
Journal of the Association for Information Systems Journal of the Association for Information Systems

Volume 7 Issue 11 Article 31

11-2006

A Design Theory for Secure Information Systems Design Methods A Design Theory for Secure Information Systems Design Methods

Juhani Heikka
University of Oulu

Richard Baskerville
Georgia State University

Mikko Siponen
University of Oulu, Finland, mikko.t.siponen@jyu.fi

Follow this and additional works at: https://aisel.aisnet.org/jais

Recommended Citation Recommended Citation
Heikka, Juhani; Baskerville, Richard; and Siponen, Mikko (2006) "A Design Theory for Secure Information
Systems Design Methods," Journal of the Association for Information Systems, 7(11), .
DOI: 10.17705/1jais.00107
Available at: https://aisel.aisnet.org/jais/vol7/iss11/31

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Journal of the Association for Information Systems by an authorized administrator of AIS Electronic
Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/jais
https://aisel.aisnet.org/jais/vol7
https://aisel.aisnet.org/jais/vol7/iss11
https://aisel.aisnet.org/jais/vol7/iss11/31
https://aisel.aisnet.org/jais?utm_source=aisel.aisnet.org%2Fjais%2Fvol7%2Fiss11%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/jais/vol7/iss11/31?utm_source=aisel.aisnet.org%2Fjais%2Fvol7%2Fiss11%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 725

 Research Article
A Design Theory for Secure Information Systems Design

MethodsTPF

1
FPT

Mikko Siponen

Department of Information Processing Science,
University of Oulu, Finland,
Mikko.T.siponen@oulu.fi

Richard Baskerville

Georgia State University,
baskerville@gsu.edu

Juhani Heikka

Department of Information Processing Science,
University of Oulu, Finland,

Abstract

Many alternative methods for designing secure information systems (SIS) have been
proposed to ensure system security. However, within all the literature on SIS methods,
there exists little theoretically grounded work that addresses the fundamental
requirements and goals of SIS design. This paper first uses design theory to develop a
SIS design theory framework that defines six requirements for SIS design methods, and
second, shows how known SIS design methods fail to satisfy these requirements. Third,
the paper describes a SIS design method that does address these requirements and
reports two empirical studies that demonstrate the validity of the proposed framework.

Introduction

The increased utilization of information systems (IS) and the Internet has brought
security issues to the fore. To ensure that systems are secured, researchers have
constructed various SIS design methods (see review articles by Baskerville, 1993;
Dhillon and Backhouse, 2001; Siponen, 2005a). But reviewers find a fundamental
problem with these SIS design methods: they are theoretically underdeveloped
(Baskerville, 1992 p. 410; Willison, 2002 p. 15), “lacking serious research” (Baskerville,
1994 p. 385), or are glutted with “nonsense” (Olnes, 1994 p. 628). As the design theory

TP

1
PT Kalle Lyytinen was the Senior Accepting editor of this paper. This paper was submitted on

December 3P

rd
P 2002 and went through 2 revisions.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

726

approach has proved successful in prescribing better design processes for emergent
classes of systems (Walls, et al. 2004), reframing development of SIS design methods
as a design science activity is a promising way to advance past this problem. TPF

2
FPT

The purpose of this paper is to describe the development of a fundamental SIS design
theory à la Walls et al. (1992). This theory prescribes six requirements, called meta-
requirements, for SIS design methods. Through an analysis of the extent to which prior
SIS design methods address the six meta-requirements, we learn that none of the
existing methods address all six. The SIS design theory enables us to advance a SIS
design method, called Meta-notation, which does address the six SIS meta-
requirements, and we are able to validate this solution (Meta-notation) through action
research. These results contribute to the IS research community with a novel and
promising basis for SIS design methods thinking, and the successful action research
intervention demonstrates the practical value of the resulting SIS design methods for
practitioners.

The paper is organized as follows. The second section discusses the design theory for
SIS design methods with six meta-requirements and reviews the extent to which extant
SIS design methods meet these requirements. The third section describes the
background of the new solution, and the fourth section illustrates how it can be applied
to an Information Systems Development (ISD) method. In the fifth section, we describe
the research approach used. The sixth section presents the preliminary clinical fieldwork
findings, while the seventh section presents the action research findings. Section eight is
a discussion, including the implications of the study. Finally, the last section concludes
with a summary of the key findings.
SIS Design Theory And SIS Design Method Meta-Requirements

Walls et al. (1992) envisaged design theories as prescriptive (how to design) and goal-
oriented; thus they differ from predictive or explanatory natural science theories. An IS
design theory is divided into two aspects; design and product, and consists of a set of
meta-requirements, which are derived from relevant kernel or reference theories (Figure
1). The meta-requirements also inform meta-design principles. A set of testable design
product hypotheses is used to test whether the meta-design meets the meta-
requirements. In turn, the testable design process hypotheses are utilized to verify
whether the design method results in an artifact that is consistent with the meta-design.
Both positivistic and interpretive research methods could be used to test these
hypotheses (Markus et al., 2002).

TP

2
PT Other areas have encountered dissimilar, but fundamental problems in proposed design theory solutions,

such as Executive Information Systems (Walls et al., 1992), Decision Support Systems (Kasper, 1996),
Knowledge Management (Markus et al., 2002) and Web-based Education (Jones et al., 2003). Working
from Simon’s (1996) Science of the Artificial, Walls et al. (1992) provided the seminal expression of
design theory for IS.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 727

Figure 1. An IS design theory (adapted from Walls et al., 1992) that elaborates the
design method into process and notation. and the design hypotheses into two
areas: (a) validity of the method meta-requirements; (b) the design method fidelity
to the method meta-design principles.

SIS Design Theory: An Elaboration

Design theory adapts well to different contexts, but for good fit it requires elaboration or
modification in other instances (Kasper, 1996; Markus et al., 2002). We found this to be
the case in SIS design, and we elaborated the design theory framework by Walls et al.
(1992) in two ways. First, we divided the design method into separate process and
notation aspects, following similar critical work on ISD methods (Hirschheim and Klein,
1992; Gause and Weinberg, 1989). This elaboration is useful because our aims included
the development of concepts for creating situated SIS design methods. Second,
because our focus is on the design process aspect, we divided the design meta-
methodological hypotheses into two areas: (a) validity of the method meta-
requirements, TPF

3
FPT and (b) fidelity of the SIS design method to the meta-design principles.

TP

3
PT The a-type of hypotheses means that a SIS design method incorporating meta-requirements is assumed to

be more successful in practice than a SIS design method that does not have such features. This success is
evaluated in terms of practitioners’ preferences. So, for example, with respect to modeling support (see MR
2 below), practitioners in general are assumed to prefer SIS design methods that offer modeling support at
three levels of abstraction over a SIS that does not provide such support.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

728

We will focus on the design process aspect of design theory. The product aspect, as
described by Walls et al. (1992), is most applicable in generic, off-the-shelf software.
Such design products must themselves be examined for generality, and thus themselves
draw upon kernel theories and meta-principles. However, our focus is on the most
widespread SIS design problem: SIS for a particular organization’s system or setting. In
such design settings, the security requirements of the product (SIS or software) are
highly situated, and are determined mainly by the client. Recognizing this, we draw the
meta-principles into the design process aspect and concentrate only on the design
aspect in our study, represented by the right-hand part of Figure 1.

The design process aspect guides the construction of the product. According to Walls et
al. (1992), a design method, based on the idea of the IS design theory, can focus on any
stage of ISD (e.g., requirements analysis, implementation, testing). Next, we describe six
SIS design method meta-requirements and respective kernel theories, starting from the
fundamental kernel theory.

SIS Design Theory: Fundamental Kernel Theory

Clements (1977) developed a theory of SIS based on a model of the relationship
between a set of system objects (each with a loss value), a set of threats (each with a
likelihood), and a set of IS security features (each with a resistance). The relationship
involved the association of potential intrusion activities with each relevant member of the
set of system objects (Figure 2).

T1

T2

T3

T4

Tn

O1

O2

O3

Om

T O
Figure 2. The threat-object relationships and edges (adapted from Clements
1977).

These threat-object relations defined a set of edges T Bi BOBj B that represent the components
of insecurity or risk in systems. Security features provide a “firewall function” (Clements,
1977 p. 532) that resists penetration of any particular threat through to any particular
object. In a protected system, any TO edge is eliminated by inserting a feature to
establish a TF edge and an FO edge in place of the TO edge. Thus all edges are
prescribed in the forms T BiBF Bk B and FBkBOBj B that represent the insertion of security features
between threats and system objects. In a protected system, all edges T Bi BOBj B are
unprotected objects and contribute to the insecurity or vulnerability of the overall system
(Figure 3).

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 729

T1

T2

T3

T4

Tn

F1

F2

F3

Fl

O1

O2

O3

Om

T F O
Figure 3. Clements’ basic security system (adapted from Clements 1977).

Clements’ (1977) theory describes the basic relationships between threats and system
assets, and the intended role of designed controls or safeguards established to prevent
the effects of threats on assets. This is the fundamental theory aimed at describing the
heart of SIS design methods, that seeks to specify and deploy safeguards to prevent
losses due to threats. This theory provides the most basic set of assumptions among the
kernel theories employed in our design theory.

While Clements’ (1977) theory is sufficient as a basis for the goals of any SIS design
method, it provides for no features beyond the goals in terms of the basic security threat-
feature-object triplets. In order to address this issue, we draw from a number of other
theories. These other theories are used as kernel theories in developing the
requirements for a SIS design method to integrate with other ISD methods. We will
describe each of these additional kernel theories in the next section.

Table 1: Components of the design aspect and respective SIS features.
The
components
of the design
aspect

SIS features

1. SIS design
method meta-
requirements

1.0 A SIS design methods must develop security features that resist the
impact of threats on system objects.
1.1 Organizations’ security requirements must be the point of departure in
the development of SIS.
1.2 SIS design methods should provide abstract representation and
operations for specifying the three essential elements of secure systems -
threats, objects, and security features (safeguards or controls) - for the three
levels of abstraction: organizational, conceptual and technical.
1.3 SIS design methods should support its integration into normal ISD
methods.
1.4 SIS design methods should maximize the autonomy of developers.
1.5 SIS design methods should be adaptable to forthcoming ISD methods.

2. Kernel
theories

2.0 Clements’ Threat-Feature-Object Model
2.1 Hume’s law “no ought from (an) is”.
2.2 Metamodels of IS.
2.3 The theory of developmental duality, Ockham's razor and the thesis of
ontological dependencies.
2.4 Autonomy in philosophy.
2.5 Emergence: autopoesis and self-reproduction.

3. SIS design
method meta-
design
principles

3.0 SIS design methods should incorporate security features that resist the
impact of threats on system objects.
3.1 SIS design methods must explicitly and thoroughly explore and account
for the customer’s unique security requirements and needs.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

730

3.2 SIS design methods should provide modeling support at the three levels
of ISD (organizational, conceptual and technical) for abstract representation
and operations for specifying the three essential elements of secure
systems: threats, objects, and security features (safeguards or controls)..
3.3 Any SIS design method must provide for its integration into ISD methods.
3.4 SIS design methods should be adaptable to the ISD methods selected
by developers according to their own judgment and preferences.
3.5 SIS design methods should be adaptable to forthcoming ISD methods.

4. Testable SIS
design method
hypotheses: (a)
validity of the
method meta-
requirements;
(b) fidelity of the
design method
to meta-design
principles.

4.0 (a) Successful SIS design methods will include a process to protect IS
security objects from IS security threats through IS security features.
4.1 (a) Successful SIS design methods include processes and notation for
extensively acquiring and documenting security requirements. (b) It is
feasible and practicable to start the SIS development with the customers’
requirements.
4.2 (a) Successful SIS design methods offer modeling support at the three
levels of ISD (organizational, conceptual and technical); (b) It is feasible and
practicable to develop a SIS design method to offer modeling support for
threats, objects and security features at the three levels of abstraction.
4.3 (a) The more consistent and concordant the processes and notation of a
SIS design method is with common ISD methods, the more successful the
SIS design method will be in practice. (b) It is feasible and practicable to
embed SIS design methods into ISD methods.
4.4 (a) The more consistent and concordant with a wide variety of ISD
methods the processes and notation of a SIS design method is, the more
successful the SIS design method will be in organizations. (b) It is feasible
and practicable for developers to adopt the SIS design methods without
constraining their ability to adopt appropriate ISD methods.
4.5 (a) The more the processes and notation of a SIS design method adapts
to unpredicted new ISD methods, the more successful the SIS design
method will be in organizations. (b) It is feasible and practicable for
developers to adopt the SIS design methods to innovative new ISD methods.

SIS Design Theory: Meta-Requirements

We will discuss these six meta-requirements (MR) below, and relate them to the kernel
theories, meta-design principles and the two major sets of hypotheses. Our aim is not to
present the exhaustive set of MRs for SIS design methods, but rather to first outline
some essential MRs for SIS and to demonstrate the applicability of design theory in
SIS. TPF

4
FPT

MR 0: SIS design methods must develop security features that resist the impact of
threats on system objects.
This essential MR provides the distinctive goal that distinguishes the SIS design
methods from other systems development methods with which the SIS design methods
must interoperate. SIS design methods must provide mechanisms to identify security

TP

4
PT These six meta-requirements were gleaned from the literature because they operate across most SIS

design methods. For example, another meta-requirement is support for user participation. However, very
few security methods are explicitly participative. Many of these more narrowly focused requirements can
be subsumed under MR 3 in the model “A SIS design method should support its integration into normal
ISD methods.”

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 731

safeguards, which are IS security features that protect IS security objects from threats in
various ways (Baskerville, 1989). In a certain sense, this is the “identity” meta-
requirement that makes the outcome of the design a SIS design method as opposed to
any other form of ISD method.
Kernel Theory: Clements’ theory (described in the previous section).
Meta-Design Principle: SIS design methods should incorporate security features that
resist the impact of threats on system objects.
Hypotheses: (a) Successful SIS design methods include a process to protect IS
security objects from IS security threats through IS security features.

MR 1: Development of SIS originates in a customer’s security requirements.
A customer’s security requirements must be the point of departure when developing SIS.
Organizations must ensure that valuable assets (objects) are correctly protected from
possible security threats through the introduction of IS security features. Since
organizations’ assets, business objectives, and operating environments differ, their IS
security requirements, ultimately, differ (Baskerville, 1993). Certainly external factors,
such as legislation, will have impacts on the development of SIS; however, the customer
ultimately decides to what extent any external factors will matter in the development. (In
an opposing situation, the customer has little or no power to decide the SIS
requirement.)
Kernel Theory: Hume’s thesis of “no ought from (an) is” (Hume’s law) means it is
illogical to infer “ought” (what an organization should do in terms of security) from “is”
(what it is possible to do in terms of what security solutions exist or what others have
done to secure their systems). Using Hume’s terms, “is”-matters include facts and
observations, such as certain security solutions known to have worked. Such
knowledge is based on available evidence and situated in a certain environment, and
may be useful in the development of SIS. However, such facts (or “is”-matters) cannot
logically drive the design. Consequently, we should start the design with the
organizational security requirements.
Meta-Design Principle: SIS design methods must provide explicit and thorough support
for capturing and accounting for the customer’s unique security requirements and needs:
“What are the valuable assets in an organization that must be protected from IS security
threats by introduction of suitable security features?”
Hypotheses: (a) Successful SIS design methods include processes and notation for
extensively acquiring and documenting SIS requirements. (b) It is feasible and
practicable to start the SIS development with the customers’ requirements. In particular,
SIS design methods shortcut the requirements processes and lead the designer to
blindly implement certain predefined and generic security requirements.

MR 2: SIS design methods should provide abstract representation and operations
for specifying the three essential elements of secure systems - threats, objects,
and security features (safeguards or controls) - for the three levels of abstraction:
organizational, conceptual, and technical.
SIS design methods should offer modeling support to model at least threats, objects,
and security features for the three levels of IS. SIS design methods should not only
provide aid on certain development stages or aspects, but also offer modeling support to
model at least threats, objects, and security features at the three stages of ISD and SIS
development. While an ideal ISD or SIS design method should offer support for all three
domains, it does not mean that every ISD project will regard all three (e.g., developers
may skip one phase in one ISD project and another phase in another ISD project). MR 2

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

732

means that SIS design methods must provide support for these three stages, but not
necessarily prescribe that developers need to follow every phase in every project. TPF

5
FPT

Kernel Theory: Aside from the basic practical need for designing in the abstract, this
meta-requirement stems from research into IS metamodeling, which shows that IS can
be divided into three levels of abstraction: organizational, conceptual, and technical
(Iivari, 1989).
Meta-Design Principle: SIS design methods should provide modeling support at the
three levels of ISD (organizational, conceptual, and technical) for abstract representation
and operations to specify the three essential elements of secure systems: threats,
objects, and security features (safeguards or controls).
Hypotheses: (a) Successful SIS design methods offer modeling support at the three
levels of ISD (organizational, conceptual and technical); (b) It is feasible and practicable
to develop a SIS design method to offer modeling support for threats, objects, and
security features at the three levels of abstraction.

MR3: SIS design methods must be able to integrate to ISD.
Typically, SIS development and normal ISD have been separate streams of
development activities (Baskerville, 1992). However, in order to build security into new
systems, SIS design methods cannot operate independently of ISD methods. A SIS
design method should support its integration to ISD methods.
Kernel Theory: MR 3 arises from the theory of developmental duality, Ockham’s razor,
and the thesis of ontological dependencies. Developmental duality holds that the
separation of normal system development from SIS development inevitably leads to
conflicting goals and functional requirements (White and Dhillon, 2005). Separate SIS
design methods (i.e., those that cannot be integrated into normal IS development)
should be avoided if both system security and system functionality are to be effective
(Baskerville, 1992). The problem of developmental duality can be traced back to
Ockham’s razor, “Plurality should not be assumed without necessity” (Ockham, 1990 p.
93). Moreover, Niiniluoto’s (1999) thesis of ontological dependency makes the
integration of SIS and IS development a pragmatic necessity: If there were no IS, there
would be no pragmatic need for IS security. But developers can create an IS without
security. IS is an artifact (a human construct), and its security is ontologically dependent
on ISD for its existence.
Meta-Design Principle: Any SIS design method must provide for its integration into ISD
methods.
Hypotheses: (a) The more consistent and concordant the processes and notation of a
SIS design method are with common ISD methods, the more successful the SIS design
method will be in practice. (b) It is feasible and practicable to embed SIS design
methods into ISD methods. SIS design methods should not promote a deferral of
security considerations for treatment by separate SIS development phases after the IS
has been created.

MR 4: SIS design methods should enable the autonomy of developers.
According to their situation, developers frequently select from a "toolkit" of methods or
method fragments (Kumar and Welke, 1992; Slooten, 1996). For example, according to
their judgment of the problem settings, they might choose Spiral Modeling (Boehm,
1988) and Unified Modeling Language (Rumbaugh et al., 1999) for one project and

TP

5
PT In fact, MR 4 suggests that the developers should be able to freely to select those techniques, tools and

processes of ISD that they prefer to use in an ISD project.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 733

Extreme Programming (Beck, 1999) for the next. Developers should be able to address
SIS concerns with their preferred ISD methods, and SIS design methods should respect
developers’ autonomyTPF

6
FPT by enabling them to select the ISD methods they judge to be

correct for the setting. This autonomy extends to organizations that may wish to
standardize their in-house methods (including security). Failing MR 4 means requiring
developers to switch their traditional ISD methods or forcing them to learn and use
separate SIS design methods in addition to their normal methods. SIS design methods
meeting MR 4 become more accessible and less costly for organizations. TPF

7
FPT

Kernel Theory: MR 4 originates from the need to give proper respect to the autonomy
of humans, as recognized by Kant’s rule of human dignity, and by Rawls’ principle of
liberty (“liberty can be restricted only for the sake of liberty,” Kukathas and Pettit, 1990 p.
50). This autonomy has the practical effect of improving the feasibility of SIS design for
more organizations, giving this MR both ethical and practical value.
Meta-Design Principle: SIS design methods should be adaptable to those ISD methods
that developers have selected according to their own judgments and preferences.
Hypotheses: (a) The more that the processes and notation of a SIS design method are
consistent and concordant with a wide variety of ISD methods, the more the SIS design
method will be successful in organizations. (b) It is feasible and practicable for
developers to adopt the SIS design methods without constraining their ability to adopt
appropriate ISD methods. More specifically, SIS design methods meeting MR 4 would
make security methods available and feasible for more companies compared to SIS
design methods that do not meet MR 4.

MR 5: SIS design methods should be adaptable to forthcoming ISD methods.
MR 5 proceeds to a degree from MR 4. If a SIS design method does not take into
account the autonomy of developers, i.e., is not adaptable to the existing ISD methods,
then the SIS design method is unlikely to be adaptable to forthcoming ISD methods.
Kernel Theory: The kernel theory behind MR 5 is emergence theory, according to which
ISD methods are known to be emergent (Truex et al., 1999). Not only do new methods
spring up every now and then (Jayaratna, 1994), but in practice, methods are hardly
executed exactly the same way twice (Truex et al., 2000). It is difficult to predict this
emergence or to allow for a predefined universal SIS design method that will match
every ISD method and its permutations. Emergence is exemplified in agile or short-

TP

6
PT In philosophical literature, autonomy has an individualistic viewpoint. It means that people can decide

freely and rationally, free from any coercion or manipulation, what to do, or what ISD method to use. Here
we use the term in its plural form ‘autonomy of developers’ in a more collective sense, and by this we
recognize that the ISD method used in organizations is hardly autonomously (in the sense autonomy is
understood in philosophy) selected by individual developers. Rather the selection may be determined by
quality managers, partner organizations, other developers, by superiors in general, or by decisions at a team
level or division level, etc.

TP

7
PT One may argue that by appealing to autonomy, developers can ignore security issues in practice. This is a

risk that comes with autonomy: autonomy increases individual freedom with the result that more
responsibility is put on the shoulders of the individual (Hare, 1963). This “risk” encompasses any SIS
method in two ways. First, as in this paper, SIS methods can be viewed as tools (roughly speaking). This
means that developers of such tools try to ensure that the tools have certain features (the meta-requirements
in our case) without regulating the use of that tool in practice in too much detail. And second, even if
developers of the tools (SIS methods) regulate the use of the tool in great detail, nothing would stop the
practitioners from ignoring these regulations in practice.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

734

cycle-time methods that sometimes change and adapt from project to project
(Baskerville and Pries-Heje, 2004). SIS design methods currently emerge long after
their related ISD methods (Baskerville, 1993). MR 5 operates with an ideal goal of
integrating security quickly and effectively into each (existing, forthcoming and
unpredicted) version of an ISD method.
Meta-Design Principle: Successful SIS design methods should be adaptable to
forthcoming ISD methods.
Hypotheses. (a) The more the processes and notation of a SIS design method adapt to
unpredicted new ISD methods, the more successful the SIS design method will be in
organizations; (b) It is feasible and practicable for developers to adopt the SIS design
methods to innovative new ISD methods.

Analysis of existing SIS Design Methods

Based on our earlier review of SIS design methods (Baskerville, 1993; Siponen, 2005a,
2005b), we compiled the SIS design methods into a taxonomy and constructed a meta-
requirements analysis of these existing SIS design methods as summarized in Table 2.
MR 0 is not represented in the table or discussed below because it is definitional, in the
sense that all SIS methods must address this meta-requirement. That is, they must
contain a process, according to which security features are installed aimed at ensuring
that threats do not get at security objects. Methods that fail to meet MR 0 would not
qualify for discussion below. Beyond this, the table indicates the extent to which current
SIS design methods meet the other five meta-requirements specified by the design
theory above.

Table 2. The different SIS design methods. The sign – means that SIS design
methods do not meet the particular meta-requirement, while + indicates that SIS
design methods do meet the particular meta-requirement.

The different paradigms Examples/advocates

Method meta-
requirements (MR)

Mainstream methods MR
1

MR
2

MR
3

MR
4

MR
5

SIS Checklists: List the ideal
and generic protection means
that organizations should
implement

Wood et al. (1987) - - - - -

SIS Standards: Prescribes
authoritative and generic SIS
solutions for all organizations

BS 7799 (1993); GASSP
(1999); ITSEC (1990); OECD
(1996), ISF (2005); ISO/IEC
17799 (2005)

- - - - -

Integrative methods
Information / Database
Modeling Methods: Modeling
notations for expressing
security constraints based on
structured and object-oriented
paradigms

Smith (1989); Ellmer et al.
(1995); Pernul et al. (1998) + - - - -

Responsibility Methods:
Identification of workers’ role
responsibilities is key for
designing security in

Backhouse and Dhillon (1996);
Dhillon (1997); McDermott and
Fox (1999);Sindre and Opdahl
(2000)

+ - + - -

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 735

organizations

Business Process Security
Methods: Add security
constraints in the business
processes

Herrmann and Pernul (1999);
Röhm et al. (1998); Röhm and
Pernul (1998); Röhm et al.
(1999)

+ + - - -

The Security-Modified ISD
methods: These security
methods are influenced by
different IS development
methods

Baskerville (1988; 1989);
Booysen and Eloff (1995);
Hitchings (1995); James
(1996); Pottas and von Solms
(1995)

+

+
(onl
y
one
)

+ - -

Limitations of Mainstream SIS Methods

The mainstream methods are SIS checklists and SIS standards (Table 2).
MR 1: SIS checklists and standardsTPF

8
FPT (e.g., ISO/IEC17799, 2005) attempt to capture the

available SIS solutions and best SIS practices in checklists and standards (Baskerville,
1993; Siponen, 2001). The idea here is to promote authoritative and generic checklists
and standards that prescribe generic SIS requirements for all organizations (Siponen,
2005b). For example, ISO/IEC17799 (2005) proposes generic SIS principles that
“…apply to most organizations and in most environments” (BS ISO/IEC17799, 2005) In
the case of checklists and standards, the needs of organizations are replaced by ideal
protection requirements and techniques. Organizations are often driven to follow these
with little rationale. Consequently, for both SIS checklists and standards, this means that
the unique needs and problems of organizations are overlooked (e.g., Baskerville, 1988;
1993). Hence, Hypotheses 1(a) and 1(b) fail, and Principle 1 is not addressed:
Checklists and information security management standards do not meet MR 1.

MR 2: While SIS checklists and standards offer different principles for SIS, they do not
provide any modeling support (or means for conceptual modeling). Therefore, these SIS
methods do not offer modeling support to the extent that satisfies both Hypotheses 2(a)
and 2(b). As a consequence, Principle 2 is not addressed and MR 2 is not met.

MR 3, 4 and 5: All mainstream methods (SIS checklists and information security
management standards) are targeted for securing a completed IS. The mainstream
methods are stand-alone, separate methods, and operate, by definition, independently
of ISD methods. Baskerville (1993) and Siponen (2005b) point out that not only do these
SIS methods offer no guidance as to how IS developers can integrate them into ISD, but
also the methods are intended to be applied to already existing or completed systems.
Consequently, Hypotheses 3(a), 4(a), and 5(a) cannot succeed, and Principles 3, 4, and
5 are not addressed. The three meta-requirements are unmet. This means that these
SIS design methods are more suitable for securing existing, unsecured, and static
systems; and that they are not suitable for use for building new secure systems, or
emergent secure systems (Baskerville, 1993; Dhillon and Backhouse, 2001). To
summarize, none of the mainstream methods meet any of these five meta-requirements.

TP

8
PT One might argue that standards like ISO/IEC17799 are management standards. However, in practice,

standards may drive SIS design, as organizations have a need to ensure that their IS meet the criteria
presented by standards. Therefore, they are included in the analysis.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

736

Limitations of Integrative SIS Methods

To avoid the shortcomings of the mainstream methods, integrative SIS design methods
have been developed that coordinate, SIS design more closely with the social
organization, the essential ISD, or the organizational (business) goals. In Table 2, these
methods are classified in terms of different method families (Siponen, 2005a):
information modeling, responsibility modeling, business process modeling, and security-
modified ISD methods.

MR 0: As mentioned above, all SIS methods meet this requirement as the identity
requirement that qualifies them as SIS methods.

MR 1: Siponen (2005a) concludes that these integrative SIS design methods (the
security-modified IS development, responsibility modeling, information modeling, and
business process methods) take into consideration the fact that organizations may have
unique SIS requirements, and accordingly, propose different techniques to discover
these requirements. The security-modified ISD methods use requirements analysis,
influenced by ISD methods, to capture the organizations’ SIS requirements.
Responsibility methods model responsibilities in organizations, from which organization-
specific SIS requirements are derived. Therefore, both the security-modified ISD and
responsibility methods address MR 1. Similarly, information modeling methods offer
modeling notations for expressing SIS constraints, based on the organization’s unique
SIS requirements, and hence meet MR 1. Also, business process methods address MR
1 by providing tools to model organization-specific SIS constraints in relation to business
processes.
Hence, all of these integrative SIS design methods satisfy Hypotheses 1(a) and 1(b),
address Principle 1, and meet the MR 1.

MR 2: Within the security-modified ISD methods, the Logical Control method
(Baskerville, 1988) adds SIS controls to Data Flow Diagrams. Similarly, the SIS Spiral
(Booysen and Eloff, 1995) addresses access control issues in data flows. Both the
Logical Control and the SIS Spiral methods provide conceptual level modeling support.
The Virtual Methodology (Hitchings, 1995) provides a notation at the organizational level
to model authorized and unauthorized relations. The risk analysis process of SIS
planning methodology (Straub and Welke, 1998) is at the organizational level (Siponen,
2001).

The information modeling methods offer notations to extend Entity-Relationship (ER)
and data flow diagrams to cover SIS requirements or constraints. Thus, the information
modeling methods provide organizational- and conceptual-level modeling support. The
business process paradigm offers modeling support at all levels of abstraction, from SIS
requirements capture to implementation and coding issues.

The responsibility modeling methods, including the responsibility method proposed by
Strens and Dobson (1993), the semantic responsibility method (Backhouse and Dhillon,
1996), the task-based authorization method (Thomas and Sandhu, 1994), the abuse
case (McDermott and Fox, 1999) and misuse cases (Sindre and Opdahl, 2000), provide
conceptual-level modeling support. The exception is MAPS (Pottas and von Solms,
1995), which provides modeling support at all three levels of abstraction. Of the
integrative SIS design methods, only MAPS and the business process methods provide

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 737

modeling support that satisfies the dictate of Hypothes 2(a). Therefore other SIS design
methods fail to address Principle 2 and do not meet MR 2.

In the case of the business process security methods (Herrmann and Pernul, 1999;
Röhm et al., 1998; Röhm and Pernul, 1999) and the SIS design method by Pottas and
von Solms (1995) (which offers modeling support at the three levels of ISD), Hypotheses
2(a) and 2(b) are satisfied. They also address Principle 2 and satisfy MR 2.

MR 3: Of the integrative SIS design methods, the Logical Control method (Baskerville,
1988, 1989) can be integrated into structured ISD methods, data flow, and ER diagrams.
The SIS Spiral method (Booysen and Eloff, 1995) can be integrated into methods that
utilize Boehm’s spiral model. The abuse (McDermott and Fox, 1999) and misuse (Sindre
and Opdahl, 2000) case methods can be integrated into use case notations in the
requirements analysis phase. These SIS design methods satisfy Hypotheses 3(a) and
3(b), addressing Principle 3 and satisfying MR 3.
While the information modeling methods do not address their integration into ISD, the
security constraints modeling method (Pernul, 1992) might be integrated to structured
methods (Data flow and ER diagrams), and object-oriented security semantics (Ellmer et
al., 1995) might be integrated into object-oriented ISD methods.TPF

9
FPT The other integrative

SIS design methods are difficult to embed into existing ISD methods and offer no
guidance as to how they might be integrated into ISD (Baskerville, 1992; Siponen,
2005a,b). Additionally, the fact that their notations differ from ISD methods is another
obstacle to the integration of these SIS design methods into the ISD methods. Thus, the
other integrative methods fail Hypotheses 3(a) or 3(b), do not address Principle 3, and
fail to satisfy MR 3.

MR 4: Although, the logical control method (Baskerville, 1988, 1989), the spiral method
(Booysen and Eloff, 1995), and the abuse case (McDermott and Fox, 1999) and misuse
case (Sindre and Opdahl, 2000) methods satisfy MR 3, these three SIS design methods
are focused on a single ISD method (UML) or a narrow range of ISD methods. For
example, the logical control method (Baskerville, 1988) discusses its integration into
structured methods and data flow diagrams in particular, but not into other ISD methods.
Similarly, the spiral method (Booysen and Eloff, 1995) concerns its integration into
Boehm’s spiral, and the abuse and misuse case methods concentrate on use cases. As
a result, none of the SIS design methods satisfy Hypothesis 4(a), and consequently,
Hypothesis 4(b) also fails.

All of these SIS design methods restrict the autonomy of developers in selecting the ISD
methods according to their judgment. None of the methods addresses Principle 4 or
satisfies MR 4. Such restriction on the integration of these SIS design methods into ISD
methods can be explained by the fact that these methods were explicitly designed as a
part of certain ISD methods, such as Boehms’ spiral, or their specific notation, such as
DFDs and use cases. They were not designed to be generic SIS components that can
be integrated into different sorts of ISD methods.

MR 5: Since the existing SIS design methods constrain the autonomy of developers
(failing MR 4), it is unlikely that Hypothes 5(b) will ever succeed for these SIS design

TP

9
PT Such integration may be possible, since these methods are based on Data Flow and ER diagrams, and

object-modeling.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

738

methods (or at least without modifications to the SIS design methods). Principle 5 is lost,
and MR 5 remains unsatisfied.

Summary. In light of the meta-requirements of the SIS design theory, none of the
current SIS design methods address MR 4 and MR 5, only four of the existing SIS
design methods meet MR 3, and in addition to business process methods, only MAPS
(Pottas and von Solms, 1995) from among the security-modified IS development
methods meets MR 2. To overcome these limitations, we developed the following
solution to address these meta-requirements.

Proving a SIS Design Theory That Addresses the Six Meta-requirements

Research into design theory has frequently been limited to the abstract theoretical realm,
as has the work above so far. In these cases, the application or “proof” that the design
theory operates empirically is deferred to future research (e.g., Walls et al., 1992;
Kasper, 1996). Our research goals were primarily focused on the establishment of a
major advance in SIS design methodology that proved usable in the field. An empirical
field study of design theory entails (1) the development of a SIS method, in our case
called Meta-notation, which reflects the design theory, and (2) the application of the
resulting methodology in practice. While such studies will not demonstrate universal
validity for this design theory, the studies will demonstrate that the theory operates in
known settings.

The first part of the field study utilizes conceptual-analytical and constructive research to
develop a Meta-notation attuned to the SIS design theory. The SIS design problem, in
light of the meta-requirements, is abstracted by following the ideas of method
engineering (Tolvanen, 1998) and metamodeling (Gigch, 1991). From the perspective of
Meta-notation, we infer from the academic literature a general model of SIS design
method notation comprising six essential elements. The second part of the field study
uses clinical fieldwork methods (Schein, 1987) and action research. Figure 4 illustrates
the two-stage fieldwork for “proving” the design theory in use.

Figure 4. The development of a SIS design method, namely Meta-notation,
to address the six SIS meta-requirements. The figure describes the theory
development and clinical field work phases. It also shows the kernel
theories in the sense of Walls et al. (1992) used to develop the Meta-

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 739

notation. The kernel theories include ISD metamodeling and modeling in
ISD methods, as well as access control models in the field of computer
security.

The Development Of A SIS Method: Meta-Notation

A comprehensive ISD method includes a process system (guiding how the development
is carried out) and a notation system (Hirschheim and Klein, 1992). The three higher-
order meta-requirements (MR 3, 4, and 5) indicate a meta-method solution. In order for a
design method to be integrated into existing (as required by MR 3) or future (as required
by MR 5) ISD methods, SIS design theory demands a higher level of abstraction than
existing SIS design methods. Meta-notation involves schemes for the creation and
assembly of methods and method fragments. These schemes are of particular interest to
method engineering and metamodeling (e.g., Alderson et al., 1998; Brinkkemper et al.,
1996; Brinkkemper et al., 1999; Gigch, 1991; Hillegersberg and Kumar, 1999; Nuseibeh
et al., 1996; Slooten, 1996; Tolvanen, 1998). Meta-method tools, such as MetaEdit+,
provide the means for rapidly developing computer-aided systems analysis and software
engineering (CASA/CASE) tools to match development needs and settings (Marttiin et
al., 1996).

Regularities in ISD and SIS

Moving to a meta-method level of abstraction yields a perspective of ISD methods that
reveals how these are in a constant state of emergence and change. Since ISD settings
may be different, ISD methods are often modified to suit different contexts (Mathiassen
and Purao, 2002; Truex et al., 2000). However, systems problem settings and
development approaches are not in total chaos and relativism. That is, different
development situations are not totally disparate. Otherwise, our practical experience with
past ISD would have no value for future ISD tasks. Experience helps us recognize
regularities in the way problem settings arise and methods emerge. In order to satisfy
the three higher-order meta-requirements of our design theory, our meta-method must
discern a sufficient range of these regularities in order to be useful.

We used an analytical process for discovering regularities in SIS design elements. This
process is described in detail below (Figure 2). First, we looked across ISD and SIS
design methods in order to find common core concepts (subjects and objects). Second,
we surfaced the regularities in existing SIS design methods (e.g., Baskerville, 1993;
Siponen, 2005a, b) resulting in four additional concepts (security constraints, security
classifications, abuse subjects and abuse scenarios, and security policy). Finally, we
consulted a panel of practitioners for comments about the patterns. This process led to a
notation with six elements. While some computer security researchers, particularly
cryptographers, distinguish other security elements (e.g., Menezes et al., 1999), the six
described below proved sufficient for our purposes to capture most of the common
regularities found in SIS development. Additional elements can certainly be added to the
Meta-notation on an ad-hoc basis as required.

Subjects, Objects, and Classification

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

740

In seeking regularities in ISD methods, notation systems quickly rise in their apparent
regularity across many methods and problem settings. More than a thousand different
ISD methods are reported to exist (Jayaratna, 1994) with many differences, for example
in terms of sociological paradigms (Hirschheim and Klein, 1989), and ontological
expressiveness (Wand and Weber, 1993). Yet there are commonalities among these
ISD methods, of which two are relevant for our purposes. One objective common to ISD
methods is to help developers to understand and model reality with respect to the
system-to-be-built (Hirschheim et al., 1995; Iivari, 1989; Lyytinen, 1987). In order to do
such analysis and modeling, developers need to agree on how to describe things in
different levels of abstraction (organizational, conceptual and technical, see Iivari, 1989).
Traditionally, things are classified as ‘entities’ (e.g., structured methods) or ‘objects’
(e.g., object-oriented methods) in the ISD literature (Wand et al., 1999). Additionally,
some ISD methods use ‘actors’ (e.g., the UML type of use case diagram) or ‘stick
figures’ (e.g., Checkland’s rich picture) at the organizational level (e.g., requirements
analysis stage).

Any SIS design method that aims to integrate itself with ISD methods needs to address
how the security aspects can be described in term of entities common to ISD methods,
such as actors. This may happen, for example, by mapping the SIS design method
notation schema to these ISD entities. Thus, given that there exist certain common
things in ISD methods (e.g., objects in object-oriented methods, or entities in structured
methods), and that we can map SIS notation to these entities, we are able to address
the six SIS meta-requirements.

One simple solution addresses this issue. In Meta-notation, the ‘actors’, ‘entities’, or
‘objects’ are classified as security subjects and objects. This is consistent with Clements’
theory that establishes the identity of SIS methods. As a result, notational dimensions for
security subjects and objects can, in principle, be added into any of the many notational
patterns that use actors, entities, or objects as units of analysis. For example, both the
structured and object-oriented ISD methods (Lyytinen, 1987) are good candidates for the
addition of such security notation. Security subjects denote the different security-relevant
entities, i.e., entities that have a relevant security connection to the assets of the
organization (security objects). Security subjects may include automated processes,
network nodes, employees of the organization, business partners, and third parties.
Security subjects include (where they have a security-relevant connection to the assets
of the organizations) actors in use cases and stick figures in rich pictures.

The term ‘security objects’ refers to the assets of the organization that are of relevance
in terms of information security. Such assets (security objects) may range from physical
things such as paper to electronic entities such as files. The terms ‘security subjects’ and
‘objects’ are used in database security literature to describe computer access control
policies and models (e.g., Castano et al., 1995; McLean, 1990; Sandhu, 1993). These
access control policies and models from the field of database security in turn influence
computer security classification schemes. Security classification stems from the need to
classify security objects and subjects according to their information security sensitivity.

The abuse subject is a special class of security subjects referring to those that may carry
out a security violation. The introduction of abuse subjects and abuse scenarios,
influenced by McDermott and Fox (1999), may be needed for two kinds of situations.
First, they may come in handy when there is a need to explore and identify potential
threat scenarios. Second, they are relevant for testing purposes. They help to check that

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 741

the IS and software under design can cope with unwanted scenarios or attacks by
unauthorized people or processes through security features.

Security Constraints

Security constraints are the rules being enforced in relation to security objects. These
may include write access, read access, etc. We can discover security constraints by
analyzing the security requirements (confidentiality, integrity, availability, and non-
repudiation) for each security object. The theoretical background of the constraints
concept stems from “security requirements.” In the security literature, there is wide
agreement on four security requirements (e.g., Parker, 1981, 1998): confidentiality or
non-disclosure (prevent/detect improper disclosure of information), integrity (information
should not be modified by unauthorized personnel), availability (information should only
be available to authorized personnel), and “non-repudiation” (Chokhani, 1994; Röhm et
al., 1998). Non-repudiation is important for enabling financial transactions and data
interchange, which are keys to electronic commerce. It is needed to make valid large-
scale contracts between vendors and customers. Non-repudiation means that a
contracting party cannot subsequently deny its actions. These constraints can be
derived from customers or from their information security policy.
In summary, the Meta-notation includes six dimensions: 1) security subjects, 2) security
objects, 3) security constraints, 4) security classifications, 5) abuse subjects and abuse
scenarios, and 6) security policy. These dimensions are optional depending on the exact
security setting.

A Meta-notation Illustration

To clarify the operation of this Meta-notation, we illustrate how it can be applied using a
simple demonstration of a use case notation and a class diagram common in object-
oriented ISD methods. We chose use cases for demonstrating the Meta-notation
because most object-oriented methods employ use cases in the requirements analysis
phase to collect and analyze requirements. Use case notation demonstrates what a user
should be able to do with the system; use cases are graphical or textual presentations of
the usage of a system (Jacobson et al., 1992).
Figure 5 is a traditional textual use case description. The use case is ‘booking’.

Use case: Booking.
Version: 1.0
Functional Summary: A booking clerk books journeys for customers.
Frequency: several times a day
Usability requirements: Any database query and booking must be able to complete in less than 30
seconds.
Actor: a clerk.
Preconditions: Booking and customer databases exist.
Exceptions: If information on certain journey is not available an appropriate error message is
produced.

Figure 5. A traditional use case (adapted from Jaaksi, 1998).

Now presume that there is a need to address security considerations in ISD. Figure 4
describes the use case presented in Figure 3 enriched by five security dimensions of the

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

742

Meta-notation. The normal use case semantics are presented in italics, while the
security semantics are illustrated in italics and boldface. The example demonstrates an
implementation of a security policy that states booking clerks can only access objects
labeled as confidential within the booking department. The security policy constraints are
expressed in the Meta-notation enriched use case in Figure 6 as the Security
policy/Specific security restrictions.

Use case: Booking.
Version: 1.0
Functional Summary: A booking clerk books journeys for customers.
Frequency: Several times a day
Usability requirements: Any database query and booking must be able to complete in less than 30
seconds.
Actor/security subject: A clerk.
Security classification of the subject: confidential
Security objects and access types to security objects: Object: customer file (the clerk must be
able to read, update and delete the customer information); Object: booking database (the clerk must
be able to read, update and delete the customer information on the database)
Security policy/Specific security restrictions: The clerk is only allowed to access security objects
classified as confidential with the booking department.
Preconditions: Booking and customer databases exist. The identity of the booking clerk/security
subject has been validated.
Exceptions: If information on a certain journey is not available, an appropriate error message is
produced.
Figure 6. A Meta-notation enriched use case.

The security subject in Figure 6 is the booking clerk. The clerk’s security classification
clearance is confidential (classification of security subjects). The relevant security
objects with respect to this use case are the customer file and the booking database.
The types of access to these objects are create, read, delete, and update.

Continuing this example, we can illustrate how abuse cases are connected to respective
use cases. Abuse cases, like the other five security elements, are included only as
deemed relevant by the designers. Figure 7 describes an abuse case associated with
the booking use case, including possible abuse scenarios, assumed frequency of the
action, presumed abuse subject, and the security object that is the target of that abuse. TPF

10
FPT

There are also total costs of recovering from the abuse ($ 1500). The cost information,
together with the frequency of the abuse scenario, is useful for prioritizing the abuse
scenarios.

TP

10
PT Abuse subjects are not applied to normal use cases, as they do not concern normal use, but unauthorized

use.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 743

Abuse case: Booking.
Version: 1.0
Possible abuse scenario: A malicious user carries out a denial-of-service attack halting (use
case) booking, i.e., halting a clerk in booking journeys for customers.
Frequency: Several times a day
Abuse subject: A malicious user
Security objects/target of abuse: Customer file, booking database.
Total costs of recovering: $ 1500
Figure 7 presents an abuse case scenario (cf., McDermott and Fox, 1999).

Figure 8 shows the security level of each class. The security levels of classes are added
into the class diagram. The user in Figure 8 is a security subject, while document is a
security object.

Figure 8. A Meta-notation enriched class diagram.

Research Approach

While the conceptual analysis and constructive research used to develop the design
theory and Meta-notation provide a degree of logical rigor, fieldwork is needed for an
empirical validation of the concepts. The most effective means for empirically validating
ISD or SIS design methods entails action research, in other words, researchers must “go
into the world and try them out” (Wood-Harper, 1989). Proper evaluation of a design
theory requires that we apply the resulting artifacts in their intended settings, providing
empirical evidence that the prescribed means are a promising route to the desired ends.
Therefore, we designed action research to apply the design theory and its proposed
Meta-notation in actual practice, and to evaluate the results.

Action research is an interventionist and interpretive method (Klein and Myers, 1999;
Walsham, 1996). From the perspective of action research, theories are validated through
successful use in solving practical problems; successful use being defined through the
social reflection of the collaborators in the research. Action research has also been
demonstrated as a valuable research strategy for investigating ISD methods (Avison et
al., 2001; Baskerville and Pries-Heje, 1999). In fact, it has been argued that action
research is ideal for studying IS methods in a practical setting because it expands
scientific knowledge while simultaneously putting theories to work in practice to help
participating organizations solve concrete problems (Baskerville and Wood-Harper,
1998).

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

744

Action research is typically represented as an iterative process of theory-based
diagnosis followed by practical interventions in the form of action planning, action taking,
and evaluation in a field setting (Figure 9). Based on the specific learning that arises
from evaluation, the theory is changed (if necessary) and the cycle repeats until a theory
is developed that leads to satisfactory problem resolution.

Diagnosing

Action
Taking

Evaluating

Specifying
Learning

Action
Planning

Figure 9. Action research iteration (adapted from Susman and Evered, 1978).

Our research used staged action research methods involving two stages and three
iteration cycles (Figure 10). Stage one was a preliminary study that followed a form of
action research called “clinical fieldwork” (Schein, 1987). Clinical action research is
distinguished by its precise focus on the organizational problem and expectations for a
single pass (iteration 1) through the action research cycle. Based on the results of the
preliminary study, we proceeded to an expanded action research setting (Stage 2) that
involved two iterative cycles. The outer iteration 2 operated at the level of the software
development organization, while the nested inner iteration 3 operated within a particular
ISD project. All three action research iterations involved introducing the Meta-notation
into the organization as a solution to poor security development methods. In each
iteration, the involved actors appraised the results through social reflections.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 745

Stage 1: Company A,
Preliminary Clinical
Fieldwork

Stage 2: Company
B, Action Research

Iteration 1 Iteration 2

Iteration 3

Figure 10. The stages of action research in this study.

Appendix C summarizes the criteria for evaluating such action research designs and
discusses how the features of this design satisfy these criteria.

Preliminary Clinical Fieldwork

Following the development of the Meta-notation from the design theory, we sought a
software development organization with SIS development problems. Company A was
involved in building a web-based database for films and movies that raised serious
security concerns in protecting the intellectual property.

Working with one of the software companies engaged by Company A, the researchers
helped introduce the Meta-notation into the existing modeling notation. We recorded the
experiences, opinions, and evaluations of the practitioners in interview sessions and
reviewed design documents. The Meta-notation operated as predicted, and the modified
methods were applied in designing and building the Company A software. In the opinion
of the participants, the Meta-notation worked as expected via the design theory.

Clinical researchers would advocate that this single loop is sufficient to validate the
underlying theory in practice (iteration 1 in Figure 8, see Appendix A for further details on
the preliminary clinical fieldwork). While the generality of the design theory will not
necessarily be improved by additional action research, we can increase the confidence
in the design theory by expanding the application to other settings. Accordingly, we
proceeded to develop a full action research study to introduce the design theory and the
Meta-notation into a more complex design setting.

Proving Meta-Notation In Company B

Company B is a large software house that develops customized systems and offers
consulting services in all aspects of IS and software development. It uses an in-house

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

746

ISD method, sells this ISD method as a product, and provides related consultation
services. The most important clients of the company include government agencies,
insurance companies, banks, and industrial companies.

A chief developer, responsible for security matters in ISD, contacted one of the authors.
The chief developer believed that the company’s ISD method didn’t offer adequate
support for the SIS aspects of ISD. As a result, this author worked with the chief
developer to explore the possibility of an action research project that would integrate
relevant security aspects into their ISD processes. This meeting led, in turn, to a meeting
among the chief developer, the manager of the ISD department, and the development
manager of the company. After reviewing the Meta-notation, the chief developer and the
two managers sought to set up the action research project for the purpose of integrating
the Meta-notation into company’s ISD method and subsequently move the result into
practice. We present the implementation of the research phases (iteration 2 in Figure 10)
and the schedule in Figure 11.

Figure 11. The action research phases and schedule of the Iteration 2 research in
Company B.

Iteration 2 Research in Company B

The action research team for iteration 2 consisted of two researchers, the chief
developer, two managers, and several software developers. The T Tresearchers integrated
Meta-notation into Company B’s ISD method, which was based on the Rapid Application
Development (RAD) process and UML notation. We integrated the six security elements
of the Meta-notation into the process documents through three integration iterations with
close cooperation between researchers and practitioners. The practitioners on the team
were consulted to ensure that the integration was successful in each phase. After the
integration phase, the method was evaluated empirically. We describe these iterations
and the empirical evaluation next.

Diagnosis: identification of problems in the company’s existing ISD practice

While Company B does not apply any particular SIS method, it does use its own
proprietary information systems security checklist in ISD. The chief developer felt that, at
present, the feasibility of adding security features into IS or a software product rests on
the competence of individual developers and designers. In particular, he called for a
systematic and holistic SIS method that would be integrated into all stages of the
company’s existing ISD method: The chief developer asked,“How can information
security features be handled in every stage of the ISD process, because [in a large

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 747

organization such as Company B] the developers in the different development phases
are different persons?”

The chief developer noted that misunderstandings between different developers (system
analysts, designers, programmers and testers) are too frequent. He wanted a SIS design
method that allows the developers to communicate with each other using the same
concepts throughout the different phases of ISD. Such problems demanded a
methodological solution in which SIS issues are integrated as a normal part of T Tthe ISD
method. TPF

11
FPT Finally, he stressed that such a SIS design method should be as easy to use

as possible.

Both the chief developer and the managers felt that the company’s proprietary method (a
variant of the RAD process) would be a good choice for this research project, since RAD
teams are small. With small teams, the intervention would be easier to study and control.
RAD projects are shorter than traditional projects, so the results are achieved more
quickly.

To obtain a deeper understanding of the problems of SIS in relation to the company’s
ISD method, we interviewed four carefully selected practitioners: a method practitioner, a
business manager, a software architect and the manager of the ISD department.
Because Company B also sells its own ISD methods and related consultation services,
these practitioners believed a Meta-notation enriched ISD method would be extremely
relevant. The practitioners also pointed out three specific SIS problems in ISD: (1) the
lack of a systematic approach to address SIS issues, (2) outdated and separate SIS
instructions that were not part of the ISD methods and (3) wasted resources (security is
added too late, costing money and resources, either directly or indirectly). The following
comments illustrate these problems:

“The method used lacks a systematic approach to security issues,” – software architect.
“Security instructions have so far been incomplete…The instructions are too narrow,” –
method practitioner.

All the practitioners maintained that “security instructions have, up until now, been
incomplete. We have had some instruction, but now [during the research project] the
instructions are finally going to be developed further.” In addition, the business manager
said that adding security afterward and separately from the ISD process leads to waste
of resources, and, “In some projects, there is not enough knowledge of information
security, so the responsibility for adding security rests on the auditors’ shoulders.
Unfortunately, the auditors often lack the necessary information security skills.”
The practical diagnosis in this setting aligned well with the drivers underlying the design
theory, e.g., outdated SIS instructions, lack of SIS method resulting in waste of
resources in ISD, etc. The loyal adherence to an in-house ISD method that lacked
security considerations further aligned the setting to the design theory. We proceeded

TP

11
PT According to the chief developer, where there are different developers in different phases of ISD, either

all developers need to have security expertise (otherwise it is likely that the SIS issues may be taken into
account in one stage, but not in others), or the ISD method has to provide SIS features, leading to a
situation in which the SIS issues are “naturally” taken into account in each phase of ISD.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

748

with planning for the integration of the Meta-notation into the proprietary software ISD
method of Company B.

Action planning: planning the integration of the Meta-notation

We scrutinized the company’s in-house ISD method and the RAD process to see how
SIS Meta-notation could be integrated into the RAD process. The RAD process involves
44 process documents including functionality specification, class description,
architectural designs, test plan, and reports. These process documents are created by
the ISD department of Company B, to inform Company B’s developers how to use the
RAD process (documents are needed to ensure that all developers use consistent
notations and concepts). For example, a class description document describes the
methods and attributes of classes and explains how to make class diagrams.

In planning, we realized that part of the Meta-notation dimensions could be easily
integrated into these process documents. The RAD process documents included actors
that can be characterized as security subjects. Also, the concept of the “information
entities to be processed” in these process documents can be characterized as security
objects, while information processing rules can be regarded as security constraints.
Security classifications, security policy, abuse scenarios, and abuse cases proved more
difficult to integrate into the process documents because there were no obvious
equivalent structures in the methodology. Nevertheless, the in-house ISD method was
expanded (or enriched) with these new security dimensions.

After analyzing all 44 process documents, one of the authors made four Meta-notation
enriched process documents by integrating the security dimensions of the Meta-notation
to four requirement specification documents. The purpose of these documents was to
demonstrate how the integration of the Meta-notation into the RAD process affects the
original RAD process and how smoothly SIS aspects can be integrated into these
documents.

While the company was satisfied with the four process documents in general, they
highlighted issues that needed critical attention during the integration process. The chief
developer stressed that the whole ISD process must be covered. Moreover, the ISD
department manager stressed that “It would be very useful to develop a document which
can be used to demonstrate the security issues and risks to the clients’ managers.” In
that way, the company’s clients would also obtain a general picture of the system’s risks
and security requirements.

The chief developer and the ISD department manager noted the promising nature of
both the analytical and more casually expressed anticipation that the process of
integrating the Meta-notation’s security dimensions into their in-house method would
yield a solution. The team agreed to continue the research process by integrating SIS
dimensions into the remaining process documents.

Action taking: The integration of the Meta-notation into the RAD process
The integration of the Meta-notation took place in a nested series of action research
iterations (Iteration 3 in Figure 10). The action research team for this part of the research
included one researcher, an architect, a subject matter expert in the application domain,
and an engineer. This part of the research ran the inner action loop cycle through three
iterations. The practitioners in Company B evaluated the results of the integrations after

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 749

each iteration. The process documents modified during the integration process are listed
in Table 3. We discuss the details of each of these iterations in more detail in Appendix
B.

Table 3. Meta-notation enriched documents by development stage.
RAD process documents Iteration 1 Iteration 2 Iteration 3
Requirement specification 4 documents 5 documents 6 documents
Requirement analysis 2 documents 5 documents 5 documents
Architectural verification 5 documents 5 documents 5 documents
Design and implementation 3 documents 6 documents 6 documents
Testing 2 documents 3 documents 3 documents
New documents 0 documents 3 documents 0 documents
Total 16 documents 24 documents 25 documents

Development of the process model

We present the Meta-notation enriched RAD process model that emerged from the
action taking iterations, based on the original RAD process model in Figure 12. The
Meta-notation enriched RAD project also takes clients’ SIS requirements as one of the
points of departure for the ISD. The information security policy can set security
constraints for data processing and define the classification policy used in the client
organizations. Access control mechanisms and security constraints, in terms of the
Meta-notation, can be inferred from the information security requirements.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

750

Figure 12. The Meta-notation enriched RAD process model after integration of the
Meta-notation.

In the requirements analysis phase, the analyst defines use cases by using the security
constraints and information security requirements from the requirements specification.
After the use cases are created, the analyst defines abuse cases by basing these on
abuse scenarios, the priority of the SIS requirements, and risk analysis.

In the architectural verification stage, the architect designs the IS architecture by
analyzing the architectural risks. By analyzing these architectural risks, and by
considering the alternative architectural options, the architects and designers become
aware of the risks of the particular application, and can decide how these risks should be
addressed.

In the design and implementation phase, the designer designs access control
mechanisms and the developers implement these in order of requirements priority. The
developers implement high-priority requirements before the medium priority
requirements, and so on. Furthermore, countermeasures to abuse scenarios are
designed and implemented in this phase. After the implementation, the access control
mechanisms and countermeasures are tested.

We integrated the Meta-notation dimensions in all phases of the RAD process to ensure
that the SIS requirements would be implemented as planned. After the modifications, the

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 751

practitioners stated that the process documents and the Meta-notation enriched RAD
method were ready to be tested in practice.

Evaluation: Testing the Meta-notation enriched RAD process in practice.

We empirically tested the Meta-notation enriched RAD method in a project aimed at
developing an IS that the customers of Company B could use to update their purchased
software products on-line. The project resources included three experienced software
practitioners (a software architect, a technical expert and a software engineer). At the
beginning of the project, the project team decided not to use the security classification
element, because the implementation of such a system might be too heavy for a small
application. As the software architect noted, “The security classifications may be difficult
to implement as an access control mechanism. The implementation and design of such
an access control mechanism may be too heavy to be done in one project.”

Instead, the practitioners implemented access control was implemented by using
security constraints. From a design theory viewpoint, this decision exercises the
autonomy meta-requirement, and tests whether developers adapt SIS methods in an on-
the-fly, emergent manner. In this case, the classification element is excluded (indeed, it
is supposed to be optional depending on the setting).

The design team began by defining three abuse subjects and six abuse scenarios to
demonstrate the harm the abusers might cause. From these scenarios, the team was
able to recognize several security objects, such as user passwords and the update
packages. After defining abuse scenarios, the team members separately prioritized the
risks regarding each abuse scenario. After discussing these risks as a team, the team
decided that three of these abuse scenarios had to be taken into account in the
development of the IS.

In the requirements analysis phase, the team defined the abuse cases relating to use of
the system. In defining the abuse cases, they added color to the notation, using different
colors in the use and abuse case diagram. They found color was effective for
highlighting the SIS aspects of the IS. The team used red to highlight the abuser and
related harmful actions and yellow to highlight the countermeasures that mitigated these
harmful actions. White represented normal use cases (Figure 13).

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

752

Figure 13. A use case diagram for the IS. The product team is an example of an
insider threat and the intruder represents threat from outside. Four elements are
red in color: “create a new update file,” “steal password,, “intruder,” and “Steal
an update package.” Three elements are yellow in color: “Check the update
package,” Change the password,” and “Check the last actions.”

Specifying learning: Evaluation of the Meta-notation work in Company B
We collected feedback from the experiences of the Meta-notation use in this setting
through interviews with the practitioners (software architect, technical expert, and
software engineer).

Did the notation help acquire and document the security requirements (Hypothesis
1(a))? Comments from the participants appear supportive. The three practitioners saw
several benefits in the use of the Meta-notation. According to the software engineer:

“The biggest advance that comes from using the Meta-notation is that the
security issues are described at the beginning of the development and
that these issues are not modeled too technically at the beginning of the
development process.” [In addition, they stated that the Meta-notation
was a useful tool for modeling the systems’ requirements.]

Do the practitioners regard the method as feasible and practicable (Hypotheses 1(b),
2(b), 3(b), 4(b) and 5(b))? Comments from the participants also appear supportive. For
example, the practitioners commented that the Meta-notation was easy to learn in

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 753

general, although security classifications and terminology were difficult to understand.
According to the software engineer:

“Regarding ease of use, it makes no difference whether one employs use
cases or abuse cases, and the abuse scenarios and abuse cases fitted
well in the [RAD] process.” The technical expert commented: “It is always
difficult to use new methods, especially when you are the first [in the
organization] to do it, but I do not think that the use of this method is any
harder than the use of some other method.” The software architect stated.
“The abuse scenarios and abuse cases felt easy to learn […]. I find the
security classifications difficult to understand and to realize how they
should be used.” [The other dimensions (security policy and constraints)
were easy to understand and apply in practice.]

Was the modeling comprehensive (Hypothesis 2(a))? Comments from the field study
appear supportive. For example, according to the technical expert:

“It [the Meta-notation] works in the modeling done in the requirement
stage. One has to stretch the standards [e.g., UML] a little, but that is not
a problem.” According to the software architect: “The method works well
in the requirements stage and helps to move the collected information to
the design stage. In the design stage the method [Meta-notation] provides
a good tool for modeling the technical mechanisms of the
countermeasures to be implemented.”
And, again, according to the technical expert: “In those development
stages where we used the Meta-notation, it worked well. Of course, the
use of the Meta-notation required a bit of adapting and I’m sure that this
will also be required in the future in different kinds of projects.”

Were the developers able to use the method within their preferred approach
(Hypotheses 3(a) and 4(a))? the software architect noted:

“Generally the integration [of the Meta-notation] to our method was OK.
… The information security policy defines different kinds of processes
which are good to take into consideration during the development
process. … The Meta-notation helps in describing the features which
might become risks if they are ignored.”

Did the developers feel that they could use the method in future, perhaps in other
preferred methods or even methods yet to come (Hypotheses 4(a) and 5(a))?
Comments from the participants are generally supportive.

All developers agree that they would consider using this information
security use case notation in future, as indicated by a developer: “Of
course, with certain reserve. I would probably not use all of the six
dimensions in every project. On the other hand, the dimensions [all six]
are available when needed. It all depends on how much the client is
willing to pay for security features.” Another developer commented: “Yes,
I am sure that I will be using the method in future.”

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

754

The developers found the abuse scenarios and cases to be good tools for
communicating with customers and top-level managers. As one developer commented:

“In the requirement analysis stage, the abuse scenarios help in describing
the operational environment in such a way that later in the process the
[information security] requirements can be modeled and prioritized. The
abuse subjects and abuse scenarios create a realistic vision of the
mandatory security mechanisms which facilitate design.”

Furthermore, other developers observed that the use of the Meta-notation improves the
communication between the developers of Company B and its clients. The technical
expert said:

“Nowadays the test cases are planned based on use cases, and there are
situations where it is not clear between the client and supplier [Company
B] if the feature is a bug or an undefined feature. This can be avoided
when the test cases are planned using abuse cases.”

Areas for Future Improvement
The use of the Meta-notation derived from the design theory was not without issues for
Company B. While in general the notation succeeded and the design project reached a
successful conclusion, further research might focus on several potential adjustments.
The developers did recognize some features that the Meta-notation failed to
cover. For example, one of the developers said:

“It would be good to have a risk analysis technique which helps to filter
the achieved results (abuse cases, etc.) It would help one to concentrate
on the right aspects and we could prepare for those aspects.” Another
developer reported that, “Many information security features come from
the architecture phase so it would be good to highlight the architectural
aspects more clearly.”

The practitioners saw that security classifications might be difficult to utilize in certain
projects. The software engineer stated:

“The classification of the information [security object] is at too low a level.
The security classifications are useful in some specific industries, for
example in defense forces; but in many cases they are redundant.”
According to the software architect, “The method [Meta-notation] is good
for specific use, but is not usable in all projects. I personally would use
the classification of information only when required.”

Ideas also surfaced after the project for further development of the Meta-notation. The
software architect noted:

“The [Meta-notation enriched RAD] process model should include
information about responsibilities, what kind of skills the task requires,
and what information is needed to complete that task, and define what the
results are.”

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 755

That is, the Meta-notation should provide more guidance in the architectural verification
stage. In addition, the technical expert saw a need to “…crosscheck the use cases and
abuse cases [in order to improve the risk analysis process].” To minimize this gap, the
practitioners created a matrix for that purpose. The practitioners also added their own in-
house risk management calculations methods to estimate risk, on the basis of which the
abuse cases were prioritized.

Discussion And Implications

The meta-method contributes to the SIS literature by addressing the six meta-
requirements of our SIS design theory. First, most of the existing SIS design methods
lack modeling support at the three levels of abstraction as required by meta-requirement
2. Following the higher level of abstraction, we are led to propose the Meta-notation. In
the example illustrated in this paper, the notation consists of six dimensions, which can
be applied to different development situations at different levels of abstraction (and
hence address the second SIS meta-requirement—to offer modeling support at the three
levels of abstraction). However, this does not mean that one has to apply all six
elements pro forma: developers can select from these six elements the relevant ones for
the design setting.

Second, only four prior SIS design methods are able to address the third meta-
requirement. That is, many of the existing SIS design methods cannot be integrated into
ISD methods (the developmental duality problem). Our work indicates that the Meta-
notation can be added to existing notations for modeling IS or software. Within the new
framework, it is possible to contextualize security-specific notation in existing and proven
modeling notations. The theoretical framework indicates the combined modeling
approach will allow security and functionality to be consistently modeled. The practical
success of the clinical research solution supports this claim.

Third, the framework and Meta-notation model take into consideration the autonomy of
developers (the fourth meta-requirement). Developers need to independently exercise
their contextualized preferences in selecting and using methods as a basis of ISD.
Existing SIS design methods constrain this autonomy in developing SIS by limiting
developers to independent secure development methods. The new framework adapts
security design to the preferred methodology. The practical success collected from two
cases also supports this facet of the theoretical frame.

Fourth, there seems to be value in enabling systems design in organizations known to
be emergent and evolving (the fifth meta-requirement). The Meta-notation framework
may also address the constant need for novel methods, not just for security, but also for
shifting purposes. Such methods need to be routinely modified by practitioners to fit
regularly changing situations. In our fieldwork, the settings provide support for this claim.
Finally, our general use of the design theory is at a level that Walls et al. (2004)
characterize as “third level” usage (new insights are discovered as a result of the
systematic use of design theory). After reviewing 26 articles that apply their idea of
design theory, Walls et al. (2004 p. 56) point out that no previous study exemplified
stage four. In our case, though, three observations/modifications involve elaboration of
the original design theory. These include the observation that product meta-
requirements are difficult to see in customized IS, the necessity for dividing design
process hypotheses into two domains, and the necessity for adding process and
notation to the design process aspects. This contribution may be seen to align with the

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

756

highest of four levels of design theory application, a level at which gaps are discovered
in, and improvements are made to, the original design theory. The work above
approaches, if not achieves, this fourth level of design theory work.

Conclusions

IS and software development methods do not address security aspects seriously
enough. As a result, many SIS design methods, from checklists to more advanced
integrated IS design methods, have been established. However, these methods typically
fail to meet five of the six SIS method meta-requirements, discovered through design
theory. As a result, different SIS design methods cover different levels of IS, but each
lacks the comprehensiveness needed for wider application. Most of the methods for
designing SIS are difficult to integrate into ISD methods. Moreover, existing SIS design
methods impair the autonomy of developers.

A design theory leads to a Meta-notation that provides a framework for addressing these
six meta-requirements and thus helps resolve the shortcomings of the known SIS design
methods. This approach includes a Meta-notation for adding security into existing and
future ISD methods. The Meta-notation has been validated in two practical settings with
exactly these issues. The experience gained from these two action research settings
demonstrates that the proposed Meta-notation is relevant, feasible, and easy to embed
into normal ISD in a real-life setting. While the research shows that further work is
needed, the design theory, and its Meta-notation framework, provides a promising
solution to a current and critical security problem in ISD.

References

Alderson, A., Hull, M.E.C., Jackson K. and Griffiths, L.E., (1998) “Method engineering for

industrial real-time and embedded systems,” Information and Software
Technology (40) 8, pp. 443–454.

Avison, D., Baskerville, R. and Myers, M. (2001) “Controlling action research projects”.
Information Technology and People (14) 1, pp. 28–45.

Backhouse, J. and Dhillon, G. (1996) “Structures of responsibility and security of
information systems”. European Journal of Information Systems. (5) 1, pp. 2–9.

Baskerville, R. (1988) Designing Information Systems Security. John Wiley Information
Systems Series.

Baskerville, R. (1989) “Logical Controls Specification: An approach to information
system security", In H. Klein and K. Kumar (eds.) Systems Development for
Human Progress. Amsterdam: North-Holland.

Baskerville, R. (1992), “The developmental duality of information systems security,”
Journal of Management Systems (4) 1, pp. 1–12.

Baskerville, R. (1993) “Information systems security design methods: Implications for
information systems development,” ACM Computing Surveys (25) 4, pp. 375–
414.

Baskerville, R. (1994) ”Research notes: Research directions in information systems
security, T” T International Journal of Information Management 14 (5), pp. 385–387.

Baskerville, R. and Pries-Heje, J. (2004) “Short cycle time systems development,”
Information Systems Journal (14) 2, pp. 237–264.

Baskerville, R. and Pries-Heje, J. (1999). Grounded action research: A method for
understanding IT in practice. Accounting, Management and Information
Technology, 9, 1-23.

Baskerville, R. and Wood-Harper, T. (1998) “Diversity in information systems action
research methods,” European Journal of Information Systems 7, pp. 90–107.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 757

Beck, K. (1999) Extreme Programming Explained. Massachusetts: Addison Wesley
Longman, Inc.

Boehm, B.W. (1988). “A spiral model of software development and enhancement,” IEEE
Computer (21) 5, pp. 61–72.

Booysen, H.A.S. and Eloff, J.H.P. (1995) “A methodology for the development of secure
application systems,” In Jan H.P. Eloff, Sebastiaan H. von Solms (eds)
Information Security - the Next Decade, Proceedings of the IFIP TC11 Eleventh
International Conference on Information Security. New York: Chapman & Hall,
pp. 255–269.

Brinkkemper, S., Lyytinen, K., and Welke, R. (Eds.). (1996). Method Engineering.
London: Chapman and Hall.

Brinkkemper, S., Saeki M. and Harmsen F. (1999) “Meta-modelling based assembly
techniques for situational method engineering,” Information Systems (24) 3, pp.
209–228.

BS7799 (1993) Code of Practice for Information Security Management, Department of
Trade and Industry. British Standard Institution, London, UK.

BS7799-1 (2000) Code of Practice for Information Security Management, Department of
Trade and Industry. British Standard Institution, London, UK.

Castano, S., Fugini, M., Martell, G. and Samarati, P. (1995) Database Security. Addison-
Wesley.

Chokhani, S. (1994) “TToward a national public key infrastructure,” TIEEE Communications
Magazine (32) 9, pp. 70–74.

Clements, D. (1977) Fuzzy Ratings for Computer Security Evaluation. Unpublished PhD
thesis, University of California, Berkeley, 1977, cited from Hoffman, L.,
Michelman, E., and Clements, D. "SECURATE - Security evaluation and analysis
using fuzzy metrics," in: AFIPS National Computer Conference Proceedings,
1978, pp. 531–540.

Cole, R., Purao, S., Rossi, M. and Sein, M. K. (2005) “Being Proactive: Where Action
Research Meets Design Research,” In D. Avison, D. Galletta & J. I. DeGross
(Eds.), Proceedings of the Twenty-Sixth International Conference on Information
Systems, pp. 325–336

Dhillon, G. and Backhouse, J. (2001) “Current directions in IS security research: Toward
socio-organizational perspectives,” Information Systems Journal (11) 2, pp. 127–
153.

Dhillon, G. (1997) Managing Information Systems Security. MacMillan Press LTD, UK.
Ellmer, E., Pernul, G. and Kappel, G. (1995) “Object-Oriented Modeling of Security

Semantics,” In Proceedings of the 11th Annual Computer Society Applications
Conference (ACSAC'95). IEEE Computer Society Press, pp 52–61.

GASSP (1999) “Generally Accepted System Security Principles (GASSP)”. Version 2.0.
Cited from Poore, R. S. (1999) “Release for public comment,” Information
Systems Security (8) 3.

Gause, D. and Weinberg, G. (1989) “Exploring Requirements: Quality Before Design”
New York: Dorset House.

Gigch van, J.P. (1991) Systems Design Modeling and Metamodeling Plenum Press,
New York.

Hare, R. M. (1963) Freedom and Reason, Oxford University Press, UK.
Herrmann, G. and Pernul, G. (1999) “Viewing Business-Process Security from Different

Perspectives,” International Journal of Electronic Commerce (3) 3, pp. 89–103.
Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004) “Design science in information

systems research,” MIS Quarterly 28 (1), 75–105.
Hillegersberg, J.V and Kumar, K. (1999) “Using metamodeling to integrate object-

oriented analysis, design and programming concepts,” Information Systems (24)
2, pp. 113–129.

Hirschheim, R. and Klein, H. (1992) “A Research Agenda for Future Information
Systems Development Methodologies,” In: in W.W. Cotterman and J.A. Senn
(eds): Challenges and Strategies for Research in Systems Development, pp.
235–269.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

758

Hirschheim, R., and Klein, H.K. (1989) “Four paradigms of information systems
development,”Communications of the ACM (32) 10, pp. 1199–1216.

Hirschheim, R., Klein, H. K. and Lyytinen, K. (1995) Information Systems Development
and Data Modelling: Conceptual and Philosophical Foundations. Cambridge
University Press, UK.

Hitchings, J. (1995) “Achieving an integrated design: The way forward for information
security” In Jan H.P. Eloff, Sebastiaan H. von Solms (eds) Information Security -
the Next Decade, Proceedings of the IFIP TC11 Eleventh International
Conference on Information Security. New York: Chapman & Hall.

Iivari, J. (1989) “Levels of abstraction as a conceptual framework for an information
system,” In E. D. Falkenberg and P. Lindgreen (eds): Information System
Concepts: An In-depth Analysis. North-Holland, Amsterdam.

ISF (2005). International Security Forum. “The Forum's Standard of Good Practice for
IS security” January 2005, Available at HTUhttp://www.isfsecuritystandard.com/index-
_ie.htmUTH

ISO/IEC. (2005). ISO/IEC 17799: Information technology -- Security techniques -- Code
of practice for information security management (International Standard No.
ISO/IEC 17799:2005(E)). Geneva: International Standards Organization.

ITSEC (1990). Information Technology Security Evaluation Criteria (ITSEC), Provisional
Harmonized Criteria, Version 1.2. Brussels, Belgium: Commission of European
Communities, Directorate--General.

Jaaksi, A. (1998) “Our cases with use cases,” Journal of Object-Oriented Programming
(10), pp. 58–65.

Jacobson, I., Christerson, P. Jonsson, P. and Övergaard, G. (1992) A Use Case Driven
Approach. Addison-Wesley Publishing Company.

James, H.L. (1996) “Managing information systems security: a soft approach,“ In
Proceedings of the Information Systems Conference of New Zealand, pp. 10–20.

Jayaratna, N. (1994) Understanding and Evaluating Methodologies: NIMSAD, A
Systemic Framework. London: McGraw-Hill.

Jones, D., Gregor, S. and Lynch, T. (2003) “An Information Systems Design Theory for
Web-based Education,” Proceedings of the IASTED International Symposium on
Web-based Education,

Kasper, G. M. (1996) “A theory of decision support system design for user calibration,”
Information Systems Research (7) 2, pp. 215–232.

Klein, H.K. and Myers, M.D. (1999) “A set of principles for conducting and evaluating
interpretive field studies in information systems,” MIS Quarterly 23, pp. 67–94.

Kumar, K. and Welke, R.J. (1992) “Methodology engineering: A proposal for situation-
specific methodology construction” In W.W. Cotterman and J.A. Senn (eds):
Challenges and Strategies for Research in Systems Development, pp. 257–269.

Kukathas, C. and Pettit (1990) Rawls: A Theory of Justice and Its Critics. Stanford
University Press, CA, USA.

Lyytinen, K. (1987) “Two Views on Information Modeling,” Information and Management
12, pp. 9–19.

Markus, M.L., Majchrzak, A. and Gasser, L. (2002) “A design theory for systems that
support emergent knowledge process,” MIS Quarterly (26) 3, pp. 179–213.

Marttiin, P., Harmsen, F. and Rossi, M. (1996) “A functional framework for evaluating
method engineering environments: The case of Maestro II/Decamerone and
MetaEdit+”. In S. Brinkkemper, K. Lyytinen and R. J. Welke (Eds.), Method
Engineering: Principles of Method Construction and Tool Support. London:
Chapman and Hall, pp. 63-86.

Mathiassen, L. and Purao, S. (2002) “Educating reflective systems developers,”
Information Systems Journal (12), pp. 81–102.

McDermott, J. and Fox, C. (1999) “Using abuse case models for security requirements”,
In Proceedings of the 15th Annual Computer Security Applications Conference,
pp. 55–64.

McLean, J. (1990) “The specification and modelling of computer security,” IEEE
Computer (23) 1, pp. 9–16.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 759

Menezes, A.J., van Oorschot, P.C. and Vanstone, S.C. (1999) Handbook of Applied
Cryptography. CRC Press, USA.

Niiniluoto, I. (1999) Critical Scientific Realism, Oxford University Press, Oxford, UK.
Nuseibeh, B., Finkelstein and A, Kramer, J. (1996) “Method engineering for multi-

perspective software development,“ Information and Software Technology (38) 4,
pp. 267–274.

Ockham, W. (1990) Philosophical Writings: A selection. Hackett Publishing Company,
Indianapolis, USA.

OECD, (1996) “Guidelines for the Security of Information Systems” OECD, Paris,
France.

Olnes, J. (1994) “Development of Security Policies,” Computers & Security (13), pp.
628–636.

Parker, D. B. (1998) Fighting Computer Crime - A New Framework for Protecting
Information. Wiley Computer Publishing. USA.

Parker, D. (1981) Computer Security Management. Reston, Virginia: Reston Publishing.
Pernul, G. (1992) “Security constraint processing during multilevel secure database

design,” In Proceedings of the 8th Annual Computer Security Applications
Conference, pp. 349–370.

Pernul, G., Tjoa A. M. and Winiwarter, W. (1998) “Modelling data secrecy and integrity,”
Data and Knowledge Engineering (26), pp. 291–308.

Pottas D. and von Solms, S.H. (1995) “Aligning information security profiles with
organizational policies,” In Jan H.P. Eloff, Sebastiaan H. von Solms (eds)
Information Security - the Next Decade, Proceedings of the IFIP TC11 Eleventh
International Conference on Information Security. New York: Chapman & Hall.

Rumbaugh, J., Jacobson I. and Booch, G. (1999) The Unified Modeling Language
Reference Manual. Addison Wesley.

Röhm, A.W., Pernul, G. and Herrmann, G. (1998) “Modelling secure and fair electronic
commerce,” In Proceedings of the 14th Annual Computer Security Applications
Conference, pp. 155–164.

Röhm, A.W. and Pernul, G. (1999) “COPS: A model and infrastructure for secure and
fair electronic markets,” In Proceedings of the 32nd Annual Hawaii International
Conference on Systems Sciences, p. 8021.

Sandhu, R.S. (1993) “Lattice-based access controls,” IEEE Computer (26) 11, pp. 9–19.
Schein, E. (1987) The Clinical Perspective in Fieldwork, Sage, Newbury Park.
Simon, H. A. (1996) The Science of the Artificial (3rd ed.). Cambridge, Mass.: MIT

Press.
Sindre, G. and Opdahl, A.L. (2000) “Eliciting security requirements by misuse cases,”

Proceedings of the 37th International Conference on Technology of Object-
Oriented Languages and Systems, pp. 120–131.

Siponen, M.T. (2001) “An analysis of the recent IS security development approaches:
descriptive and prescriptive implications,” In: G. Dhillon (eds:) Information
Security Management - Global Challenges in the Next Millennium, Idea Group,
pp. 101–124.

Siponen, M.T. (2005a) “Analysis of modern IS security development approaches:
towards the next generation of social and adaptable ISS methods,“ Information
and Organization (15) 4, pp. 339–375.

Siponen, M.T. (2005b) “An analysis of the traditional is security approaches: implications
for research and practice,” European Journal of Information Systems (14) 3, pp.
303–315.

Slooten van, K. (1996) “Situated method engineering,” Information Resources
Management Journal (9) 2, pp. 23–31.

Smith, G.W. (1989) “Multilevel secure database design: A practical application” In
Proceedings of the 5th Annual Computer Security Application Conference, pp.
314–321.

Straub, D.W. and Welke, R.J. (1998) “Coping with systems risk: Security planning
models for management decision making,” MIS Quarterly (22) 4, pp. 441–464.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

760

Strens, R. and Dobson, J. (1993) “How responsibility modelling leads to security
requirements,” In Proceedings on the Workshop on New Security Paradigms, pp.
143–149.

Susman, G. and R. Evered (1978) “An assessment of the scientific merits of action
research.” Administrative Science Quarterly 23(4), pp. 582–603.

Thomas, R.K. and Sandhu. R.S. (1994). “Conceptual foundations for a model of task-
based authorizations,” In Proceedings of the 7th IEEE Computer Security
Foundations Workshop, pp. 66–79.

Tolvanen, J-P. (1998) Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence. Academic Dissertation, University of
Jyväskylä.

Truex, D.P., Baskerville, R. and Klein, H.K. (1999) “Growing systems in an emergent
organization,” Communications of The ACM (42) 8, pp. 117–123.

Truex, D., Baskerville, R. and Travis, J. (2000) “Amethodical systems development: The
deferred meaning of systems development methods,” Accounting, Management
and Information Technology (10), pp. 53–79.

Walls, J.G., Wildmeyer, G.R. and El Sawy, O.A. (1992) “Building an information systems
design theory for vigilant EIS,” Information Systems Research (3) 1, pp. 36–59.

Walls, J. G., Widmeyer, G. R., and El Sawy, O. A. (2004). Assessing information system
design theory in perspective: How useful was our 1992 initial rendition? JITTA:
Journal of Information Technology Theory and Application, (6)2, pp. 43-58.

Walsham, G. (1996) “The emergence of interpretivism in IS research,” Information
Systems Research (6), pp. 376–394.

Wand, Y. and Weber, R. (1993) “On the ontological expressiveness of information
systems analysis and design grammars,” Journal of Information Systems (3) 4,
pp. 217–237.

Wand, Y., Storey, V. and Weber, R. (1999) “An ontological analysis of the relationship
construct in conceptual modeling,“ ACM Transactions on Database Systems (24)
4, pp. 494–528.

White, E.F.R. and Dhillon, G. (2005) “Synthesizing information system design ideals to
overcome developmental duality in securing information systems” In R. H.
Sprague (Ed.), Proceedings of the 38 th Annual Hawaii International Conference
on System Sciences. Los Alamitos, California: IEEE Computer Society, pp. 186–
195.

Willison, R. (2002) “Opportunities for computer abuse: Assessing a crime specific
approach in the case of barings bank,” Unpublished PhD Thesis, The London
School of Economics, UK.

Wood, C.C., Banks, W.W., Guarro, S.B., Garcia, A.A., Hampel, V.E. and Sartorio, H.P.
(1987) Computer Security: A Comprehensive Controls Checklist. John Wiley and
Sons.

Wood-Harper, T. (1989) “Comparison of Information Systems Definition Methodologies:
An action research multiview perspective”. Unpublished Ph.D. Thesis, University
of East Anglia.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 761

APPENDIX A: PRELIMINARY CLINICAL FIELDWORK DETAILS

Company A is a film and production center aiming at facilitating regional film and media
production. In 1999 Company A recognized the potential of the Web to support their
business activities. Company A wanted to build a web-based database for scouting and
infrastructure for the distribution of digital media to their customers through the Internet.
To further improve their ISD practice as a means of achieving the aforementioned goals,
Company A participated in a collaboration project between the University of Oulu and
several other industrial organizations. Company A hired two software houses to develop
parts of the functionality of the IS. Because Company A aimed to handle their business-
related activities (scouting database, distribution of digital products), through the
Internet, there was a crucial need for addressing respective security concerns.

The role of researchers in this part of the development was to support both Company A
directly and one of the software companies hired by Company A to develop Company
A’s systems. This software company followed an object-oriented modeling notation -
Unified Modeling Language (UML) – as the basis of their ISD. However, based on the
interviews, and observations on the design process and design documents in this
company, the use of ISD methods and notation were rather informal, minimalist and
solution-oriented. This means that developers were using only those parts of UML that
they really needed in each project for the development of the IS or software. The
software company was unable to address the security concerns by their current ISD
method (UML) and practices:

“We did not have such security methods as we have for normal ISD
design and modeling … but the design and modeling techniques we are
currently using ... concentrate on doing software. We don’t have a method
which includes security aspects.” – a technical project manager of the
company

The company’s incentive for adaptation of this method was to fill this gap (the lack of
notation support with respect to security aspects) in their ISD development practice. The
experiences, opinions, and evaluations of the practitioners were recorded in interview
sessions and design documents were reviewed. The action research followed a
facilitative-clinical methodology without multiple cycles (Schein, 1987).

Intervention
First, the Meta-notation SIS method was introduced to the company. The idea was to
use the Meta-notation enriched ISD method in the project. The project started with the
creation of use cases: The researcher helped the practitioners convert the IS
requirements into use cases. Then their experiences, opinions, and evaluations were
recorded in an interview session. The next figure presents an example of the use of the
notation in this project (Figure 14).

Use case Searching for work force.
Version 1.0
Functional summary Registered user access work force database in order to

search for a suitable work force.
Frequency Several times during the production planning.
Usability requirements -

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

762

Actor/security subject A registered user from a production company
Security classification of the
subject

Confidential

Security objects and access
types to security objects

Security objects: Database (“Person” persistent objects)
Access types: Actor/security subject can read the entire
content of the work force database.

Security policy/specific
security restrictions

Actor/security subject is not allowed to write or modify the
contents of the work force database.

Preconditions Work force database exists. Actor has been authenticated.
Exceptions -
Figure 14. A use case example from the project.

In the example presented in Figure 14, registered users access a web-based database
to search for the proper work force (functional summary). The actor/security subject is a
registered user and the security classification is confidential. The actor/security subject
can read the entire contents of the work force database (access types to security object).
Figure 15 presents a modified example taken from the project. The notation is called “a
second level use case” (as named by the software house). In Figure 15, there are two
groups of security subjects: registered user and anonymous user.

Modify
X (C)

Store
media
(C)

LogIn
(C)

Search
X (P)

Archive X

Registered
user

Anonymous
user

Stream
X (P)

Browse
X (P)

Registered user
can modify and
store X, in
addition to all
things that also
anonymous users
can see/do

Figure 15. Modified example of “a second level use case” from the project.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 763

The elements of the archive X are security objects, and in this case, security objects are
classified as confidential and public. Registered users are also allowed to modify and
store X (security policy), while anonymous users are not.

Results
The preliminary study indicates that the design theory and the Meta-notation would hold
in practice. Reflection represented by recorded comments of the collaborators indicated
that the Meta-notation approach was feasible and practical (but not without limitations):

The meta-notion was found very simple: “It was clear, some new lines
were added into the diagrams”. In fact, an analyst expected the Meta-
notation to be “much more difficult” as “usually methods by academics are
complex and hard to understand, but this use case notation was
surprisingly clear”. All developers seemed to understand the terms:
“Generally yes,” according to a developer, “but the concept of ‘Security
Policy/Specific Security’ restrictions was the hardest”.
Also one developer found the concept/dimension of ‘access types to
security objects’ difficult at first sight: “At first it was hard to understand ...
but after considering the example in the paper everything became clear in
the end”.

There were indications in the preliminary study that the modeling was comprehensive:
The developers did not recognize that anything was missing from the
Meta-notation. For example, one developer said, “Nothing was missing. I
did not see anything lacking”, while another reported, “Well, I can't really
say that anything was missing”, and “I can't think of anything to add.”

It appeared the notation helped acquire and document the security requirements, and
the developers were able to use the method within their preferred approach:

The developers regarded the meta-notion as very useful and relevant:
“This is much smarter than the normal use case, whether for security use
or not. These are of real use.” According to another developer, the Meta-
notation was “OK. Useful extra fields were added to it.”

Also, the developers saw potential for future use of the method even in other preferred
methods:

All developers agree that they would consider use of this information
security use case notation in future: "Yes, if there were need for security”.
Another developer commented that: “Yes I would use it … immediately
when we meet something with this kind of security requirements. This can
be quite handy.” Another developer said “… it felt simple so I'm sure I
would use it again if there is a need to address security aspects.”

These representative results from the preliminary setting suggested strong support for
the validity of the underlying SIS design theory:

The overall evaluation of the Meta-notation by the technical project
manager of the software company responsible for the development of the
system was also positive, saying he “would give it eight out of ten.” An
analyst in the same interview evaluated the Meta-notation as “10 out of
10. We just add some lines into the notation and put the rest in there”.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

764

APPENDIX B: ITERATION LOOP 3 IN COMPANY B

The research design involved a nested set of action research iterations within the action
taking phase of the Action Research study in Company B. Thus there were two sets of
iterations in Stage 2 of the overall research project (See Figure 10). In this appendix, we
will describe the action taking phase of Iteration 2 in more detail. This action taking
phase involved an independent action research cycle all on its own, one in which the
developers integrated the design theory’s Meta-notation into the company’s proprietary
development method. There were three iterations of this inner action research loop
(Iteration 3 in Figure 10). We refer to these as iterations 3.1 – 3.3.

The action research team for this part of the research was different from the
encompassing (Iteration 2) action research study in Stage 2. The team consisted of a
researcher, an architect, a subject matter expert, and an engineer.

Integration iteration 3.1

In the first integration iteration, the dimensions of the Meta-notation were integrated into
16 RAD process documents by the researchers. The integration was carried out one
development phase at a time, starting from the requirement specification phase. In this
iteration, attention was paid to ensuring that the transformation of information between
different ISD stages was accurate and effective. For example, the security classifications
of subjects and objects, the security policy and security constraints were integrated into
a use case template (Figure 16). The abuse case document was created by using the
use case template of the company and adding the abuse case specific fields (e.g.,
abuse subject, countermeasure, etc.) to this template. The abuse case template was
then integrated into the same process document as the use cases. Additionally, the
security classifications and constraints were integrated into the class description
document and also into the architectural documents. To facilitate the use of the Meta-
notation enriched process documents, instructions on the use of the Meta-notation were
also added to all documents.

Purpose: What is the purpose of this use case?
Priority: High / Medium / Low
Frequency: How often this feature is used?
Actor: User and user’s role in the system (=security subject).
Classification of the
actor:

For example: Top secret, Secret, Confidential, Public

Preconditions: What are the preconditions for this use case?
Result: What is the result of this use case?
Definition: The success scenario of this use case.
Processed
Information:

The information entity processed in this use case (= security object).

Classification of the
object:

For example: Top secret, secret, confidential, public

Exceptions: Define alternative scenarios and exceptions.
User’s rights: What are the user’s rights in this use case? Note that the user’s

rights, also seen as security constraints, are more specific than the
security classifications.

Security policy: The security policy regarding this use case.
Requirements: Links to specified requirements of this use case.
Test cases: Links to specified test cases of this use case.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 765

Figure 16. The Meta-notation enriched use case. The new SIS relevant fields
(after iteration 1) are shown in italic font.

Evaluation of the first integration iteration

The authors collected feedback on these 16 Meta-notation enriched RAD process
documents from seven practitioners: a technology manager, a business manager, a
method specialist, two software architects and two managers. The practitioners wanted
to separate the abuse cases from use cases in their own process documents. The
practitioners also felt that the security classifications were not usable in their proposed
form and location in the process documentation, and that the classifications were at the
wrong level of abstraction. The R&D manager and the software architect requested the
addition of more guidance on the use of Meta-notation, and the participants agreed that
a process map could be useful in solving this guidance problem. Based on the ideas
collected in this meeting, researchers continued to address these problems and
proceeded with the integration in the second integration iteration.

Integration iteration 3.2

Based on the feedback, we modified 24 existing process documents and defined three
new process documents. These new process documents were: unwanted functionality
specification (abuse cases), the instruction on the use of Meta-notation in ISD, and the
process map. The instruction document involved a simple example of the use of Meta-
notation in practice, and a proposal to collect the security classifications of subjects and
objects in one matrix (Table 4). This matrix shows the classifications of subjects and
objects and their security constraints. The unwanted functionality specification describes
the abuse cases, based on the abuse scenarios developed in the RAD process.

Table 4. The security classifications and constraints of an eCommerce system.

Role Web site
classification:
public

File 1
classification:
secret

Database
classification:
confidential

Customer info
classification:
top secret

Administrator
classification:
top secret

read / write read / write read / write read / write

Employee
classification:
secret

read / write Read read read

End user
classification:
confidential

read - read -

Outside visitor
classification:
public

read - - -

Based on the comments in the first iteration, we modified the process documents by
removing the security classifications from the class level. We also integrated security
classifications into the database design document. The abuse scenario and abuse
subject were integrated into the operational environment document, and the security
requirements were highlighted by categorizing them in their own security category in the
requirements catalogue. Furthermore, the classification of the security subjects and

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

766

objects was moved to the information security design specification document. These
modifications also led to a change in the way information was transformed between the
process documents TPF

12
FPT, and updates were required in the auditing documents to

correspond to the current version of the Meta-notation enriched RAD.

During the second iteration, a document was developed to enable communication
between the client organization’s management and Company B’s sales and project
personnel. Abuse subjects and scenarios were integrated into the operational
environment specification, because that document was already used (prior to this
project) for communication purposes between Company B and its clients. The abuse
scenarios provided, for example, written stories of possible compromises and how these
could damage the IS. In accordance with critical comments from the ISD department
manager, the orientation of the abuse scenarios was such that they could be understood
by Company B’s sales personnel and clients, in order to communicate a general picture
of SIS issues TPF

13
FPT.

Evaluation of the second integration iteration

After these modifications, a method specialist, a software architect and a system
architect provided feedback on the modified process documents. They felt that the Meta-
notation terminology was rather academic and they wanted to change the terminology to
correspond to the terms already used in the company: “We want to get rid of the
academic terminology, and make the terminology more understandable for all
developers.” – method specialist. The software architect continued: “The unwanted
functionality document should be coherent with the functional specification [in terms of
the language]. The abuse cases should be understandable and the metaphors should be
the same as in the traditional use cases”.

The practitioners also saw that the same information was presented twice in different
documents. They saw that it is easier to update the documents when a developer only
has to change the information in one process document. The practitioners were also
satisfied with separating the security requirements into their own requirements category
to highlight SIS features. Several previous problems were evaluated as solved: the
treatment of abuse subjects, abuse scenarios and the instruction document on using
Meta-notation enriched RAD and Meta-notation in software development. After collecting
the feedback, analyzing the comments, we planned how to address the stated problems
in the third integration iteration.

TP

12
PT For example, the abuse subjects and scenarios are defined in the requirement specification phase. Later,

in requirement analysis, that information is used to prioritize the information security requirements and to
define the abuse cases. In the design and implementation phase, the information defined above is needed in
designing the access control mechanisms and countermeasures to the abuse scenarios, and finally the SIS
countermeasures are tested in the testing phase. All other information on SIS features (e.g., security
constraints) must be associated similarly throughout the whole RAD process to ensure that the features will
be implemented and tested correctly.

TP

13
PT The document, including the abuse subjects and scenarios, works as a basis for describing abuse cases

and prioritizing security requirements later in the ISD process.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 767

Integration iteration 3.3

In the third integration iteration, we modified 25 process documents, based on the
feedback provided by the company’s practitioners in the second iteration. In this
iteration, most of the changes were terminology-related: the terminology was
harmonized with terminology used in the company. For instance, the practitioners of the
company felt that it would better to use the term “role” or “actor” instead of “security
subject”, to make the method easier to learn.

The second concern mentioned during the second iteration concerned the maintenance
of the documentation. We used a matrix to compile information from several documents,
e.g., security classification of the subjects and objects (Boyseen and Eloff, 1995). By
collecting the classification information into the information security plan document, it
becomes easier to modify the information (Table 5). The practitioners objected to the
security classifications and constraints matrix (Table 4) because it included too much
information. When the IS is large, this table becomes unreadable. For example, as few
as 100 objects and 20 actors would make this matrix (Table 4) so complex it would be
difficult to understand. They recommended that it should be divided into two matrices
(Table 5 and Table 6). This two-matrix solution requires fewer resources, since the
modification of the information in the process documents would be centralized in a
limited number of main process documents (e.g., the information security design
specification). This centralization of information also improves the coherence within the
overall documentation. After these modifications, we updated the links between the
process documents.

Table 5. The security classifications of the roles.
User role Description Classification

Role 1 Description of this user
role

The classification of the role

Role 2 … (e.g., top secret / secret / confidential /
public)

Role …

The security policy was modified during the third iteration. It was clear to the
practitioners that, at this point in the development, it is better to refer to a specific
security requirement in the requirement catalogue than a client organization’s
information security policy. According to the developers, the security policy may be
generic, for example, drawn from BS7799. This modification is consistent with the Meta-
notation, since the aim of the Meta-notation was not to refer to an organizations’ high-
level security policy in use cases, but relevant sub-polices.

The access matrix for the roles in the system was developed in this iteration to make the
design and maintenance of access rights easier (Table 6). Through this matrix, one can
see what operations certain roles (security subjects) need to perform on security objects.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

768

Table 6. The access matrix for the roles (C = create, R = read, U = update, D =
delete).
Processed information Role 1 Role 2 Role 3 Role … The needed

operations
object 1 CR RUD R R CRUD
object 2 CRUD - - - CRUD
object 3 RU RU R R RU

After these modifications (Figure 17), we updated the transformation of information
between the different process documents and delivered the documents to the company
for evaluation.

Purpose: What is the purpose of this use case?
Priority: High / Medium / Low
Frequency: How often is this feature used?
Actor: User’s role in the IS (=security subject). Security classification defined

in IS plan (see Table 3).
Preconditions: What are the preconditions for this use case?
Result: What is the result of this use case?
Definition: The success scenario of this use case.
Processed
Information:

The information entity processed in this use case (= security object).
The functions needed are defined in IS plan (access matrix, see Table
4).

Exceptions: Define alternative scenarios and exceptions. Possible links to abuse
cases.

User rights: What are the user’s rights in this use case? The functions needed are
defined in IS plan (access matrix, see Table 4).

Requirements: Links to specified requirements of this use case.
Test cases: Links to specified test cases of this use case.
Figure 17. The final version of the Meta-notation enriched use case. Part of the
information, such as security classifications of subjects and objects, is moved to
Tables 5 and 6.

Evaluation of the third integration iteration

At the conclusion of this third iteration, the proposed method was harmonized with the
terminology and practices used by the company. These modifications affected 25
process documents. The developers were satisfied with the modifications and they
decided that the method is ready for field test.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006 769

APPENDIX C: VALIDITY CRITERIA FOR IS ACTION RESEARCH

The research described in this paper tests the practical success (relevance, feasibility
and applicability) of the idea of Meta-notation by testing notation in practice in clinical
and action research settings. A clinical research approach was selected initially because
it is known to be the highly suitable for initial testing and possible adjustment of ISD
methods.

Seven validity criteria for IS action research results have been proposed (Baskerville and
Wood-Harper 1998): (1) the research should be set in a multivariate social situation; (2)
the observations should be recorded and analyzed in an interpretive frame; (3) there is
researcher’s action that intervened in the research setting; (4) the method of data
collection includes participatory observation; (5) changes in the social setting are
studied; (6) the immediate problem in the social setting must have been resolved during
the research; and (7) the research should illuminate a theoretical framework that
explains how the actions led to a favourable outcome. These criteria are applied in
evaluating the results of the intervention in the two companies.

The research in this paper conforms to the seven validity criteria above. Regarding to
the first criterion, the research in both cases was set in a multivariate social situation.
The Company A case involved a complex relationship between an ISD contractor and
their client. The client explicitly required a SIS. In the Company B case, the research
was also carried out in a multivariate social situation, which included interaction between
different stakeholders (e.g., practitioners of the company, management, researchers,
etc.).

Regarding second criterion, for both cases in companies A and B, the observations were
recorded and analyzed within an interpretive research framework. Windows into this
data and the interpretation have been provided in this report. With respect to third
criterion, the researchers actively intervened in both companies; in the case of Company
A, the researcher worked directly with the ISD contractor to introduce the Meta-notation
into their practices. Similarly, in Company B case, the researchers’ actions intervened in
the research setting by introducing a new method (Meta-notation) in the company.

For the fourth criterion: the method of data collection in Company A included
participatory observation as well as interviews. In the case of Company B, the data
collection also included participatory observation in integration phase (action taking), but
not in the empirical testing phase (evaluation). In this phase, the practitioners informed
the researcher through e-mails, meetings, and by providing the documentation (e.g.,
specifications, design documents) from the project.

As to the fifth criterion: in both cases, the outcome of the ISD process was assessed in
terms of the collaborators’ reviews of the usability and success of the modified ISD
method and the ISD modification process in different phases of the study.

The sixth criterion is satisfied because the immediate problem in the research was
resolved through integrating the Meta-notation to the ISD practices of companies A and
B, according to the evaluation of the collaborators in the field.

A Design Theory for Secure IS Design Methods/Siponen et al.

Journal of the Association for Information Systems Vol. 7 No. 11, pp. 725-770/November 2006

770

Finally, regarding the seventh criterion, the actions in the settings were tightly linked to
the Meta-notation theoretical framework. This framework defined the actions and
explains clearly how the actions led to the favorable outcome.

To summarize, the research experiences from two cases suggest that the Meta-notation
was successful in practice. It was perceived to be relevant in use, feasible, and easily
applied for extending normal ISD methods for secure purposes. This experience
supports the design theory framework that drove the creation of the Meta-notation and
its application for the purpose of creating SIS. While we do not specifically examine the
satisfaction of the foregoing work in terms of criteria for design theory (e.g., Hevner, et
al., 2004), there is evidence that work satisfying criteria for action research will
additionally satisfy the criteria for design theory, and vice-versa (Cole et al., 2005).

ISSN: 1536-9323

Editor

Kalle Lyytinen
Case Western Reserve University, USA

Senior Editors

Izak Benbasat University of British Columbia, Canada Robert Fichman Boston College, USA
Varun Grover Clemson University, USA Rudy Hirschheim Louisiana State University, USA
Juhani Iivari University of Oulu, Finland Elena Karahanna University of Georgia, USA
Robert Kauffman University of Minnesota, USA Frank Land London School of Economics, UK
Bernard C.Y. Tan National University of Singapore,

Singapore
Yair Wand University of British Columbia,

Canada
Editorial Board

Ritu Agarwal University of Maryland, USA Steve Alter University of San Francisco, USA
Michael Barrett University of Cambridge, UK Cynthia Beath University of Texas at Austin, USA
Anandhi S. Bharadwaj Emory University, USA Francois Bodart University of Namur, Belgium
Marie-Claude Boudreau University of Georgia, USA Tung Bui University of Hawaii, USA
Yolande E. Chan Queen's University, Canada Dave Chatterjee University of Georgia, USA
Roger H. L. Chiang University of Cincinnati, USA Wynne Chin University of Houston, USA
Ellen Christiaanse University of Amsterdam, Nederland Guy G. Gable Queensland University of

Technology, Australia
Dennis Galletta University of Pittsburg, USA Hitotora Higashikuni Tokyo University of Science, Japan
Matthew R. Jones University of Cambridge, UK Bill Kettinger University of South Carolina, USA
Rajiv Kohli Colleage of William and Mary, USA Chidambaram Laku University of Oklahoma, USA
Ho Geun Lee Yonsei University, Korea Jae-Nam Lee Korea University
Kai H. Lim City University of Hong Kong, Hong

Kong
Mats Lundeberg

Stockholm School of Economics,
Sweden

Ann Majchrzak University of Southern California, USA Ji-Ye Mao Remnin University, China
Anne Massey Indiana University, USA Emmanuel Monod Dauphine University, France
Eric Monteiro

Norwegian University of Science and
Technology, Norway

Jonathan Palmer College of William and Mary, USA

B. Jeffrey Parsons

Memorial University of Newfoundland,
Canada

Paul Palou University of California, Riverside,
USA

Yves Pigneur HEC, Lausanne, Switzerland Nava Pliskin Ben-Gurion University of the Negev,
Israel

Jan Pries-Heje

Copenhagen Business School,
Denmark

Dewan Rajiv

University of Rochester, USA

Sudha Ram University of Arizona, USA Balasubramaniam Ramesh Georgia State University, USA
Suzanne Rivard Ecole des Hautes Etudes

Commerciales, Canada
Timo Saarinen Helsinki School of Economics,

Finland
Rajiv Sabherwal University of Missouri, St. Louis, USA Olivia Sheng University of Utah, USA
Ananth Srinivasan University of Auckland, New Zealand Katherine Stewart University of Maryland, USA
Kar Yan Tam

University of Science and Technology,
Hong Kong

Dov Te'eni Tel Aviv University, Israel

Viswanath Venkatesh University of Arkansas, USA Richard T. Watson University of Georgia, USA
Bruce Weber London Business School, UK Richard Welke Georgia State University, USA
Youngjin Yoo Temple University, USA Kevin Zhu University of California at Irvine, USA

Administrator
Eph McLean AIS, Executive Director Georgia State University, USA
J. Peter Tinsley Deputy Executive Director Association for Information Systems, USA
Reagan Ramsower Publisher Baylor University

	A Design Theory for Secure Information Systems Design Methods
	Recommended Citation

	JAIS02_147_Final Formatted.pdf
	Board.pdf

