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Abstract

This paper does a systematic review of the possible design space for cloud-hosted applications that may have

changing resource requirements that need to be supported through dynamic service level agreements (SLAs). The

fundamental SLA functions are reviewed: Admission Control, Monitoring, SLA Evaluation, and SLA Enforcement – a

classic autonomic control cycle. This is followed by an investigation into possible application requirements and SLA

enforcement mechanisms. We then identify five basic Load Types that a dynamic SLA system must manage: Best

Effort, Throttled, Load Migration, Preemption and Spare Capacity. The key to meeting application SLA requirements

under changing surge conditions is to also manage the spare surge capacity. The use of this surge capacity could be

managed by one of several identified load migration policies. A more detailed SLA architecture is presented that

discusses specific SLA components. This is done in the context of the OpenStack since it is open source with a known

architecture. Based on this SLA architecture, a research and development plan is presented wherein fundamental

issues are identified that need to be resolved through research and experimentation. Based on successful outcomes,

further developments are considered in the plan to produce a complete, end-to-end dynamic SLA capability.

Executing on this plan will take significant resources and organization. The NSF Center for Cloud and Autonomic

Computing is one possible avenue for pursuing these efforts. Given the growing importance of cloud performance

management in the wider marketplace, the cloud community would be well-served to coordinate cloud SLA

development across organizations such as the IEEE, Open Grid Forum, and the TeleManagement Forum.
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Introduction
Service level agreements (SLAs) are used to define the

necessary Quality of Service (QoS) for an application or

user in an IT system. SLAs originally were defined as a

contractual document between IT resource providers and

consumers that involved cost analysis and pricing, along

with financial incentives or penalties. For performance-

critical applications, though, such contractual SLAs are

not sufficient. Performance-critical applications require

SLAs whereby the computing infrastructure monitors,

detects, and responds to changes in demand to ensure that

application-level processing requirements are met. Fur-

thermore, changes in demand may be caused not just by

new applications being instantiated, but also by changes

in demand by the running applications themselves. Some
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applications may have unpredictable changes in their pro-

cessing demands and associated service levels. Even if

changes in demand are somewhat predictable, it would

still be desirable for the cloud service provider to be able to

accommodate such changes without having to renegotiate

a new SLA.

Hence, dynamic SLAs are required. This will be partic-

ularly necessary in computing cloud that are, by nature,

multi-tenant environments where many applications may

have changing service level requirements. What we want

to avoid is forcing users to over-specify their service level

requirements in order to satisfy future changes in their

demand. If users were allowed to do so, then applications

would simply acquire excess resource capacity and then let

it sit idle the vast majority of the time. This would effec-

tively fragment the cloud capacity and reduce the overall

utilization.

By providing dynamic SLAs, we are attempting to satisfy

competing goals: (a) ensure that every running application
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component meets its deadlines, while (b) enabling the

cloud scheduler to maximize resource utilization, thereby

“doing more with less”. By maximizing resource uti-

lization, and understanding the possible aggregate surge

requirements, it should be possible to do better overall

capacity planning. That is to say, it should be possible to

better determine the minimum amount of excessive surge

capacity that needs to be available at any time. Doing so

should help minimize the necessary overall cloud size, and

reduce all associated costs, e.g., footprint, power, HVAC,

staffing, etc.

Much work in cloud SLAs involves enforcing non-

functional properties, such as compute node locality

(zones), long-term storage preservation, and storage

redundancy. For this white paper, however, we will focus

just on performance metrics. Addressing non-functional

properties will be addressed at a later time.

As noted already, the SLA mechanisms presented and

discussed here will not be contractual in nature. That is to

say, they will not involve two human organizations enter-

ing into an agreement for specific service levels between a

provider and a consumer that carry penalties and rewards.

We will also be considering performance management

from both the consumer’s and provider’s perspective. We

will not be considering one-sided goals, such as optimiz-

ing revenue. While many optimization problems, such

as optimizing revenue [1], can be NP-hard requiring

heuristic solutions, they do not address the performance

requirements of individual user applications.

Hence, we will be developing technical, machine-

enforceable SLA mechanisms, that a cloud provider

can offer as a service, and a consumer can choose to

use or not. These machine-enforceable mechanisms for

dynamic SLAs will provide a probabilistic guarantee for

performance. The goal is to provide the user with a

reasonable expectation that performance requirements

will be met, through mechanisms that are reasonable

for the provider to implement and support for multiple

applications.

In this paper, we begin by reviewing the fundamental

functions necessary for SLAs and their enforcement. We

then survey and investigate the possible design choices

and implementation options. We conclude with a draft

research and development for SLAs in OpenStack. While

this particular R&D plan targets OpenStack as the test

vehicle for planned work, any research results should be

widely applicable to other cloud software stacks.

Fundamental SLA functions
Dynamic SLAs are actually an instance of an autonomic

control cycle: monitoring, analysis, planning, execution –

whereby systems can monitor themselves and maintain

a target behavior [2]. In the context of dynamic SLAs,

however, we will use the following four major functions:

• Admission Control.When a user wishes to

instantiate a new application, the user must specify

the required performance parameters for each of the
application components to be instantiated. The cloud

provider must then make a determination whether if

sufficient capacity is available to adequately service
the new application once started. An application

component may consist of multiple servers that
communicate in a specific topology. Hence, the cloud

provider must determine if there are adequate cycles,

memory space, disk space, and disk bandwidth for
each application server, along with adequate network

bandwidth among them. If there is, then the

application can be started.
• Monitoring – Metrics Collection. While

applications are running, the cloud infrastructure and
the applications must be monitored. Monitoring must

be as unobtrusive as possible, but must also capture

essential data to determine if performance goals are
being met. One or more monitoring systems could be

used to collect data from different levels of the entire

computing infrastructure. In a cloud environment,
this could include monitoring the physical servers,

hypervisors, the guest OSs, and the virtual
applications themselves. While different monitoring

systems could be used, all collected information must

be collated and made available for the next functions.
• SLA Evaluation.Once an SLA has been established,

the application has been started, and various

performance metrics are being collected, there must
be an agent that compares the SLA targets with the

observed metrics, and determines when an

application’s performance has gone, or is going, “out
of spec”. For contractual SLAs, this could be termed

an SLA violation, but for dynamic SLAs, this more
accurately denotes that simply a threshold has been

crossed requiring a response. A key issue for this

agent is how to map the SLA metrics to the
observable metrics. SLA metrics may be expressed in

units that are meaningful at the application level and

a semantic gap may exist between the metrics that
are actually being collected.

• SLA Enforcement – Violation Response. An
important issue for SLA Enforcement is whether an

application’s resource demands are expected to be

static throughout its execution, or whether they can
vary in a predictable or unpredictable manner. If an

application’s demands are expected to be relatively

constant, then static throttling methods can be used.
However, if an application’s demands can vary,

perhaps unpredictably, then it’s behavior must be
monitored to determine if it has gone “out of spec”.

For a performance-critical application, the primary

goal of a machine-enforceable, dynamic SLA is to
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pro-actively bring the application back into

compliance. This requires some type of “control

knobs” on the infrastructure or on the application
itself.

SLA design options and approaches
Within each one of these fundamental SLA functions,

there are further technical design issues that must be

addressed. For each there are usually several implementa-

tion options with different challenges and trade-offs. We

now put these fundamental functions into a general SLA

architecture, as illustrated in Figure 1, and discuss them in

more depth.

Admission control

Admission Control must maintain a total cloud capacity

document, fromwhich the currently available capacity can

be derived or maintained. A total cloud capacity docu-

ment must capture the capacity of all resources within a

cloud data center, in addition to their network topology.

Hence, in the most general case, all servers must be iden-

tified, along with their clock speeds, amounts of memory,

local disk, and total network bandwidth. These resources

must be placed in a network topology that includes routers

and switches that have their own performance capabili-

ties. Such network topologies are typically represented as

a graph.

Likewise when a user submits an application for admis-

sion, the user must submit a service level request that

captures the desired performance requirements that could

be in a similar graph structure. Clearly for many applica-

tions, these resource graph structures may be simple, such

as an individual server, or have a well-known, stereotypical

structure. An example of this might be simply streaming a

movie to a viewer. Some applications, however, may have

detailed, highly structured, and even hierarchical SLA

requests.

When the Admission Control agent receives a service

request, it must consult the available capacity document

and determine if the service request can be supported by

the available capacity. When expressing network capac-

ity and requirements as graph structures, this entails a

graph embedding or graph matching problem. This is a

well-known problem encountered in many other areas of

computer science and IT. Timberwolf [3], for example, is

a successful tool for doing die layout for integrated cir-

cuits consisting of millions of transistors and the wire runs

that must connect them. Metis [4] is graph partitioning

tool that might be applicable in this application domain.

Also, a Network Calculus [5] could be used to provide

a theoretical framework from which to model resource

allocations and service guarantees. In computer networks,

the concept of service curves are used that determines

the relationship between arriving and departing network

flows.

Admission control could, however, be greatly simpli-

fied by avoiding explicit graph presentations. The network

switches connecting servers in a data center are often

arranged in a hierarchy to achieve scalable bandwidth.

That is to say, the switches are arranged in a fat tree

where more bandwidth is available higher up in the tree,

thereby avoiding tree saturation for network flows closer

to the root, or backbone, switches.Under such conditions,

the topology of the switch fabric becomes less important.

Hence, we could ensure that the switch fabric does not

become saturated simply by managing the aggregate BW

demand in to and out of each of the servers. In this case,

Admission Control only requires that each application

Figure 1 A General SLA Architecture.
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process is allocated where there are sufficient cycles and

network bandwidth at the network interfaces.

While this addresses the issue of network bandwidth,

an application may also have network latency constraints

between pairs of servers. In this case, then Admission

Control must ensure that the servers are allocated “close”

to one another by some metric, e.g., the number of net-

work hops.While using a graph structure to represent sets

of latency requirements is most general, latency require-

ments could be addressed by evaluating such a distance

metric for simple pair-wise allocations.

In terms of existing standards,WS-Agreement [6] could

be used to represent SLA service terms. WS-Agreement

defines a domain-agnostic protocol whereby agreements

can be established. This means that WS-Agreement can

be used with different term languages as needed by the

application domain. Hence, the challenge here is to define

a term language that could capture the necessary appli-

cation component performance characteristics, be they

graph structures or simpler sums. WS-Agreement pro-

vides a formal definition for SLA representations and

defines a single round of offer-accept message exchange.

The provider offers an initial template of possible ser-

vice terms. A service consumer replies with a completed

template. The provider must then accept or reject the

offer. There are a growing number of implementations for

WS-Agreement, along with some valuable lessons learned

[7].

Building on this, WS-Agreement Negotiation [8]

defines a protocol for multiple rounds of negotiation,

whereby a tree of offers and counter-offers is built. The

tree root is the initial offer. Tree branches represent differ-

ent sequences of offers and counter-offers, where service

terms are adjusted in an effort to findmutually satisfactory

terms.

It is actually very important that tools like WS-Agree-

ment are domain-agnostic, since application domains can

have widely different terms that are relevant to possible

SLAs. Nae et al. [9], for example, present an interest-

ing collection of SLA terminology and parameters for

Massively Multiplayer Online Games that are of interest

to providers and users. Given that many other domains

will have similar but different sets of parameters, we

can conclude that a flexible, pluggable architecture for

SLA monitoring and reporting of performance metrics is

highly preferable. While it might be possible to define a

very basic SLA nomenclature, taxonomy and terminology,

some degree of extension and customization will have to

be allowed.

An outstanding issue here that we do not directly

address in this paper is how to map high-level sys-

tem requirements into lower-level metrics that can be

measured and managed. Work has been done in this

area, however. As part of the SLA@SOI project [10], the

EVEREST Reasoning Engine translates SLAAbstract Syn-

tax Objects into events in an Event Calculus [11]. This

Event Calculus specifies patterns of events that should,

or should not, occur within a specified period of time.

The Detecting SLA Violation infrastructure (DeSVi) also

enables mappings between SLA parameters and resource

metrics by utilizing mapping rules with domain spe-

cific languages [12]. Similarly, the Quality Assurance

for Distributed Services project (Qu4DS) manages the

translation of SLA parameters by profiling the service

provider [13]. Further work in managing the transla-

tion of application-oriented SLA requirements needs to

be addressed as future work. For near-term experimen-

tal purposes, such translations can be managed by hand,

since we will be focusing on the effectiveness of the SLA

enforcement mechanisms themselves.

Another key challenge here is how to represent

and manage the notion of encumbered surge capacity

for dynamic SLAs. Many applications and application

domains can be managed by static SLAs. A prime exam-

ple here is simply streaming a video to a consumer. The

consumer wants to watch the video with smooth perfor-

mance, i.e., no pauses or drop-outs. The resource alloca-

tion necessary to accomplish this is known and constant.

In multi-tenant clouds, however, with complex applica-

tions that will have varying computational needs, the

challenge is how to dynamically meet these requirements

within the context of an existing agreement, without

having to resort to a heavy weight renegotiation and re-

instantiation process. In a very real sense, a dynamic SLA

is a quintessential use of the on-demand resources and

flexibility offered by cloud computing.

This notion of encumbered surge capacity is also key for

overall capacitymanagement. Many dedicated systems are

currently sized based on their expected worst case behav-

ior rather than their average case behavior. This means

there is dedicated excess capacity only to be used dur-

ing worst case surge processing requirements. Having this

dedicated excess capacity drives the overall system size,

and total cost of ownership and operation, e.g., footprint,

power, staffing, etc. One of the value propositions for

cloud computing is the available of on-demand resources.

That is to say, a cloud should be able to offer a joint pool of

spare capacity to all tenant applications. Hence, a smaller

pool of excess capacity should be needed, rather than

having dedicated excess capacity for each application.

An alternative tomaintaining surge capacity, however, is

simply to allow resource overbooking [14]. An application’s

usage patterns for CPU, memory use, storage, and net-

working can be profiled and factored into the model for

overbooking to achieve optimal packing of applications

into a given set of virtualized resources. That is to say,

the expected usage patterns can be used as an aid for the

opportunistic packing of different types of applications
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(or differently-behaving instances of the same application)

onto resources in order to achieve balanced overall uti-

lization of the resources over all types of utilization within

the application portfolio. As a simple example, I/O inten-

sive applicationsmight be bookedwith cpu-intensive ones

that do not require a lot of I/O, to achieve an optimal

overbooking. As reported in [14], though, a combination

of modeling, monitoring, and prediction techniques must

be used to avoid exceeding the total infrastructure capac-

ity. In any case, application scheduling schemes should be

sufficiently flexible to recognize performance degradation

in a given metric that may come from overuse reported

in another metric, and the SLA control scheme must be

sufficiently powerful to allow for dynamic control over

application types that can be mixed for optimal overall

usage.

Once the cloud manager has determined that there is

sufficient capacity to host the new application compo-

nent – by whatever means used – the user can actually

submit the component VMs, along with the SLA docu-

ment, to the Cloud Scheduler. At this point, the Cloud

Scheduler informs Admission Control that the compo-

nents are actually being instantiated. This “inks the deal”.

The SLA is not in force until this point. The Scheduler

starts the VMs on one or more Compute Nodes, and

informs the SLA Manager of the new processes and the

load that is expected. The SLA Manager may inform one

or more Monitoring Agents on each Compute Node of

metrics that need to be collected.

Monitoring

The actual monitoring could be done by a number of dif-

ferent existing tool sets. These include Ceilometer [15],

Ganglia [16], Nagios [17], and Zenoss [18], to name a few.

We will not review the details of these tools here. Rather,

we identify key design alternatives that can determine the

effectiveness and responsiveness of any SLA enforcement

mechanism.

These design alternatives involvewhat, where, and when

to monitor. The Monitoring Agents could monitor at dif-

ferent levels in the system stack on each Compute Node:

• Host OS/Hypervisor. Here the Monitoring Agent

could capture all traditional operating system metrics
at the hardware level, e.g., percentage CPU time per

VM, memory usage, disk I/0, network I/0, etc.
• Guest OS.Monitoring here enables the Agent to

collect operating system information specific to one

VM.
• Application Level. As opposed to the previous two

levels, this requires that the application be modified

to provide a monitoring interface whereby
application-level performance metrics can be

obtained.

After this data is initially captured, it can be used at dif-

ferent times. All of the monitored data is archived in a

database that can be queried by the SLA Manager. The

Manager can periodically apply a rule set from the SLA

information, provided by the Cloud Scheduler when VMs

were instantiated, to determine if an SLA is being vio-

lated, or requires any corrective action. Given the amount

of data in the database, the SLA Manager could also do

long-term trending analyses that could not be identified

from single metrics or events. However, rather than wait-

ing for information to be deposited in the database, the

SLA Manager could also set stream triggers as close to

the meters themselves in the Monitoring Agents. These

stream triggers are lightweight, state-less (or very low

state) triggers that are easy to evaluate. Hence, they could

provide the SLAManager with an earlier notification of a

potential problem.

These monitoring options, however, are all reactive –

they only react to SLA violations after the fact. It is

possible to do more pro-active SLA enforcement by mon-

itoring further up in an application’s processing chain.

By doing so, the conditions that cause an SLA viola-

tion might be detectable before the violation actually

occurs.

Consider that an application consists of an Input Buffer

that partitions work units over a number of servers,

as illustrated in Figure 2. After processing, these work

units are collected by a Collector that monitors the

how long it took each work unit to get processed after

entering the Input Buffer. If work units are exceeding

the application’s latency requirement, additional servers

could be spun-up to process more work units and reduce

overall latency. This is reactive downstream monitoring

since the SLA Manager can only decide to add more

servers after latencies have exceeded some threshold.

However, if the depth of the Input Buffer were mon-

itored, then more pro-active SLA enforcement could

be done, where more servers could be added when

the buffer depth exceeds a threshold, but before the

work unit latency actually starts to exceed application

requirements.

Figure 2 also illustrates the fact that a large cloud

data center may require and be composed of multiple

SLA Managers to address issues of scalability. SLA Man-

agers could be distributed across the cloud infrastruc-

ture, and also the applications themselves. These man-

agers could communicate, or gossip, in a peer-to-peer

fashion, be organized into hierarchies, or into other use-

ful structures. This notion of distributed SLA managers

implies that there must also be distributed SLAmodels by

which overall system behavior, and individual application

behavior, can be managed. The development and evalu-

ation of such distributed SLA models is an outstanding

goal.
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Figure 2 Distributed Monitoring of Different System Components.

SLA evaluation

Deciding when a server has crossed a load threshold is

not a simple numerical comparison. A server’s load at any

one instant in time may fluctuate about a fixed thresh-

old value. Basing decisions on each fluctuation could

cause load migrations and VM instantiations that involve

more overhead than the benefits realized. To prevent such

behavior, more robust statistical methods are typically

employed. Such methods include Median Absolute Devi-

ation, Interquartile Range, and Iterative Local Regression.

In addition to dampening out some of the “high fre-

quency” noise in system measurements, some amount of

hysteresis should be built into SLA evaluations. This will

prevent the SLA Manager from trashing between differ-

ent enforcement mechanisms, such as load migration and

load consolidation, in a cascading chain reaction.

We also note that if the surge probability of each applica-

tion component is known, then the joint probability of any

process on the server going into SLA violation could be

determined. This joint probability could possibly be used

to determine the best amount of spare capacity to main-

tain on a server, in order to minimize overall application

impact due to load migration.

Developing such predictive models of system behavior

is a common application of machine learning techniques.

While machine learning has been a central topic in Arti-

ficial Intelligence for decades, the use of reinforcement

learning in autonomic applications has been getting

renewed attention [19]. A reinforcement learning system

is essentially exposed to a sequence of state-action pairs

to converge on a model of system behavior and optimal

management policies. While reinforcement learning can

be used “in the absence of explicit systemmodels, with lit-

tle or no domain-specific initial knowledge”,model-based

reinforcement learning can shorten the training process,

but can also be constrained by the defined model. Thus,

reinforcement learning is commonly recognized as having

the following issues:

• The number of observed state-action pairs needed to

converge on optimal policies may be huge,
• When in an initial training period, the results might

be very poor, which can be very problematic for use

on an operational system,
• Some number of exploration actions need to be taken

that may produce sub-optimal results in the
short-term, but enable better results in the long-term,

and
• Real-world applications must not exhibit incomplete

observability – that is to say, the RL system must be

able to monitor all system metrics that are relevant to

understanding and controlling the target system’s
behavior.

To address some of these concerns, hybrid reinforce-

ment algorithms have been developed to shorten the

training process and improve the overall quality of system

management [20]. Reinforcement learning has also been

recently applied to cloud computing [21]. In this work, a

reinforcement learning algorithm was used to configure

sets of VMs for their (1) number of virtual cpus, (2) num-

ber scheduler credits, and (3) the available memory capac-

ity to optimize the response time and throughput when

servicing a canonical, three-tieredweb application. Efforts

are also being made to commercialize this technology.

Numenta’s Grok architecture, for example, uses a bio-

inspired cortical learning algorithm implemented using a

modified Hadoop engine that is hosted on Amazon EC2

[22]. This provides automated streaming analytics that

can be used for system behavior prediction and anomaly

detection.

While such approaches to managine cloud-based SLAs

are intriguing, much work needs to be done to estab-

lish how well this would work in practical applica-

tions. Such predictive modeling could be coupled with

monitoring system behavior from widely different parts

of the cloud and its applications. Learning algorithms
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could also be used to do on-the-fly load classifica-

tion and comparison to established system models.

The SLA mechanisms should also be able to deal

with inaccurate or untruthful estimations of applica-

tion requirements being provided by users [23]. Ulti-

mately, the ability to serve both behavior prediction and

anomaly detection is an advantage that should also be

investigated.

SLA enforcement

Once it has been determined that an SLA in not in spec,

what can the system do to bring it back into spec? We

discuss some options here.

• Notification or Call-back. This is the simplest
option. The SLA Manager simply notifies an operator

who manually changes application parameters to
reduce resource demand. While this is not a

machine-enforceable mechanism, it will nonetheless

be a practical alternative in many situations.
• Throttling. Throttling mechanisms exist in modern

operating systems that can limit the amount of

resources a process can consume. Under throttling,
applications have no dynamic options and an SLA

violation is not possible. This is suitable for

applications that have very stable service level
requirements, or where being throttled will not

adversely affect application goals. (An example is
processing a work load “over night” where there is

significant lee-way in how long the processing

actually takes.)
• LoadMigration. If a server becomes overloaded by

any metric, e.g., cpu load, memory usage, disk IO or

network IO, this can be remedied by migrating some
of the load to other servers with more available

capacity. This can be done by either process migration
or live VM migration. Clearly the overhead of either

migration technique would limit how quickly service

levels could be effectively re-established. Process
migration may take less time since a smaller memory

volume may have to be transferred, but migrating

entire VMs allows sets of processes to be transferred.
While migration can be done without interaction

with the running application, the application is
“down” during the migration. Hence, migration itself

may precipitate, or contribute to, an SLA violation.

Some clouds currently support live VM migration.
• Acquiring Additional Resources On-Demand.

Rather than moving load, the offending application

could be notified (through a call-back) that it needs
to acquire more resources on demand. This requires

that the application know how to incorporate more
servers into its processing chain, i.e., how to partition

its workload across more servers. That is to say, the

application developer must design the application to

be able to incorporate additional servers.
• SLA Renegotiation. As a final option, SLA

renegotiation could be done. This is obviously a

heavy-weight option of last choice since it could

potentially entail restarting parts of the application
on newly acquired resources.

While these are all options for managing SLAs, in this

paper we are focusing on those mechanisms whereby

dynamic SLAs can be managed. Users must have confi-

dence that if they don’t over-specify their average SLA

requirements, the infrastructure will be able to gracefully

respond to changes in requirements. This fundamental

requirement affects how SLA must be defined, evalu-

ated, and enforced. SLAs must be defined in a term lan-

guage whereby the relevant terms and parameters can be

expressed. These terms and parameters must be evaluated

with regards to the available enforcement mechanisms.

For the SLA mechanisms that have been identified, we

now can define the following Server Load Types that can

be used by the Cloud Scheduler and SLA Manager to

enforce SLAs (as illustrated in Figure 3):

Type I Service Loads are simply Best Effort, i.e., applica-

tion VMs that are allocated using existing methods with

no SLAs. As a practical matter, not all user applications

may need or want an SLA, and the cloud provider may

not want to require that all tenants must specify an SLA.

These processes may change their processing, memory,

disk and network demand whenever they want. All ten-

ant processes on a particular server, however, but will be

constrained by the physical capabilities of that server. If

a server becomes resource-bound in any way (compute,

memory, disk, or network), then all processes on that

server will simply slow down, depending on their profile

of resource demands.

Type II Server Loads are strictly throttled. As noted

before, this is appropriate for those application processes

that have known and stable resource requirements. By

knowing those requirements, the cloud scheduler can co-

locate such processes and maximize server utilization.

Since each process is throttled, each is guaranteed a mini-

mum level of service.

Type IlI Server Loads depend on live migration to rem-

edy an SLA violation. By identifying those processes that

can be migrated, the cloud scheduler can better manage

server utilization. When a server exceeds a load thresh-

old (by some metric), either a process or entire VM can be

migrated to another server that has sufficient capacity to

reduce the load on the local server. However, some pro-

cesses or VMs may tolerate migration better than others.
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Figure 3 Server Load Types.

Since migration may take a non-trivial amount of time,

migration itself may contribute to, or even cause, an SLA

violation.

Hence, we can partition Type III Server Loads into

Type IIIa and Type IIIb Server Loads that can, and can

not, tolerate migration, respectively. For Type lIIb Server

Loads that are less tolerant of live migration, a cloud

scheduler could delay or reduce the number of necessary

migrations by maintaining some amount of spare capacity

on servers withmigratable loads. The amount of this spare

capacity could be managed to perhaps hit the “sweet spot”

in the trade-off between wasting capacity and avoiding

(or delaying) migration. Consider the policy whereby the

cloud scheduler ensures there is enough spare capacity on

a server such that any one application process can surge

without triggering a migration. This can be expressed

as:

k−1∑

i=0

NormLoadi + max0≤i≤k−1(SurgeLoadi) ≤ MaxLoad

By ensuring that enough capacity is available for the

maximum surge requirements of any process on that

server, then any one process can surge without trigger-

ing migration. If multiple processes surge, then migration

would be triggered at some time. (For this reason, it is

important when application processes may surge for cor-

related reasons.) Of course, enough spare capacity could

be maintained to enable j < k processes to surge simulta-

neously, but this raises the amount of excess capacity that

is maintained and its associated costs.

To limit the amount of excess capacity that is wasted,

less than max(SurgeLoadi) spare capacity could be

maintained. In this case, migration may not be avoid-

able for any one process, but at least migration would be

delayed, depending on how long or how bad a surge is. The

number of migrations over time might also be reduced.

For Type III SLAs (both a and b), it must be decided

which process to migrate and to which target server. Such

decisions must be codified as migration policy. Different

migration policies can be defined that attempt to opti-

mize different system or application metrics, sometimes

defined as an objective function. For commercial operators

that are concerned about power consumption and server

utilization, this can be a monetized objective function

based on the cost of power and the cost of SLA violations.

This has been called the Dynamic VM Consolidation

problem [24].

For performance-sensitive applications, however, mi-

gration policies could be based on a variety of different

metrics to choose which process or VM to migrate:

• Fastest Migration Time (least time needed)
• Application Value (priority)
• Application Availability
• Maximum Load Reduction
• Load Reduction to Just Below Maximum
• Highest Correlation with Causing Excessive Load

Also, managing applications with non-stationary work-

loads with dynamic SLAs represents a fundamental

autonomic control challenge. Given these applications’

dynamic behavior, simple threshold comparisons will

clearly be inappropriate. Methods will be needed for

building hysteresis into the decisionmechanisms. This has

been investigated using multi-size sliding window algo-

rithms whereby the mean intermigration time can be

maximized [25].

It is clear that effectively using load migration for Type

IIIa and IIIb SLAs will require extensive experimentation

and experience.Which processes are appropriate for Type
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IIla and IlIb SLAs, whichmigration policies work the best,

and how to manage their parameters, such as local surge

capacity, are all open questions.

Rather than simply wasting the spare capacity to delay or

reduce the number of live migrations, however, a similar

technique to that used in [26] could be used to back-fill

the spare capacity with preemptible processes or VMs.

These are called Type IV Server Loads. Type IV Server

Loads can be preempted without warning, and possibly

restarted somewhere else at a later time, without signif-

icantly affecting the user’s overall requirements. Thus,

when a Type IIIb load goes into a surge, Type IV loads

resident on the same physical server can be terminated,

on-demand, to delay or reduce any necessary migrations.

Finally, Type V Server Loads simply represent spare

capacity that is available on-demand, for both live migra-

tions and for new VM instantiations. The amount of this

spare capacity depends on the aggregate surge require-

ments of all applications.

Overall, the goal is to ensure that all application pro-

cesses can meet their processing requirements, while

minimizing the resources that must be maintained. This

means strictly managing the excess capacity that must be

maintained for surge requirements. It also means man-

aging the spare capacity that is fragmented across all

servers that are not fully loaded, and the total spare capac-

ity available within the cloud as a whole. Theoretically,

server load could be managed completely dynamically by

live migration and on-demand instantiation, but stating

Service Levels gives the cloud scheduler valuable informa-

tion concerning the expected demands. Ideally this should

enable the cloud scheduler to minimize the number of live

migrations and instantiations that are necessary.

An SLA research and development plan
Having reviewed the fundamental SLA functions, and

identified the available SLA enforcement mechanisms for

OpenStack, along with the resulting Load Types, we now

put all of this together into an architecture and a develop-

ment plan.

An SLA architecture for OpenStack

Figure 4 presents an integrated SLA architecture for

OpenStack. The User begins by sending an SLA request to

the Nova-AC (Admission Control) service, using the stan-

dard WS-Agreement format. When Nova-AC is booted,

it is initialized with the Total Capacity Document for this

cloud. This document specifies the cloud’s current total

capacity, e.g., number and type of servers, amount of stor-

age, network bandwidth, etc. The exact format of this

document needs to be defined, but presumably it could

follow the SLA template that the Nova-AC provides to

potential users as part of the WS-Agreement process.

Based on the incoming SLA request, Nova-AC consults

its database of allocated and available capacity. According

to the discussion in Section ‘Admission control’, an admis-

sion control decision could be made simply by identifying

a host where there is sufficient cycles and network band-

width available, according to the requested Load Type

(without having to maintain more complicated, graphi-

cal representations). If multiple rounds of negotiation are

required, the WS-Agreement Negotiation [8] standard

defines how this can be done.

Once the User essentially has an “SLA offer”, the Vir-

tual Machine Image and the SLA are submitted through

the Nova-API to the Nova-Scheduler. Like all OpenStack

services, the Nova-API is designed using a configurable

Figure 4 An SLA Architecture for OpenStack.
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command pipeline. When booted, the command pipeline

can be configured with different pipeline stages to include

or omit different functionalities. To support SLAs, a new

SLA pipeline stage will be included. When any operation

involving an SLA is encountered, Nova-API will inform

Nova-AC of the change in resources being allocated or

released. It will likewise inform the SLA Manager of the

same changes.

When VMs are actually being allocated, the Nova-

Scheduler uses a Filter andWeight approach, as illustrated

in Figure 5. To choose the host on which to allocate a

VM, Nova-Scheduler first applies a set of filters to iden-

tify which hosts are possible candidates. A set of weighting

functions are then applied to rank the candidates and

identify the best one. This design allows OpenStack to

support many different scheduling paradigms, depending

on the filters and weighting functions available. Open-

Stack currently support several basic scheduling algo-

rithms, e.g., randomplacement, random placement within

an availability zone, and placement on the least loaded

host. To support SLAs, additional SLA Filtering and

Weighting functions will need to be written that makes

the correct selections based on the SLA Load Type and

capacity requested.

Once instantiated on a host compute node, amonitoring

agent will have to be used to acquire the necessary per-

formance information. Ceilometer is the OpenStackmon-

itoring service under development. This uses the same

RabbitMQ [27] instance used by Nova to collect all per-

formance information and deposit it in a database. Other

monitoring tools, besides Ceilometer, could be used.

Zenoss, for instance, is much more mature than Ceilome-

ter and offers many ZenPacks that can be installed to

monitor many different parts of a system software stack,

e.g., Apache Tomcat servers, PostgresSQL databases, and

Java SNMP, just to name a few examples. Nonetheless, for

initial development and evaluation purpose, Ceilometer

could be used completely adequate.

Based on the Load Type requested, the SLA Manager

will look for specific performance metrics from different

host servers. For Type II throttled work loads, a mecha-

nism, such as cgroups [28] in Linux, could be used. Linux

cgroups allow hierarchical control groups to be defined.

Each control group is associated with a limit on the

amount of resources that can be consumed on that server,

e.g., the percentage of cpu time, memory, disk IO, and

network IO. These limits are actually enforced by tools

such as Linux CPUsets [29]. User processes are assigned

to different control groups based on the limit of resources

they are allowed to consume. The operating system then

enforces those limits when scheduling a process to run. To

use this mechanism, the SLA Manager will have to man-

age the available cgroups on a specific servers, and which

VM processes are assigned to them.

For Type IIla and IlIb work loads, the SLA Manager

will need to employ live migration to enforce policy.

Live VM migration can generally be done transparently

to the running applications. However, the time required

for a live migration depends on the amount of mem-

ory currently in use by a VM, Mem, the number of

open file descriptors (i.e., open files and network connec-

tions), nOpenConn, and the available network bandwidth,

BW, between the current host and the migration target

host.

Tmigration = O(nOpenConn + (Mem/BW ))

Further refinements to this relationship can be made. The

performance costs of live migration can also depend on

the internal details of the cloud implementation, such as

the type of hypervisor used, as well as the storage and

memory architectures [30]. A truly flexible SLA control

Figure 5 The Nova-Scheduler Filter and Weight Design.
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architecture will allow for selection of the application

parameters for which the cost model should be tuned.

Even if live migration is otherwise transparent to the

application, this time delay may precipitate, or contribute

to, an SLA violation. This underscores the importance

of accurately evaluating Tmigration that applications may

encounter, and how it may affect their SLAs. It may also be

the case that CPU-intensive applications may be easier to

migrate than ones that are highly inter-connected. Hence,

a key goal will be to develop an accurate and predictive

model of live migration that takes in all of these possible

factors, and can be used to support different migration

policies.

Finally we note that using the SLA architecture

described here to effectively manage cloud resources will

require a certain population of Load Types. That is to say,

processes and VMs of each Load Type must be repre-

sented in some number and distribution whereby a cloud

scheduler can effectively use them to manage the overall

cloud utilization, while ensuring that individual applica-

tion performance requirements are beingmet. This will be

especially true for Load Types III and IV where back-fill

scheduling is used to improve utilization. Experimentally

determining workable Load Type populations will only be

possible once there is a significant SLA architecture in

place.

A research and development plan

With these design options and goals in mind, we now

present a draft development and test plan. Clearly this

SLA system will depend on Linux cgroups and live migra-

tion in OpenStack. cgroups are an established capability,

so that is considered to be low risk. Live migration in

OpenStack, however, is still maturing.

Live migration has been demonstrated in the Open-

Stack Folsom release, using KVM with libvert on ubuntu

10.09 or 12.04. Live migration using Xen has also been

reported. The initial use for live migration in Open-

Stack, however, is not load balancing or SLA enforce-

ment. Rather it will be used for VM evacuation. This

is for basic server maintenance purposes, where all run-

ning VMs can be moved off of a server to allow soft-

ware upgrades, hardware replacement, or other routine

maintenance functions to be done. Server evacuation is

currently intended to be manually managed by cloud

administrators.

Given that the basic live migration capability has been

demonstrated in OpenStack (since Folsom) for manual

maintenance purposes, it should be possible to add the

SLA “intelligence” whereby live migration can be used

for performance management. Hence, we defined the

sequence of tasks for the Research and Development Plan

given below. This plan starts by building and evaluat-

ing just the core SLA enforcement mechanisms (Tasks 1

and 2). We must first show that these mechanisms are

effective in providing reasonable guarantees of application

performance. Once that is established, we can then con-

sider building the rest of the supporting SLAmanagement

tools, i.e., Tasks 3, 4, 5 and 6. Proposing specific sched-

ule milestones and budget are outside the scope of this

paper.

A Research and Development Plan

1. Build Core Enforcement Infrastructure

• Install Ceilometer on existing OpenStack cloud
• Build a basic SLA Manager by enhancing the

Ceilometer client

– Periodically queries database for specific
metrics

– Applies rule sets to detect specific
performance conditions on a per

application basis

• Demonstrate process throttling with cgroups
• Demonstrate processes and VMs live migration

2. Demonstrate SLAManager Capabilities

• Build/construct synthetic/manufactured work
loads

– Provide work loads programmed to go

through variable changes in demand

– Build work load scenarios relevant to
various application domains

• Develop and evaluate migration policies

– Assess migration parameters: spare

capacity, migration time, load
reduction/correlation, etc.

– Evaluate how well live migration can be
managed (inter-migration time)

– Develop accurate, predictive model(s) of

migration overhead
– Compare process migration vs. VM

migration

• Evaluate overhead, responsiveness, and stability

– How much overhead does monitoring

incur to produce useful information
– Evaluate how quickly can the system

respond to and maintain SLA targets

– Evaluate responsiveness vs. stability
trade-off

3. Develop Nova-AC Service

• Develop commonWS-Agreement term
language
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• Develop Total Cloud Capacity Document
• Develop Allocated Capacity Document
• Investigate semantic mapping from

application-level requirements to

infrastructure-level metrics

4. Develop Nova-API Pipeline Stage

• Establish interaction with Nova-AC and SLA
Manager when instantiating application VMs

– Enable accurate tracking of allocated and

available capacity
– Enable live migration managed by SLA

Manager

5. Develop Nova-Scheduler SLA Functions

• Develop the filtering and weighting functions to

identify the best host for relevant Load Types

6. Demonstrate End-to-End Integrations

• Develop or acquire non-trivial “operational-like”
work loads

• Manage SLAs for multiple apps simultaneously
• Demonstrate that individual application

requirements can be met while managing

overall cloud requirements, e.g., utilization
• Evaluate minimal population of Load Types

(number and distribution) to effectively manage

overall cloud resources

7. Develop and Evaluate Learning Algorithms

• Identify all relevant system metrics necessary

understand and control system behavior
• Evaluate the trade-off between the length of

training period versus eventual effectiveness
• Develop and evaluate methods for enabling

exploration actions that do not adversely affect

operational systems

8. Develop and Evaluate Distributed SLAManagers

• Evaluate P2P and hierarchical organizations
• Develop and evalaute distributed SLA models,

ultimately including learning algorithms
• Evaluate overhead, responsiveness, stability of

distributed SLA methods

Summary and recommendations
This paper has reviewed the basic requirements for

providing dynamic service-level agreements, and devel-

oped a draft plan for implementing and evaluating

such dynamic SLAs in OpenStack. This SLA archi-

tecture does require that applications understand what

their own resource requirements are. For some exist-

ing applications, this information may be difficult to

acquire. When an application is deployed on dedi-

cated hardware, there may have been no provision for

determining the actual requirements of each applica-

tion component. As long as an application component

never became an egregious bottleneck, everything was

fine.

The proposed SLA architecture could, in fact, be used

to determine a application’s actual requirements. Without

specifying or enforcing SLAs in a separate test environ-

ment, the monitoring infrastructure could simply cat-

alog the application’s behavior over time and various

“operational” conditions. Once known, the application

could be moved to an SLA-controlled infrastructure with

appropriate SLAs in force. In any case, any further work

should leverage other relevant projects in the overall cloud

marketplace. The NSF Center for Cloud and Autonomic

Computing has a number of projects concerning cloud

SLAs [31].

The European Union has reported the results of a num-

ber of research projects, ranging from business-level SLAs

to scientific SLAs [32]. These include the OPTIMIS [33],

CONTRAIL [34], and SLA@SOI [10] projects. Given the

wide interest in SLAs and the recognition that SLAs

will be critical for a wide segment of the cloud market-

place, the TeleManagement Forum (TMF) has started an

SLA working group [35] to develop industry best prac-

tices and standards, using the OGF WS-Agreement and

WS-Agreement Negotiation as a starting point [36]. With

these developments, the OpenStack community might

eventually incorporate support for some form of dynamic

SLAs.
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