ARwing, sweepWing,...

48 tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

49 dnac, lnac, JetEngine, sweepVTail, ARVTail,...
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50 horizontalTail, verticalTail);

51

52 output.Cd06=[Cd06h0 Cd06h1];

53 output.Cd12=[Cd12h0 Cd12h1];

54

55 Cd1h0=Cd06h0+0.5*(Cd12h0-Cd06h0);

56 Cd1h1=Cd06h1+0.5*(Cd12h1-Cd06h1);

57 output.Cd1=[Cd1h0 Cd1h1];

58

59 a0 = 6.25*Cd1h0-6.25*Cd06h0;

60 b0 = -7.5*Cd1h0 +7.5*Cd06h0;

61 c0 = 2.25*Cd1h0 -1.25*Cd06h0;

62

63 a1 = 6.25*Cd1h1-6.25*Cd06h1;

64 b1 = -7.5*Cd1h1 +7.5*Cd06h1;

65 c1 = 2.25*Cd1h1 -1.25*Cd06h1;

66

67 output.coef=[a0 b0 c0 ; a1 b1 c1];

68

69 Cd1h0=Cd06h0+0.5*(Cd12h0-Cd06h0);

70 Cd1h1=Cd06h1+0.5*(Cd12h1-Cd06h1);

71

72 output.Cd1=[Cd1h0 Cd1h1];

73

74 aa0 = -17.77777778*Cd12h0;

75 bb0 = 40.*Cd12h0;

76 cc0 =-21.40000000*Cd12h0;

77

78 aa1 = -17.77777778*Cd12h1;

79 bb1 = 40.*Cd12h1;

80 cc1 =-21.40000000*Cd12h1;

81

82 output.coefcoef=[aa0 bb0 cc0 ; aa1 bb1 cc1];

83

84 A0=-(.2000000000*(-522.*Cd3h0*Cd12h0*Cd7h0+171.*Cd3h0*Cd12h0*Cd5h0-...

85 200.*Cd3h0*Cd7h0*Cd5h0+551.*Cd7h0*Cd12h0*Cd5h0))/(-38.*Cd3h0*Cd7h0...

86 +29.*Cd12h0*Cd7h0+9.*Cd7h0*Cd5h0+9.*Cd12h0*Cd3h0+29.*Cd3h0*Cd5h0-...

87 38.*Cd12h0*Cd5h0);

88 B0=(.6000000000*(-870.*Cd3h0*Cd12h0*Cd7h0+399.*Cd3h0*Cd12h0*Cd5h0-...

89 80.*Cd3h0*Cd7h0*Cd5h0+551.*Cd7h0*Cd12h0*Cd5h0))/(-38.*Cd3h0*Cd7h0+...

90 29.*Cd12h0*Cd7h0+9.*Cd7h0*Cd5h0+9.*Cd12h0*Cd3h0+29.*Cd3h0*Cd5h0-...

91 38.*Cd12h0*Cd5h0);

92 C0=-(.2000000000*(1189.*Cd12h0*Cd7h0+1160.*Cd3h0*Cd5h0-1900.*Cd3h0*...

93 Cd7h0+189.*Cd12h0*Cd3h0-1178.*Cd12h0*Cd5h0+540.*Cd7h0*Cd5h0))/...

94 (-38.*Cd3h0*Cd7h0+29.*Cd12h0*Cd7h0+9.*Cd7h0*Cd5h0+9.*Cd12h0*Cd3h0+...

95 29.*Cd3h0*Cd5h0-38.*Cd12h0*Cd5h0);

96 D0=(.6000000000*(-1330.*Cd3h0*Cd7h0+54.*Cd12h0*Cd3h0+725.*Cd3h0*Cd5h0+...

97 406.*Cd12h0*Cd7h0-380.*Cd12h0*Cd5h0+525.*Cd7h0*Cd5h0))/(-38.*Cd3h0*...

98 Cd7h0+29.*Cd12h0*Cd7h0+9.*Cd7h0*Cd5h0+9.*Cd12h0*Cd3h0+29.*Cd3h0*...
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99 Cd5h0-38.*Cd12h0*Cd5h0);

100

101 A1=-(.2000000000*(-522.*Cd3h1*Cd12h1*Cd7h1+171.*Cd3h1*Cd12h1*Cd5h1-...

102 200.*Cd3h1*Cd7h1*Cd5h1+551.*Cd7h1*Cd12h1*Cd5h1))/(-38.*Cd3h1*Cd7h1+...

103 29.*Cd12h1*Cd7h1+9.*Cd7h1*Cd5h1+9.*Cd12h1*Cd3h1+29.*Cd3h1*Cd5h1-...

104 38.*Cd12h1*Cd5h1);

105 B1=(.6000000000*(-870.*Cd3h1*Cd12h1*Cd7h1+399.*Cd3h1*Cd12h1*Cd5h1-...

106 80.*Cd3h1*Cd7h1*Cd5h1+551.*Cd7h1*Cd12h1*Cd5h1))/(-38.*Cd3h1*Cd7h1+...

107 29.*Cd12h1*Cd7h1+9.*Cd7h1*Cd5h1+9.*Cd12h1*Cd3h1+29.*Cd3h1*Cd5h1-...

108 38.*Cd12h1*Cd5h1);

109 C1=-(.2000000000*(1189.*Cd12h1*Cd7h1+1160.*Cd3h1*Cd5h1-1900.*Cd3h1*Cd7h1...

110 +189.*Cd12h1*Cd3h1-1178.*Cd12h1*Cd5h1+540.*Cd7h1*Cd5h1))/...

111 (-38.*Cd3h1*Cd7h1+29.*Cd12h1*Cd7h1+9.*Cd7h1*Cd5h1+9.*Cd12h1*Cd3h1+...

112 29.*Cd3h1*Cd5h1-38.*Cd12h1*Cd5h1);

113 D1=(.6000000000*(-1330.*Cd3h1*Cd7h1+54.*Cd12h1*Cd3h1+725.*Cd3h1*Cd5h1+...

114 406.*Cd12h1*Cd7h1-380.*Cd12h1*Cd5h1+525.*Cd7h1*Cd5h1))/(-38.*Cd3h1*...

115 Cd7h1+29.*Cd12h1*Cd7h1+9.*Cd7h1*Cd5h1+9.*Cd12h1*Cd3h1+29.*Cd3h1*...

116 Cd5h1-38.*Cd12h1*Cd5h1);

117

118 output.COEF= [A0 B0 C0 D0 ; A1 B1 C1 D1];

119

120 end

1 function output = aeroModuleSubsonic(h, M, Sref, wing, ARwing,...

2 sweepWing, tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail,...

3 ARHTail, dnac, lnac, jetEngine, sweepVTail, ARVTail, horizontalTail,...

4 verticalTail)

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Aerodynamic module: calculation of the drag coefficient in the subsonic

7 % regime

8 % Author: Christopher Frank

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 %% Flight conditions

12 atm=funcAtm(h);

13 Tinf=atm.T; %Function of h

14 V=MtoV(M,h);

15

16 %% Wing

17 if wing==1

18 %Parameters

19 Lprime=1.2; %Constant defined by Roskam

20 SwetWing=2*Sref; %Wing swept area (m2)

21 spanWing=sqrt(ARwing*Sref); %Wing span (m)

22 rootWing=2*Sref/(spanWing*(1+TRwing)); %Wing root chord (m)

23 %Wing mean chord (m)
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24 meanChordWing=rootWing*2*(1+TRwing+TRwingˆ2)/(3*(1+TRwing));

25 ReW=Reynolds (MtoV(M,h), meanChordWing, h); %Wing Reynolds number

26 Rwffus= Rwf(M, ReW);

27 Rlsfus=Rls( M, sweepWing );

28 Cfw= Cf( M, Tinf, ReW );

29 CdWing=Rwffus*Rlsfus*Cfw*(1+Lprime*tcWing+100*tcWingˆ4)*SwetWing/Sref;

30

31 else

32 CdWing=0;

33 end

34

35 %% Fuselage

36 lfus=la+lcyl+ln;

37 apothemFront=sqrt(0.25*dfusˆ2+laˆ2); %Length of the front apothem (m)

38 apothemBack=sqrt(0.25*dfusˆ2+lnˆ2); %Length of the back apothem (m)

39 %Fuselafe wetted area (mˆ2)

40 Swetfus=pi*dfus*0.5*(apothemFront+apothemBack+2*lcyl);

41 Sbfus=(pi/4)*dbˆ2; %Fuselage base area (mˆ2)

42 Sfus=Sbfus; %Fuselage maximum front area (mˆ2)

43 ReFus=Reynolds (V, lfus, h); %Fuselage Reynolds number

44

45 %Zero-lift drag coefficient

46 if wing == 1

47 Rwffus= Rwf(M, ReFus);

48 elseif wing == 0

49 Rwffus=1;

50 end

51

52 Cffus= Cf(M, Tinf, ReFus);

53 Cdb0fus=Rwffus*Cffus*(1+60*(lfus/dfus)ˆ(-3)+0.0025*(lfus/dfus))*...

54 Swetfus/Sref;

55 Cdbfus=0.029*(db/dfus)ˆ3 * (Cdb0fus*Sref/Sfus)ˆ(-0.5) * Sfus/Sref;

56 CdFuselage=Rwffus*Cffus*(1+60*(lfus/dfus)ˆ(-3)+0.0025*(lfus/dfus))*...

57 Swetfus/Sref+Cdbfus;

58

59 if verticalTail==1

60 %Vertical tail

61 cdvtail = empennageDragSubsonic(M, h, Sref, ARVTail, Tinf, sweepVTail);

62 Cd0VerticalTail = cdvtail;

63 else

64 Cd0VerticalTail=0;

65 end

66

67 if horizontalTail==1

68 %Horizontal tail

69 cdhtail = empennageDragSubsonic(M, h, Sref, ARHTail, Tinf, sweepHTail);

70 Cd0HorizontalTail = cdhtail;

71 else

72 Cd0HorizontalTail=0;
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73 end

74

75 %% Nacelle

76 if jetEngine==1

77 ReNac=Reynolds (MtoV(0.6,h), lnac, h); %Nacelle Reynolds number

78 fnac=lnac/dnac;

79 FFnac=1+0.35/fnac;

80 Cfnac= Cf( M,Tinf,ReNac );

81 Qnacelle=1.5; %Raymer

82 SwetNacelle=pi*dnac*lnac;

83 CdNacelle=Cfnac*FFnac*Qnacelle*SwetNacelle/Sref;

84 else

85 CdNacelle=0;

86 end

87

88 %% Total

89 Cd0Vehicle=CdWing+CdFuselage+Cd0VerticalTail+...

90 Cd0HorizontalTail+CdNacelle;

91 CdVehicle=Cd0Vehicle;

92

93 output=CdVehicle;

94

95 end

1 function output = aeroModuleSupersonic(h, M, Sref, wing, ARwing,...

2 sweepWing, tcWing, TRwing, dfus, db, lcyl, la, ln, sweepHTail,...

3 ARHTail, dnac, lnac, jetEngine, sweepVTail, ARVTail, horizontalTail,...

4 verticalTail)

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Aerodynamic module: calculation of the drag coefficient in the supersonic

7 % regime

8 % Author: Christopher Frank

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 %% Flight conditions

12 atm=funcAtm(h);

13 Tinf=atm.T; %Function of h

14 V=MtoV(M,h);

15

16 %% Wing

17 if wing==1

18 SwetWing=2*Sref; %Wing swept area (m2)

19 spanWing=sqrt(ARwing*Sref); %Wing span (m)

20 rootWing=2*Sref/(spanWing*(1+TRwing)); %Wing root chord (m)

21 %Wing mean chord (m)

22 meanChordWing=rootWing*2*(1+TRwing+TRwingˆ2)/(3*(1+TRwing));
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23 tipWing=TRwing*rootWing; %Wing tip chord (m)

24 %https://www.physicsforums.com/threads/airfoil-leading-edge-radius

25 rBE=1.1019*tcWingˆ2;

26 ReW=Reynolds (V, meanChordWing, h); %Wing Reynolds number

27

28 Cfw=Cf( M, Tinf, ReW );

29 Cdwf=Cfw*SwetWing/Sref;

30 CdLEw= CdLE( M,sweepWing, rBE, Sref, spanWing );

31 tceff=tceffCalc( Sref, spanWing, tcWing, tipWing, rootWing);

32 Sbw=Sref;

33 beta=(Mˆ2-1)ˆ0.5;

34 Cdwave=CdLEw+16*tceffˆ2/(3*beta)*Sbw/Sref;

35 CdWing=Cdwf+Cdwave;

36

37 else

38 CdWing=0;

39 end

40

41 %% Fuselage

42 lfus=la+lcyl+ln;

43 apothemFront=sqrt(0.25*dfusˆ2+laˆ2); %Length of the front apothem (m)

44 apothemBack=sqrt(0.25*dfusˆ2+lnˆ2); %Length of the back apothem (m)

45 %Fuselage wetted area (mˆ2)

46 Swetfus=pi*dfus*0.5*(apothemFront+apothemBack+2*lcyl);

47 Sbfus=(pi/4)*dbˆ2; %Fuselage base area (mˆ2)

48 Sfus=Sbfus; %Fuselage maximum front area (mˆ2)

49 ReFus=Reynolds (V, lfus, h); %Fuselage Reynolds number

50 dn=0; %Nose diameter = 0

51

52 CdN2 = CdNModel(M, la, dfus, dn); %Front part

53 CdA = CdNModel(M, ln, dfus, dn); %Rear part

54 Cffus= Cf(M, Tinf, ReFus);

55 Cdbfus= CdbfusModel(M);

56 CdNANC= CdNANCModel(la, ln, lcyl, dfus);

57 CdFuselage=Cffus*Swetfus/Sref + (CdN2+CdA+Cdbfus+CdNANC)*Sfus/Sref;

58

59 %% Vertical tail

60 if verticalTail==1

61

62 cdvtail = empennageDragSupersonic(M, V, h, Sref, ARVTail, Tinf,...

63 sweepVTail);

64 Cd0VerticalTail = cdvtail;

65 else

66 Cd0VerticalTail=0;

67 end

68

69 %% Horizontal tail

70 if horizontalTail==1

71
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72 cdhtail = empennageDragSupersonic(M, V, h, Sref, ARHTail, Tinf,...

73 sweepHTail);

74 Cd0HorizontalTail = cdhtail;

75 else

76 Cd0HorizontalTail=0;

77 end

78

79 %% Nacelle

80 if jetEngine==1

81 ReNac=Reynolds (MtoV(0.6,h), lnac, h); %Nacelle Reynolds number

82 fnac=lnac/dnac;

83 FFnac=1+0.35/fnac;

84 Cfnac= Cf( M,Tinf,ReNac );

85 Qnacelle=1.5; %Raymer

86 SwetNacelle=pi*dnac*lnac;

87

88 CdNacelle=Cfnac*FFnac*Qnacelle*SwetNacelle/Sref;

89

90 else

91 CdNacelle=0;

92 end

93

94 Cd0Vehicle=CdWing+CdFuselage+Cd0VerticalTail+...

95 Cd0HorizontalTail+CdNacelle;

96 CdVehicle=Cd0Vehicle;

97

98 output=CdVehicle;

99

100 end

1 function output = aeroTOLAModule(Wto, Wlanding, CL, Sref, TOmode, LAmode)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the drag related to take-off and

4 % landing

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 deflectionFlaps=0.52; %Deflection = 30 as provided by Sadraey

9

10 %% Landing gear

11 if TOmode == 1 %Horizontal TO

12 WlgCalc=Wto;

13 cdgear = landingGearDrag( CL, Sref, WlgCalc );

14 CdLandingGear = cdgear;

15 elseif ((LAmode == 0) | | (LAmode == 1)) %Horizontal landing

16 WlgCalc=Wlanding;
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17 cdgear = landingGearDrag( CL, Sref, WlgCalc );

18 CdLandingGear = cdgear;

19 else %Vertical TO and landing

20 CdLandingGear = 0;

21 end

22

23 %% Flaps

24 CdFlaps = flapsDrag(deflectionFlaps);

25 CdTOandLA=CdLandingGear+CdFlaps;

26

27 output=CdTOandLA;

28

29 end

1 function output = aeroTrajectory(M, h, Cd06, Cd12,...

2 coef, Cd1, coefcoef, COEF)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Aerodynamic module: calculation of the vehicle drag coefficient for the

5 % trajectory module

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 Cd1h0=Cd1(1);

10 Cd1h1=Cd1(2);

11

12 Cd12h0=Cd12(1);

13 Cd12h1=Cd12(2);

14

15 Cd06h0=Cd06(1);

16 Cd06h1=Cd06(2);

17

18 a0=coef(1,1);

19 b0=coef(1,2);

20 c0=coef(1,3);

21 a1=coef(2,1);

22 b1=coef(2,2);

23 c1=coef(2,3);

24

25 aa0=coefcoef(1,1);

26 bb0=coefcoef(1,2);

27 cc0=coefcoef(1,3);

28 aa1=coefcoef(2,1);

29 bb1=coefcoef(2,2);

30 cc1=coefcoef(2,3);

31

32 A0=COEF(1,1);
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33 B0=COEF(1,2);

34 C0=COEF(1,3);

35 D0=COEF(1,4);

36 A1=COEF(2,1);

37 B1=COEF(2,2);

38 C1=COEF(2,3);

39 D1=COEF(2,4);

40

41 %% Mach number dependence

42 if M<=0.6

43 Cdh0=Cd06h0;

44 Cdh1=Cd06h1;

45

46 elseif M<=1 %Parabolic interpolation between M=0.6 and M=1

47 Cdh0=a0*Mˆ2+b0*M+c0;

48 Cdh1=a1*Mˆ2+b1*M+c1;

49

50 elseif M<=1.05 %Linear interpolation between M=1 and M=1.05

51 Cdh0=(-20*Cd1h0+20*Cd12h0)*M+21*Cd1h0-20*Cd12h0;

52 Cdh1=(-20*Cd1h1+20*Cd12h1)*M+21*Cd1h1-20*Cd12h1;

53

54 elseif M<=1.2 %Parabolic interpolation between M=1.05 and M=1.2

55 Cdh0=aa0*Mˆ2+bb0*M+cc0;

56 Cdh1=aa1*Mˆ2+bb1*M+cc1;

57

58 else

59 Cdh0=(A0*M+B0)/(Mˆ2+C0*M+D0);

60 Cdh1=(A1*M+B1)/(Mˆ2+C1*M+D1);

61 end

62

63 %% Altitude dependence

64 aAlt=(Cdh0-Cdh1)/(-20000);

65 bAlt=Cdh0;

66 CdVehicle=aAlt*h+bAlt;

67

68 output=CdVehicle;

69 end

1 function output = CdbfusModel(M)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of CDbfus

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 a = 0.2508;

8 b = -0.5768;
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9 c = 0.104;

10 d = -0.2178;

11

12 output = a*exp(b*M) + c*exp(d*M);

13

14 end

1 function output = CdcModel(M,alpha)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of Cdc

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 Mc=M*sin(alpha);

8

9 if Mc <1 %Subsonic

10 %Coefficients for subsonic speed

11 a1=0.1986; b1=1.05; c1=0.121; %1st term coefs

12 a2=0.567; b2=0.8343; c2=0.2867; %2nd term coefs

13 a3=7.182; b3=218.3; c3=163.2; %3rd term coefs

14

15 output=a1*exp(-((Mc-b1)/c1)ˆ2) +a2*exp(-((Mc-b2)/c2)ˆ2)+ ...

16 a3*exp(-((Mc-b3)/c3)ˆ2);

17

18 else %Supersonic

19 a1 = 0.2642 ; b1 =1.024; c1 = 0.3659; %1st term coefs

20 a2 =3.87; b2 =9.531 ; c2 = 8.874 ; %2nd term coefs

21

22 output=a1*exp(-((Mcˆ(-1)-b1)/c1)ˆ2) +a2*exp(-((Mcˆ(-1)-b2)/c2)ˆ2);

23

24 end

25

26 end

1 function output = CdLE( M,lamndatcMax,rBE,Sref,span )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of CdLE

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 temp=1.28*(Mˆ3*cos(lamndatcMax)ˆ6)/(1+(M*cos(lamndatcMax))ˆ3);

8 frac=Sref/(2*rBE*span/cos(lamndatcMax));
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9

10 output=temp/frac;

11

12 end

1 function output = CdNANCModel(la, ln, lcyl,df)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of Cda(NC)

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 X=min(lcyl/la,1.8);

8 Z=ln/la;

9

10 temp=0.690420248702588 + -0.689907629817987 * Z + -1.48590778036454 * X...

11 + (Z - 1.15384615384615) * (Z - 1.15384615384615) * 0.281155693559382...

12 + (Z - 1.15384615384615) * (X - 0.600903625630933) * ...

13 0.334536224153579 + (X - 0.600903625630933) *...

14 (X - 0.600903625630933) * 0.613753529697789;

15

16 output=temp/((2*la/df)ˆ2);

17

18 end

1 function output = CdNModel(M, lforaft, df, dn)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of CdN

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 X=(dn/df)ˆ2;

8 beta=sqrt(Mˆ2-1);

9 Z=2*lforaft/(df*beta);

10

11 temp=2.27914395837144 + 0.0621279592946248 * Z + -4.29374905998544 *...

12 X + (Z - 9.22702702702703) * ((Z - 9.22702702702703) *...

13 -0.00433046083467327) + (Z -9.22702702702703) *...

14 ((X - 0.386891710261467) * -0.27048494542039) + (X -...

15 0.386891710261467) * ((X - 0.386891710261467) * 6.81231966453556)...

16 + (Z -9.22702702702703) * ((Z - 9.22702702702703) *...

17 ((X - 0.386891710261467) *0.0119444696425639)) + ...

18 (Z - 9.22702702702703) * ((X - 0.386891710261467) * ((X -...
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19 0.386891710261467) * 0.286581345990331)) + (X - 0.386891710261467)...

20 * ((X -0.386891710261467) * ((X - 0.386891710261467)...

21 * -5.77828976074559));

22

23 output=max(temp,0)/((2*lforaft/df)ˆ2);

24 end

1 function output = Cf( M,Tinf,Re )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of Cf

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Cf in incompressible

8 cfinc=0.074*Re.ˆ(-0.2);

9

10 %Definition of intermediate variables

11 T Tinf=1+0.1151.*M.ˆ2;

12 R Rinf=T Tinf.ˆ(-2.5).*(T Tinf+216./Tinf)./(1+216./Tinf);

13

14 %Ratio calculation

15 cf cfinc=T Tinf.ˆ(-1).*R Rinf.ˆ(-0.2);

16

17 %Output assignment

18 output=cf cfinc*cfinc;

19

20 end

1 function output = empennageDragSubsonic(M, h, Sref, AREmp, Tinf, sweepEmp)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the drag coefficient due to lift in

4 % the subsonic regime

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 %Calculate the drag coefficient of the empennage

8

9 %Design variables

10 SEmp=0.2*Sref;

11 tcEmp=0.08;

12 TREmp=0.35;

13 SwetEmp=2*SEmp; %Wing swept area (m2)

14 spanEmp=sqrt(AREmp*SEmp); %Wing span (m)
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15 rootEmp=2*SEmp/(spanEmp*(1+TREmp)); %Wing root chord (m)

16 meanChordEmp=rootEmp*2*(1+TREmp+TREmpˆ2)/(3*(1+TREmp));%Wing mean chord (m)

17 Lprime=1.2; %Constant defined by Roskam

18

19 ReEmp=Reynolds (MtoV(0.6,h), meanChordEmp, h); %Fuselage Reynolds number

20 Rwfemp= Rwf(M, ReEmp);

21 Rlsemp=Rls(M, sweepEmp);

22 Cfe= Cf(M, Tinf, ReEmp);

23 output=Rwfemp*Rlsemp*Cfe*(1+Lprime*tcEmp+100*tcEmpˆ4)*SwetEmp/Sref;

24

25

26 end

1 function output = empennageDragSupersonic(M, V, h, Sref, AREmp, Tinf,...

2 sweepEmp)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Aerodynamic module: calculation of the drag coefficient of the empennage

5 % in the supersonic regime

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Design variables

10 SEmp=0.2*Sref;

11 tcEmp=0.08;

12 TREmp=0.35;

13 SwetEmp=2*SEmp; %Wing swept area (m2)

14 spanEmp=sqrt(AREmp*SEmp); %Wing span (m)

15 rootEmp=2*SEmp/(spanEmp*(1+TREmp)); %Wing root chord (m)

16 meanChordEmp=rootEmp*2*(1+TREmp+TREmpˆ2)/(3*(1+TREmp));%Wing mean chord (m)

17 tipEmp=TREmp*rootEmp; %Wing tip chord (m)

18 %https://www.physicsforums.com/threads/airfoil-leading-edge-radius.507700/

19 rBE=1.1019*tcEmpˆ2;

20 ReEmp=Reynolds (V, meanChordEmp, h); %Fuselage Reynolds number

21

22 Cfemp=Cf(M, Tinf, ReEmp);

23 Cdempf=Cfemp*SwetEmp/Sref;

24

25 CdLEemp= CdLE(M, sweepEmp, rBE, Sref, spanEmp);

26 tceff=tceffCalc(SEmp, spanEmp, tcEmp, tipEmp, rootEmp);

27 beta=(Mˆ2-1)ˆ0.5;

28 Cdwave=CdLEemp+16*tceffˆ2/(3*beta)*SEmp/Sref;

29 output=Cdempf+Cdwave;

30

31 end
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1 function output = flapsDrag(deflectionFlaps)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the drag coefficient due to flaps

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 cf c=0.3; %flap chord over wing chord as provided by Sadraey

8 bf b=0.6; %flap span over wing span as provided by Sadraey

9 Sflap Sref=bf b*cf c;

10 output=0.9*(cf c)ˆ1.38*(Sflap Sref)*(sin(deflectionFlaps)ˆ2);

11

12 end

1 function output = landingGearDrag( CL, Sref, W )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the drag coefficient of the landing

4 % gear

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %Main landing gear

9 Cd gearm cl0=1.3;

10 pm=-0.4*Cd gearm cl0;

11 Dm=0.01*5.1*(0.9*W/4)ˆ0.302;

12 bm=0.01*0.36*(0.45*W)ˆ0.467;

13 Sgearm=Dm*bm;

14 Cd maingear=(Cd gearm cl0+pm*CL)*Sgearm/Sref;

15

16 %Nose landing gear

17 Cd gearn cl0=0.5;

18 pn=-0.25*Cd gearn cl0;

19 Dn=0.6*Dm;

20 bn=0.6*bm;

21 Sgearn=Dn*bn;

22 Cd nosegear=(Cd gearn cl0+pn*CL)*Sgearn/Sref;

23

24 output=Cd maingear+Cd nosegear;

25

26 end

1 function output = liftSlope(AR, sweepWing, Sref, M, tcWing, dfus, b, rootChord)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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3 % Aerodynamic module: calculation of the lift slope

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 etaLift=0.95; %Raymer p.312

8 F=1.07*((1+dfus/b)ˆ2);

9 Mdd=0.786243011114196 + 0.00361901304093074 * sweepWing ...

10 -0.643773595710193 * tcWing + (sweepWing - 40.9964954704591) * ...

11 ((sweepWing - 40.9964954704591) * 0.0000257434767091937)...

12 + (sweepWing - 40.9964954704591) * ((tcWing - 0.0801980198019802) *...

13 0.0102064727164255);

14

15 Sexposed=Sref-dfus*rootChord;

16 if M<Mdd

17 beta2=sqrt(1-Mˆ2);

18 endEquation= min(0.98,Sexposed*F/Sref);

19 denom=2+sqrt(4+(AR*beta2/etaLift)ˆ2*(1+((tan(sweepWing))ˆ2)/beta2ˆ2));

20 slope=2*pi*AR*endEquation/denom;

21 elseif M>1.2

22 slopeMdd=liftSlope(AR, sweepWing, Sref, Mdd*0.9999, Mdd, dfus, b,...

23 rootChord);

24 correctionFactor=0.85*slopeMdd/6.03;

25 betaFac=sqrt(Mˆ2-1);

26 slope=4*correctionFactor/betaFac;

27 else

28 %Fitting with Matlab: curve goes through Mdd, 1.2 and max at 1.1 of

29 %yMdd to match curves from Raymer

30 yMdd=liftSlope(AR, sweepWing, Sref, Mdd*0.9999, Mdd, dfus, b,...

31 rootChord);

32 yM12=0.85*liftSlope(AR, sweepWing, Sref, Mdd*0.9999, Mdd, dfus, b,...

33 rootChord);

34 yMax=1.1*yMdd;

35 a=-(22.72727273*(60.*yMax-11.*yMdd-50.*Mdd*yMax-49.*yM12+50.*...

36 Mdd*yM12))/(250.*Mddˆ2+294.-545.*Mdd);

37 b=(.4545454545*(3600.*yMax-1199.*yMdd-2401.*yM12-2500.*yMax*Mddˆ2+...

38 2500.*Mddˆ2*yM12))/(250.*Mddˆ2+294.-545.*Mdd);

39 c=-(0.9090909091e-1*(-3234.*yMdd+18000.*Mdd*yMax-12005.*Mdd*yM12-...

40 15000.*yMax*Mddˆ2+12250.*Mddˆ2*yM12))/(250.*Mddˆ2+294.-545.*Mdd);

41 slope=a*Mˆ2+b*M+c;

42 end

43 output=slope;

44 end

1 function output = Reynolds (V, l, h)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the Reynolds number
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4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 atm=funcAtm(h);%Calculate atmospheric parameter as a function of altitude

8

9 mu=atm.mu; %Dynamic viscosity

10 rho=atm.rho; %Density

11

12 output=rho*V*l/mu;%Reynolds number

13

14 end

1 function output = Rls( M, lamndatcMax )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of Rls

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Intermediate variables

8 cosL=cos(lamndatcMax);

9 Mmax=max(0.25,M);

10

11 %Variable assignment

12 output=0.322709056484223 + 0.572331377882922 * cosL + 0.521452969288079...

13 * Mmax + (cosL - 0.74241582759369) * (cosL - 0.74241582759369) *...

14 -0.892082739967756 + (Mmax - 0.641406249999999) *...

15 (Mmax - 0.641406249999999) * 0.720296196196063;

16

17 end

1 function output = Rwf( M, Re )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of Rwf

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Intermediate variables

8 Mmax=max(0.25,M);

9 logRe=log(Re);

10

11 %Variable assignment

12 output=1.06499242343811 + -0.0791799780084577 * Mmax + (logRe -...
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13 17.4180492814283 ) * (logRe - 17.4180492814283) * ...

14 -0.00368622098768004 + ( logRe - 17.4180492814283) * (Mmax -...

15 0.594927536231885) * 0.15436730244968 + (Mmax - 0.594927536231885)...

16 * (Mmax - 0.594927536231885) * -0.346130269968011 + ( logRe -...

17 17.4180492814283) * (logRe - 17.4180492814283) * (...

18 logRe - 17.4180492814283) * 0.00102734087400994 + (logRe...

19 - 17.4180492814283) * (logRe - 17.4180492814283) * (logRe...

20 - 17.4180492814283) * (Mmax - 0.594927536231885) *...

21 -0.0171779814633487 + (Mmax - 0.594927536231885) * (Mmax -...

22 0.594927536231885) * (Mmax - 0.594927536231885) * (...

23 logRe - 17.4180492814283) * 0.417680110192136;

24

25 end

1 function output = slopeCDLCL2(Sref, span, beta, croot, AR)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the slope CDL over CL2

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 p=Sref/(span*croot);

8 ps=beta*span/(2*croot);

9

10 temp=0.9333*ps+0.23;

11

12 if temp < 0.55

13 temp=0.55;

14 end

15

16 output=temp/(pi*AR*p/(1+p));

17

18 end

1 function output = spanEfficiency(sweep, AR, TR, tc, M)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of the span efficiency

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %flambda

8 flambda=0.005*(1+1.5*(TR-0.6)ˆ2);

9
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10 temp=1+(0.142+flambda*AR*(10*tc)ˆ0.33)/((cos(sweep))ˆ2) +...

11 0.1/((4+AR)ˆ(0.8));

12

13 %Output assignment

14 output=((1+0.12*Mˆ6)*temp)ˆ(-1);

15

16 end

1 function output = tceffCalc(Sref, span, tc, ctip, croot)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Aerodynamic module: calculation of t ceff based on a linear evolution

4 % of the chord from croot (y=0) to ctip (y=b/2): a*y+b

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 bb=croot;

9 aa=2*(ctip-croot)/span;

10

11 x0=0;

12 xEnd=span/2;

13

14 int=(2/(3*aa))* ( (aa*xEnd+bb)ˆ(3/2) - (aa*x0+bb)ˆ(3/2) );

15

16 output=int*tc*2/Sref;

17

18 end

D.2.3 Economic Module

1 function output=costModule(wing, nLaunch, programLength, numbUnits,...

2 Tmiss, nPilots, nPAX, TOmode, year, LC, nJet, JetEngine, Isp,...

3 propellantWeight, Propellant, O F, Tr, SOtank, SPtank,...

4 TotalLaunchMass, VehicleDryMass, rocketEngineEmptyWeight,...

5 afterburner, WdryjetEng, TIT, Tj, fuelWeight)

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % Cost module: function that drives the cost calculation

8 % Author: Christopher Frank

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 %% Jet engine cost

12 if JetEngine==1

13 jetEngineCost=JetEngineCost(TIT, WdryjetEng, LC, afterburner,...

14 year, Tmiss, nJet, Tj, fuelWeight)
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15 else

16 jetEngineCost.dev=0; jetEngineCost.prod=0; jetEngineCost.maint=0;...

17 jetEngineCost.propellant=0;

18 end

19

20 %% Rocket engine cost

21 %Constants

22 Q=1631;%Total number of engines produced (middle of the range) //Solid

23 Nn=1; % Number of nozzles //Solid

24 Proto=56; %Number of prototypes //Both

25 rocketEngineCost=rocketCostModule(Q, Nn, LC, Proto,...

26 rocketEngineEmptyWeight, Isp, propellantWeight, year, Propellant,...

27 O F, Tr, SOtank, SPtank);

28

29 %% Total cost

30 output=costModuleAirframe(LC, wing, nLaunch, programLength, numbUnits,...

31 Tmiss, nPilots, nPAX, TOmode, year, nJet,...

32 WdryjetEng, propellantWeight, rocketEngineEmptyWeight,...

33 VehicleDryMass, TotalLaunchMass, jetEngineCost, rocketEngineCost, ...

34 O F, Propellant);

35

36 end

1 function output=costModuleAirframe(LC, wing, nLaunch, programLength,...

2 numbUnits, Tmiss, nPilots, nPAX, TOmode, year, nJet,...

3 jetEngineEmptyWeight, mProp, engineEmptyWeight, VehicleDryMass,...

4 TotalLaunchMass, jetEngineCost, rocketEngineCost, O F, Propellant)

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 % Cost module: function that calculates the total cost

7 % Author: Christopher Frank

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %% Constants

11 Vw=5; %Maximum Mach Number

12 nRocket=1; %Number of rocket engines

13 stageNumber=1; %Number of vehicle stage

14

15 %% Constants for cost calculation

16 %Number of reuses for each component

17 reuse.Jet=200;

18 reuse.Body=200;

19 reuse.Rocket=200;

20

21 %% Rates definition for cost calculation

22 rates.IR=0.02; %Interest rate

23 rates.tIR=10; %Years of interest rate
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24 rates.RR=0.05; %Repayment rate

25 rates.tRR=10; %Years of repayment rate

26 rates.Rabort=1/40; %Insurance abort rate

27 rates.Rloss=1/2000; %Insurance loss rate

28

29 %% General factors description

30 generalFactors.fPS=1.075;%Project System Engineering Factor

31 generalFactors.fTD=1;%Technical development factor

32

33 %Technical quality factor

34 generalFactors.fTQ.rocket=1;

35 generalFactors.fTQ.winged=Vwˆ0.16;

36 generalFactors.fTE=1;%Team Experience Factor

37 generalFactors.fI=1.025;%Integration Factors

38

39 %Cost Reduction Factor

40 LCexp=log(0.01*LC)/log(2);

41 generalFactors.fCR.rocket=1.004*((numbUnits*nRocket)ˆ(LCexp));

42 generalFactors.fCR.jet=1.004*((numbUnits*nJet)ˆ(LCexp));

43 generalFactors.fCR.ballistic=1.004*((numbUnits)ˆ(LCexp));

44 generalFactors.fCR.winged=1.004*((numbUnits)ˆ(LCexp));

45

46 %Commercial factor

47 generalFactors.fC.rocket=0.2;

48 generalFactors.fC.jet=1;

49 generalFactors.fC.ballistic=0.5;

50 generalFactors.fC.winged=0.5;

51

52 %% Cost conversion value

53 costConv=-7.905*(1e-6)*yearˆ2+37.308156*(1e-3)*year-42.784828;

54

55 %% Cost calculation

56 %Development cost

57 CostDev=DevCost(engineEmptyWeight,generalFactors, costConv,nRocket,...

58 nJet,jetEngineEmptyWeight,TotalLaunchMass,VehicleDryMass, wing,...

59 rocketEngineCost,jetEngineCost);%

60

61 %Production cost

62 tempProdCost = ProdCost( engineEmptyWeight,generalFactors,costConv,...

63 nRocket,nJet,jetEngineEmptyWeight,TotalLaunchMass,VehicleDryMass,...

64 stageNumber, wing, rocketEngineCost);

65 ProdCosta=tempProdCost{1}+jetEngineCost.prod;

66 ProdCostVector=tempProdCost{2};

67 ProdCostVector.C VJ=jetEngineCost.prod;

68

69 %Operating cost including propellant

70 OpeCosta = OpeCost(costConv,...

71 TotalLaunchMass,VehicleDryMass,...

72 TOmode,nLaunch,programLength,rates,numbUnits,CostDev,...
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73 ProdCosta,ProdCostVector,reuse,nPilots,nPAX,Tmiss, mProp, O F,...

74 Propellant, year)+jetEngineCost.maint+jetEngineCost.propellant;

75

76 %Cost of the additional vehicle

77 if (TOmode==0)

78 additionalFixedCost=((-2e-8)*TotalLaunchMassˆ2+...

79 0.0054*TotalLaunchMass+6.1159)*1e6*inflation(2015,year)*1.1;

80 additionalVariableCost=((-3e-7)*TotalLaunchMassˆ2+0.1087*...

81 TotalLaunchMass+1621.6)*inflation(2015,year)*1.1*1.5;

82 else

83 additionalFixedCost=0;

84 additionalVariableCost=0;

85 end

86

87 %Cost over the entire program

88 TotalCost=CostDev+additionalFixedCost+ProdCosta*numbUnits+...

89 programLength*nLaunch*(OpeCosta+additionalVariableCost);

90

91 output=TotalCost;

92 end

1 function CostDev = DevCost( engineEmptyWeight,generalFactors,costConv,...

2 nRocket, nJet, jetEngineEmptyWeight, Mtot, Mempty, wing,...

3 rocketEngineCost, jetEngineCost)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Cost module: function that calculates the airframe development cost

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Define variables

10 Mg=1e3; %Mass factor for cost calculation in kg

11 Mdollars=1e6; %Cost for price in $

12 fact=generalFactors;

13

14 %Airframe type

15 if wing==0

16 C DB=(42* Mtot/Mg + 30000)* Mdollars * fact.fC.ballistic*costConv;

17 C DW=0;

18

19 else

20 C DW=11350*Mdollars*((Mempty-nRocket*engineEmptyWeight-nJet*...

21 jetEngineEmptyWeight)/Mg)ˆ0.335 * fact.fPS * fact.fTD *...

22 fact.fTQ.winged * fact.fTE * fact.fC.winged * costConv;

23 C DB=0;

24

25 end
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26

27 %Compute body costs

28 C Dbody=C DW+C DB;

29

30 %Compute jet engine cost

31 C DJ=jetEngineCost.dev;

32

33 %Output

34 CostDev=C Dbody+rocketEngineCost.DevCost+nJet*C DJ;

35

36 end

1 function output=inflation(y1, y2)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Cost module: inflation calculation

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 ir1=0.4627*y1-907.99;

8 ir2=0.4627*y2-907.99;

9

10 output=ir2/ir1;

11

12 end

1 function output = JetEngineCost(TIT, Wdry, LC, afterburner, year,...

2 tmission, nJet, Tj, fuelWeight)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Cost module: function that computes all costs related to jet engines

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %Conversions

9 drywt=Wdry*2.20462; %Dry weight (From kg to lbs)

10 TIT=(TIT-273.15)*1.8; %Turbine inlet temperature (From K to F)

11 Mdollars=1e6;

12

13 %Intermediate variable calculation

14 lnritf=log(TIT);

15 ab=afterburner;

16 lndrywt=log(drywt);

17 lnslope=log(LC*0.01);
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18

19 %Development cost

20 lnrd01m=-24.429+4.027*lnritf ;

21 devCost=Mdollars*exp(lnrd01m)*1;%Replace 1 by cost conversion

22

23 %Production cost

24 lnT1 = -10.40 - 8.550*lnslope + 0.482*ab + 1.162*lnritf + 0.261*lndrywt;

25 prodCost=exp(lnT1)*Mdollars*1; %Replace 1 by cost conversion

26

27 %Maintenance cost

28 tFlight=tmission/3600; %Flight time (hr)

29 T0=Tj*0.224808943;

30 maintCost=tFlight*nJet*(75*(0.645+0.05*T0*1e-4)*(0.566+0.434/tFlight)...

31 +(25+0.05*T0*1e-4)*(0.62+0.38/tFlight));

32

33 %Outputs

34 output.dev=devCost*inflation(1981,year);

35 output.prod=prodCost*nJet*inflation(1981,year);

36 output.maint=maintCost*inflation(1995,year);

37 output.propellant=0.978*fuelWeight;

38

39 end

1 function OpeCost = OpeCost( costConv, Mtot,Mempty,TOmode,nLaunch,...

2 programLength,rates,numbUnits,CostDev,ProdCost,ProdCostVector,...

3 reuse, nPilots, nPAX, Tmiss, mProp, O F, Propellant, year)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Cost module: calculation of all operating cost components

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 Mg=1e3; %Mass factor for cost calculation in kg

10 Mdollars=1e6; %Cost for price in $

11 Thour=3600; %Time conversion for mission time in s

12

13 %% Variable Direct Operating Cost

14 %Pre-launch operating + Launch operating + Maintenance cost

15 switch TOmode

16 case 0

17 C pl=1.409*Mdollars*nLaunchˆ-0.54*(Mtot/Mg)ˆ0.75*costConv;

18 Cl=Mdollars*(14*nLaunchˆ-0.65 + 0.42*(Tmiss/Thour)*...

19 (nPilots+nPAX)ˆ0.5*nLaunchˆ-0.8)*costConv;

20 Cmaint= 0.0001*ProdCostVector.C Vbody+0.0015*...

21 ProdCostVector.C VR+0.0002*ProdCostVector.C VJ;

22

23 case 1

531



24 C pl=1.409*Mdollars*nLaunchˆ-0.54*(Mtot/Mg)ˆ0.75*costConv;

25 Cl=Mdollars*(20*nLaunchˆ-0.65 + 0.42*(Tmiss/Thour)*...

26 (nPilots+nPAX)ˆ0.5*nLaunchˆ-0.8)*costConv;

27 Cmaint= 0.004*ProdCostVector.C Vbody+0.0015*ProdCostVector.C VR+...

28 0.0002*ProdCostVector.C VJ;

29

30 case 2

31 C pl=6.618*Mdollars*nLaunchˆ-0.61*(Mtot/Mg)ˆ0.75*costConv;

32 Cl=Mdollars*(20*nLaunchˆ-0.65 + 0.42*(Tmiss/Thour)*...

33 (nPilots+nPAX)ˆ0.5*nLaunchˆ-0.8)*costConv;

34 Cmaint= 0.004*ProdCostVector.C Vbody+0.0015*ProdCostVector.C VR...

35 +0.0002*ProdCostVector.C VJ;

36 end

37

38 %Propellant cost

39 SolidC=1110;

40 O2C=1761;

41 H2C=30764;

42 RP1C=21755;

43 N2O4C=226000;

44 MMHC=185120;

45 N2OC=2773;

46

47 if Propellant == 1

48 propPrice=SolidC*mProp;

49 elseif Propellant ==2

50 propPrice=O2C*mProp*O F/(1+O F)+H2C*mProp/(1+O F);

51 elseif Propellant ==3

52 propPrice=O2C*mProp*O F/(1+O F)+RP1C*mProp/(1+O F);

53 elseif Propellant ==4

54 propPrice=N2O4C*mProp*O F/(1+O F)+MMHC*mProp/(1+O F);

55 elseif ((Propellant == 5) | | (Propellant == 6))

56 propPrice=O2C*mProp*O F/(1+O F)+SolidC*mProp/(1+O F);

57 else

58 propPrice=N2OC*mProp*O F/(1+O F)+SolidC*mProp/(1+O F);

59 end

60 Cp=propPrice*inflation(2015,year)*1e-3;

61

62 %Launch site cost

63 Cls=0.1*Mdollars*costConv;

64

65 %Vehicle amortization cost

66 Cva=ProdCostVector.C Vbody/reuse.Body + ProdCostVector.C VJ/reuse.Jet +...

67 ProdCostVector.C VR/reuse.Rocket;

68

69 %Transportation cost

70 Ct=(72.1e-3)*Mdollars*((Mempty/Mg)ˆ0.5)*costConv;

71

72 %Sum all variable DOC components
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73 DOCv=C pl+Cl+Cp+Cls+Cva+Ct+Cmaint;

74

75 %% Fixed Direct Operating Cost

76 %Development amortization cost

77 Cda=DOCv/(programLength*nLaunch);

78

79 %Financing cost

80 Cf=ProdCost * ((1+rates.IR)ˆrates.tIR * rates.RR*rates.tRR/...

81 (1-(1+rates.RR)ˆ(-rates.tRR)) -1) *(1/(programLength*nLaunch));

82

83 %Product improvement cost

84 Cpi=0.045*((numbUnits*programLength)ˆ0.33)*CostDev/...

85 ((nLaunch*programLength));

86

87 %Abolition cost

88 Cab=numbUnits*DOCv/(nLaunch*programLength);

89

90 %Sum all cost fix DOC components

91 DOCf=Cda+Cf+Cpi+Cab;

92

93 %% Indirect Operating Cost (Administration cost per launch)

94 IOCtot=0.9*Mdollars*costConv;

95 %% Total operating cost without insurance

96 OpeCostNoIns=DOCv+DOCf+IOCtot; %$/launch

97

98 %% Vehicle cost with insurance

99 OpeCost=(OpeCostNoIns+rates.Rloss*ProdCost)/(1-rates.Rabort);

100

101 end

1 function output = ProdCost( engineEmptyWeight,generalFactors,costConv,...

2 nRocket, nJet, jetEngineEmptyWeight, Mtot, Mempty, stageNumber,...

3 wing, rocketEngineCost)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Cost module: function that calculates the production cost components

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 Mg=1e3; %Mass factor for cost calculation in kg

10 Mdollars=1e6; %Cost for price in $

11 fact=generalFactors;

12

13 %Airframe type

14 if wing==0

15 C VB=638.6*Mdollars*((Mempty-nRocket*engineEmptyWeight-nJet...

16 *jetEngineEmptyWeight)/Mg)ˆ0.485...
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17 *fact.fIˆstageNumber * fact.fC.ballistic*fact.fCR.ballistic*...

18 costConv;

19 C VW=0;

20

21 else

22 C VW=84.3*Mdollars*(Mtot/Mg)ˆ0.669 *fact.fIˆstageNumber * ...

23 fact.fC.winged*fact.fCR.winged*costConv;

24 C VB=0;

25

26 end

27

28 %Compute body costs

29 C Vbody=C VW+C VB;

30

31 %Outputs

32 ProdCostVector.C VR=nRocket*rocketEngineCost.FUC;

33 ProdCostVector.C Vbody=C Vbody;

34 ProdCost=nRocket*rocketEngineCost.FUC+C Vbody;

35

36 output={ProdCost, ProdCostVector};

37

38 end

1 function output=rocketCostModule(Q, Nn, LC, Proto,...

2 rocketEngineEmptyWeight, Isp, propellantWeight, year, Propellant,...

3 O F, Tr, SOtank, SPtank)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Cost module: calculation of the costs related to rocket engines

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %% Intermediate calculation

10 g0=9.81;

11 coefLC=log(LC*0.01)/log(2);%Learning curve coefficient

12 mProp=propellantWeight*2.20462; %Propellant mass (lb)

13 T=Tr*0.224808943; %Thrust (lb)

14 mdot=T/Isp; %Mass flow (lb/sec)

15 Wt=rocketEngineEmptyWeight*2.20462;

16

17 %% Cost calculation

18 if Propellant == 1

19 %Total impulse calculation

20 TI=Isp*mProp*0.001; %Total impulse (klb.sec)

21

22 %Estimation based on Total Impulse

23 CAC TI=1e3*77.595*(Qˆ(-0.3597)) * TIˆ0.5081 * Nnˆ0.6116;
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24

25 %Calculation of First Unit Cost

26 FUC=CAC TI/QˆcoefLC;

27

28 %Calculation of the development cost

29 CAC 150=inflation(1988,1987)*FUC*150ˆcoefLC;

30 DevCost=52.947*CAC 150ˆ0.939*Protoˆ0.618;

31

32 %Ouputs assignment

33 FUC=inflation(1988,year)*FUC;

34 DevCost=inflation(1987,year)*DevCost;

35

36 elseif (Propellant <4.5)

37 %Estimation of FUC

38 FUC=374 * Wtˆ1.718*(Tˆ(-0.043))*(mdotˆ(-0.827));

39

40 %Calculation of the development cost

41 CAC 150=inflation(1965,1987)*FUC*150ˆcoefLC;

42 DevCost=52.947*CAC 150ˆ0.939*Protoˆ0.618;

43

44 %Ouputs assignment

45 FUC=inflation(1965,year)*FUC;

46 DevCost=inflation(1987,year)*DevCost;

47

48 else

49 %Solid sub-engine

50 WsolProp=propellantWeight/(1+O F); %Weight of solid propellant (kg)

51 Wsol=2.20462*(0.0706*WsolProp+18.974); %Solid sub-engine weight (lbs)

52 CAC Q=1000*29.045*Qˆ(-0.3387)*(Wsol+2.20462*WsolProp)ˆ(0.5126)...

53 *Nnˆ(0.6167);

54 solidSubCost88=CAC Q/QˆcoefLC; %Calculation of First Unit Cost %1988

55

56 %Tanks

57 Ctr=328*(SOtank+SPtank); %1975

58 Cnr=2660*(SOtank+SPtank);

59

60 %Feed system

61 %Liquid sub-engine weight(lbs)

62 Wliq=2.20462*Tr/(g0*(25.2*log10(Tr)-80.7));

63 feedCost=398.2*Wliqˆ(0.618); %1965

64

65 %Development cost

66 %Solid sub-engine

67 CAC 150Solid=inflation(1988,1987)*solidSubCost88*150ˆcoefLC;

68 CAC 150Tank=inflation(1975,1987)*(Ctr+Cnr); %CAC150 tanks

69 CAC 150Feed=inflation(1965,1987)*feedCost;

70 DevCost=52.947*(CAC 150Feed+CAC 150Tank+CAC 150Solid)ˆ0.939...

71 *Protoˆ0.618;

72
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73 %Ouputs assignment

74 FUC=(CAC 150Feed+CAC 150Tank+CAC 150Solid)*inflation(1987,year)*1.1;

75 DevCost=DevCost*inflation(1987,year);

76 end

77

78 %Outputs

79 output.FUC=FUC;

80 output.DevCost=DevCost;

81 end

D.2.4 Propulsion Module

1 function output= gammaLiq(O F, Propellant)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Propulsion module: Gamma calculation for each type of liquid propellant

4 % Authors: Christopher Frank and Clemence Tyl

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 switch Propellant

8 case 'LOXLH2'

9 a1 = 1.617 ;

10 b1 = -7.825 ;

11 c1 = 6.251 ;

12 a2 = 1.2 ;

13 b2 = 9.087 ;

14 c2 = 38.53 ;

15 gamma = a1*exp(-((O F-b1)/c1)ˆ2) + a2*exp(-((O F-b2)/c2)ˆ2);

16

17 case 'LOXRP1'

18 a = 0.9455 ;

19 b = -1.753 ;

20 c = 1.204 ;

21 d = 0.001297 ;

22 gamma = a*exp(b*O F) + c*exp(d*O F);

23

24 case 'Hypergolic'

25 p1 = -0.0005371 ;

26 p2 = 0.008974 ;

27 p3 = -0.05822 ;

28 p4 = 0.183 ;

29 p5 = -0.2685 ;

30 p6 = 1.372 ;

31 gamma = p1*O Fˆ5 + p2*O Fˆ4 + p3*O Fˆ3 + p4*O Fˆ2 + p5*O F + p6;

32 end

33

34 %Output
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35 output=gamma;

36

37 end

1 function output = JetEngines( Tj, BPR, MmaxJet, afterburner, TIT )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Propulsion module: weight, size, and performance calculation of jet

4 % engines

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 % Calculate the impact of TIT

9 Tj=Tj*0.001; %Conversion of thrust from N to kN

10 deltaTIT=(TIT-1500)/1500;

11 deltaSFC=-0.511346662342284 + 24.34814880625 * deltaTIT +...

12 0.29773126105 * BPR + (deltaTIT - 0.233333333) * ...

13 (BPR - 17.5) * 0.8306873895;

14 eta=1-(deltaSFC-2.88062683993704)*0.01;

15

16 % Calculate required parameters for each type of engine

17 switch afterburner

18 case false

19 output.weight=14.7*Tjˆ1.1*exp(-0.045*BPR);

20 output.length=0.49*Tjˆ0.4*MmaxJetˆ0.2;

21 output.diameter=0.15*Tjˆ0.5*exp(0.04*BPR);

22 output.SFC=eta*19*exp(-0.12*BPR)*1e-6;

23 case true

24 output.weight=11.1*Tjˆ1.1*MmaxJetˆ0.25*exp(-0.81*BPR);

25 output.length=0.68*Tjˆ0.4*MmaxJetˆ0.2;

26 output.diameter=0.11*Tjˆ0.5*exp(0.04*BPR);

27 output.SFC=eta*60*exp(-0.12*BPR)*1e-6;

28 end

29

30 end

1 function output = massHybrid(mprop,time,epsilon,pc,D, cc, O F, matMC,...

2 Propellant)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Propulsion module: weight/size calculation for hybrid rocket engines

5 % Authors: Christopher Frank and Clemence Tyl

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7
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8 %% Constants

9 g0=9.81;

10 N=8;% Assuming a wagon wheel with no center hole burning, 8 triangle ports

11 Gox i=350;%kg/mˆ2.s Assumption: data from Humble

12 pc=pc*1e6;%Conversion: MPa -> Pa

13 materialTankOx=matMC;

14

15 %% Provide densities to fuel and oxidizer according to the selected

16 % propellant

17 switch Propellant

18 case 5

19 a=9.26*10ˆ(-6); %AIAA 2012-4202

20 n=0.852;

21 m=0;

22 rho f=1142;

23 rho ox=930;

24 case 6

25 a=9.1*10ˆ(-5); %AIAA 2012-4202

26 n=0.69;

27 m=0;

28 rho f=1142;

29 rho ox=900;

30 case 7

31 a=1.87*10ˆ(-4);%AIAA 2012-4202

32 n=0.347;

33 m=0;

34 rho f= 1223;

35 rho ox=930;

36 case 8

37 a=1.315*10ˆ(-4);%AIAA 2011-420 12

38 n=0.555;

39 m=0;

40 rho f= 1223;

41 rho ox=900;

42 end

43

44 db=mprop/time;%propellant mass flow rate kg/s

45 mfuel=mprop/(O F+1);%kg

46 mox=mprop/(1/O F+1);%kg

47 rho matOx=materialTankOx(1);%kg/mˆ3

48 Ftu Ox=materialTankOx(2);%Pa

49

50 %% Solid part

51 %Configuration of the combustion ports

52 dbf=mfuel/time;

53 dbox=mox/time;

54

55 %Initial geometry of the ports

56 Api=dbox/(N*Gox i);
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57 Gf i=Gox i/O F;

58 theta p=pi/N;

59 hi=sqrt(Api/tan(theta p));

60 bi=2*hi*tan(theta p);

61 li=hi/cos(theta p);

62 P i=2*hi/cos(theta p)+bi;

63

64 Lp=(dbf/(N*rho f*a*(Gox i+Gf i)ˆn*P i))ˆ(1/(1+m));%port length

65

66 %Final configuration

67 aaa=1;

68 bbb=(2*li+bi)/pi;

69 ccc=-mfuel/(N*rho f*Lp*pi);

70 delta=bbbˆ2-4*aaa*ccc;

71

72 w=(-bbb+sqrt(delta))/(2*aaa);

73

74 %Radius of central hole

75 rh=w/sin(theta p)-w;

76

77 %Radius of grain

78 rg=hi+2*w+rh;

79

80 %Combustion chamber size and weight

81 pb chamber=1.5*pc;

82

83 Lc=Lp+2*rg;%combustion chamber length

84 tc=pb chamber*rg*1.5/Ftu Ox;%wall thickness

85 mcase=pi*2*rg*Lc*tc*rho matOx;%chamber case mass

86

87 %% Injector mass

88 %2.5cm thick aluminum plate spanning the chamber radius humble p438

89 minj=2800*pi*rgˆ2*0.025;

90

91 %% Nozzle

92 At=db*cc/pc;

93 Ae=epsilon*At;

94 De=sqrt(4*Ae/pi);

95 Dt=sqrt(4*At/pi);

96 Lnozzle=(De-Dt)/(2*tan(15*pi/180))*0.8;%15 half angle, 0.8 bell nozzle

97 mnozzle=125*(mprop/5400)ˆ(2/3)*(epsilon/10)ˆ(1/4);

98

99 %% Liquid part

100 %Oxidizer tank

101 %Volume with 10% ullage

102 Vox=1.1*(mox/rho ox);

103 pbox=pc+0.2*pc+50000+0.5*rho ox*10ˆ2;

104 Rsox=(3*Vox/(4*pi))ˆ(1/3);

105 if Rsox>D/2
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106 %cylindrical part

107 rcox=D/2;

108 lcox=(Vox-4/3*pi*rcoxˆ3)/(pi*rcoxˆ2);

109 Acox=2*pi*rcox*lcox;

110 tcox=(pbox*rcox)/Ftu Ox;

111 mcox=Acox*tcox*rho matOx;

112 %spherical part

113 Asox=4*pi*rcoxˆ2;

114 tsox=(pbox*rcox)/(2*Ftu Ox);

115 msox=Asox*tsox*rho matOx;

116

117 mTankOx=mcox+msox;

118 Loxtank=lcox+D;

119 SOtank=Acox+Asox;

120 else

121 %just a sphere

122 lsox=2*Rsox;

123 Asox=4*pi*Rsoxˆ2;

124 tsox=(pbox*Rsox)/(2*Ftu Ox);

125 msox=Asox*tsox*rho matOx;

126

127 mTankOx=msox;

128 Loxtank=lsox;

129 SOtank=Asox;

130 end

131

132 %Pressurization tank: Helium

133 rHe=8314/4.003;%J/kg/K

134 gammaHe=1.66;

135 p f=pbox;

136 p i=21*10ˆ6;

137 Ti=273;

138 Tf=Ti*(p f/p i)ˆ((gammaHe-1)/gammaHe);

139

140 %Loop

141 VHe=0;

142 Vtank=Vox+VHe;

143 mHe=(1.05*p f*(Vtank))/(rHe*Tf);

144 VpHe=(mHe*Ti*rHe)/p i;

145

146 while (abs(VpHe-VHe)>=0.0001)

147 VHe=VpHe;

148 Vtank=Vox+VHe;

149 mHe=(1.05*p f*(Vtank))/(rHe*Tf);

150 VpHe=(mHe*Ti*rHe)/p i;

151 end

152

153 VHe=VpHe;

154
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155 %Helium tank dimensions

156 RsHe=(3*VHe/(4*pi))ˆ(1/3);

157 if RsHe>D/2

158 %cylindrical part

159 rcHe=D/2;

160 lcHe=(VHe-4/3*pi*rcHeˆ3)/(pi*rcHeˆ2);

161 %AcHe=2*pi*rcHe*lcHe;

162 %spherical part

163 %AsHe=4*pi*rcHeˆ2;

164 LHeTank=lcHe+D;

165 SPtank=2*pi*rcHe*lcHe+pi*RsHeˆ2;

166 else

167 %just a sphere

168 lsHe=2*RsHe;

169 %AsHe=4*pi*RsHeˆ2;

170 LHeTank=lsHe;

171 SPtank=pi*RsHeˆ2;

172 end

173

174 %Helium tank mass

175 %(pV/W approach)

176 MTankPress=p i*VHe/(g0*12700);%12700 p439 or 6350 titanium p279 humble

177

178 %% Support structure and ancillary parts %%%%%%%%

179 mStructure=0.1*(mTankOx+MTankPress);

180

181 %% Total

182 mtot empty=mcase+minj+mnozzle+mTankOx+MTankPress+mStructure+mHe;

183 Ltot=Lc+Lnozzle+Loxtank+LHeTank;

184

185 %% Ouputs

186 output.length=Ltot;

187 output.mEmpty=mtot empty+mHe;

188 output.SOtank=SOtank;

189 output.SPtank=SPtank;

190

191 end

1 function output = massLiquid(mProp, tc, materialMC, DD, Isp, O F,...

2 Propellant)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Propulsion module: weight/size calculation for liquid rocket engines

5 % Authors: Christopher Frank and Clemence Tyl

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %% Constants
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9 g0=9.81;

10 MEOP=1.2;%pc max/pc

11 fs=2;%typically 2 for pressure vessels

12

13 %% Provide densities to fuel and oxidizer according to the selected

14 % propellant

15 switch Propellant

16 case 2

17 rho ox=1142;

18 rho fuel=71;

19 case 3

20 rho ox=1142;

21 rho fuel=810;

22 case 4

23 rho ox=1440;

24 rho fuel=878;

25 end

26

27 db=mProp/tc;%kg/s

28 F=Isp*db*g0;%N

29

30 D=DD-0.1;

31 mfuel=mProp/(O F+1);%kg

32 mox=mProp/(1/O F+1);%kg

33

34 rho mat=materialMC(1);%kg/mˆ3

35 Ftu=materialMC(2);%Pa

36

37 %% First estimation, mass and dimensions %%%%

38 mE=F/(g0*(25.2*log10(F)-80.7)); %kg

39 LE=(0.00003042*F+327.7)*10ˆ(-2);%m

40

41 %% Tanks volume and mass

42 Vf=1.1*(mfuel/rho fuel);%mˆ3

43 Vox=1.1*(mox/rho ox);%mˆ3

44

45 %% Tank pressure and burst pressure

46 ptf=(10ˆ(-0.1068*(log10(Vf)-0.2588)))*10ˆ6;

47 ptox=(10ˆ(-0.1068*(log10(Vox)-0.2588)))*10ˆ6;

48 pbf=MEOP*ptf*fs;

49 pbox=MEOP*ptox*fs;

50

51 %% Fuel tank dimensions

52 Rsf=(3*Vf/(4*pi))ˆ(1/3);

53 if Rsf>D/2

54 %%%%%%%%%%%%cylindrical part

55 rcf=D/2;

56 lcf=(Vf-4/3*pi*rcfˆ3)/(pi*rcfˆ2);

57 Acf=2*pi*rcf*lcf;
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58 tcf=(pbf*rcf)/Ftu;

59 mcf=Acf*tcf*rho mat;

60 %%%%%%%%%%%%%%spherical part

61 Asf=4*pi*rcfˆ2;

62 tsf=(pbf*rcf)/(2*Ftu);

63 msf=Asf*tsf*rho mat;

64

65 mftank=mcf+msf;

66 Lftank=lcf+D;

67

68 else

69 %Just a sphere

70 lsf=2*Rsf;

71 Asf=4*pi*Rsfˆ2;

72 tsf=(pbf*Rsf)/(2*Ftu);

73 msf=Asf*tsf*rho mat;

74

75 mftank=msf;

76 Lftank=lsf;

77 end

78

79 %% Oxidizer tank dimensions

80 %Cylindrical part

81 Rsox=(3*Vox/(4*pi))ˆ(1/3);

82 if Rsox>D/2

83 rcox=D/2;

84 lcox=(Vox-4/3*pi*rcoxˆ3)/(pi*rcoxˆ2);

85 Acox=2*pi*rcox*lcox;

86 tcox=(pbox*rcox)/Ftu;

87 mcox=Acox*tcox*rho mat;

88 %Spherical part

89 Asox=4*pi*rcoxˆ2;

90 tsox=(pbox*rcox)/(2*Ftu);

91 msox=Asox*tsox*rho mat;

92

93 moxtank=mcox+msox;

94 Loxtank=lcox+D;

95

96 else

97 %Just a sphere

98 lsox=2*Rsox;

99 Asox=4*pi*Rsoxˆ2;

100 tsox=(pbox*Rsox)/(2*Ftu);

101 msox=Asox*tsox*rho mat;

102

103 moxtank=msox;

104 Loxtank=lsox;

105 end

106
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107 %% Mass attachements

108 m attachement=0.453592*1.949e-3 * (F*0.224808943)ˆ1.0687;

109

110 %% Case in aluminum, 6mm thickness

111 mcase=2*pi*D/2*(Lftank+Loxtank)*0.006*2800;

112

113 %% Total mass

114 mtot=mE+mftank+moxtank+m attachement+mcase;

115 L int E=LE+Lftank+Loxtank;

116

117 %% Outputs

118 output.length=L int E;

119 output.mEmpty=mtot;

120

121 end

1 function output = massSolid(mProp, tc, epsilon, thrust, pc, Isp)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Propulsion module: weight/size calculation for solid rocket engines

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Implementation of the surrogate models calculated in JMP

8 emptyWeight= 1002.02283765734 + 0.0967425683356674 .* mProp ...

9 -149.552932619832 .* pc + (pc - 6.8321052631579) .* ...

10 (mProp - 7857.26578947369) .* (-0.0262668618042834);

11

12 diameter =0.443293470488469 + 0.0000077467641535731 .* mProp + ...

13 0.0121151381460204 .* tc + 0.0250534295480696 .* pc + ...

14 0.00945529003061431 .* epsilon + -0.00260675602417801 .*...

15 Isp + 0.000000444291436658 .* thrust;

16

17 length=25.0394552567526 + 0.000503146858282769 .* mProp ...

18 -0.0770093558319263 .* Isp + (mProp - 11333.8071428571) .* ...

19 (mProp - 11333.8071428571) .* -0.000000014318090183 + ( tc -...

20 63.8285714285714).*(tc - 63.8285714285714) * -0.000800697313856403;

21

22 %Outputs

23 output.mEmpty=emptyWeight;

24 output.length=length;

25 output.diameter=diameter;

26

27 end
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1 function output = performanceCalculation(pc, epsilon, Propellant)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Propulsion module: performance calculation for rocket engines

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Calibration parameters

8 calibPerfo.Solid=0.9272;

9 calibPerfo.LOXLH2=0.9565938;

10 calibPerfo.LOXRP1=0.9166761;

11 calibPerfo.Hypergolic= 0.9248941;

12 calibPerfo.LOXHTPB= 0.7728613;

13 calibPerfo.LOXParaffin= 0.7649672;

14 calibPerfo.N2OHTPB= 0.8256039;

15 calibPerfo.N2OParaffin= 0.7899722;

16

17 %Calculate performance parameters for each propellant

18 switch Propellant

19 case 1

20 Isp = calibPerfo.Solid .* (255.427396710744 + 0.197108393221772...

21 .*log( pc ) + 15.5355097527882 .*log( epsilon ));

22 cc = calibPerfo.Solid .* ( 1569.52772832855 + 9.33887410822712 ...

23 .* log( pc ) -0.00373725577675696 .* log( epsilon ));

24 OF=[];

25

26 case 2

27 Isp = calibPerfo.LOXLH2.* (388.512079641684 + ...

28 0.602021396435942 .* log( pc ) + 17.0859008700137 .*...

29 log( epsilon ));

30 cc = calibPerfo.LOXLH2.* (2460.57803850249 +...

31 6.39478573234992 .* log( pc ) -22.6812882052718 .*...

32 log( epsilon ));

33 OF=2.85978023285533 + 0.0813655032843058 * log( pc ) + ...

34 0.435726055292276 * log( epsilon );

35

36 case 3

37 Isp= calibPerfo.LOXRP1.*(283.719601145181 + ...

38 1.75816886543178 .* log( pc ) + 18.5944818419438 ...

39 .* log( epsilon ));

40 cc = calibPerfo.LOXRP1.*(1784.904265689 + 17.1274817632888...

41 .* log( pc ) -9.62724016370026 .* log( epsilon ));

42 OF=2.20012405155977 + 0.0455192073177058 * log( pc ) + ...

43 0.115424459015865 * log( epsilon );

44

45 case 4

46 Isp= calibPerfo.Hypergolic.*(279.412912491884 +...

47 0.910668022569868 .* log( pc )+15.6798582616569.*log(epsilon));

48 cc= calibPerfo.Hypergolic.*(1747.24422351986 + ...

49 7.5107035219132 .* log(pc) -10.7171560187922 .* log( epsilon));
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50 OF=1.51686551440224 + 0.0683768358725008 * log( pc ) +...

51 0.145375368172541 * log( epsilon );

52

53 case 5

54 Isp = calibPerfo.LOXHTPB.*(277.331650951675 + 2.16558350827057...

55 .*log( pc ) + 18.4878815011429 .*log( epsilon ));

56 cc = calibPerfo.LOXHTPB.*(1751.92905036163 + 17.3998450267533 ...

57 .* log( pc ) -9.44640819512984 .* log( epsilon ));

58 OF= 1.93293875106783 + 0.0474765699066492 * log( pc ) +...

59 0.109562010700826 * log( epsilon );

60

61 case 6

62 Isp = calibPerfo.LOXParaffin.*(283.024062942826 + ...

63 2.33441220682802 .*log(pc)+18.5884665855212 .*log( epsilon ));

64 cc = calibPerfo.LOXParaffin.*(1787.96670366732 +16.7203151778903...

65 .*log( pc ) -9.54373487317511 .*log( epsilon ));

66 OF = 2.24358662271426 + 0.0485752731817214 * log( pc ) +...

67 0.115354995865352 * log( epsilon );

68

69 case 7

70 Isp = calibPerfo.N2OHTPB.*(251.959800040605 + 1.09012877785973...

71 .*log( pc ) + 13.5705733933019 .*log( epsilon ));

72 cc = calibPerfo.N2OHTPB.*(1569.51888535442 + 12.1271710330801...

73 .* log( pc ) -8.03074535000083 .* log( epsilon ));

74 OF= 6.21730103691382 + 0.0850479578806618 * log( pc ) + ...

75 0.447075852597881 * log( epsilon );

76

77 case 8

78 Isp = calibPerfo.N2OParaffin.*(255.139146758501 + ...

79 0.497931499747107.*log( pc )+13.2784633299985.*log( epsilon ));

80 cc = calibPerfo.N2OParaffin.*(1576.10666690323 +12.0223666953543...

81 .* log( pc ) -7.10683369810811 .* log( epsilon ));

82 OF= 7.31981068298658 + 0.0523080610999142 * log( pc ) +...

83 0.417750655765745 * log( epsilon );

84 end

85

86 %Outputs

87 output.Isp=Isp;

88 output.cc=cc;

89 output.O F=OF;

90

91 end

1 function output = propuTrajectory(h, perfoRocket, epsilon, pc)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Propulsion module: determine the Isp required for the trajectory
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4 % optimization module

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %Load information

9 cc=perfoRocket.cc;

10 Ispv=perfoRocket.Isp;

11 pcPa=pc*1e6; %From MPa to Pa

12 atm=funcAtm(h);

13

14 %Output

15 Isp=Ispv-epsilon*cc*atm.p/(pcPa*atm.g);

16 output=Isp;

17

18 end

1 function output=RocketEngines(pc, epsilon, mProp, combTime, thrust,...

2 engineDiameter, Propellant)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Propulsion module: function that drives the performance and weight/size

5 % calculation of rocket engines

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Material definition

10 matMC=[2800 0.413*1e9;%Aluminum

11 4460 1.23*1e9;%Titanium

12 7830 1.52*1e9;%D6aC Steel

13 7830 0.862*1e9;%4130 Steel

14 1550 0.5*(0.965+1.72)*1e9;%Graphite

15 1380 0.5*(0.827+1.1)*1e9;%Kevlar

16 1990 1.1e9;%Fiberglass

17 ];

18 materialMC=[matMC(1,1) matMC(1,2)]; %Need to pick one !

19

20 %Call performance calculation function

21 perfo = performanceCalculation(pc, epsilon, Propellant);

22

23 %Call weight/size calculation function

24 weightSize = weightSizeCalculation(pc, epsilon, Propellant, ...

25 thrust, mProp, combTime, perfo.Isp, perfo.cc, perfo.O F,...

26 materialMC, engineDiameter);

27

28 %Outputs

29 output.weightEngine=weightSize.emptyWeight;

30 output.lengthEngine=weightSize.length;
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31 output.rocketPerfo=perfo;

32 output.SOtank=weightSize.SOtank;

33 output.SPtank=weightSize.SPtank;

34

35 end

1 function output = weightSizeCalculation(pc, epsilon, Propellant,...

2 thrust, mProp, tc, Isp, cc, O F, materialMC, D)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Propulsion module: determine the weight and size of the rocket engine

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 if Propellant==1 %Solid engine

9 massSize=massSolid(mProp, tc, epsilon, thrust, pc, Isp);

10 output.SOtank= [];

11 output.SPtank= [];

12

13

14 elseif ((Propellant==2) | | (Propellant==3) | | (Propellant==4))

15 %Liquid engine

16 massSize=massLiquid(mProp, tc, materialMC, D, Isp, O F, Propellant);

17 output.SOtank= [];

18 output.SPtank= [];

19

20 elseif ((Propellant==5) | | (Propellant==6) | | (Propellant==7) | | ...

21 (Propellant==8)) %Hybrid engine

22 massSize=massHybrid(mProp, tc, epsilon, pc, D, cc, O F, materialMC,...

23 Propellant);

24 output.SOtank= massSize.SOtank;

25 output.SPtank= massSize.SPtank;

26

27 else %Wrong engine type

28 fprintf('Please enter a valid engine type')

29 end

30

31 %Outputs

32 output.emptyWeight=massSize.mEmpty;

33 output.length=massSize.length;

34

35 end

D.2.5 Trajectory Module
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1 function output = climbJet(Tj, nJet, Wchanging, aeroCd0, Swing, h,...

2 Dh, sweep, AR, TR, tc, Vopt)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Trajectory module: calculate the optimum configuration that corresponds

5 % to the maximum rate of climb

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Constants and parameters definition

10 g0=9.81;

11 rho0=1.225;

12 atm=funcAtm(h);

13 rho=atm.rho;

14 Tact=Tj*rho/rho0;

15 M=VtoM(Vopt,h);

16

17 %Aerodynamic model

18 coef=aeroCd0.coef;

19 Cd1=aeroCd0.Cd1;

20 coefcoef=aeroCd0.coefcoef;

21 COEF=aeroCd0.COEF;

22 Cd06=aeroCd0.Cd06;

23 Cd12=aeroCd0.Cd12;

24 Cd0=aeroTrajectory(M, h, Cd06, Cd12, coef, Cd1, coefcoef, COEF);

25 spanEff=spanEfficiency(sweep, AR, TR, tc, M);

26 L Dmax=0.5*sqrt(pi*AR*spanEff/Cd0);

27

28 %Thrust and weight model

29 T=Tact*nJet;

30 W=g0*Wchanging; %kg->N

31 Z=1+(1+ 3/((L Dmax*T/W)ˆ2) )ˆ0.5;

32

33 %Maximum ROC calculation

34 ROCmax=(W*Z/(Swing*3*rho*Cd0))ˆ0.5 *(T/W)ˆ1.5 * ...

35 (1- Z/6 -3/(2*Z*(L Dmax*T/W)ˆ2));

36

37 %Speed calculation

38 Vopt= (T/(Swing*3*rho*Cd0) * (1+ sqrt( 1+3/((L Dmax*T/W)ˆ2))))ˆ0.5;

39

40 %Outputs

41 output.Dt=Dh/ROCmax; %Time spent (s)

42 output.V=Vopt;

43 output.Tact=T;

44

45 end
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1 function [c , ceq] = constraintsDefinition(x, E, aeroCd0, Tr, mass,...

2 Sref, nMax)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Trajectory module: constraints definition

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %Definition of the constraints for the trajectory

9 qMax=50000;

10 tMax=2500;

11

12 %Variables definition

13 M=x(1);

14 h=x(2);

15 g=9.81;

16 V=MtoV(M,h);

17 ceq=E-0.5*Vˆ2-g*h;

18 gamma=1.4;

19

20 %Drag definition

21 atm=funcAtm(h);

22 rho=atm.rho;

23 coef=aeroCd0.coef;

24 Cd1=aeroCd0.Cd1;

25 coefcoef=aeroCd0.coefcoef;

26 COEF=aeroCd0.COEF;

27 Cd06=aeroCd0.Cd06;

28 Cd12=aeroCd0.Cd12;

29 Cd=aeroTrajectory(M, h, Cd06, Cd12, coef, Cd1, coefcoef, COEF);

30 D=0.5*rho*Sref*(Vˆ2)*Cd;

31

32 %Cosntraints definition

33 dynamicPressure=0.5*atm.rho*Vˆ2-qMax;

34 load factor=(Tr-D)/(mass*g)-0.5*nMax;

35 temp max=atm.T+(gamma-1)*atm.T*Mˆ2/gamma-tMax;

36

37 %Outputs

38 c=[dynamicPressure, load factor, temp max];

39

40 end

1 function output = LandingModule(sweepWing, Swing, VehicleDryMass)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Trajectory module: calculation of the take-off performance of the vehicle

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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6

7 %Constants

8 rho0=1.2250;

9 g0=9.81;

10 muR=0.7;

11

12 %Landing performance

13 CLmaxLA=0.9*3*cos(sweepWing);

14 Vla=1.3*sqrt((VehicleDryMass*g0)/(0.5*Swing*rho0*CLmaxLA));

15 Lpr=(0.5*Vlaˆ2)/(muR*g0);

16 LpLA=Lpr/0.6;

17

18 %Outputs

19 output.TOFL=LpLA;

20 output.landingSpeed=Vla;

21

22 end

1 function optim = optim(x, aeroCd0, perfoRocket, pc, epsilon, Tr, Sref)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Trajectory module: Definition of the objective function for the

4 % optimzation algorithm

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %Variable definition

9 M=x(1);

10 h=x(2);

11 atm=funcAtm(h);

12 rho=atm.rho;

13 V=MtoV(M,h);

14

15 %Performance definition

16 Isp=propuTrajectory(h, perfoRocket, epsilon, pc);

17 coef=aeroCd0.coef;

18 Cd1=aeroCd0.Cd1;

19 coefcoef=aeroCd0.coefcoef;

20 COEF=aeroCd0.COEF;

21 Cd06=aeroCd0.Cd06;

22 Cd12=aeroCd0.Cd12;

23

24 %Drag calculation

25 Cd=aeroTrajectory(M, h, Cd06, Cd12, coef, Cd1, coefcoef, COEF);

26 D=0.5*rho*Sref*(Vˆ2)*Cd;

27

28 %Function to minimize
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29 optim=((D-Tr)*V*atm.g*Isp)/Tr;

30 end

1 function output = TOModule(sweepWing, Swing, TotalLaunchMass, T07)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % Trajectory module: calculation of the take-off performance of the vehicle

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 %Constants

8 rho0=1.2250;

9 g0=9.81;

10

11 %Take-off performance

12 CLmaxTO=0.9*2.8*cos(sweepWing);

13 Vto=1.2*sqrt((TotalLaunchMass*g0)/(0.5*Swing*rho0*CLmaxTO));

14 Lpml=(TotalLaunchMass*g0)ˆ2/(Swing*CLmaxTO*T07);

15 LpTO=0.17*Lpml+27;

16

17 %Ouputs

18 output.TOFL=LpTO;

19 output.TOSpeed=Vto;

20

21 end

1 function output = trajectoryJet(Tj, takeOffWeight, aeroCd0, Swing, nJet,...

2 afterburner, TIT, BPR, hInitial, hTransition, sweep, AR, TR, tc,...

3 LAmode, EmptyWeight)

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 % Trajectory module: calculation of the optimum climb trajectory for jet

6 % engine climb

7 % Author: Christopher Frank

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 %% Initialization

11 steps=250;

12 hVec=hInitial:(hTransition-hInitial)/steps:hTransition;

13 Dh=(hTransition-hInitial)/steps;

14

15 %TSFC calculation

16 deltaTIT=(TIT-1500)/1500;

17 deltaSFC=-0.511346662342284 + 24.34814880625 * deltaTIT +...
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18 0.29773126105 * BPR + (deltaTIT - 0.233333333) * ...

19 (BPR - 17.5) * 0.8306873895;

20 eta=1-(deltaSFC-2.88062683993704)*0.01;

21

22 if (afterburner ==0)

23 TSFC=eta*19*exp(-0.12*BPR)*1e-6; %kg/Ns

24 else

25 TSFC=eta*60*exp(-0.12*BPR)*1e-6;

26 end

27

28 DwTot=0.03*takeOffWeight; %Warmup and take-off (Raymer p. 21)

29 Wchanging=takeOffWeight-DwTot;

30

31 %% Loop

32 Vopt=0;

33 for i=1:steps

34 h=hVec(i);

35 climbResults=climbJet(Tj, nJet, Wchanging, aeroCd0, Swing, h,...

36 Dh, sweep, AR, TR, tc, Vopt);

37 Dt=climbResults.Dt;

38 Vopt=climbResults.V;

39 Tact=climbResults.Tact;

40 if Dt < 0 %Stop the loop when service ceiling is reached

41 error('Service ceiling reached')

42 break

43 end

44 %Calculate the variables needed

45 Dw=TSFC*Dt*Tact*nJet;

46 Wchanging=Wchanging-Dw;

47 DwTot=DwTot+Dw;

48

49 end

50

51 %% Fuel consumption for horizontal powered landing

52 if LAmode == 1

53 DwTot=DwTot+EmptyWeight*0.005/0.995;

54 end

55

56 %% Attribute outputs

57 output.WendClimbJet=Wchanging;

58 output.Dw=DwTot;

59 output.Vopt=Vopt;

60

61 end

1 function output = trajectoryModule(takeOffWeight, aeroCd0, perfoRocket,...
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2 pc, epsilon, Tr, Sref, nSteps, hMax, hMin, nMax)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Trajectory module: function that drives the trajectory optimization

5 % Author: Christopher Frank

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7

8 %% Optimization parameters

9 x0=[0,0]; %Initial conditions [Mach number, altitude (m)]

10 a=[]; %Linear inequality constraint matrix (a*x<=b)

11 b=[]; %Linear inequality constraint result (b*x<=b)

12 aeq=[]; %Linear equality constraint matrix (aeq*x=b)

13 beq=[]; %Linear equality constraint result (beq*x=b)

14 lb=[0,0]; %Lower limit for x variable

15 ub=[7, 100000]; %Upper limit for x variable (SI)

16 g0=9.81;

17

18

19 %% Initialization

20 EsMax=g0*hMax; %Maximum specific energy needed to reach hMax (m)

21 EsMin=g0*hMin; %Initial energy (m)

22 dtVec=[];

23 vecE=EsMin:(EsMax-EsMin)/nSteps:EsMax;

24 mass=takeOffWeight;

25

26 %% Optimization loop

27 for k=2:nSteps-1

28 E=vecE(k);

29 options=optimset('Display','off','TolX',0.00001,'TolFun',0.00001);

30 [x, fval]=fmincon(@(x)optim(x, aeroCd0, perfoRocket, pc, epsilon,...

31 Tr, Sref),x0,a,b,aeq,beq,lb,ub,@(x)constraintsDefinition(x,...

32 E, aeroCd0, Tr, mass, Sref, nMax),options);

33

34 Isp=propuTrajectory(x(2), perfoRocket, epsilon, pc);

35 dm m=-((EsMax-EsMin)/nSteps)/fval;

36 dt=dm m*mass*g0*Isp/Tr;

37 dtVec= [dtVec dt];

38 mass=mass*(1-dm m);

39

40 end

41

42 %% Attribute output variables

43 output.totalTime=sum(dtVec);

44 output.propNeeded=takeOffWeight-mass;

45

46 end

D.2.6 Safety Module
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1 function output = safetyModule (pc, Propellant, LAmode, TOmode, nJet,...

2 nPilots, JetEngine, Tr, Vla, Vto, afterburner)

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % Safety module: determine the risk level of the vehicle by decomposing the

5 % vehicle into functions

6 % Author: Christopher Frank

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %% Rocket propulsion severity factor

10 pcmin=2;

11 pcmax=8;

12 impactPc=0.05;

13 pcmean=0.5*(pcmin+pcmax);

14 deltaP=0.5*(pcmax-pcmin);

15

16 Trmin=100000;

17 Trmax=500000;

18 impactTr=0.03;

19 Trmean=0.5*(Trmin+Trmax);

20 deltaTr=0.5*(Trmax-Trmin);

21

22 switch Propellant

23

24 case 1 % solid

25 xRocketPropu= 8*(1+impactPc*((pc-pcmean)/deltaP))*...

26 (1+impactTr*((Tr-Trmean)/deltaTr));

27

28 case 2 % Lox/Lh2

29 xRocketPropu= 5*(1+impactPc*((pc-pcmean)/deltaP))*...

30 (1+impactTr*((Tr-Trmean)/deltaTr));

31

32 case 3 % Lox/Rp1

33 xRocketPropu= 4.5*(1+impactPc*((pc-pcmean)/deltaP))*...

34 (1+impactTr*((Tr-Trmean)/deltaTr));

35

36 case 4 % Hypergolic

37 xRocketPropu= 6*(1+impactPc*((pc-pcmean)/deltaP))*...

38 (1+impactTr*((Tr-Trmean)/deltaTr));

39

40 case 5 % Lox/HTPB

41 xRocketPropu= 2*(1+impactPc*((pc-pcmean)/deltaP))*...

42 (1+impactTr*((Tr-Trmean)/deltaTr));

43

44 case 6 % Lox/Paraffin

45 xRocketPropu= 1*(1+impactPc*((pc-pcmean)/deltaP))*...

46 (1+impactTr*((Tr-Trmean)/deltaTr));

47

48 case 7 % N2O/HTPB

49 xRocketPropu= 3*(1+impactPc*((pc-pcmean)/deltaP))*...
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50 (1+impactTr*((Tr-Trmean)/deltaTr));

51

52 case 8 % N2O/ Parrafin

53 xRocketPropu= 2*(1+impactPc*((pc-pcmean)/deltaP))*...

54 (1+impactTr*((Tr-Trmean)/deltaTr));

55 end

56

57 %% Jet engines severity factor

58 JEngineMax=8;

59 JEngineMin=0;

60 impactJEngine=0.2;

61 JEnginemean=0.5*(JEngineMin+JEngineMax);

62 deltaJEngine=0.5*(JEngineMax-JEngineMin);

63 jetCoef=min(8-2*nJet,2);

64 if JetEngine==0

65 xJetEngines=9;

66 else

67 if afterburner==0

68 xJetEngines=2*(1+impactJEngine*((jetCoef-JEnginemean)...

69 /deltaJEngine));

70 else

71 xJetEngines=5*(1+impactJEngine*((jetCoef-JEnginemean)...

72 /deltaJEngine));

73 end

74 end

75

76 %% Pilots severity factor

77 xPilots=8-2*nPilots;

78

79 %% Launch severity factor

80 if TOmode == 0

81 xTOmode=8;

82 elseif TOmode == 2

83 xTOmode=4;

84 else

85 Vtomin=50;

86 Vtomax=200;

87 impactVto=0.05;

88 Vtomean=0.5*(Vtomin+Vtomax);

89 deltaVto=0.5*(Vtomax-Vtomin);

90 if JetEngine ==0

91 xTOmode=6*(1+impactVto*((Vto-Vtomean)/deltaVto));

92 else

93 xTOmode=2*(1+impactVto*((Vto-Vtomean)/deltaVto));

94 end

95 end

96

97 %% Landing severity factor

98 if LAmode == 0
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99 Vlamin=50;

100 Vlamax=200;

101 impactVla=0.05;

102 Vlamean=0.5*(Vlamin+Vlamax);

103 deltaVla=0.5*(Vlamax-Vlamin);

104 xLAmode=8*(1+impactVla*((Vla-Vlamean)/deltaVla));

105 elseif LAmode == 1

106 Vlamin=0;

107 Vlamax=200;

108 impactVla=0.05;

109 Vlamean=0.5*(Vlamin+Vlamax);

110 deltaVla=0.5*(Vlamax-Vlamin);

111 xLAmode=5*(1+impactVla*((Vla-Vlamean)/deltaVla));

112 else

113 xLAmode=3;

114 end

115

116 %% Occurence: failure rate for each function

117 cRocketPropu=75.95;

118 cTOmode=7.38;

119 cLAmode=10.44;

120 cJetEngines=1.27;

121 cPilots=4.96;

122

123 %% Output

124 %Definition of the vectors used in the scalar product

125 coefs=[cRocketPropu cJetEngines cPilots cTOmode cLAmode];

126 values=[xRocketPropu xJetEngines xPilots xTOmode xLAmode];

127

128 %Output

129 output=coefs*values';

D.2.7 General Functions

1 function output=designFramework(hMax, nMax, seatPitch, nPAX, nLaunch,...

2 numbUnits, programLength, wing, TOmode, LAmode, hTransition,...

3 nPilots, horizontalTail, verticalTail, Swing, tcWing, sweepWing, ...

4 ARwing, TRwing, dfus, db, ln, la, sweepHTail, ARHTail,...

5 sweepVTail, ARVTail, pc, epsilon, Propellant, Tr, ...

6 JetEngine, nJet, Tj, BPR, afterburner, TIT)

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 % Deisgn framework: main function that drives the evaluation of a concept

9 % in terms of performance, weight, life-cycle costs, and safety

10 % Author: Christopher Frank

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12
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13 %% Design variables

14 %Constants

15 LC=90; %Learning curve improvement (%) //Both

16 year=2015; %Starting year of the program

17 MmaxJet=2; %Maximum Mach number (-)

18 tmission=3600; %Mission time (s)

19 qMax=50000; %Maximum dynamic pressure

20 hGround=0; %Altitude of the TO

21 hReentry=30000;

22 g=9.81;

23

24 %% Parameters definition

25 if wing == 1

26 Sref=Swing; %Reference surface area (mˆ2)

27 else

28 Sref=0.25*pi*dbˆ2; %Fuselage section (mˆ2)

29 end

30 engineDiameter=dfus*0.9;

31

32 %% Consistency loop

33 %Initial guess

34 nSteps=100;

35 fuelWeightGuess=0; %Fuel weight (kg)

36 combTimeGuess=50; %Combustion time (s)

37 propellantWeightGuess=5e3; %Propellant weight (kg)

38 fuelWeight=200;

39 combTime=70;

40 propellantWeight=6.75e3;

41 ite=0;

42

43 while ((abs(propellantWeight-propellantWeightGuess)/...

44 propellantWeightGuess > 0.02)...

45 && (abs(combTime-combTimeGuess)/combTimeGuess > 0.02))...

46 && (ite<20)

47 ite=ite+1;

48 propellantWeight=propellantWeightGuess;

49 combTime=combTimeGuess;

50

51 %Weight/size

52 weight= weightModule(Swing, tcWing, TRwing, ARwing, dfus,...

53 wing, nMax, nPilots, nPAX, qMax, tmission,...

54 propellantWeight, JetEngine, Tj, nJet, BPR, MmaxJet, afterburner,...

55 TIT, fuelWeightGuess, Tr, pc, epsilon, combTime, engineDiameter, ...

56 Propellant, seatPitch, la, ln, db, horizontalTail, verticalTail);

57 perfoRocket=weight.rocketPerfo;

58 dnac=1.1*weight.jetEngineDiameter; %Nacelle diameter (m)

59 lnac=1.1*weight.jetEngineLength; %Nacelle length(m)

60 EmptyWeight=weight.EmptyWeight;

61 L=weight.length; %length of the vehicle (m)
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62 lcyl=L-la; %Length of the cylindrical part of the fuselage (m)

63 takeOffWeight=EmptyWeight+fuelWeight+propellantWeight;

64

65 %Parasite drag coefficient

66 aeroCd0=aeroModule(Sref, wing, ARwing, sweepWing, tcWing, TRwing,...

67 dfus, db, lcyl, la, ln, sweepHTail, ARHTail,...

68 dnac, lnac, JetEngine, sweepVTail,...

69 ARVTail, horizontalTail, verticalTail);

70

71 WendClimbJet=takeOffWeight;

72 if JetEngine == 1

73 iteJ=0;

74 while ((abs(fuelWeight-fuelWeightGuess)/fuelWeightGuess > 0.01)...

75 && (iteJ<15))

76 iteJ=iteJ+1;

77 fuelWeight=fuelWeightGuess;

78 takeOffWeight=EmptyWeight+fuelWeight+propellantWeight;

79 jetClimbMod = trajectoryJet(Tj, takeOffWeight, aeroCd0,...

80 Swing, nJet, afterburner, TIT, BPR, hGround,...

81 hTransition, sweepWing, ARwing, TRwing, tcWing, LAmode,...

82 EmptyWeight);

83 fuelWeightGuess=jetClimbMod.Dw;

84 end

85 WendClimbJet=jetClimbMod.WendClimbJet;

86 end

87

88

89 %Rocket trajectory

90 trajectory = trajectoryModule(WendClimbJet, aeroCd0, perfoRocket,...

91 pc, epsilon, Tr, Sref, nSteps, hMax, hTransition, nMax);

92

93 %Update variables

94 propellantWeightGuess=propellantWeight+1.5*(trajectory.propNeeded-...

95 propellantWeight);

96 combTimeGuess=trajectory.totalTime;

97

98 if ((propellantWeightGuess > 5e5) | | (propellantWeightGuess <0))

99 errorStruct = struct();

100 errorStruct.message = 'Infinite cost';

101 errorStruct.identifier = 'Design:infiniteCost';

102 error(errorStruct);

103 end

104 end

105 if ite == 20

106 errorStruct = struct();

107 errorStruct.message = 'Maximum number of iterations reached';

108 errorStruct.identifier = 'Design:maxIter';

109 error(errorStruct);

110 end
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111

112

113 %% Cost %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

114 SOtank=weight.SOtank; %Surface of the oxidizer tank (mˆ2)

115 SPtank=weight.SPtank; %Surface of the pressurization tank (mˆ2)

116 O F=weight.rocketPerfo.O F; %Oxidizer to fuel ratio (-)

117 Ispv=weight.rocketPerfo.Isp; %Isp (sec)

118 VehicleDryMass=weight.EmptyWeight; %Total weight without fuel (kg)

119 TotalLaunchMass=VehicleDryMass+weight.fuelPropellantWeight; %TOGW (kg)

120 rocketEngineEmptyWeight=weight.rocketEngineWeight;%Rocket engine weight(kg)

121 WdryjetEng=weight.jetEngineWeight; %Jet engine weight (kg)

122

123 outputCost=costModule(wing, nLaunch, programLength, numbUnits, tmission,...

124 nPilots, nPAX, TOmode, year, LC, nJet, JetEngine, Ispv,...

125 propellantWeight, Propellant, O F, Tr, SOtank, SPtank,...

126 TotalLaunchMass, VehicleDryMass, rocketEngineEmptyWeight,...

127 afterburner, WdryjetEng, TIT, Tj, fuelWeight);

128 cost = outputCost.TotalCost;

129

130 %% Take-off performance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

131 if TOmode == 1

132 if JetEngine == 1

133 T07=Tj;

134 else

135 T07=Tr;

136 end

137 TOperfo=TOModule(sweepWing, Swing, TotalLaunchMass, T07);

138 Vto=TOperfo.TOSpeed;

139 TOFL=TOperfo.TOFL;

140 else

141 Vto=0;

142 TOFL=0;

143 end

144

145 %% Landing performance %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

146 if LAmode < 1.5

147 LAperfo=LandingModule(sweepWing, Swing, VehicleDryMass);

148 Vla=LAperfo.landingSpeed;

149 LAFL=LAperfo.TOFL;

150 else

151 Vla=0;

152 LAFL=0;

153 end

154

155 runwayLength=max(LAFL,TOFL);

156

157 %%Weightlessness time

158 tWLN = sqrt(2/g)*(sqrt(hMax-trajectory.hend)+sqrt(hMax-hReentry));

159
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160 %% Safety

161 safety=safetyModule(pc, Propellant, LAmode, TOmode, nJet, nPilots,...

162 JetEngine, Tr, Vla, Vto, afterburner);

163

164 output.runwayLength=runwayLength;

165 output.cost=cost;

166 output.safety=safety;

167 output.extra=outputCost;

168 output.extra.Mtot=takeOffWeight;

169 output.extra.hend = trajectory.hend;

170 output.extra.Mend = trajectory.Mend;

171 output.extra.tWLN = tWLN;

172

173 end

1 function output = funcAtm(h)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % General: Calculate atmospheric parameters

4 % Authors: Christopher Frank and Clemence Tyl

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 p0=101325;

8

9 %Temperature

10 if (h <= 11000)

11 T = 15-0.0065*h;

12 elseif(11000 < h)&&(h<=20100)

13 T = -56.5;

14 elseif(20100 < h)&&(h<=32200)

15 T = -56.5+0.001*(h-20100);

16 elseif(32200 < h)&&(h<=47300)

17 T = -44.5+0.0028*(h-32200);

18 elseif(47300 < h)&&(h<=52400)

19 T = -2.5;

20 elseif(52400 < h)&&(h<=61600)

21 T = -2.5-0.002*(h-52400);

22 elseif(61600 < h)&&(h<=80000)

23 T = -20.5-0.003913043478*(h-61600);

24 elseif(80000 < h)&&(h<=93000)

25 T = -92.5;

26 else

27 T = (92.5*h-92.5*125000)/(125000-93000);

28 end

29

30 %Pressure

31 if (h <= 10000)
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32 p = p0*(1-0.0065/288.15*h)ˆ5.255;

33 else

34 p = 126000*exp(-0.0001560*h);

35 end

36

37 %Temperature conversion to SI (K)

38 output.T = T+273.15;

39

40 %Pressure

41 output.p = p;

42

43 %Density

44 rho = p/(287.058*(T+273.15));

45 output.rho = rho ;

46

47 %Acceleration of gravity

48 g = 9.81/(1+2*h/6378000);

49 output.g = g;

50

51 %Dynamic viscosity

52 %(http://www.arc.vt.edu/ansys help/flu ug/x1-7350009.4.2.html)

53 mu0=1.716*1e-5;

54 T0=273.11;

55 S=110.56;

56 mu=mu0*((T+273.15)/T0)ˆ(3/2)*(T0+S)/(T+S);

57 output.mu=mu;

58

59 end

1 function output = MtoV(M, h)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % General: Conversion from Mach number to speed

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 atm=funcAtm(h);

8 T=atm.T;

9 gamma=1.4;

10 R=287.058;

11

12 output=M*sqrt(gamma*R*T);

13

14 end
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1 function output = VtoM(V, h)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 % General: Conversion from speed to Mach number

4 % Author: Christopher Frank

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 atm=funcAtm(h);

8 T=atm.T;

9 gamma=1.4;

10 R=287.058;

11

12 output=V/sqrt(gamma*R*T);

13

14 end

D.3 Optimization Module

The optimization module is based on the NSGA-II code developed by Lin Song from the

Aerospace Structural Dynamics Research Laboratory of the College of Astronautics, North-

western Polytechnical University, China [407, 408]. It has been modified and completed to

match the capabilities described in Section 7.2.

1 function opt = callOutputfuns(opt, state, pop, type)

2 % Function: opt = callOutputfuns(opt, state, pop, type)

3 % Description: Call output function(if exist).

4 % Parameters:

5 % type : output type.

6 % -1 = the last call (close file for instance)

7 % other values(or no exist) = normal output

8 %

9 % LSSSSWC, NWPU

10 % Revision: 1.1 Data: 2011-07-13

11 %*************************************************************************

12

13 if(nargin <= 3)

14 type = 0; % normal output

15 end

16

17 if( ~isempty(opt.outputfuns) )

18 fun = opt.outputfuns{1};

19 opt = fun(opt, state, pop, type, opt.outputfuns{2:end});

20

21 end
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1 function pop = crossoverOp(opt, pop, state)

2 % Function: pop = crossoverOp(opt, pop, state)

3 % Description: Crossover operator. All of the individuals would be do

4 % crossover, but only "crossoverFraction" of design variables of an

5 % individual would changed.

6 %

7 % LSSSSWC, NWPU

8 % Revision: 1.1 Data: 2011-07-13

9 %*************************************************************************

10

11 %*************************************************************************

12 % 1. Check for the parameters

13 %*************************************************************************

14 % determine the crossover method

15 strfun = lower(opt.crossover{1});

16 numOptions = length(opt.crossover) - 1;

17 [crossoverOpt{1:numOptions}] = opt.crossover{2:end};

18

19 switch( strfun )

20 case 'intermediate'

21 fun = @crsIntermediate;

22 otherwise

23 error('NSGA2:CrossoverOpError', 'No support crossover operator!');

24 end

25

26 nVar = opt.numVar;

27

28 % "auto" crossover fraction

29 if( ischar(opt.crossoverFraction) )

30 if( strcmpi(opt.crossoverFraction, 'auto') )

31 fraction = 2.0 / nVar;

32 else

33 error('NSGA2:CrossoverOpError', strcat('The "crossoverFraction"',...

34 'parameter should be scalar or "auto" string.'));

35 end

36 else

37 fraction = opt.crossoverFraction;

38 end

39

40

41 for ind = 1:2:length(pop) % Popsize should be even number

42 % Create children

43 [child1, child2] = fun( pop(ind), pop(ind+1),...

44 fraction, crossoverOpt );

45

46 % Round

47 for v = 1:nVar

48 if( opt.vartype(v) == 2)

49 child1.var(v) = round( child1.var(v) );
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50 child2.var(v) = round( child2.var(v) );

51 end

52 end

53

54 % Bounding limit

55 child1.var = varlimit(child1.var, opt.lb, opt.ub);

56 child2.var = varlimit(child2.var, opt.lb, opt.ub);

57

58 pop(ind) = child1;

59 pop(ind+1) = child2;

60

61 end

62

63

64

65 function [child1, child2] = crsIntermediate(parent1, parent2, ...

66 fraction, options)

67 % Function: [child1, child2] = crsIntermediate(parent1, parent2,

68 % fraction, options)

69 % Description: (For real coding) Intermediate crossover.

70 % (Same as Matlab's crossover operator)

71 % child = parent1 + rand * Ratio * ( parent2 - parent1)

72 % Parameters:

73 % fraction : crossover fraction of variables of an individual

74 % options = ratio

75 %

76 % LSSSSWC, NWPU

77 % Revision: 1.1 Data: 2011-07-13

78 %*************************************************************************

79

80

81 if( length(options)~=1 | | ~isnumeric(options{1}))

82 error('NSGA2:CrossoverOpError', 'Crossover operator parameter error!');

83 end

84

85 ratio = options{1};

86

87 child1 = parent1;

88 child2 = parent2;

89

90 nVar = length(parent1.var);

91 crsFlag = rand(1, nVar) < fraction;

92

93 randNum = rand(1,nVar); % uniformly distribution

94

95 child1.var = parent1.var + crsFlag .* randNum .* ratio .* (parent2.var...

96 - parent1.var);

97 child2.var = parent2.var - crsFlag .* randNum .* ratio .* (parent2.var...

98 - parent1.var);
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1 function [pop, state] = evaluate(opt, pop, state, varargin)

2 % Function: [pop, state] = evaluate(opt, pop, state, varargin)

3 % Description: Evaluate the objective functions of each individual in the

4 % population.

5 %

6 % LSSSSWC, NWPU

7 % Revision: 1.0 Data: 2011-04-20

8 %*************************************************************************

9

10 N = length(pop);

11 allTime = zeros(N, 1); %allTime: use to calculate average evaluation times

12

13 %*************************************************************************

14 % Evaluate objective function in parallel

15 %*************************************************************************

16 if( strcmpi(opt.useParallel, 'yes') == 1 )

17

18 parfor i = 1:N

19 fprintf(strcat('\nEvaluating the objective function...',...

20 'Generation: %d / %d , Individual: %d / %d \n'),...

21 state.currentGen, opt.maxGen, i, N);

22 [pop(i), allTime(i)] = evalIndividual(pop(i), opt.objfun,...

23 varargin{:});

24 end

25

26 %**********************************************************************

27 % Evaluate objective function in serial

28 %**********************************************************************

29 else

30 for i = 1:N

31 fprintf(strcat('\nEvaluating the objective function...',...

32 ' Generation: %d / %d , Individual: %d / %d \n'),...

33 state.currentGen, opt.maxGen, i, N);

34 [pop(i), allTime(i)] = evalIndividual(pop(i),...

35 opt.objfun, varargin{:});

36 end

37 end

38

39 %*************************************************************************

40 % Statistics

41 %*************************************************************************

42 state.avgEvalTime = sum(allTime) / length(allTime);

43 state.evaluateCount = state.evaluateCount + length(pop);

44

45

46

47

48 function [indi, evalTime] = evalIndividual(indi, objfun, varargin)

49 % Function: [indi, evalTime] = evalIndividual(indi, objfun, varargin)
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50 % Description: Evaluate one objective function.

51 %

52 % LSSSSWC, NWPU

53 % Revision: 1.1 Data: 2011-07-25

54 %*************************************************************************

55 tStart = tic;

56 %objfun( indi.var, varargin{:} )

57 [y, cons, extra] = objfun( indi.var, varargin{:} );

58 evalTime = toc(tStart);

59

60 % Save the objective values and constraint violations

61 indi.obj = y;

62 indi.extra = extra;

63 if( ~isempty(indi.cons) )

64 idx = find( cons );

65 if( ~isempty(idx) )

66 indi.nViol = length(idx);

67 indi.violSum = sum( abs(cons) );

68 else

69 indi.nViol = 0;

70 indi.violSum = 0;

71 end

72 end

1 function [gen,count] = EvolutionaryAlgorithm(maxArchi, old gen, count, ...

2 popsize,numObj, numExtra)

3 %*************************************************************************

4 % Output the number of generations for the next iteration for each

5 % architecture given the number of points on the pareto frontier per

6 % architecture

7 %*************************************************************************

8

9 T = 5;

10 nbObj = ones(1,maxArchi)*numObj;

11 nbDV = zeros(1,maxArchi);

12 nbCstn = zeros(1,maxArchi);

13 nbExtra = ones(1,maxArchi)*numExtra;

14 for j = 1:maxArchi

15 [nbDV(j), nbCstn(j)] = Architecture(j);

16 end

17

18 %% SCAN FILES

19 for j = 1:maxArchi

20 fid=fopen(sprintf('optresult%d.txt',j),'r');

21 for i = 1:20

22 fgetl(fid);
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23 end

24 A=fscanf(fid,'%f',[nbDV(j)+nbObj(j)+nbCstn(j)+nbExtra(j) inf]).';

25 V{j} = A;

26 fclose(fid);

27 end

28

29 %% PARETO POINTS

30 optpt=[];

31 for j=1:maxArchi

32 optpt = vertcat(optpt,V{j}(:,nbDV(j)+1:nbDV(j)+nbObj(j)));

33 [~, lign] = prtp(optpt);

34 end

35

36 %% NUMBER OF POINTS PER ARCHITECTURE

37 a = zeros(1,maxArchi);

38 for z = 1:length(lign)

39 for j = 1:maxArchi

40 if lign(z) <= popsize*j && lign(z) > popsize*(j-1)

41 a(j) = a(j)+1;

42 end

43 end

44 end

45

46 for j = 1:maxArchi

47 fprintf('Number of Pareto points in Architecture %d:',j)

48 disp(a(j))

49 end

50

51 %% NUMBER OF GENERATION FOR NEXT ITERATION

52 gen = zeros(1,maxArchi);

53 for z = 1:maxArchi

54 gen(z) = a(z)/max(a)*max(old gen);

55 if gen(z) == 0;

56 p = 1-exp(-count(z)/T);

57 count(z) = count(z)+1;

58 if rand() <= p;

59 gen(z) = max(old gen);

60 count(z) = 0;

61 end

62 end

63 end

64

65 gen = round(gen);

66 end

1 function nextpop = extractPop(opt, combinepop)
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2 % Function: nextpop = extractPop(opt, combinepop)

3 % Description: Extract the best n individuals in 'combinepop'(population

4 % size is 2n).

5 %

6 % LSSSSWC, NWPU

7 % Revision: 1.1 Data: 2011-07-12

8 %*************************************************************************

9

10 popsize = length(combinepop) / 2;

11 nextpop = combinepop(1:popsize); %just for initializing

12

13 rankVector = vertcat(combinepop.rank);

14

15 n = 0; % individuals number of next population

16 rank = 1; % current rank number

17 idx = find(rankVector == rank);

18 numInd = length(idx); % number of individuals in current front

19 while( n + numInd <= popsize )

20 nextpop( n+1 : n+numInd ) = combinepop( idx );

21

22 n = n + numInd;

23 rank = rank + 1;

24

25 idx = find(rankVector == rank);

26 numInd = length(idx);

27 end

28

29 % If the number of individuals in the next front plus the number of

30 % individuals in the current front is greater than the population size,

31 % then select the best individuals by corwding distance (NSGA-II)

32 % or preference distance(R-NSGA-II).

33 if( n < popsize )

34 if(~isempty(opt.refPoints))

35 prefDistance = vertcat(combinepop(idx).prefDistance);

36 prefDistance = [prefDistance, idx];

37 prefDistance = sortrows( prefDistance, 1);

38 % Select the individuals with smallest preference distance

39 idxSelect = prefDistance( 1:popsize-n, 2);

40 nextpop(n+1 : popsize) = combinepop(idxSelect);

41 else

42 distance = vertcat(combinepop(idx).distance);

43 distance = [distance, idx];

44 % Sort the individuals in descending order of crowding distance

45 % in the front.

46 distance = flipud( sortrows( distance, 1) );

47 % Select the (popsize-n) individuals with largest crowding distance

48 idxSelect = distance( 1:popsize-n, 2);

49 nextpop(n+1 : popsize) = combinepop(idxSelect);

50 end

569



51 end

1 function pop = initpop(opt, pop, varargin)

2 % Function: pop = initpop(opt, pop, varargin)

3 % Description: Initialize population.

4 % Syntax:

5 % pop = initpop(opt, pop)

6 % (default) Create a random initial population with a uniform

7 % distribution.

8 %

9 % pop = initpop(opt, pop, 'pop.txt')

10 % Load population from exist file and use the last population. If

11 % the popsize less than the current popsize, then random numbers will

12 % used to fill the population.

13 %

14 % pop = initpop(opt, pop, 'pop.txt', ngen)

15 % Load population from file with specified generation.

16 %

17 % pop = initpop(opt, pop, oldresult)

18 % Specify exist result structure.

19 %

20 % pop = initpop(opt, pop, oldresult, ngen)

21 % Specify exist result structure and the population which will be used.

22 %

23 % Parameters:

24 % pop : an empty population

25 %

26 % LSSSSWC, NWPU

27 % Revision: 1.1 Data: 2011-07-01

28 %*************************************************************************

29

30

31 %*************************************************************************

32 % 1. Identify parameters

33 %*************************************************************************

34 method = 'uniform';

35 if(nargin >= 3)

36 if( ischar(varargin{1}) )

37 method = 'file';

38 elseif( isstruct(varargin{1}) )

39 method = 'existpop';

40 end

41 end

42

43 %*************************************************************************

44 % 2. Initialize population with different methods
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45 %*************************************************************************

46 if( strcmpi(method, 'uniform'))

47 pop = initpopUniform(opt, pop);

48 elseif(strcmpi(method, 'file'))

49 % fprintf('...Initialize population from file "%s"\n', varargin{1});

50 pop = initpopFromFile(opt, pop, varargin{:});

51 elseif(strcmpi(method, 'existpop'))

52 % fprintf('...Initialize population from specified result.\n');

53 pop = initpopFromExistResult(opt, pop, varargin{:});

54 end

55

56

57

58

59 function pop = initpopFromFile(opt, pop, varargin)

60 % Function: pop = initpopFromFile(opt, pop, varargin)

61 % Description: Load population from specified population file.

62 % Syntax:

63 % pop = initpop(opt, pop, 'pop.txt')

64 % pop = initpop(opt, pop, 'pop.txt', ngen)

65 %

66 % Copyright 2011 by LSSSSWC

67 % Revision: 1.0 Data: 2011-07-01

68 %*************************************************************************

69 fileName = varargin{1};

70

71 oldResult = loadpopfile(fileName);

72 fprintf('initpopFromFile')

73 pop = initpopFromExistResult(opt, pop, oldResult, varargin{2:end});

74

75

76

77

78

79 function pop = initpopFromExistResult(opt, pop, varargin)

80 % Function: pop = initpopFromExistResult(opt, pop, varargin)

81 % Description: Load population from exist result structure.

82 % Syntax:

83 % pop = initpop(opt, pop, oldresult)

84 % pop = initpop(opt, pop, oldresult, ngen)

85 %

86 % Copyright 2011 by LSSSSWC

87 % Revision: 1.0 Data: 2011-07-01

88 %*************************************************************************

89

90 % 1. Verify param

91 fprintf('initpopFromExistResult')

92 oldresult = varargin{1};

93 if( ~isstruct(oldresult) | | ~isfield(oldresult, 'pops') )
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94 error('NSGA2:InitPopError',...

95 'The result structure specified is not correct!');

96 end

97

98

99 oldpops = oldresult.pops;

100 ind = oldpops(1,1); % individual used to verify optimization param

101 if( opt.numVar ~= length(ind.var) | | ...

102 opt.numObj ~= length(ind.obj) | | ...

103 opt.numCons ~= length(ind.cons) )

104 error('NSGA2:InitPopError', ...

105 strcat('The specified optimization result is',...

106 'not for current optimization model!'));

107 end

108 clear ind

109

110

111 % 2. Determine which population would be used

112 ngen = 0;

113 if( nargin >= 4)

114 ngen = varargin{2};

115 end

116

117 maxGen = size(oldpops, 1);

118 if(ngen == 0)

119 ngen = maxGen;

120 elseif(ngen > maxGen)

121 warning('NSGA2:InitPopWarning', ...

122 'The specified generation "%d" does not exist, use "%d" instead.',...

123 ngen, maxGen);

124 ngen = maxGen;

125 end

126

127

128 % 3. Create initial population

129 popsizeOld = size(oldpops, 2);

130 popsizeNew = opt.popsize;

131

132 if( popsizeNew <= popsizeOld ) % a) All from old pop

133 for i = 1:popsizeNew

134 pop(i).var = oldpops(ngen, i).var;

135 end

136 else % b) Use random individuals to fill the population

137 for i = 1:popsizeOld

138 pop(i).var = oldpops(ngen, i).var;

139 end

140 pop(popsizeOld+1:end) = initpopUniform(opt, pop(popsizeOld+1:end));

141 end

142
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143

144

145

146 function pop = initpopUniform(opt, pop)

147 % Function: pop = initpopUniform(opt, pop)

148 % Description: Initialize population using random number

149 %

150 % Copyright 2011 by LSSSSWC

151 % Revision: 1.0 Data: 2011-07-01

152 %*************************************************************************

153

154 nVar = opt.numVar;

155 type = opt.vartype;

156

157 lb = opt.lb;

158 ub = opt.ub;

159

160 popsize = length(pop);

161 for i = 1:popsize

162 var = lb + rand(1, nVar) .* (ub-lb);

163

164 % if desing variable is integer, round to the nearest integer

165 for v = 1:nVar

166 if( type(v) == 2)

167 var(v) = round(var(v));

168 end

169 end

170

171 % limit in the lower and upper bound

172 var = varlimit(var, lb, ub);

173

174 pop(i).var = var;

175

176 end

1 function result = loadpopfile(fileName)

2 % Function: result = loadpopfile(fileName)

3 % Description: Load population file which generated by last optimization.

4 % Syntax:

5 % oldresult = loadpopfile('populations.txt');

6 % Return:

7 %

8 % Copyright 2011 by LSSSSWC

9 % Revision: 1.0 Data: 2011-07-01

10 %*************************************************************************

11
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12

13 %*************************************************************************

14 % Open the populations file

15 %*************************************************************************

16 if( ~ischar(fileName))

17 error('NSGA2:LoadPopError',...

18 'The fileName parameter should be string!');

19 end

20

21 fid = fopen(fileName, 'r');

22 if(fid==-1)

23 error('NSGA2:LoadPopError',...

24 'The populations file "%s" could not opened!', fileName);

25 end

26 %fprintf('...Loading the population file "%s"......\n', fileName);

27

28

29

30 %*************************************************************************

31 % Read file head

32 %*************************************************************************

33 popsize = 1;

34 maxGen = 1;

35 nVar = 0;

36 nObj = 0;

37 nCons = 0;

38 nExtra = 0;

39 fieldNames = {''};

40

41 strLine = fgetl(fid);

42 if( ~ischar(strLine) | | strcmp(strLine, '#NSGA2')==0 )

43 error('NSGA2:PopFileError', ...

44 strcat('The population file "%s" is not a Nsga2',...

45 'populations file! Line \n%s\n'), ...

46 fileName, strLine);

47 end

48

49 strLine = fgetl(fid);

50 while( ischar(strLine) && strcmp(strLine, '#end')==0)

51 token = textscan(strLine, '%s');

52 keyword = strtrim(token{1}{1});

53 switch keyword

54 case 'popsize'

55 popsize = str2double(token{1}{2});

56 case 'maxGen'

57 maxGen = str2double(token{1}{2});

58 case 'numVar'

59 nVar = str2double(token{1}{2});

60 case 'numObj'
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61 nObj = str2double(token{1}{2});

62 case 'numCons'

63 nCons = str2double(token{1}{2});

64 case 'numExtra'

65 nExtra = str2double(token{1}{2});

66 case 'stateFieldNames'

67 nfield = length(token{1});

68 fieldNames = cell(nfield - 1, 1);

69 [fieldNames{:}] = token{1}{2:end};

70 otherwise

71 warning('NSGA2:PopFileError',...

72 'No support state keyword: "%s"', token{1}{1});

73 end

74

75 strLine = fgetl(fid);

76 end

77

78

79 %*************************************************************************

80 % Initialize the result structure

81 %*************************************************************************

82 pop = repmat( struct(...

83 'var', zeros(1,nVar), ...

84 'obj', zeros(1,nObj), ...

85 'cons', zeros(1,nCons),...

86 'extra', zeros(1,nExtra)),...

87 [1,popsize]);

88

89 % state: optimization state of one generation

90 state = struct();

91 for i = 1:length(fieldNames)

92 state.(fieldNames{i}) = 0;

93 end

94 % each row is the population of one generation

95 result.pops = repmat(pop, [maxGen, 1]);

96 % each row is the optimizaiton state of one generation

97 result.states = repmat(state, [maxGen, 1]);

98 clear i fieldNames pop

99

100

101 %*************************************************************************

102 % Parse the populations file

103 %*************************************************************************

104 lastGen = 0; % The last generation which has correct datas.

105 try

106 strLine = fgetl(fid);

107 while ischar(strLine)

108 %*****************************************************************

109 % 1. Skip empty lines
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110 strLine = strtrim(strLine);

111 if( isempty(strLine) )

112 strLine = fgetl(fid); % read new line

113 continue;

114 end

115

116 %*****************************************************************

117 % 2. The first line of one generation

118 if( strcmp(strLine(1:11), '#Generation') == 1)

119 % Only the 'ngen' is needed

120 ngen = sscanf(strLine(12:end), ' %d');

121 else

122 error('NSGA2:PopFileError',...

123 'The population file format Error Line \n%s\n', strLine);

124 end

125

126

127 %*****************************************************************

128 % 3. Read optimization states

129 strLine = fgetl(fid);

130 while( ischar(strLine) && strcmp(strLine, '#end')==0 )

131 token = textscan(strLine, '%s%f');

132 result.states(ngen).(token{1}{1}) = token{1,2};

133

134 strLine = fgetl(fid);

135 end

136

137

138 %*****************************************************************

139 % 4. Read population

140 strLine = fgetl(fid);

141 val = fscanf(fid, '%f');

142 ncols = nVar+nObj+nCons+nExtra;

143 nrows = popsize;

144 if( length(val) ~= ncols*nrows )

145 error('NSGA2:PopFileError',...

146 'File error when read population datas! ');

147 end

148

149 val = reshape(val, ncols, nrows)'; %reshape the vector column-wise

150 for i = 1:popsize

151 result.pops(ngen, i).var = val(i, 1:nVar);

152 result.pops(ngen, i).obj = val(i, (nVar+1):(nVar+nObj));

153 result.pops(ngen, i).cons= val(i, ...

154 (nVar+nObj+1):nVar+nObj+nCons);

155 result.pops(ngen, i).extra= val(i, (nVar+nObj+nCons+1):end);

156 end

157 %*****************************************************************

158 % Read next line
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159 lastGen = ngen;

160 strLine = fgetl(fid);

161

162 end

163 catch exception

164 id = exception.identifier;

165 msg = [exception.message, 'File = ', fileName];

166 warning(id, msg);

167 % If the file is wrong at the end, return the correct data.

168 end

169

170

171 %*************************************************************************

172 % Do some clean works

173 %*************************************************************************

174

175 % Delete unused datas

176 result.pops(lastGen+1:end, :) = [];

177 result.states(lastGen+1:end) = [];

178

179 % Close file

180 fclose(fid);

1 function pop = mutationOp(opt, pop, state)

2 % Function: pop = mutationOp(opt, pop, state)

3 % Description: Mutation Operator. All of the individuals would do mutation,

4 % but only "mutationFraction" of design variables of an individual would

5 % changed.

6 %

7 % LSSSSWC, NWPU

8 % Revision: 1.1 Data: 2011-07-13

9 %*************************************************************************

10

11 %*************************************************************************

12 % 1. Check for the parameters

13 %*************************************************************************

14 % mutation method

15 strfun = lower(opt.mutation{1});

16 numOptions = length(opt.mutation) - 1;

17 [mutationopt{1:numOptions}] = opt.mutation{2:end};

18

19 switch (strfun)

20 case 'gaussian'

21 fun = @mutationGaussian;

22 otherwise

23 error('NSGA2:MutationOpError', 'No support mutation operator!');
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24 end

25

26 nVar = opt.numVar;

27

28 % "auto" mutation fraction

29 if( ischar(opt.mutationFraction) )

30 if( strcmpi(opt.mutationFraction, 'auto') )

31 fraction = 2.0 / nVar;

32 else

33 error('NSGA2:MutationOpError',...

34 strcat('The "mutationsFraction" parameter should',...

35 'be scalar or "auto" string.'));

36 end

37 else

38 fraction = opt.mutationFraction;

39 end

40

41

42 % All of the individual would be modified, but only 'mutationFraction' of

43 % design variables for an individual would be changed.

44 for ind = 1:length(pop)

45 child = fun( pop(ind), opt, state, fraction, mutationopt);

46

47 % Rounding for integer variables

48 for v = 1:nVar

49 if( opt.vartype(v) == 2)

50 child.var(v) = round( child.var(v) );

51 end

52 end

53

54 child.var = varlimit(child.var, opt.lb, opt.ub);

55

56 pop(ind) = child;

57 end

58

59

60

61 function child = mutationGaussian( parent, opt, state, fraction, options)

62 % Function: child = mutationGaussian( parent, opt, state, fraction,

63 % options)

64 % Description: Gaussian mutation operator. Reference Matlab's help :

65 % Genetic Algorithm Options :: Options Reference (Global Optimization

66 % Toolbox)

67 % Parameters:

68 % fraction : mutation fraction of variables of an individual

69 % options{1} : scale. This paramter should be large enough for interger

70 % variables to change from one to another.

71 % options{2} : shrink

72 % Return:
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73 %

74 % LSSSSWC, NWPU

75 % Revision: 1.1 Data: 2011-07-13

76 %*************************************************************************

77

78

79 %*************************************************************************

80 % 1. Verify the parameters.

81 %*************************************************************************

82 if( length(options)~=2)

83 error('NSGA2:MutationOpError', 'Mutation operator parameter error!');

84 end

85

86

87 %*************************************************************************

88 % 2. Calc the "scale" and "shrink" parameter.

89 %*************************************************************************

90 scale = options{1};

91 shrink = options{2};

92 scale = scale - shrink * scale * state.currentGen / opt.maxGen;

93

94 lb = opt.lb;

95 ub = opt.ub;

96 scale = scale * (ub - lb);

97

98

99 %*************************************************************************

100 % 3. Do the mutation.

101 %*************************************************************************

102 child = parent;

103 numVar = length(child.var);

104 for i = 1:numVar

105 if(rand() < fraction)

106 child.var(i) = parent.var(i) + scale(i) * randn();

107 end

108 end

1 function [opt, pop] = ndsort(opt, pop)

2 % Function: [opt, pop] = ndsort(pop)

3 % Description: Fast non-dominated sort.

4 %

5 % LSSSSWC, NWPU

6 % Revision: 1.4 Data: 2011-07-26

7 %*************************************************************************

8

9 %*************************************************************************
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10 % 1. Initialize variables

11 % indi.np number of individuals which dominate this individual

12 % indi.sp(:): a set of individuals that this individual dominate

13 %*************************************************************************

14 N = length(pop); %popsize

15 ind = repmat(struct('np',0, 'sp', []),[1,N]);

16

17 for i = 1:N

18 pop(i).rank = 0;

19 pop(i).distance = 0;

20 pop(i).prefDistance = 0;

21 end

22

23

24 %*************************************************************************

25 % 2. fast non-dominated sort

26 %*************************************************************************

27 % Calculate the domination matrix for improving the efficiency.

28

29 nViol = zeros(N, 1);

30 violSum = zeros(N, 1);

31 for i = 1:N

32 nViol(i) = pop(i).nViol;

33 violSum(i) = pop(i).violSum;

34 end

35 % nViol = vertcat(pop(:).nViol);

36 % violSum = vertcat(pop(:).violSum);

37 obj = vertcat(pop(:).obj);

38 % domination matrix for efficiency

39 domMat = calcDominationMatrix(nViol, violSum, obj);

40

41 % Compute np and sp of each indivudal

42 for p = 1:N-1

43 for q = p+1:N

44 if(domMat(p, q) == 1) % p dominate q

45 ind(q).np = ind(q).np + 1;

46 ind(p).sp = [ind(p).sp , q];

47 elseif(domMat(p, q) == -1) % q dominate p

48 ind(p).np = ind(p).np + 1;

49 ind(q).sp = [ind(q).sp , p];

50 end

51 end

52 end

53

54

55 % The first front(rank = 1)

56 front(1).f = []; % There are only one field 'f' in structure 'front'.

57 % This is intentional because the number of individuals

58 % in the front is difference.
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59 for i = 1:N

60 if( ind(i).np == 0 )

61 pop(i).rank = 1;

62 front(1).f = [front(1).f, i];

63 end

64 end

65

66 % Calculate pareto rank of each individuals, viz., pop(:).rank

67 fid = 1; %pareto front ID

68 while( ~isempty(front(fid).f) )

69 Q = [];

70 for p = front(fid).f

71 for q = ind(p).sp

72 ind(q).np = ind(q).np -1;

73 if( ind(q).np == 0 )

74 pop(q).rank = fid+1;

75 Q = [Q, q];

76 end

77 end

78 end

79 fid = fid + 1;

80

81 front(fid).f = Q;

82 end

83 front(fid) = []; % delete the last empty front set

84

85

86

87 %*************************************************************************

88 % 3. Calculate the distance

89 %*************************************************************************

90 if(isempty(opt.refPoints))

91 pop = calcCrowdingDistance(opt, pop, front);

92 else

93 [opt, pop] = calcPreferenceDistance(opt, pop, front);

94 end

95

96

97

98

99

100 function domMat = calcDominationMatrix(nViol, violSum, obj)

101 % Function: domMat = calcDominationMatrix(nViol, violSum, obj)

102 % Description: Calculate the domination maxtir which specified the

103 % domination releation between two individual using constrained-domination.

104 %

105 % Return:

106 % domMat(N,N) : domination matrix

107 % domMat(p,q)=1 : p dominates q
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108 % domMat(p,q)=-1 : q dominates p

109 % domMat(p,q)=0 : non dominate

110 %

111 % Copyright 2011 by LSSSSWC

112 % Revision: 1.0 Data: 2011-07-13

113 %*************************************************************************

114

115 N = size(obj, 1);

116 numObj = size(obj, 2);

117

118 domMat = zeros(N, N);

119

120 for p = 1:N-1

121 for q = p+1:N

122 %******************************************************************

123 % 1. p and q are both feasible

124 %******************************************************************

125 if(nViol(p) == 0 && nViol(q)==0)

126 pdomq = false;

127 qdomp = false;

128 for i = 1:numObj

129 % objective function is minimization!

130 if( obj(p, i) < obj(q, i) )

131 pdomq = true;

132 elseif(obj(p, i) > obj(q, i))

133 qdomp = true;

134 end

135 end

136

137 if( pdomq && ~qdomp )

138 domMat(p, q) = 1;

139 elseif(~pdomq && qdomp )

140 domMat(p, q) = -1;

141 end

142 %******************************************************************

143 % 2. p is feasible, and q is infeasible

144 %******************************************************************

145 elseif(nViol(p) == 0 && nViol(q)~=0)

146 domMat(p, q) = 1;

147 %******************************************************************

148 % 3. q is feasible, and p is infeasible

149 %******************************************************************

150 elseif(nViol(p) ~= 0 && nViol(q)==0)

151 domMat(p, q) = -1;

152 %******************************************************************

153 % 4. p and q are both infeasible

154 %******************************************************************

155 else

156 if(violSum(p) < violSum(q))
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157 domMat(p, q) = 1;

158 elseif(violSum(p) > violSum(q))

159 domMat(p, q) = -1;

160 end

161 end

162 end

163 end

164

165 domMat = domMat - domMat';

166

167

168

169

170

171 function [opt, pop] = calcPreferenceDistance(opt, pop, front)

172 % Function: [opt, pop] = calcPreferenceDistance(opt, pop, front)

173 % Description: Calculate the 'preference distance' used in R-NSGA-II.

174 % Return:

175 % opt : This structure may be modified only when opt.refUseNormDistance

176 % =='ever'.

177 %

178 % Copyright 2011 by LSSSSWC

179 % Revision: 1.1 Data: 2011-07-26

180 %*************************************************************************

181

182 %*************************************************************************

183 % 1. Initialization

184 %*************************************************************************

185 numObj = length( pop(1).obj ); % number of objectives

186

187 refPoints = opt.refPoints;

188 refWeight = opt.refWeight; % weight factor of objectives

189 if(isempty(refWeight))

190 refWeight = ones(1, numObj);

191 end

192 epsilon = opt.refEpsilon;

193 numRefPoint = size(refPoints, 1);

194

195 % Determine the normalized factors

196 % bUseFrontMaxMin : If use the maximum and minimum value in the front as

197 % normalized factor.

198 bUseFrontMaxMin = false;

199 if( strcmpi(opt.refUseNormDistance, 'ever') )

200 % 1) Find possiable (not current population) maximum and minimum value

201 % of each objective.

202 obj = vertcat(pop.obj);

203 if( ~isfield(opt, 'refObjMax tmp') )

204 opt.refObjMax tmp = max(obj);

205 opt.refObjMin tmp = min(obj);
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206 else

207 objMax = max(obj);

208 objMin = min(obj);

209 for i = 1:numObj

210 if(opt.refObjMax tmp(i) < objMax(i))

211 opt.refObjMax tmp(i) = objMax(i);

212 end

213 if(opt.refObjMin tmp(i) > objMin(i))

214 opt.refObjMin tmp(i) = objMin(i);

215 end

216 end

217 clear objMax objMin

218 end

219 objMaxMin = opt.refObjMax tmp - opt.refObjMin tmp;

220 clear obj

221 elseif( strcmpi(opt.refUseNormDistance, 'front') )

222 % 2) Do not use normalized Euclidean distance.

223 bUseFrontMaxMin = true;

224 elseif( strcmpi(opt.refUseNormDistance, 'no') )

225 % 3) Do not use normalized Euclidean distance.

226 objMaxMin = ones(1,numObj);

227 else

228 % 3) Error

229 error('NSGA2:ParamError', ...

230 strcatz('No support parameter: options.refUseNormDistance',...

231 '="%s", only "yes" or "no" are supported'),...

232 opt.refUseNormDistance);

233 end

234

235

236 %*************************************************************************

237 % 2. Calculate preference distance pop(:).prefDistance

238 %*************************************************************************

239 for fid = 1:length(front)

240 % Step1: Calculate the weighted Euclidean distance in each front

241 % idxFront : index of individuals in current front

242 idxFront = front(fid).f;

243 % numInd : number of individuals in current front

244 numInd = length(idxFront);

245 % popFront : individuals in front fid

246 popFront = pop(idxFront);

247

248 % objFront : the whole objectives of all individuals

249 objFront = vertcat(popFront.obj);

250

251 if(bUseFrontMaxMin)

252 % objMaxMin : the normalized factor in current front

253 objMaxMin = max(objFront) - min(objFront);

254 end
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255

256 % normDistance : weighted normalized Euclidean distance

257 normDistance = calcWeightNormDistance(objFront, refPoints, ...

258 objMaxMin, refWeight);

259

260 % Step2: Assigned preference distance

261 prefDistanceMat = zeros(numInd, numRefPoint);

262 for ipt = 1:numRefPoint

263 [~,ix] = sort(normDistance(:, ipt));

264 prefDistanceMat(ix, ipt) = 1:numInd;

265 end

266 prefDistance = min(prefDistanceMat, [], 2);

267 clear ix

268

269

270 % Step3: Epsilon clearing strategy

271 % idxRemain : index of individuals which were not processed

272 idxRemain = 1:numInd;

273 while(~isempty(idxRemain))

274 % 1. Select one individual from remains

275 objRemain = objFront( idxRemain, :);

276 selIdx = randi( [1,length(idxRemain)] );

277 selObj = objRemain(selIdx, :);

278

279 % 2. Calc normalized Euclidean distance

280 % distanceToSel: normalized Euclidean distance to the selected

281 % points

282 distanceToSel = calcWeightNormDistance(objRemain, selObj,...

283 objMaxMin, refWeight);

284

285

286 % 3. Process the individuals within a epsilon-neighborhood

287 idx = find( distanceToSel <= epsilon ); % idx: index in idxRemain

288 if(length(idx) == 1) % the only individual is the selected one

289 idxRemain(selIdx)=[];

290 else

291 for i=1:length(idx)

292 if( idx(i)~=selIdx )

293 %idx is the index in idxRemain vector

294 idInIdxRemain = idx(i);

295 id = idxRemain(idInIdxRemain);

296

297 % Increase the preference distance to discourage the

298 % individuals to remain in the selection.

299 prefDistance(id) = prefDistance(id) + round(numInd/2);

300 end

301 end

302 idxRemain(idx) = [];

303 end
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304

305 end

306

307 % Save the preference distance

308 for i=1:numInd

309 id = idxFront(i);

310 pop(id).prefDistance = prefDistance(i);

311 end

312 end

313

314

315 function distance = calcWeightNormDistance(points, refPoints, maxMin, ...

316 weight)

317 % Function: calcWeightNormDistance(points, refPoints, maxMin, weight)

318 % Description: Calculate the weighted Euclidean distance from "points" to

319 % "refPoints"

320 % Parameters:

321 % points(nPoint, N) : each row is a point in N dimension space.

322 % refPoints(nRefPoint, N) : each row is a reference point.

323 % maxMin(1, N) : normalized factor.

324 % weight(1, N) : weights

325 %

326 % Return:

327 % distance(nPoint, nRefPoint)

328 %

329 % Copyright 2011 by LSSSSWC

330 % Revision: 1.0 Data: 2011-07-14

331 %*************************************************************************

332

333 nRefPoint = size(refPoints, 1); % number of reference points

334 nPoint = size(points, 1); % number of points

335

336 distance = zeros(nPoint, nRefPoint);

337 for ipt = 1:nRefPoint

338 refpt = refPoints(ipt, :);

339 for i = 1:nPoint

340 weightNormDist = ((points(i, :)-refpt) ./ maxMin).ˆ2 .* weight;

341 distance(i, ipt) = sqrt(sum(weightNormDist));

342 end

343 end

344

345

346

347

348

349 function pop = calcCrowdingDistance(opt, pop, front)

350 % Function: pop = calcCrowdingDistance(opt, pop, front)

351 % Description: Calculate the 'crowding distance' used in the original

352 % NSGA-II.
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353 % Syntax:

354 % Parameters:

355 % Return:

356 %

357 % Copyright 2011 by LSSSSWC

358 % Revision: 1.0 Data: 2011-07-11

359 %*************************************************************************

360

361 numObj = length( pop(1).obj ); % number of objectives

362 for fid = 1:length(front)

363 idx = front(fid).f;

364 frontPop = pop(idx); % frontPop: individuals in front fid

365

366 numInd = length(idx); % nInd: number of individuals in current front

367

368 obj = vertcat(frontPop.obj);

369 obj = [obj, idx']; % objctive values are sorted with individual ID

370 for m = 1:numObj

371 obj = sortrows(obj, m);

372

373 colIdx = numObj+1;

374 pop( obj(1, colIdx) ).distance = Inf; % the first one

375 pop( obj(numInd, colIdx) ).distance = Inf; % the last one

376

377 minobj = obj(1, m); % the maximum of objective m

378 maxobj = obj(numInd, m); % the minimum of objective m

379

380 for i = 2:(numInd-1)

381 id = obj(i, colIdx);

382 pop(id).distance = pop(id).distance + (obj(i+1, m)...

383 - obj(i-1, m)) / (maxobj - minobj);

384 end

385 end

386 end

1 function result = nsga2(opt, nArchi, m, varargin)

2 % Function: result = nsga2(opt, varargin)

3 % Description: The main flowchart of of NSGA-II. Note:

4 % All objectives must be minimization. If a objective is maximization,

5 % the objective should be multipled by -1.

6 %

7 % Syntax:

8 % result = nsga2(opt): 'opt' is generated by function nsgaopt().

9 % result = nsga2(opt, param): 'param' can be any data type, it will be

10 % pass to the objective function objfun().

11 %
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12 % Then ,the result structure can be pass to plotnsga to display the

13 % population: plotnsga(result);

14 %

15 % Parameters:

16 % opt : A structure generated by funciton nsgaopt().

17 % varargin : Additional parameter will be pass to the objective

18 % functions. It can be any data type. For example, if you call:

19 % nsga2(opt, param), then objfun would be called as objfun(x,param),

20 % in which, x is the design variables vector.

21 % Return:

22 % result : A structure contains optimization result.

23 %

24 % LSSSSWC, NWPU

25 % Revision: 1.2 Data: 2011-07-26

26 %*************************************************************************

27

28

29 tStart = tic();

30 %*************************************************************************

31 % Verify the optimization model

32 %*************************************************************************

33 opt = verifyOpt(opt);

34

35 %*************************************************************************

36 % variables initialization

37 %*************************************************************************

38 nVar = opt.numVar;

39 nObj = opt.numObj;

40 nCons = opt.numCons;

41 nExtra = opt.numExtra;

42 popsize = opt.popsize;

43

44 % pop : current population

45 % newpop : new population created by genetic algorithm operators

46 % combinepop = pop + newpop;

47 pop = repmat( struct(...

48 'var', zeros(1,nVar), ...

49 'obj', zeros(1,nObj), ...

50 'cons', zeros(1,nCons),...

51 'extra', zeros(1,nExtra),...

52 'rank', 0,...

53 'distance', 0,...

54 'prefDistance', 0,... % preference distance used in R-NSGA-II

55 'nViol', 0,...

56 'violSum', 0),...

57 [1,popsize]);

58

59 % state: optimization state of one generation

60 state = struct(...
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61 'currentGen', 1,... % current generation number

62 'evaluateCount', 0,... % number of objective function evaluation

63 'totalTime', 0,... % total time from the beginning

64 'firstFrontCount', 0,... % individual number of first front

65 'frontCount', 0,... % number of front

66 'avgEvalTime', 0); % average evaluation time of objective function

67 % (current generation)

68

69 % each row is the population of one generation

70 result.pops = repmat(pop, [opt.maxGen, 1]);

71 % each row is the optimizaiton state of one generation

72 result.states = repmat(state, [opt.maxGen, 1]);

73 % use for output

74 result.opt = opt;

75

76 % global variables

77 global STOP NSGA; %STOP NSGA : used in GUI , if STOP NSGA~=0,

78 % then stop the optimizaiton

79 STOP NSGA = 0;

80

81

82 %*************************************************************************

83 % initialize the P0 population

84 %*************************************************************************

85 ngen = 1;

86 pop = opt.initfun{1}(opt, pop, opt.initfun{2:end});

87 [pop, state] = evaluate(opt, pop, state, varargin{:});

88 [opt, pop] = ndsort(opt, pop);

89

90 % state

91 state.currentGen = ngen;

92 state.totalTime = toc(tStart);

93 state = statpop(pop, state);

94

95 result.pops(1, :) = pop;

96 result.states(1) = state;

97

98 fileName = sprintf('optresult%d-M%d-G%d.txt',nArchi,m,ngen);

99 opt = output2file(opt, state, pop, 0, fileName, varargin);

100

101 % output

102 % plotnsga(result, ngen);

103 % opt = callOutputfuns(opt, state, pop);

104

105

106 %*************************************************************************

107 % NSGA2 iteration

108 %*************************************************************************

109 while( ngen < opt.maxGen && STOP NSGA==0)
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110 % 0. Display some information

111 ngen = ngen+1;

112 state.currentGen = ngen;

113

114 % 1. Create new population

115 newpop = selectOp(opt, pop);

116 newpop = crossoverOp(opt, newpop, state);

117 newpop = mutationOp(opt, newpop, state);

118 [newpop, state] = evaluate(opt, newpop, state, varargin{:});

119

120 % 2. Combine the new population and old population:

121 % combinepop = pop + newpop

122 combinepop = [pop, newpop];

123

124 % 3. Fast non dominated sort

125 [opt, combinepop] = ndsort(opt, combinepop);

126

127 % 4. Extract the next population

128 pop = extractPop(opt, combinepop);

129

130 % 5. Save current generation results

131 state.totalTime = toc(tStart);

132 state = statpop(pop, state);

133

134 result.pops(ngen, :) = pop;

135 result.states(ngen) = state;

136

137

138 fileName = sprintf('optresult%d-M%d-G%d.txt',nArchi,m,ngen);

139 opt = output2file(opt, state, pop, 0, fileName, varargin);

140

141 end

142

143 % call output function for closing file

144 % opt = callOutputfuns(opt, state, pop, -1);

145 fileName = sprintf('optresult%d.txt',nArchi);

146 opt = output2file(opt, state, pop, 0, fileName, varargin);

147 fileName = sprintf('optresult%d-M%d.txt',nArchi,m);

148 opt = output2file(opt, state, pop, 0, fileName, varargin);

149

150

151 toc(tStart);

1 function defaultopt = nsgaopt()

2 % Function: defaultopt = nsgaopt()

3 % Description: Create NSGA-II default options structure.
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4 % Syntax: opt = nsgaopt()

5 % LSSSSWC, NWPU

6 % Revision: 1.3 Data: 2011-07-13

7 %*************************************************************************

8

9

10 defaultopt = struct(...

11 ... % Optimization model

12 'popsize', 50,... % population size

13 'maxGen', 100,... % maximum generation

14 'numVar', 0,... % number of design variables

15 'numObj', 0,... % number of objectives

16 'numCons', 0,... % number of constraints

17 'numExtra', 0,... % number of extra vars

18 'lb', [],... % lower bound of design variables [1:numVar]

19 'ub', [],... % upper bound of design variables [1:numVar]

20 'vartype', [],... % variable data type [1:numVar]=real, 2=int

21 'objfun', @objfun,... % objective function

22 ... % Optimization model components' name

23 'nameObj',{{}},...

24 'nameVar',{{}},...

25 'nameCons',{{}},...

26 'nameExtra',{{}},...

27 ... % Initialization and output

28 ... % population initialization function (use random number as default)

29 'initfun', {{@initpop}},...

30 'outputfuns',{{@output2file}},... % output function

31 'outputfile', 'populations.txt',... % output file name

32 'outputInterval', 1,... % interval of output

33 'plotInterval', 5,... % interval between two call of

34 ...%"plotnsga".

35 ... % Genetic algorithm operators

36 ...% crossover operator (Ratio=1.2)

37 'crossover', {{'intermediate', 1.2}},...

38 ...% mutation operator (scale=0.1, shrink=0.5)

39 'mutation', {{'gaussian',0.1, 0.5}},...

40 ...% crossover fraction of variables of an individual

41 'crossoverFraction', 'auto', ...

42 ...% mutation fraction of variables of an individual

43 'mutationFraction', 'auto',...

44 ... % Algorithm parameters

45 ...% compute objective function of a population in parallel.

46 ...% {'yes','no'}

47 'useParallel', 'no',...

48 ...% number of workers use by parallel computation, 0 = auto select.

49 'poolsize', 0,...

50 ... % R-NSGA-II parameters

51 ...% Reference point(s) used to specify preference. Each row is a

52 ...%reference point.
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53 'refPoints', [],...

54 ...% weight factor used in the calculation of Euclidean distance

55 'refWeight', [],...

56 ...% use normalized Euclidean distance by maximum and minumum

57 ...% objectives possiable. {'front','ever','no'}

58 'refUseNormDistance', 'front',...

59 ...% parameter used in epsilon-based selection strategy

60 'refEpsilon', 0.001 ...

61 );

1 function opt = output2file(opt, state, pop, type, fileName, varargin)

2 % Function: opt = output2file(opt, state, pop, type, varargin)

3 % Description: Output the population 'pop' to file. The file name is

4 % specified by 'opt.outputfile' field.

5 % Parameters:

6 % type : output type. -1 = the last call, close the opened file.

7 % others(or no exist) = normal output

8 % varargin : any parameter define in the options.outputfuns cell array.

9 %

10 % LSSSSWC, NWPU

11 % Revision: 1.2 Data: 2011-07-13

12 %*************************************************************************

13

14

15 % if(isempty(opt.outputfile))

16 % return; % the output file name is not specified, return directly

17 % end

18

19 % if( isfield(opt, 'outputfileFID') )

20 % fid = opt.outputfileFID;

21 % else

22 % fid = [];

23 % end

24

25 %*************************************************************************

26 % 1.Open the output file and output some population info

27 %*************************************************************************

28 % if( isempty(fid) )

29 fid = fopen(fileName, 'w');

30 if( fid == 0)

31 error('NSGA2:OutputFileError',...

32 'Can not open output file!! file name:%s', opt.outputfile);

33 end

34 opt.outputfileFID = fid;

35

36 % Output some infomation
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37 fprintf(fid, '#NSGA2\r\n');

38

39 fprintf(fid, 'popsize %d\r\n', opt.popsize);

40 fprintf(fid, 'maxGen %d\r\n', opt.maxGen);

41 fprintf(fid, 'numVar %d\r\n', opt.numVar);

42 fprintf(fid, 'numObj %d\r\n', opt.numObj);

43 fprintf(fid, 'numCons %d\r\n', opt.numCons);

44 fprintf(fid, 'numExtra %d\r\n', opt.numExtra);

45

46 % Output state field names

47 fprintf(fid, 'stateFieldNames\t');

48 names = fieldnames(state);

49 for i = 1:length(names)

50 fprintf(fid, '%s\t', names{i});

51 end

52 fprintf(fid, '\r\n');

53

54 fprintf(fid, '#end\r\n\r\n\r\n');

55 % end

56

57 %*************************************************************************

58 % 2. If this is the last call, close the output file

59 %*************************************************************************

60 if(type == -1)

61 fclose(fid);

62 rmfield(opt, 'outputfileFID');

63 return

64 end

65

66 %*************************************************************************

67 % 3. Output population to file

68 %*************************************************************************

69 fprintf(fid, '#Generation %d / %d\r\n', state.currentGen, opt.maxGen);

70

71 % output each state field

72 names = fieldnames(state);

73 for i = 1:length(names)

74 fprintf(fid, '%s\t%g\r\n', names{i}, getfield(state, names{i}));

75 end

76 fprintf(fid, '#end\r\n');

77

78 for i = 1:opt.numVar

79 fprintf(fid, 'Var%d\t', i);

80 end

81 for i = 1:opt.numObj

82 fprintf(fid, 'Obj%d\t', i);

83 end

84 for i = 1:opt.numCons

85 fprintf(fid, 'Cons%d\t', i);
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86 end

87 for i = 1:opt.numExtra

88 fprintf(fid, 'Extra%d\t', i);

89 end

90 fprintf(fid, '\r\n');

91

92 for p = 1 : opt.popsize

93 for i = 1:opt.numVar

94 fprintf(fid, '%g\t', pop(p).var(i) );

95 end

96 for i = 1:opt.numObj

97 fprintf(fid, '%g\t', pop(p).obj(i) );

98 end

99 for i = 1:opt.numCons

100 fprintf(fid, '%g\t', pop(p).cons(i));

101 end

102 for i = 1:opt.numExtra

103 fprintf(fid, '%g\t', pop(p).extra(i));

104 end

105 fprintf(fid, '\r\n');

106 end

107

108 fprintf(fid, '\r\n\r\n\r\n');

109

110 fclose(fid);

1 function [] = PlotPareto(maxArchi,popsize,numObj, numExtra)

2 % Plot the global Pareto Frontier

3 % INPUTS:

4 % optresult files: text documents with the optimized points

5 % maxArchi: Number of Architectures

6

7 %% INITIALIZATION

8 nbObj = ones(1,maxArchi)*numObj;

9 nbExtra = ones(1,maxArchi)*numExtra;

10 nbDV = zeros(1,maxArchi);

11 nbCstn = zeros(1,maxArchi);

12 for j = 1:maxArchi

13 [nbDV(j), nbCstn(j)] = Architecture(j);

14 end

15

16 %% SCAN FILES

17 for j = 1:maxArchi

18 fid=fopen(sprintf('optresult%d.txt',j),'r');

19 for i = 1:20

20 fgetl(fid);
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21 end

22 A=fscanf(fid,'%f',[nbDV(j)+nbObj(j)+nbCstn(j)+nbExtra(j) inf]).';

23 V{j} = A;

24 fclose(fid);

25 end

26

27 %% PARETO POINTS

28 optpt=[];

29 for j=1:maxArchi

30 optpt = vertcat(optpt,V{j}(:,nbDV(j)+1:nbDV(j)+nbObj(j)));

31 [~, lign] = prtp(optpt);

32 end

33

34 %% PLOT

35

36 figure

37 hold on

38

39 if nbObj(1) == 2;

40 for j = 1:maxArchi

41 scatter(optpt(lign(lign<=j*popsize & lign>popsize*(j-1)),1),...

42 optpt(lign(lign<=j*popsize & lign>popsize*(j-1)),2),'x');

43 end

44 elseif nbObj(1) == 3;

45 for j = 1:maxArchi

46 scatter3(optpt(lign(lign<=j*popsize & lign>popsize*(j-1)),1),...

47 optpt(lign(lign<=j*popsize & lign>popsize*(j-1)),2),...

48 optpt(lign(lign<=j*popsize & lign>popsize*(j-1)),3),'x');

49 end

50 end

51

52 legend('Architecture 1','Architecture 2','Architecture 3',...

53 'Architecture 4','Architecture 5')

54 end

1 function [A varargout]=prtp(B)

2 % Extract the pareto points from matrix B

3 A=[]; varargout{1}=[];

4 sz1=size(B,1);

5 jj=0; kk(sz1)=0;

6 c(sz1,size(B,2))=0;

7 bb=c;

8 for k=1:sz1

9 j=0;

10 ak=B(k,:);

11 for i=1:sz1
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12 if i~=k

13 j=j+1;

14 bb(j,:)=ak-B(i,:);

15 end

16 end

17 if any(bb(1:j,:)'<0)

18 jj=jj+1;

19 c(jj,:)=ak;

20 kk(jj)=k;

21 end

22 end

23 if jj

24 A=c(1:jj,:);

25 varargout{1}=kk(1:jj);

26 else

27 warning('Points:Pareto',...

28 'There are no Pareto points. The result is an empty matrix.')

29 end

1 function gen = Resultat(pcid)

2

3 gen = [5,0];

4 count = [0,1];

1 function newpop = selectOp(opt, pop)

2 % Function: newpop = selectOp(opt, pop)

3 % Description: Selection operator, use binary tournament selection.

4 %

5 % LSSSSWC, NWPU

6 % Revision: 1.1 Data: 2011-07-12

7 %*************************************************************************

8

9 popsize = length(pop);

10 pool = zeros(1, popsize); % pool : the individual index selected

11

12 randnum = randi(popsize, [1, 2 * popsize]);

13

14 j = 1;

15 for i = 1:2:(2*popsize)

16 p1 = randnum(i);

17 p2 = randnum(i+1);

18

596



19 if(~isempty(opt.refPoints))

20 % Preference operator (R-NSGA-II)

21 result = preferenceComp( pop(p1), pop(p2) );

22 else

23 % Crowded-comparison operator (NSGA-II)

24 result = crowdingComp( pop(p1), pop(p2) );

25 end

26

27 if(result == 1)

28 pool(j) = p1;

29 else

30 pool(j) = p2;

31 end

32

33 j = j + 1;

34 end

35 newpop = pop( pool );

36

37

38

39 function result = crowdingComp( guy1, guy2)

40 % Function: result = crowdingComp( guy1, guy2)

41 % Description: Crowding comparison operator.

42 % Return:

43 % 1 = guy1 is better than guy2

44 % 0 = other cases

45 %

46 % LSSSSWC, NWPU

47 % Revision: 1.0 Data: 2011-04-20

48 %*************************************************************************

49

50 if((guy1.rank < guy2.rank) | | ((guy1.rank == guy2.rank) && ...

51 (guy1.distance > guy2.distance) ))

52 result = 1;

53 else

54 result = 0;

55 end

56

57

58

59 function result = preferenceComp(guy1, guy2)

60 % Function: result = preferenceComp(guy1, guy2)

61 % Description: Preference operator used in R-NSGA-II

62 % Return:

63 % 1 = guy1 is better than guy2

64 % 0 = other cases

65 %

66 % Copyright 2011 by LSSSSWC

67 % Revision: 1.0 Data: 2011-07-11
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68 %*************************************************************************

69

70 if( (guy1.rank < guy2.rank) | | ...

71 ((guy1.rank == guy2.rank) && (guy1.prefDistance < guy2.prefDistance)) )

72 result = 1;

73 else

74 result = 0;

75 end

1 function state = statpop(pop, state)

2 % Function: state = statpop(pop, state)

3 % Description: Statistic Population.

4 %

5 % LSSSSWC, NWPU

6 % Revision: 1.0 Data: 2011-04-20

7 %*************************************************************************

8

9

10 N = length(pop);

11 rankVec = vertcat(pop.rank);

12 rankVec = sort(rankVec);

13

14 state.frontCount = rankVec(N);

15 state.firstFrontCount = length( find(rankVec==1) );

1 %*************************************************************************

2 % Test Problem : 'CONSTR'

3 % Description:

4 % (1)constrained

5 %

6 % Reference : [1] Deb K, Pratap A, Agarwal S, et al. A fast and elitist

7 % multiobjective genetic algorithm NSGA-II[J]. Evolutionary Computation.

8 % 2002, 6(2): 182-197.

9 %*************************************************************************

10 function [] = TP CONSTR(nArchi, gen, ini, popsize, numObj, numExtra, ...

11 useParallel,numProc,m)

12

13 %% CREATE DEFAULT OPTIONS STRUCTURE

14 options = nsgaopt();

15

16 %% INPUTS FROM MAIN FILE

17 options.popsize = popsize;

598



18 options.numObj = numObj;

19 options.numExtra = numExtra;

20 options.maxGen = gen; % max generation

21 if ini == 0;

22 % population initialization

23 options.initfun = {@initpop,sprintf('optresult%d.txt',nArchi)};

24 end

25 options.useParallel = useParallel;

26 options.poolsize = numProc;

27

28 %% INPUTS FROM ARCHITECTURES

29 [...

30 options.numVar,... % number of design variables

31 options.numCons,... % number of constraints

32 options.lb,... % lower bound of x

33 options.ub,... % upper bound of x

34 options.objfun,...

35 options.vartype,...

36 ] = Architecture(nArchi);

37

38 %% Optimization

39 result = nsga2(options,nArchi,m); % begin the optimization!

1 function var = varlimit(var, lb, ub)

2 % Function: var = varlimit(var, lb, ub)

3 % Description: Limit the variables in [lb, ub].

4 %

5 % LSSSSWC, NWPU

6 % Revision: 1.0 Data: 2011-04-20

7 %*************************************************************************

8

9 numVar = length(var);

10 for i = 1:numVar

11 if( var(i) < lb(i) )

12 var(i) = lb(i);

13 elseif( var(i) > ub(i) )

14 var(i) = ub(i);

15 end

16 end

1 function opt = verifyOpt(opt)

2 % Function: opt = verifyOpt(opt)
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3 % Description: Verify the optimization model.

4 % LSSSSWC, NWPU

5 % Revision: 1.1 Data: 2011-07-15

6 %*************************************************************************

7

8

9 %*************************************************************************

10 % popsize

11 %*************************************************************************

12 if ( mod(opt.popsize, 2) ~= 0 )

13 warning('NSGA2:PopSizeError',...

14 'The population size shoud be even number!%d => %d',...

15 opt.popsize, opt.popsize+1);

16 opt.popsize = opt.popsize + 1;

17 end

18

19 %*************************************************************************

20 % lb, ub

21 %*************************************************************************

22 if( length(opt.lb)~=opt.numVar | | length(opt.lb)~=opt.numVar )

23 error('NSGA2:OptModelError',...

24 strcat('The numbers of lower and upper bounds(%d,%d)',...

25 'should be equal to the design variable number(%d)!'), ...

26 length(opt.ub), length(opt.lb), opt.numVar);

27 end

28

29 %*************************************************************************

30 % vartype

31 %*************************************************************************

32 if( length(opt.vartype) ~= opt.numVar )

33 warning('NSGA2:OptModelWarning',...

34 strcat('Design variables'' data type error! All the type',...

35 ' is set to REAL coding (vartype=1)!'));

36 opt.vartype = ones(1, opt.numVar);

37 end

38

39 %*************************************************************************

40 % nameObj, nameVar, nameCons

41 %*************************************************************************

42 if( ~iscell(opt.nameObj) | | ~iscell(opt.nameVar) | | ~iscell(opt.nameCons))

43 error('NSGA2:OptModelError',...

44 strcat('The names of objectives, design variables or',...

45 'constraints should be specified in cell array,',...

46 'for example, {''obj1'',''obj2''}'));

47 end

48

49 if( (~isempty(opt.nameObj) && length(opt.nameObj)~=opt.numObj) | | ...

50 (~isempty(opt.nameVar) && length(opt.nameVar)~=opt.numVar) | | ...

51 (~isempty(opt.nameCons) && length(opt.nameCons)~=opt.numCons))
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52 error('NSGA2:OptModelError',...

53 strcat('All names of objectives, design variables or',...

54 ' constraints should be specified, if one is specified!'));

55 end

56

57 %*************************************************************************

58 % useparallel

59 %*************************************************************************

60 if( ~ischar(opt.useParallel) | | ...

61 isempty( find(strcmpi(opt.useParallel, {'yes', 'no'}))) )

62 error('NSGA2:OptParamError', 'useParallel can be only "yes" or "no"!');

63 end

64

65 %*************************************************************************

66 % R-NSGA-II parameters

67 %*************************************************************************

68 % refPoints

69 if( ~isempty(opt.refPoints) && size(opt.refPoints,2)~=opt.numObj)

70 error('NSGA2:OptParamError',...

71 'The reference points has the format refPoints(nPoint, numObj)!');

72 end

73 % refWeight

74 if( ~isempty(opt.refPoints) && ~isempty(opt.refWeight) &&...

75 length(opt.refWeight)~=opt.numObj)

76 error('NSGA2:OptParamError',...

77 strcat('The weight factor vector used in R-NSGA-II must',...

78 'has the length of numObj!'));

79 end
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[432] Tétrault, P.-A., Numerical Prediction of the Interference Drag of a Streamlined
Strut Intersecting a Surface in Transonic Flow. PhD thesis, Virginia Polytechnic
Institute and State University, 2000.

[433] The Boeing Company, “Sparse Optimal Control Software (SOCS).” Avail-
able online http://www.boeing.com/boeing/phantom/socs/capabilities.page?

accessed 07.07.2014, 2014.

[434] The Standish Group, “The chaos report 1994,” tech. rep., The Standish Group,
1995.

[435] The Tauri Group, “Suborbital reusable vehicles: A 10-year forecast of market
demand,” tech. rep., The Tauri Group, 2012.

[436] The University of Edinburgh 2014, “FLITE3D: Software for aero-
dynamics.” Available online https://www.epcc.ed.ac.uk/projects-portfolio/

flite3d-software-aerodynamics accessed 08.16.2014, 2014.

[437] The Willis Law Firm, “Aviation engines.” Available online http://www.

helicoptercrashes.com/aviation-engines accessed 07.27.2014, 2014.

[438] Thomas, V. K. and Mavris, D. N., “Non-optimal configuration selection during
conceptual design,” in 11th AIAA/ISSMO Multidisciplinary Analysis and Optimiza-
tion Conference, 2006.

[439] Thrash, T. A. andMcAlister, P. R., “Future markets and economics of suborbital
space: Can it reach orbit?,” in Space 2004 Conference and Exhibit, 2004.

630

http://www.terrafugia.com/aircraft/transition
http://www.terrafugia.com/aircraft/transition
http://www.terrafugia.com/tf-x
http://www.boeing.com/boeing/phantom/socs/capabilities.page?
https://www.epcc.ed.ac.uk/projects-portfolio/flite3d-software-aerodynamics
https://www.epcc.ed.ac.uk/projects-portfolio/flite3d-software-aerodynamics
http://www.helicoptercrashes.com/aviation-engines
http://www.helicoptercrashes.com/aviation-engines


[440] Tieu, B., Kropp, J., and Lozzi, N., “The unmanned space vehicle cost model -
past, present, and future,” in AIAA Space 2000 Conference & Exposition, 2000.

[441] Torenbeek, E., “Synthesis of subsonic airplane design,” tech. rep., Delft University,
1996.

[442] Torenbeek, E., Synthesis of Subsonic Airplane Design. Delft University Press, 1982.

[443] Trivailo, O., Sippel, M., and Sekercioglu, Y. A., “Review of hardware cost esti-
mation methods, models and tools applied to early phases of space mission planning,”
Progress in Aerospace Sciences, vol. 53, pp. 1 – 17, 2012.

[444] Tumer, I. and Bajwa, A., “Learning about how aircraft engines work and fail,” in
35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1999.

[445] Turchi, P., Propulsion Techniques, Action and Reaction. Library of Congress
Cataloging-in-Publication Data, 1998.

[446] Ulrich, K. T., Design: creation of artifacts in society. Pontifica Press, 2006.

[447] U.S. Department of Transportation - Federal Aviation Administration,
“Airworthiness certification.” Available online http://www.faa.gov/aircraft/air_
cert/airworthiness_certification/ accessed 10.15.2014, 2014.

[448] U.S. Department of Transportation - Federal Aviation Administration,
“FAA regulations.” Available online http://www.faa.gov/regulations_policies/
faa_regulations/ accessed 10.15.2014, 2014.

[449] U.S. Department of Transportation - Federal Aviation Administra-
tion, “Light-sport aircraft.” Available online http://www.faa.gov/aircraft/gen_

av/light_sport/ accessed 10.15.2014, 2014.

[450] van Wijk, J., “The value of visualization,” in IEEE Visualization 2005, pp. 79 – 86,
2005.

[451] Vanderplaats, G. N., Multidiscipline Design Optimization. Vanderplaats Research
& Development, Inc., 2007.

[452] Vardaro, M. J., “LeMessurier stands tall: A case study in professional ethics,” tech.
rep., AIA Trust, 2013.

[453] Vasigh, B., Taleghani, R., and Jenkins, D., Aircraft Finance, Strategies for Man-
aging Capital Costs in a Turbulent Industry. J. Ross Publishing, 2012.

[454] Villeneuve, F., A Method for Concept and Technology Exploration of Aerospace
Architectures. PhD thesis, Georgia Institute of Technology, 2007.

[455] Villeneuve, F. and Mavris, D. N., “A new method of architecture selection for
launch vehicles,” in AIAA 13th International Space Planes and Hypersonics Systems
and Technologies, 2005.

[456] Vinciguerra, T., “Flying cars: An idea whose time has never come.” Avail-
able online http://www.nytimes.com/2009/04/12/weekinreview/12vinciguerra.
html?_r=0 accessed 10.14.2014, 2009.

631

http://www.faa.gov/aircraft/air_cert/airworthiness_certification/
http://www.faa.gov/aircraft/air_cert/airworthiness_certification/
http://www.faa.gov/regulations_policies/faa_regulations/
http://www.faa.gov/regulations_policies/faa_regulations/
http://www.faa.gov/aircraft/gen_av/light_sport/
http://www.faa.gov/aircraft/gen_av/light_sport/
http://www.nytimes.com/2009/04/12/weekinreview/12vinciguerra.html?_r=0
http://www.nytimes.com/2009/04/12/weekinreview/12vinciguerra.html?_r=0


[457] Virgin Galactic, “SpaceShipTwo: An introductory guide for payload users,” tech.
rep., Virgin Galactic, 2013.

[458] Virgin Galactic, “These are the vehicles that will take you to space.” Available
online http://www.ainonline.com/aviation-news/business-aviation/2014-

10-14/new-gulfstreams-deliver-more-range-and-cabin-comfort accessed
03.03.2016, 2014.

[459] Virgin Galactic, “Virgin Galactic - booking.” Available online http://www.

virgingalactic.com/booking/ accessed 05.08.2014, 2014.

[460] Virgin Galactic, “Virgin galactic - our vehicles.” Available online
http://www.virgingalactic.com/human-spaceflight/our-vehicles/ accessed
01.11.2016, 2014.

[461] Virgin Galactic, “SpaceShipTwo.” Available online http://virgingalactic.

com/assets/uploads/2014/11/VG_PUG_WEB004_2013061.pdf accessed 09.15.2015,
2015.

[462] Virgin Galactic, “These are the vehicles that will take you to space.” Avail-
able online http://www.virgingalactic.com/human-spaceflight/our-vehicles/
accessed 03.03.2016, 2016.

[463] Vissepo, V. J., “Legal aspects of reusable launch vehicles,” Journal of Space Law,
vol. 31, pp. 165 – 217, 2005.

[464] Volovoi, V., “Safety by design and flight certification.” University Lecture, 2008.

[465] von der Dunk, F. G., “The delimitation of outer space revisited, the role of national
space laws in the delimitation issue,” tech. rep., Space and Telecommunations Law
Program, 1998.

[466] Von Karman, T., “Turbulence and skin friction,” Journal of Aeronautical Sciences,
vol. 1, pp. 1 – 20, 1934.

[467] Wagner Research Company, “Space tourism industry forecast,” tech. rep., Space
Travel Consultants International, Ltd., 2014.

[468] Walton, M. A. and Hastings, D. E., “Applications of uncertainty analysis to
architecture selection of satellite systems,” Journal of Spacecraft and Rockets, vol. 41,
no. 1, pp. 75 – 84, 2004.

[469] Wang, P., Youn, B. D., Xi, Z., and Kloess, A., “Bayesian reliability analysis
with evolving, insufficient, and subjective data sets,” Journal of Mechanical Design,
vol. 131, no. 11, pp. 1 – 11, 2009.

[470] Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., and Brown,
M., “Health and economic burden of the projected obesity trends in the USA and the
UK,” The Lancet, vol. 378, no. 9793, pp. 815 – 825, 2011.

[471] Watson, I., Applying Case-Based Reasoning: Techniques for Enterprise Systems.
Morgan Kaufman Publishers, 1997.

632

http://www.ainonline.com/aviation-news/business-aviation/2014-10-14/new-gulfstreams-deliver-more-range-and-cabin-comfort
http://www.ainonline.com/aviation-news/business-aviation/2014-10-14/new-gulfstreams-deliver-more-range-and-cabin-comfort
http://www.virgingalactic.com/booking/
http://www.virgingalactic.com/booking/
http://www.virgingalactic.com/human-spaceflight/our-vehicles/
http://virgingalactic.com/assets/uploads/2014/11/VG_PUG_WEB004_2013061.pdf
http://virgingalactic.com/assets/uploads/2014/11/VG_PUG_WEB004_2013061.pdf
http://www.virgingalactic.com/human-spaceflight/our-vehicles/


[472] Webb, D. W., Williams, G. S., Tu, A. Q., Seibold, R. W., Baker, C. E., and
Young, R. M., “Market demand methodology for U.S. suborbital reusable launch
vehicle industry,” in SPACE Conferences and Exposition, 2014.

[473] Webber, D., “Tourism and developments issues and challenges,” tech. rep., NOVA
Science Publishers, 2013.

[474] Weikert, S., “ASTOS a major step to efficient trajectory simulation and optimiza-
tion.” Lecture, 2005.

[475] Weissinger, J., “The lift distribution of swept-back wings,” tech. rep., National
Advisory Committee for Aeronautics, 1947.

[476] Werner, J., “The design flaw that almost wiped out an NYC skyscraper.” Avail-
able online http://www.slate.com/blogs/the_eye/2014/04/17/the_citicorp_

tower_design_flaw_that_could_have_wiped_out_the_skyscraper.html accessed
03.03.2016, 2014.

[477] Wiegand, A., ASTOS User Manual. ASTOS Solutions GmbH, 2010.

[478] Wiegand, A. and Weikert, S., “Concept and performance simulation with AS-
TOS.” Lecture, 2012.

[479] Williams, S., “Does this company have a clear path to European anti-
obesity approval.” Available online http://www.fool.com/investing/general/

2013/09/21/does-this-company-have-a-clear-path-to-european-an.aspx ac-
cessed 11.11.2014, 2013.

[480] Wilson, B. J., “APEX: Travelers want better wifi, more internet access.”
Available online http://airwaysnews.com/blog/2014/10/22/passengers-want-

better-wifi-more-internet-access-says-report/ accessed 03.03.2015, 2015.

[481] Windhorst, R., “Minimum heating re-entry trajectories for advanced hypersonic
launch vehicles,” Master’s thesis, School of Engineering, Santa Clara University, 1996.

[482] Wolter, D., Common Security in Outer Space and International Law. United Na-
tions Institute for Disarmament Research, United Nations, 2006.

[483] World Health Organization, “Travel by air: health considerations.” Avail-
able online http://whqlibdoc.who.int/publications/2005/9241580364_chap2.

pdf accessed 11.10.2014, 2007.

[484] X Prize Foundation, “Ansari X Prize.” Available online http://space.xprize.

org/ansari-x-prize accessed 04.18.2014, 2011.

[485] Yoon, K. P. and Hwang, C.-L., Multiple Attribute Decision Making: An Introduc-
tion. Sage University Paper, 1947.

[486] YouGov, “Expense and security checks most common airplane gripes.” Available
online https://today.yougov.com/news/2012/08/31/expense-and-security-

checks-most-common-airplane-g/ accessed 07.14.2015, 2012.

633

http://www.slate.com/blogs/the_eye/2014/04/17/the_citicorp_tower_design_flaw_that_could_have_wiped_out_the_skyscraper.html
http://www.slate.com/blogs/the_eye/2014/04/17/the_citicorp_tower_design_flaw_that_could_have_wiped_out_the_skyscraper.html
http://www.fool.com/investing/general/2013/09/21/does-this-company-have-a-clear-path-to-european-an.aspx
http://www.fool.com/investing/general/2013/09/21/does-this-company-have-a-clear-path-to-european-an.aspx
http://airwaysnews.com/blog/2014/10/22/passengers-want-better-wifi-more-internet-access-says-report/
http://airwaysnews.com/blog/2014/10/22/passengers-want-better-wifi-more-internet-access-says-report/
http://whqlibdoc.who.int/publications/ 2005/9241580364_chap2.pdf
http://whqlibdoc.who.int/publications/ 2005/9241580364_chap2.pdf
http://space.xprize.org/ansari-x-prize
http://space.xprize.org/ansari-x-prize
https://today.yougov.com/news/2012/08/31/expense-and-security-checks-most-common-airplane-g/
https://today.yougov.com/news/2012/08/31/expense-and-security-checks-most-common-airplane-g/


[487] Young, D. and Olds, J., “Responsive Access Small Cargo Affordable Launch (RAS-
CAL) independent performance evaluation,” in AIAA/CIRA 13th International Space
Planes and Hypersonics Systems and Technologies, 2005.

[488] Young, D. A., An innovative methodology for allocating reliability and cost in a
lunar exploration architecture. PhD thesis, Georgia Institute of Technology, 2007.

[489] Younossi, O., Arena, M., Moore, R. M., Lorell, M., Mason, J., andGraser,
J. C., “Military jet engine acquisition: Technology basics and cost-estimating method-
ology,” tech. rep., RAND Corporation, 2002.

[490] Yu, X., “Vortex lattice methods.” University Lecture, 1998.

[491] Zadeh, L. A., “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338 – 353,
1965.

[492] Zakaria, N., Nasrum, N., Abu, J., and Jusoh, A., “The advantages, potentials
and safety of VTOL suborbital space tourism operations,” in 5th International Asso-
ciation for the Advancement of Space Safety, 2011.

[493] Zandbergen, B., “Propulsion system cost data.” Available online http:

//www.lr.tudelft.nl/en/organisation/departments/space-engineering/

space-systems-engineering/expertise-areas/space-propulsion/design-of-

elements/cost/ accessed 03.10.2015, 2003.

[494] Zandbergen, B., “Mass data for solid propellant rocket motors.” Avail-
able online http://www.lr.tudelft.nl/en/organisation/departments/

space-engineering/space-systems-engineering/expertise-areas/space-

propulsion/system-design/analyze-candidates/dry-mass-estimation/

chemical-systems/srm-mass-data/ accessed 03.03.2015, 2005.

[495] Zhang, X., Huang, G. H., Chan, C., Liu, Z., and Lin, Q., “A fuzzy-robust
stochastic multiobjective programming approach for petroleum waste management
planning,” Applied Mathematical Modelling, vol. 34, pp. 2778 – 2788, 2010.

[496] Zhang, X., Huang, G. H., and Nie, X., “Robust stochastic fuzzy possibilistic
programming for environmental decision making under uncertainty,” Science of the
Total Environment, vol. 408, pp. 192 – 201, 2009.

[497] Zimmermann, H. J., “Fuzzy programming and linear programming with several
objective functions,” Fuzzy Sets and Systems, vol. 1, pp. 45 – 55, 1978.

[498] Zwicky, F., Morphological Method of Analysis and Construction. New York, Wiley-
Interscience, 1948.

[499] Zwicky, F., Discovery, Invention, Research - Through the Morphological Approach.
Toronto: The Macmillan Company, 1969.

[500] Zwicky, F. andWilson, A., New Methods of Thought and Procedure: Contributions
to the Symposium on Methodologies. Springer, 1967.

634

http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/design-of-elements/cost/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/design-of-elements/cost/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/design-of-elements/cost/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/design-of-elements/cost/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/system-design/analyze-candidates/dry-mass-estimation/chemical-systems/srm-mass-data/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/system-design/analyze-candidates/dry-mass-estimation/chemical-systems/srm-mass-data/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/system-design/analyze-candidates/dry-mass-estimation/chemical-systems/srm-mass-data/
http://www.lr.tudelft.nl/en/organisation/departments/space-engineering/space-systems-engineering/expertise-areas/space-propulsion/system-design/analyze-candidates/dry-mass-estimation/chemical-systems/srm-mass-data/


VITA

Christopher Pierre Frank was born September 15, 1990 in Forbach, France. He gradu-

ated with a Bachelor degree in Aerospace from ISAE-Supaéro and was awarded the Jean
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