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Abstract. In this paper we analyze the block cipher SAFER K. First, we show a
weakness in the key schedule, that has the effect that for almost every key there exists
on the average three and a half other keys such that the encryptions of plaintexts different
in one of eight bytes yield ciphertexts also different in only one byte. Moreover, the
differences in the keys, plaintexts, and ciphertexts are in the same byte. This enables
us to do a related-key chosen plaintext attack on SAFER K, which finds the secret
key. Also, the security of SAFER K, when used in standard hashing modes, is greatly
reduced, which is illustrated. Second, we propose a new key schedule for SAFER K
avoiding these problems. Third, we do differential cryptanalysis of SAFER K. We
consider truncated differentials and apply them in an attack on five-round SAFER K,
which finds the secret key much faster than by an exhaustive search.
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1. Introduction

In [11] Massey proposed a new encryption algorithm, SAFER K-64, hereafter denoted
SAFER K. Both the block size and the key size are 64. The algorithm is an iterated cipher
where encryption is done by iteratively applying the same function to the plaintext in a
number of rounds. Finally, an output transformation is applied to produce the ciphertext.
The suggested number of rounds is a minimum of six and a maximum of ten [11], [12].
Also, Massey proposed a 128-bit key version called SAFER K-128 [12]. Strong evidence
has been given that SAFER K is secure against differential cryptanalysis after five rounds
[12] and against linear cryptanalysis after two rounds [3]. In [16] it was shown that by
replacing the S-boxes in SAFER K by random permutations, about 6% of the resulting
ciphers can be broken faster than by an exhaustive search.

In this paper we show a weakness in the key schedule of SAFER K and use our
observations to establish a related-key chosen plaintext attack, which using 236 chosen
plaintexts finds eight bits of the secret key. The attack can be repeated to find more key
bits. Furthermore, we show that for SAFER K with six rounds used in the standard hashing
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modes collisions can be found much faster than by a brute-force attack. Collisions of
such hash functions can be found in time about 222 encryptions when SAFER K is used
as the underlying block cipher. This should be compared with a brute-force collision
attack, which requires about 232 operations. To avoid these problems we suggest a new
key schedule for SAFER K making only small changes to the original one. These results
appeared in [7]. Also, in [14] Murphy showed that there exists a projection on the input
and output spaces of the round function in SAFER K which is independent of one-
quarter of the key. As a consequence of all this, Massey decided to adopt our stronger
key schedule and to recommend the use of eight rounds [13]. The modified cipher was
named SAFER SK-64. Massey also proposed a 128-bit key variant of this version,
namely, SAFER SK-128.

We considertruncated differentialsand apply them in an attack on five-round
SAFER K, the original version, which finds the secret key much faster than by ex-
haustive search. The attack uses a five-round truncated differential of probability 2−70,
which can be obtained using only about 239 chosen plaintexts. The attack uses several of
these differentials, needs a total of about 245 chosen plaintexts, and runs in time similar
to 237 encryptions of five-round SAFER K. This should be compared with the analysis
made in [12], where a differential attack using conventional differentials on SAFER K
with five rounds was estimated to require more computations than an exhaustive key at-
tack and this illustrates the importance of truncated differentials. These results appeared
in [9]. Finally, we show that there exists a structure for SAFER similar to a higher-
order differential, which holds with probability 1 after two rounds of encryption. The
weaknesses of SAFER K reported in this paper are not due to bad intrinsic properties of
the S-boxes used in SAFER K and attacks similar to the ones described here would be
possible for most S-boxes.

This paper is organized as follows. First we give a short description of SAFER K and
SAFER SK. In Section 3 a weakness in the key schedule of SAFER K is described and
how to exploit this in a related-key chosen plaintext attack is shown. The same weakness
is used in Section 4 to find collisions for hash functions using SAFER K. In Section 5 we
give different methods of how to improve SAFER K to avoid the problems described in
the preceding sections and discuss the new key schedule used in the modified version of
the algorithm SAFER SK. In Section 6 we consider truncated differentials of SAFER K
and apply them in attacks, and give concluding remarks in Section 7.

2. Description of SAFER K

SAFER K is anr -round iterated cipher with block size and key size both of 64 bits and
with only byte-operations. The key is expanded to 2r + 1 round keys each of 64 bits,
described later. The designer’s recommendation forr is 6 [11]. Each round takes 8 bytes
of text input and two round keys each of 8 bytes. The input and the round keys are each
divided into 8 bytes and the first round key is exclusive-ored (exored), respectively added
modulo 256, according to Fig. 1. The bytes are then processed using two permutations
or S-boxes,X(a) = 45a mod 257 ifa 6= 128, with X(128) = 0, and the inverse ofX,
L(a) = log45(a) mod 257 fora 6= 0 and withL(0) = 128. The outputs of the S-boxes
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Fig. 1. One round of SAFER K.

are added modulo 256, respectively exored, to the second round key and finally the so-
calledPseudo-Hadamard Transformation(PHT) is applied to produce the output of the
round. The PHT is defined by three layers of the 2-PHT, which is defined by

2-PHT(x, y) = (2 ∗ x + y, x + y),

where each coordinate is computed modulo 256. Between two layers of 2-PHTs the
bytes are permuted, a permutation which using cycle notation is(1)(8)(253)(467), see
also Fig. 1. After the last round an output transformation,OT, is applied, which consists
of exoring, respectively adding modulo 256, the last-round key. Leto = o1, . . . ,o8 be
the 8 bytes of the output afterr rounds, and letk = k1, . . . , k8 be the 8 bytes of the
last-round key. The ciphertext is defined as

OT(o, k) = (o1⊕ k1,o2+ k2,o3+ k3,o4⊕ k4,o5⊕ k5,o6+ k6,o7+ k7,o8⊕ k8).

2.1. The Key Schedule of SAFER K

The key of 64 bits is expanded to 2r +1 round keys each of 64 bits in the following way.
Let K = (k1,1, . . . , k1,8) be an 8-byte key. The round key bytej in roundi is denoted
Ki, j . The round key bytes are derived as follows:K1, j = k1, j for j = 1, . . . ,8 and

ki, j = ki−1, j << 3,

Ki, j = ki, j + bias[i, j ] mod 256

for i = 2, . . . ,2r + 1 and j = 1, . . . ,8. “<< 3” is a bitwise rotation three positions
to the left andbias[i, j ] = X(X(9i + j )), whereX is the exponentiation permutation
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described above. Let the input to the PHT be the 8-byte vectorX = [x1, . . . , x8]. The
output vectory of the PHT can then be defined asy = Mx, where

M =



8 4 4 2 4 2 2 1
4 2 2 1 4 2 2 1
4 4 2 2 2 2 1 1
2 2 1 1 2 2 1 1
4 2 4 2 2 1 2 1
2 1 2 1 2 1 2 1
2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1


. (1)

2.2. The Key Schedule of SAFER SK

SAFER SK varies from SAFER K in the suggested number of rounds, which is eight,
and in the key schedule. LetK = (k1,1, . . . , k1,8) be an 8-byte key. Define

k1,9 =
8⊕

i=1

k1,i .

The round keysKi, j , are defined as follows:

K1, j = k1, j for j = 1, . . . ,8,

ki, j = ki−1, j << 3 for j = 1, . . . ,9,

Ki, j = ki,(i+ j−2mod9)+1+ bias[i, j ] mod 256 for j = 1, . . . ,8,

for i = 2, . . . ,2r + 1.

2.3. The128-Bit Key Schedules

The 128-bit key versions differ from the 64-bit versions in the suggested number of
rounds which is 10 and in the key schedule. The key schedule is essentially two key
schedules of the respective 64-bit version, such that the odd-numbered round keys are
taken from the first key schedule and the even-numbered round keys from the second
key schedule. A 128-bit version is compatible with its 64-bit version, if the two 64-bit
key halves input to the key schedule are set equal.

2.4. Some Properties of SAFER K

In this section we show two lemmas which are used in this paper.

Lemma 1. Let X be the exponentiation function of SAFER K and let a be any byte
value. Then it holds that X(a)+ X(a+ 128) = 1 mod 256.

Proof. Consider first the casea 6= 0,128:

X(a)+ X(a+ 128) mod 257= 45a + 45a+128 mod 257

= 45a × (1+ 45128) mod 257

= 0 mod 257,
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since 45128= −1 mod 257. Since bothX(a) andX(a+128) are in the range 1, . . . ,255
for a 6= 0,128, it follows thatX(a) + X(a + 128) = 257. If a = 0 it follows that
X(a)+ X(a+ 128) = X(0)+ X(128) = 1 and similarly fora = 128.

The mixed use of addition modulo 256 and exclusive-or operations in SAFER K
was introduced to give the cipherconfusion[11]. However, there is a simple and useful
connection between the two operations when used on bytes.

Lemma 2. Let a be a byte value. Then a⊕ 128= a+ 128 mod 256.

3. Weakness in the Key Schedule of SAFER K

In SAFER K a key byte j affects only S-boxj directly in every round. LetK =
(k1, . . . , k8) be an 8-byte key and consider the first byte in the first round. First a key
byte is exored to the plaintext byte, the result is exponentiated and another key byte is
added modulo 256, that is,X(y⊕ K1,1)+ K2,1, whereK1,1, K2,1 are derived fromk1.
While it is true that this is a permutation from the plaintext byte to the ciphertext byte
for a fixed key, it is not a permutation from the key byte to the ciphertext byte for a fixed
plaintext. In other words, there exist keysK ∗1,1, K ∗2,1 derived fromk∗1, such that

X(y⊕ K1,1)+ K2,1 = X(y⊕ K ∗1,1)+ K ∗2,1 (2)

for some inputsy. Let K ∗ = (k∗1, . . . , k∗8) be an 8-byte key different fromK in only, say,
the first byte. Then ifk1 andk∗1 encrypt some of the 256 possible inputsy to (2) for S-box
X in every round the same way, there is a good chance thatK and K ∗ encrypt some
64-bit plaintexts over six rounds the same way. If, say,n > 0 inputs in thesth round are
encrypted the same way we say that suchrelatedkeys encrypt equally with probability
ps = n/256. ConsiderK and K ∗ again. If (2) holds for bytey, then it holds also for
the byteỹ = y ⊕ K1,1 ⊕ K ∗1,1 ⊕ 128, which follows from Lemmas 1 and 2. Note that
if K1,1 ⊕ K ∗1,1 = 128, y = ỹ, but for such keys, (2) is never satisfied. To see this, note
that in this caseX(y⊕ K1,1)⊕ X(y⊕ K ∗1,1) is odd, which follows from Lemma 1, but
K ∗2,1⊕ K2,1 is even, which is a consequence of the key schedule. SinceL is the inverse
of X, a similar property holds for the logarithmic S-boxes. Thereforen is always even.
Since the round keys of SAFER are dependent, one cannot multiply the probabilities,
ps, for two consecutive rounds to get the total probability that two keys encrypt equally
over two rounds. However, our experimental results have shown that this method is a
good approximation to the real probability. Thus, the probability that a 64-bit plaintext
encrypts into the same ciphertext after six rounds of encryption can be approximated as
follows:

6∏
s=1

ps ≥ 26

248
= 2−42, (3)

and the number of such plaintexts for a given pair of related keys isPl = 264×∏6
s=1 ps ≥

222. Since this phenomenon is isolated to one S-box it is easy to do an exhaustive search
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for all such pairs of keys. As an example, for two keys different only in the third bytes
with the values 132 and 173, respectively,

∏6
s=1 ps = 6912/248 ' 2−35 andPl ' 229.

Note that since it is only required that the two keys have certain values in the third bytes,
Pl ' 229 for 256 pairs of keys. For another 3× 256 pairs of keysPl ' 228. How does
one determine which and how many keys are related? Take a keyK . Consider all 28− 1
keysK ∗ different fromK in only the first byte. If none of them is related toK , choose
keysK ∗ different fromK only in byte 2 and so on. Again an exhaustive search for all
S-boxes can be done separately. The total number of keys for which there are no related
keys different in only one byte is about 240. For many keysK there exists more than one
related key, on the average about two and in some cases there are as many as nine keys
related toK .

In the search for the plaintext/ciphertext pairs that coincide for two keys it is not
necessary to do two full six rounds of encryptions. One can start the encryptions in
the second round choosing the inputs such that the outputs of the first two rounds of
encryption are the same. This can be done easily by precomputing two small tables.
Assume that the two keys differ in the first byte only. For the 256 possible values of the
text output of the first S-box in the first round, store in a table the values for which the
two keys decrypt to equal plaintexts. For the 256 possible values of the text input to the
first S-box in the second round, store in a table the values for which the two keys encrypt
to equal values. By pairing the values in the two tables one can compute all the 64-bit
inputs to the second round, such that the two keys encrypt equally in both the first and
the second round.

After each round of encryption one checks whether the encryptions are equal. In most
cases only one round of encryption is needed for every plaintext in a pair. Therefore one
need only do about16×2/

∏6
i=3 pi encryptions, which is 222 in the optimal cases. The out-

put transformation, which consists of exoring, respectively adding modulo 256, the key
K2r+1 makes the above ciphertexts differ in one byte, exactly the byte for which the keys
differ. As an illustration Table 1 lists two such examples. The first suchpseudocollision
was found in time 222, the second in time 222.1. We summarize our results.

Fact 1. For all but 240 keys K in SAFER K, there exists at least one and on the average
two keys, K ∗, different from K in one byte, say byte bk, such that K and K∗ encrypt
from 222 to about229 plaintexts the same way in six rounds. The output transformation
of SAFER K makes the ciphertexts differ in one byte, byte bk. The related keys can be
found easily by exhaustive search over a single eight-bit S-box in six rounds. Given two
related keys one such plaintext(and the two ciphertexts) can be found in time from about
222 to 228 encryptions.

Table 1. Pseudo key-collisions for SAFER K (hex notation).

Plaintext Keys Ciphertexts

8a 2c 62 a2 a2 81 c1 8c e0 81 01 85 eb 3b 48 76 ca dd fc f6 30 ac 71 38
8a 2c 62 a2 a2 81 c1 8c e0 81 01 85 eb 3b 48 bc ca dd fc f6 30 ac 71 5c

50 1c 7a 44 39 63 f7 8c e0 81 01 85 eb 3b 48 76 6a 7d db 51 44 89 5a f7
50 1c 7a 44 39 63 f7 8c e0 81 01 85 eb 3b 48 bc 6a 7d db 51 44 89 5a 93
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From the above discussion the following result also follows:

Fact 2. For all but 217 keys K in SAFER K, there exists at least one and on the average
3.5 keys, K ∗, different from K in one byte, say byte bk, such that K and K∗ encrypt from
229 to about235 pairs of plaintexts, P, P∗, different in only byte bk the same way in six
rounds. The output transformation of SAFER K makes the ciphertexts differ in one byte,
byte bk.

To find such “collisions,” one can use the same method as described above for the result
of Lemma 1, but this time start the search in the third rounds, such that the encryption
in the second and third rounds are equal. Once two ciphertexts different in only byte
bk are found, the ciphertexts after one round are decrypted into two plaintexts different
in only bytebk. Examples of collisions from Lemma 2 are given in the section about
collisions of hash functions. In the following the result of Lemma 2 is used to establish
a related-key attack on SAFER K.

3.1. A Related-Key Chosen Plaintext Attack

In [1] new attacks based on related keys were introduced. In this section we apply a
variant of these attacks to SAFER K. Assume an attacker has access to two oracles,
one encrypting plaintexts with a keyK , the other encrypting plaintexts with a keyK ∗,
such thatK andK ∗ are related, that is, encrypt a nonnegligible fraction of all plaintexts
the same way. Assume without loss of generality that the keys differ only in byteb1.
Consider the following attack:

1. Choose the values of the bytesb2 to b8 at random.
2. Get the 256 encryptions{Ci } of the plaintextsb1,b2, . . . ,b8 for all values ofb1

encrypted under the first key.
3. Get the 256 encryptions{Cj } of the plaintextsb1,b2, . . . ,b8 for all values ofb1

encrypted under the second key.
4. Sort the ciphertexts just received and check if a ciphertext in{Ci } differs from a

ciphertext in{Cj } only in byteb1. If a match is found the two ciphertexts are output.

If ciphertexts are output in the last step of the above attack, we search exhaustively for
two key bytesk andk∗ for which (2) holds. For these key bytes it is checked if the exor
of the byteb1 of the two ciphertexts is the value of the exor of the last-round key bytes
induced byk andk∗. If this is the case we have found 8 bits of the secret key with a high
probability. It is possible that two ciphertext blocks are different only in one byte without
the property that the encryptions after each of the six rounds are equal. However, this
would happen only with small probability. The attack is repeated until the last step of
the algorithm outputs two ciphertexts. Table 2 lists the complexities for the related-key
attack on SAFER K with six and eight rounds. In the outlined attack it is assumed that
an attacker is able to get encryptions of chosen plaintexts for two related keys. Although
the attack may seem unrealistic, for most block ciphers such attacks are not applicable
and moreover it is possible to modify SAFER K to thwart the attacks. Finally, we note
that Wagner has improved the related-key attack, as outlined in [6].
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Table 2. Related-key chosen
plaintext attacks on SAFER K
with six and eight rounds finding

one byte of the key.

Rounds # Plaintexts

6 236

8 250

3.2. The Rotations and Bias Additions

In this section we consider the rotations and biases used in the key schedule of SAFER K.
In [11] it is argued that the addition of biases prevent weak keys. There is a reason to
have byte rotations as well.

Lemma 3. The PHT has256fixed points.

This result can be found by using Gauss-eliminations on the 8× 8 matrix of the PHT.
Each byte value in a fixed point is a multiple of 64. There are 16 fixed points where the
byte values are either 0 or 128. They are given in Table 6 of Appendix A. If one leaves
out the key rotations, but keeps the addition of the biases, then these 16 fixed points for
the PHT are “linear structures” for SAFER K with any number of rounds in the following
way. Leta1, . . . ,a16 be the fixed points from Table 6. LetE(K , P) = C be the encrypted
value of plaintextP using keyK , thenE(K + ai , P+ ai ) = C, where “+” is bytewise
addition modulo 256. Thus, an exhaustive search for the key could be reduced by a factor
of 16 using 16 chosen plaintexts. The 16 fixed points are the only such linear structures.
Fixed points with entries of values 64 or 192 are affected/destroyed by the mix of group
operation exclusive-or and addition mod 256, but the values 0 and 128 are not, which
follows from Lemma 2. The above illustrates that SAFER K needs both key rotations
and bias additions in the key schedule.

4. Collision of Hash Functions

Methods of how to use a block cipher as a building block in hash functions are standard-
ized [5]. In this section we show how to find collisions for hash functions using SAFER
as the underlying block cipher. There are essentially two secure single block length hash
functions, which use only one encryption per round [15]:

Hi = h(Mi , Hi−1) = EMi (Hi−1)⊕ Hi−1, (4)

Hi = h(Mi , Hi−1) = EMi (Hi−1)⊕ Hi−1⊕ Mi , (5)

whereH0 = IV is an initial value. Oftenh is called the compression function. These
schemes are believed to be secure, in the sense that, if the underlying block cipher has
no weaknesses, preimage attacks and collision attacks on the compression functions
have time complexities 2m, respectively 2m/2, encryptions of the underlyingm-bit block



A Detailed Analysis of SAFER K 425

Table 3. Collisions for compression functions of type (4) with SAFER K.

Initial value (pl. text) Message (key) Hash code

6e 32 68 46 c8 fd f1 a9 6f 2d 73 46 e1 2f 62 45 e5 12 8b 4d 3d 58 c2 18
6e 32 68 46 c8 fd f1 9c 6f 2d 73 46 e1 2f 62 f7 e5 12 8b 4d 3d 58 c2 18

f4 b1 a3 27 0b ed 78 a9 57 f5 9b 4e 49 77 0a 45 54 43 57 c4 be f9 88 c9
f4 b1 a3 27 0b ed 78 9c 57 f5 9b 4e 49 77 0a f7 54 43 57 c4 be f9 88 c9

cipher. Using SAFER K as the underlying block cipher it is possible to find collisions
with a complexity of much less than the brute-force method of 232 operations.

We exploit the phenomenon of Lemma 2 to find collisions for the schemes (4) and
(5). Consider two plaintexts and two keys, both pairs with different values only in the
same single byte, such thatEK1(P1) ⊕ P1 = EK2(P2) ⊕ P2 or EK1(P1) ⊕ P1 ⊕ K1 =
EK2(P2)⊕P2⊕K2 depending on the type of hash function which is considered. One can
speed up the search for such quantities by choosing the inputs of SAFER K to the third
round, such that the keys encrypt equally in the second and third rounds. For (4), when
two ciphertexts different in only one byte are found, one calculates the plaintexts and
checks for a collision. In the optimal cases these collisions can be found in estimated time
about 222.8 encryptions of SAFER K. Table 3 lists examples of such collisions for hash
functions of type (4). The first collision was found in time 220.6 encryptions, the second
collision in time 219.3 encryptions. Similarly, collisions for compression functions of
type (5) were found in time about 222.

Although the collisions found in the last section are considered hard to find, if the
underlying block cipher has no weaknesses, it is interesting to find collisions also when
the initial value is given and fixed. Using the results of Lemma 2 this cannot be done
directly for (4), since if the plaintexts are equal for two related keys the hash value of
(4) will always be different. However, it is possible to find collisions if we consider two
rounds of the hash function. AssumeH0 is a fixed initial value. Using the related key
properties described earlier in this paper one findsM1 andM ′1, such thatH1 = EM1(H0)⊕
H0 andH ′1 = EM ′1(H0)⊕ H0 differ in one byte. Then the related key properties can be
used once again in the second round to findM2 andM ′2, such thatH2 = EM2(H1)⊕ H1

equalsH ′2 = EM ′2(H
′
1)⊕H ′1. This attack was not implemented. For the hash functions (5)

it is possible to find collisions with a fixedI V . For the pseudocollisions for SAFER K,
see Table 1, the ciphertexts and keys differ in the same byte. Therefore when both the
plaintexts and the keys are fed forward in the hash mode, one can obtain collisions.
The difference in the ciphertexts of Table 1 is equal to the difference in the last-round
keys, which is not necessarily the difference in the keys themselves. Therefore for this
attack to work one should use pairs of keys for which the byte differences in the keys
are equal to the byte differences in the last-round keys of the keys. An exhaustive search
reveals many pairs of keys with this property, where one example is two keys different
only in the fifth bytes with values 9 and 129, respectively. By using similar techniques as
before, a collision can be found in expected time about 222 encryptions. Table 4 lists such
collisions. The first collision was found in time 222.3 encryptions, the second collision in
time 220.0 encryptions. Many of our collision implementations ran faster than expected,
which may be due to the fact that probabilities in (3) are not independent as assumed.
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Table 4. Collisions for hash functions of type (5) with SAFER K.

Initial value (pl. text) Message (key) Hash code

ff 4e 79 3f c3 4f 52 5b 6d e6 02 f2 54 f0 59 a8 a7 a9 3e 8c 23 30 c3 b4
ff 4e 79 3f c3 4f 52 5b e5 e6 02 f2 54 f0 59 a8 a7 a9 3e 8c 23 30 c3 b4

ff 9d e5 f5 c1 bc eb 71 6d 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17
ff 9d e5 f5 c1 bc eb 71 e5 9b 13 2f 4d f5 7a b5 11 47 f9 f4 53 c8 e3 17

5. Improvements of SAFER K

In this section we suggest modifications of SAFER K, such that the above attacks cannot
be effected. An obvious and immediate way is to increase the number of rounds.

5.1. An Increased Number of Rounds

In SAFER K with eight rounds there are still many pairs of keys encrypting some
plaintexts the same way. In the optimal case a pair of keys encrypt 215 plaintexts into the
same ciphertexts after eight rounds of encryption using our method. Also, a related-key
attack is possible for SAFER K with eight rounds, the complexity is given in Table 2.
However, using our methods collisions for hash modes using SAFER K with eight rounds
cannot be found faster than the time of 232 encryptions. For SAFER K with ten rounds the
probability that two keys are related is too small to be of any use in both the related-key
and the collision attacks.

5.2. New Key Schedule for SAFER K

One way to avoid the problems reported so far is to remove the second exor/addition of
the key in every round. To find similar collisions as in the previous section would now
require an incorporation of the PHT, which seems very unlikely to succeed.

Next the modified key schedule for SAFER K already described in Section 2.2 is
discussed. As can be seen, there is a circular shift of the nine key bytes. In that way the
eight user-selected key bytesk1, . . . , k8 are connected to different S-boxes from round to
round. The parity byte is introduced to provide an avalanche effect in the key schedule.
The new key schedule ensures that the round keys of two different keys are always
different in at least two bytes in some rounds and in at least one byte in the remaining
rounds. As an example, in SAFER K with six rounds, two keys will be different in two
bytes in at least 9 out of the 13 round keys. In SAFER K with eight rounds, this will be
the case in 13 out of the 17 round keys. Therefore our method of finding key-collisions
will no longer be applicable. Also, note that if the key is chosen uniformly at random,
any round key is uniformly random.

6. Differential Cryptanalysis of SAFER K

In [12] strong evidence was given that SAFER K is secure against differential cryptanal-
ysis. It was argued that a five-round differential for SAFER K will have a probability of
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much less than 2−57, and that a differential attack will require more computations than
a brute-force search for the key.

In this section other types of differentials than the ones given in [12] are considered. We
use the notation of “expanded views” from [12] and denote a one-round differential by
three tuples of each eight entries. The first tuple indicates the difference in the eight bytes
of the inputs to the round, the second tuple indicates the difference of the bytes before the
PHT and the third tuple indicates the difference of the bytes after the PHT, that is the differ-
ence of the outputs of the round. For convenience, when considerings-round differentials
for s > 1, the third tuple in all but the last round is omitted, since the output difference
of one round equals the input difference to the following round. To cope with the mixed
use of addition modulo 256 and the exclusive-or, Massey introducedquasi-differentials,
where the notions of difference are different in the inputs and in the outputs [12]. This
is avoided in the attacks to follow where adifferenceof two bytesx andx′ is defined as

x − x′ mod 256.

Also, we consider truncated differentials as defined in [8]:

Definition 1. A differential that predicts only parts of ann-bit value is called atruncated
differential. More formally, let(a,b) be ani -round differential. Ifa′ is a subsequence of
a andb′ is a subsequence ofb, then(a′,b′) is called ani -round truncated differential.

In a truncated differential only a subset of all bits of the difference in ciphertexts is
predicted. The remaining bits can take any value. In [12] ten tables of “PHT corre-
spondences” are given. The truncated differentials to be described follow from these
properties of the PHT. As an example, consider the following one-round differential
with the expanded view:

[a,b, c,d,0,0,0,0], [e, f,−e,− f,0,0,0,0], [2g, g,2h, h,0,0,0,0], (6)

whereg = 2e+ f andh = e+ f . This truncated differential has probability 2−16 on
the average for all values ofa,b, c,d. Consider the first and second tuples of (6). A
differencea in the first byte and a differencec in the third byte will yield differencese
and−e, respectively, with an average probability of 2−8, the probability taken over all 216

possible values of both the input and of the involved key bits [9]. Similarly, a difference
b in the second byte and a differenced in the third byte will yield differencesf and− f ,
respectively, with an average probability of 2−8. The PHT is linear with respect to the
defined difference, that is, PHT(x)−PHT(x′) = PHT(x− x′). The PHT transforms the
second tuple into the third tuple which is easily verified. As another example, consider
the following one-round differential with the expanded view:

[0,0,0,0,0,0,a,b], [0,0,0,0,0,0,0,0,e,−e], [e,e,0,0,e,e,0,0]. (7)

This truncated differential has probability 2−8 on the average for all values ofa,b. In the
above examples, no specific values are chosen for the nonzero bytes. It is not intended
to predict the actual values of the nonzero bytes, merely predict the bytes which are
zero. There are many one-round differentials like (6) and (7) above. To save space a
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new notation is introduced. Denote a differential by the indices of the bytes which are
nonzero, and write 1234→ 1234 for the differential (6) and, similarly, 78→ 1256
for the differential (7). In Tables 7 and 8 of Appendix B many such differentials are
listed. As an example, the differential (6) can be found in Table 8 as Input: 1234, Output:
1234, Prob. 16. The probabilities are given as logarithms, so that “Prob. 16” means a
probability of 2−16.

As shown one can now concatenate the one-round differentials of Tables 7 and 8.
Consider the following three-round truncated differential:

1. [a,b, c,d,0,0,0,0], [e, f,−e,− f,0,0,0,0],
2. [2g, g,2h, h,0,0,0,0], [i, j,−i,− j,0,0,0,0],
3. [2k, l ,2k, l ,0,0,0,0], [m,n,−m,−n,0,0,0,0], [2p, p,2q,q,0,0,0,0],

whereg = 2e+ f andh = e+ f , etc. In the other notation, the differential is 1234→
1234→ 1234→ 1234. The probability in the first round is 2−16 as shown earlier.
The probabilities in the second round and in the third round will both be approximated
by 2−16, although the input differences are dependent. The overall probability for the
three-round differential is approximated by the product of the probabilities of the three
one-round differentials, in this case 2−48. Since the round keys are dependent this is
not a correct way to calculate the probability. Despite this, and the fact that the input
differences to pairs of two bytes in both the second and third rounds are dependent,
computer experiments have shown that the probability is well approximated this way,
which is illustrated later. Consider the following three-round differential:

1. [a,b, c,d,0,0,0,0], [e,−e, f,− f,0,0,0,0],
2. [2g, g,0,0,2h, h,0,0], [i, j,0,0,−i,− j,0,0],
3. [2k,0,2l ,0, k,0, l ,0], [m,0,−m,0,n,0,−n,0], [2p,2q, p,q,0,0,0,0],

or, similarly, 1234→ 1256→ 1357→ 1234. This differential also has a probability
of 2−48. Since the two above differentials have the same input difference and the same
output difference, that is, the outputs differ in the same bytes, a truncated differential
with input difference [a,b, c,d,0,0,0,0] and output difference [x, y, z, w,0,0,0,0]
will contain both the above differentials. There are a total of eight differentials each
of probability 2−48 covered by this truncated differential, which therefore will have a
probability of about 8× 2−48 = 2−45.

6.1. Differential Attacks on SAFER K

In this section we consider differential attacks on SAFER K using truncated differentials.
Consider SAFER K with three rounds and the three-round truncated differential with
input difference [a,b, c,d,0,0,0,0] and output difference [x, y, z, w,0,0,0,0]. The
probability of the differential is approximately 2−45. In a conventional differential attack
with a differential of probabilityp one needs about 1/p chosen plaintext pairs to get
one right pair [2]. Using the above truncated differential for SAFER K one can choose
n different plaintexts, all of them with the four rightmost bytes of equal values. From
thesen plaintexts one can form about(n× (n− 1))/2 ≈ n2/2 pairs of plaintexts with
an input difference zero in the four rightmost bytes. As an example, by choosing 223
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plaintext this way, one obtains about 245 pairs with the desired difference and thus with
a high probability one right pair.

The attack on SAFER using truncated differentials goes as follows:

1. Get the encryptions of then chosen plaintexts.
2. Discard wrong pairs.
3. Get the key candidates for all nondiscarded pairs.
4. Do an exhaustive search for all remaining key bits.

The probabilities of the above differentials are not accurate. First, the round keys of
SAFER K are not independent as assumed, second, the many pairs processed are not
independent. To justify the above method of estimating the probabilities, some tests were
done on a mini-version of SAFER K. Instead of working on bytes let SAFER K work on
nibbles (4 bits), yielding a 32-bit block cipher with a 32-bit key called SAFER K(32).
DefineX4(a) = (3a mod 17) mod 16, and the inverse ofX4, L4(a) = log3(a) mod 17
for a 6= 0 and whereL(0) = 8. Since 17 is a prime number, exponentiation with the
primitive element, 3, is a permutation. All exor operations are on nibbles and additions are
calculated modulo 16. We considered the five-round truncated differential 1234→ 5678
in SAFER K(32). There are 824 different differentials in this truncated differential, each
of probability 2−40, and the overall probability of the truncated differential is about
2−30.3. By using structures consisting of 216 plaintexts, all different in the four leftmost
nibbles and equal in the four rightmost nibbles, one obtains about 231 pairs. Of these
the expected number of right pairs is 1.6 and about 231/216 = 215 = 32,768 pairs will
have zero difference in the four leftmost bytes, but are wrong pairs. In ten structures of
each 216 plaintexts and each with a different key 17 right pairs were found and 327,781
nondiscarded, wrong pairs, thus confirming the theory. In the following section it is
shown how to attack five-round SAFER K, 64 bits, using truncated differentials.

6.2. Five-Round SAFER K

Consider the following four-round truncated differential with input difference
[a,0,0,b, c,0,0,d] and output difference [0,0,0,128,0,0,0,0]. There are four dif-
ferentials in this truncated differential, each of probability 2−71.7. They are

1458→ 1357→ 1357→ 13→ 4, (8)

1458→ 2468→ 1357→ 13→ 4, (9)

1458→ 1357→ 2468→ 13→ 4, (10)

1458→ 2468→ 2468→ 13→ 4. (11)

The probabilities in the first two rounds are of each 2−16 and the probability in the
third round is 2−24, according to Tables 7 and 8. The expanded view of this four-round
truncated differential in the fourth round is

4. [2v,0, v,0,0,0,0,0], [128,0,128,0,0,0,0,0], [0,0,0,128,0,0,0,0].

This round has probability 2−15.7, which has been found by a direct computation. Con-
catenate the four-round truncated differential with the following one-round differential
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with the expanded view:

5. [0,0,0,128,0,0,0,0], [0,0,0, x,0,0,0,0], [2x, x,2x, x,2x, x,2x, x],

where the value ofx is odd. This differential has probability 1, since an input dif-
ference 128 to the exponentiation permutation always yields an odd output differ-
ence, which follows from Lemma 1, see also [12]. Therefore one obtains a five-round
truncated differential with input difference [a,0,0,b, c,0,0,d] and output difference
[2x, x,2x, x,2x, x,2x, x] for oddx and with a probability of 2−69.7. One can use struc-
tures of each 232 plaintexts yielding 263 pairs with the desired difference in the inputs.
One needs about 270 pairs to get one right pair and therefore about 128 structures, a total
of 239 plaintexts. The analysis can be performed on each structure and thus the memory
requirements are 232 64-bit quantities. In the following the analysis will be described
for all 270 pairs simultaneously. In SAFER K an output transformation is applied to
the outputs of the last round to obtain the ciphertexts. This transformation consists of
bytewise exoring and adding modulo 256 the last-round key. Therefore, right pairs for
the above truncated differential will have the following form:

[z1, x, 2x, z2, z3, x, 2x, z4], (12)

where thezi ’s are values that cannot be predicted immediately. The following lemma is
easily proved.

Lemma 4. Let z̃ andẑ be two bytes and let k be a key byte. The least significant bit of
z= z̃− ẑ mod 256and of z′ = (z̃⊕ k)− (ẑ⊕ k) mod 256are equal.

Since it is known thatx is odd, it follows from Lemma 4 and from the differential that
z1 andz3 must be even, andz2 andz4 must be odd.

The filtering of wrong pairs goes as follows. For every pair, letx′ be the value of the
difference of the second byte of the ciphertexts. Check ifx′ is odd, and, if so, check if the
difference in bytes 3, 6, and 7 have values 2x′, x′,2x′, respectively. This first filtering
process discards all but one out of 225 pairs. For all remaining 245 pairs, check if thezi ’s
have the correct values in the least significant bits. This second filtering process discards
all but one out of 16 pairs, thus one is left with 241 pairs. The expected difference before
the output transformation is [2x, x,2x, x,2x, x,2x, x] for a right pair. On the average
each of the remaining pairs will suggest two values of each of the bytes 1, 4, 5, and 8 of
the last-round key, i.e., 16 values of a 32-bit subkey. Note that according to Lemma 4 a
key bytek andk⊕ 1 are indistinguishable in this test. For every pair and for all these 16
key values, one checks if the difference in the plaintexts yields a correct difference in the
outputs of the first round. Since there are two possible sets of four bytes with nonzero
values after the first round according to (8)–(11) every pair will suggest 16×2−15 = 2−11

values on the average of the four key bytes 1, 4, 5, and 8. Here it is exploited that the
round key bytei , 1 ≤ i ≤ 8, in each round is derived from the same key byte. Totally,
the 241 pairs will suggest 230 values of four bytes of the key. Thus, an exhaustive search
at this point for the key can be done in time about( 1

2)× 230× 232 = 261. The time and
space requirements of the filtering processes above can be made small. One method is
the following, proposed by an anonymous referee of [9]. Let the ciphertexts be denoted
(c1, . . . , c8). Hash each ciphertext to(c3− 2∗ c2, c6− c2, c7− 2∗ c2). The ciphertexts
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Table 5. Complexities of the differential attack
on SAFER K with five rounds. Time units are en-
cryptions with SAFER K. Storage units are 64 bits.

Rounds Time Plaintexts Storage

5 261 239 232

5 249 244 232

5 237 245 232

with the same such hash value will be candidates for a right pair after the first filtering
process. The second filtering process can be done at the same time.

By repeating the attack several times the complexity can be decreased considerably.
The basic attack described above suggests 230 values of 32 bits of the key. The differential
has probability 2−69.7, so by generating 270 pairs one gets one right pair with probability
0.71. Thus the right key value is suggested with probability at least 0.71, since it will
happen that the wrong pairs also suggest the correct key value, and a wrong key value
is suggested with an average probability of 230/232 = 0.25. Keep a counter for every
possible value of the 32-bit key and increment the respective counter for every suggested
value of the key. LetT be the number of times the above basic attack is repeated. LetX(T)
be a random variable counting the number of times the right key is suggested and letY(T)
be a random variable counting the number of times any other value of the key is suggested
in T basic attacks. From the aboveE(X(T)) = T ×0.71 andE(Y(T)) = T ×0.25. By
assuming thatX(T) andY(T) are independent and that the suggested wrong values of
the key are uniformly distributed, one can approximate the probability thatY(T) takes on
a greater value thanX(T) afterT basic attacks, i.e., Pr(X(T) < Y(T)). By the Central
Limit Theorem [4], Pr(X(32) < Y(32)) ' 2−16 and Pr(X(64) < Y(64)) < 2−28. Thus,
by repeating the attack 32 times using totally 244 plaintexts, the right key value will be
among the 232× 2−16 = 216 most suggested values with a high probability. To increase
the probability of success, one can choose the 217 most suggested values of the 32-bit key
and do an exhaustive search for the remaining 32 key bits for every one of these values
using a few of the obtained plaintext/ciphertext pairs, thus totally one needs to do about
249 encryptions. Every counter can be implemented as one byte, thus the storage needed
for the counters is only one-eighth of the storage needed for the plaintexts. Another
possibility is to repeat the attack 64 times using totally 245 plaintexts. The right key
value will be among the first 16 most suggested values with a high probability. Taking
the 32 most suggested values and searching exhaustively for the remaining 32 bits, the
time complexity of the attack is about 237. Table 6.2 summarizes the complexities of the
attacks for SAFER K with five rounds.

In the above attack the four-round truncated differential 1458→ 4 with probability
2−69.7 was used. There are many other differentials that can be used in variants of the
above attacks, which the reader can verify by studying Tables 7 and 8.

6.3. Six-Round SAFER K

For SAFER K with six rounds there is a similar truncated differential as the one above
for SAFER K with four and five rounds. It has input difference [a,0,0,b, c,0,0,d] and
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output difference [2x, x,2x, x,2x, x,2x, x] after six rounds with a probability of 2−81.8.
To get a right pair, one needs about 250.8 chosen plaintexts. However, we have not been
able to find a method to filter out enough wrong pairs in order to do a successful attack on
SAFER K with six rounds. Also, there are truncated differentials predicting the values
of four bytes after six rounds with similar probabilities. As an example, the six-round
truncated differential with input difference [a,b, c,d,0,0,0,0] and output difference
[x, y, z, w,0,0,0,0] has a probability of 2−83.8. This truncated differential contains
more than 4000 differentials. To get a right pair, one needs about 252.8 chosen plaintexts.
However, the number of wrong pairs is too high to do a successful differential attack.

6.4. SAFER K-128,SAFER SK-64,and SAFER SK-128

The above attack for SAFER K with five rounds is applicable to SAFER K-128 also. The
filtering of wrong pairs and the procedure of getting 16 suggested key values in the last
round are the same. The suggested key values in the first round will give us candidates
only for the bytes in the first round key, since the addition modulo 256 of the second
round key will be invariant because of the notion of difference used. However, since the
first and the last round keys depend only on the same 64 bits of the original key, one
finds 32 bits of the 128-bit key by the above attack. By using other similar truncated
differentials one can find the remaining 32 bits of the first and the last round keys. With
the knowledge of these keys, one is left with a cipher easier to attack than the original.

The truncated differential used above for SAFER K with five rounds was chosen to
minimize the number of counters for candidates of a 32-bit subkey. For SAFER SK-64
(and SAFER SK-128) the four key bytes in positions 1, 4, 5, and 8 in the round keys will
depend on different bytes of the key from round to round. Therefore the above analysis
is not directly applicable to SAFER SK-64. However, the first part of the attack with
time complexity 261 is applicable. The 241 nondiscarded pairs will suggest 16 values of
round key bytes in positions 1, 4, 5 and 8 in the last round. These bytes correspond to
byte nos. 2, 5, 6, and 9 in the original key, where byte 9 is the parity byte. For every one
of these 16 values, the check in the first round of the differentials will give us about 29

values of the key bytes 1, 4, 5, and 8 of the original key. Thus, one gets suggested values
of key bytes 1, 2, 4, 5, 6, 8, and 9, and totally about 241× 16× 29 = 254 possible values
for the 56-bit key. The remaining 8 bits can be found exhaustively.

It is infeasible to keep a counter for each 56-bit key and repeat this attack, as was
done for SAFER K. However, simply trying all possible candidates is possible and an
exhaustive search for the key at this point would require about( 1

2)×262 = 261 operations.
It is left as an open problem to find other differentials to improve the attack on SAFER SK.
One idea is to use several differentials in parallel attacks, for example using the following:
1357→ 4, 2468→ 4 and 2367→ 4, all three with probability 2−69.7.

6.5. Higher-Order Differentials

A dth-order differential is a collection of 2d plaintexts and the corresponding ciphertexts.
It follows from [10] and [8] that adth-order differential of a functionf of nonlinear order
at mostd is a constant. In [12] it was shown that the nonlinear order of the S-boxes in
SAFER is 7. Thus, one would expect that after two rounds of SAFER the nonlinear order
is about 49. However, in this section an interesting property is shown for two rounds of
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(any of the four variants of) SAFER. There exists a structure for SAFER, reminiscent
of that of higher-order differentials, containing 256 texts with probability 1 after two
rounds of encryption.

Consider a collection of 256 plaintexts, such that the first seven bytes are constant,
and where the eighth byte take all 256 values. We define the “difference” of 256 bytes as
the sum of the bytes modulo 256,1x = 1(x(0), . . . , x(255)) =∑255

j=0 x( j ) mod 256.
Note that, with this definition, a difference is invariant of modulo addition of a key byte.
Denote byc1

i ( j ), for j = 0, . . . ,255, thei th bytes after one round of encryption for any
fixed key. Since the 256 eighth plaintext bytes are all different, the 256 eighth bytes of the
input to the PHT will also be different. Therefore the set{c1

i ( j ) | j = 0, . . . ,255} equals
the set{0, . . . ,255} for all i , which can be seen from (1). It follows that1c1

i = 128, for
i = 1, . . . ,8. Note that

∑255
j=0 j mod 256= 128. Letc2

i ( j ) be the ciphertext bytes after
two rounds of encryption. Since the 256 input bytesc1

i ( j ) are all different for eachi , the
eight sets of 256 input bytes to the PHT will each contain 256 different elements. It follows
from (1) that1c2

1 = 128 and1c2
i = 0 for i = 2, . . . ,8, where additions are modulo 256.

To sum up, a structure has been described reminiscent of a higher-order differential
containing 256 texts with probability 1 after two rounds of encryption of (any of the
four variants of) SAFER. The structure can be used to attack SAFER with three rounds,
but is unclear how to extend such an attack to more rounds without a major increase in
complexity. However, note that for a random permutation such a structure will have a
probability of 2−64.

7. Conclusion

In this paper the block cipher SAFER K was analyzed. We discovered a weakness in the
key schedule and exploited it in related-key attacks and in collision attacks for SAFER K
in the standard hashing modes much faster than by brute-force. Our analysis together with
that of Murphy [14] led the designer of SAFER K to adopt our proposed strengthened
key schedule for SAFER K, yielding the new block cipher SAFER SK with a recom-
mended minimum of eight rounds. We considered truncated differentials for five-round
SAFER K and established a differential attack, which finds the secret key in time much
faster than an exhaustive search. The attack needs only a small amount of chosen plain-
text compared with conventional differential attacks which illustrates the importance of
truncated differentials. The success of the attacks does not depend on special properties
of the S-boxes used in SAFER K and would work for most S-boxes. The differential
attack is not directly applicable to SAFER SK, but it is not prevented in a significant
way by a modified key schedule. The main property that makes our truncated differential
attacks possible is the Pseudo-Hadamard Transformation. However, for SAFER K with
more than five rounds our method of filtering out wrong pairs is not efficient enough to do
a successful differential attack. Though it might be possible to improve our methods to
attack SAFER K versions with six rounds, we strongly believe that SAFER SK with eight
rounds, as now recommended, or more rounds are invulnerable to all our attacks. Finally
we presented a structure of 256 plaintexts, for which the sum of the corresponding ci-
phertexts can be predicted with certainty after two rounds of encryption. The importance
of this discovery for SAFER with six or more rounds remains an open problem.
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Appendix A. Some Fixed Points of the PHT

Table 6. The 16 fixed points for the PHT with only entries 0 andγ = 128.

( 0 0 0 0 0 0 0 0) ( 0 0 0 0 γ γ 0 0 )
( 0 0 γ 0 0 0 γ 0) ( 0 0 γ 0 γ γ γ 0 )
( 0 γ 0 γ 0 0 0 0) ( 0 γ 0 γ γ γ 0 0 )
( 0 γ γ γ 0 0 γ 0) ( 0 γ γ γ γ γ γ 0 )
(γ 0 0 γ 0 γ γ γ ) ( γ 0 0 γ γ 0 γ γ )
( γ 0 γ γ 0 γ 0 γ ) ( γ 0 γ γ γ 0 0 γ )
( γ γ 0 0 0 γ γ γ ) ( γ γ 0 0 γ 0 γ γ )
( γ γ γ 0 0 γ 0 γ ) ( γ γ γ 0 γ 0 0 γ )

Appendix B. One-Round Differentials of SAFER

Table 7. One-round truncated differentials for SAFER K with inputs different in less than four bytes.
Probabilities are (− log2).

In Out Prob. In Out Prob. In Out Prob. In Out Prob.

2 68 8 3 48 8 4 2468 8 5 78 8
6 5678 8 7 3478 8 12 6 16 12 256 16

12 1256 8 12 3478 8 13 234 16 13 4 16
13 1234 8 13 5678 8 14 246 16 14 1278 8
14 1278 8 15 7 16 15 357 16 15 1357 8
15 2468 8 16 567 16 16 1458 8 17 347 16
17 1368 8 23 46 16 23 3456 8 24 24 16
24 1234 8 24 5678 8 25 67 16 25 2367 8
26 57 16 26 1357 8 26 2468 8 27 3467 16
28 1368 8 34 26 16 34 1256 8 34 3478 8
35 47 16 35 2457 8 36 4567 16 37 37 16
37 1357 8 37 2468 8 38 1458 8 46 2457 8
47 2367 8 48 1357 8 48 2468 8 56 56 16
56 1256 8 56 3478 8 57 34 16 57 1234 8
57 5678 8 58 1278 8 67 3456 8 68 1234 8
68 5678 8 78 1256 8 78 3478 8 123 78 24

123 3456 16 124 5678 16 125 48 24 127 38 24
134 3478 16 135 68 24 136 58 24 145 28 24
234 1278 16 234 28 24 246 68 24 256 58 24
347 48 24 357 38 24 567 78 24



A Detailed Analysis of SAFER K 435

Table 8. One-round truncated differentials for SAFER K with inputs different in four bytes. Probabilities are
(− log2).

In Out Prob. In Out Prob. In Out Prob. In Out Prob.

1234 2 32 1234 12 24 1234 34 24 1234 56 24
1234 78 24 1234 1234 16 1234 1256 16 1234 3478 16
1234 5678 16 1256 5 32 1256 15 24 1256 26 24
1256 37 24 1256 48 24 1256 1256 16 1256 1357 16
1256 2468 16 1256 3478 16 1278 16 24 1278 25 24
1278 38 24 1278 47 24 1278 1256 16 1278 1368 16
1278 3478 16 1357 3 32 1357 13 24 1357 24 24
1357 57 24 1357 68 24 1357 1234 16 1357 1357 16
1357 2468 16 1357 5678 16 1368 14 24 1368 23 24
1368 58 24 1368 67 24 1368 1234 16 1368 1458 16
1368 5678 16 1458 17 24 1458 28 24 1458 35 24
1458 46 24 1458 1278 16 1458 1357 16 1458 2468 16
2367 17 24 2367 28 24 2367 35 24 2367 46 24
2367 1357 16 2367 2468 16 2367 3456 16 2457 14 24
2457 23 24 2457 58 24 2457 67 24 2457 1234 16
2457 2367 16 2457 5678 16 2468 13 24 2468 24 24
2468 57 24 2468 68 24 2468 1234 16 2468 1357 16
2468 2468 16 2468 5678 16 3456 16 24 3456 25 24
3456 38 24 3456 47 24 3456 1256 16 3456 2457 16
3456 3478 16 3478 15 24 3478 26 24 3478 37 24
3478 48 24 3478 1256 16 3478 1357 16 3478 2468 16
3478 3478 16 5678 12 24 5678 34 24 5678 56 24
5678 78 24 5678 1256 16 5678 3478 16 5678 1234 16
5678 5678 16
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