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A Michelson interferometer and an optical beam deflection configuration (both shot noise and 
diffraction limited) are compared for application in an atomic force microscope. The 
comparison shows that the optical beam deflection method and the interferometer have 
essentially the same sensitivity. This remarkable result is explained by indicating the physical 
equivalence of both methods. Furthermore, various configurations using optical beam deflection 
are discussed. All the setups are capable of detecting the cantilever displacements with atomic 
resolution in a 10 kHz bandwidth. - 

1. INTRODUCTlON 

The atomic force microscope (AFM) was introduced 
by Binnig, Quate, and Gerber’ as a method for high- 
resolution topographic imaging of both insulators and con- 
ductors. In the AFM the sample to be imaged is brought 
close to a sensing tip attached to a small cantilever. Inter- 
action forces between sample and tip deflect the cantilever. 
In the original design, the cantilever displacement was de- 
tected by a tunneling tip on the back of the cantilever.’ 
Subsequently various optical techniques have been devel- 
oped for the displacement detection. These techniques in- 
clude diode laser feedback detection,2V3 interferometry,4-9 
and optical beam deflection.“*” 

The optical beam deflection technique introduced by 
Meyer and Amer” is a very reliable and simple detection 
method. Because of this, the optical beam deflection 
method is widely used in laboratory and commercially 
available AFMs.i2,13 The cantilever displacement is mea- 
sured by detecting the deflection of a laser beam reflected 
from the backside of the cantilever, The deflection is de- 
tected by a position sensitive detector (split detector). 

At first sight it is somewhat surprising that such a 
simple method yields similar results as the more complex 
interferometers and is sensitive enough to obtain atomic 
resolution. Therefore, we have performed a detailed theo- 
retical analysis of the optical beam deflection method in 
various configurations. The analysis shows that the signal- 
to-noise ratios (SNR), assuming shot noise limited perfor- 
mance of the detection systems, are sufficiently high to 
achieve atomic resolution. 

A comparison shows that the SNR of the optical beam 
deflection method is comparable to that of interferometric 
techniques. This is explained by indicating the physical 
equivalence of both techniques. 

II. OPTICAL BEAM DEFLECTION VS 
INTERFEROMETRY 

For the detection of the cantilever displacements in 
AFM, the fundamental limits of any optical detection sys- 
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tern are set by diffraction and photon shot noise. For the 
detection system as such, other sources of noise, e.g., me- 
chanical and acoustic vibrations, electronic noise, light 
source instabilities, and thermal noise, are of a less funda- 
mental nature and will be discussed briefly in the discus- 
sion. In this section we will give an idealized description of 
the optical beam deflection and an interferometer, assum- 
ing shot noise and diffraction limited performance. 

Let us first consider a Michelson-type interferometer 
which is widely used in AFM. The response of the inter- 
ferometer as a function of the tip position in the ideal case 
(fringe visibility is 1) is shown in Fig. 1. At quadrature 
(point Q), for small displacements of the tip AZ, the 
change in the number of photons incident on the detector 
during a measurement (duration: t s) can be approximated 
by 

AN= tN,,,Az2rr//2, (1) 

where Ntot is the total amount of photons emitted by the 
laser per second and A is the wavelength of the laser light. 
The signal-to-noise ratio (SNR) for the measurement of 
AZ, in terms of photons incident on an ideal detector 
(quantum efficiency of 1 and no dark count), is given by 

SNRb,= (S&N& *‘2Az//z, (2) 

where it is assumed that the value of the equilibrium state 
(quadrature) has been established over a long period of 
time to minimize the uncertainty in that signal. 

In order to obtain a similar analysis for optical beam 
deflection, we consider the next idealized situation. A col- 
limated Gaussian laser beam with diameter Do is incident 
on the back side of a cantilever (length 1, Do <I) that has 
a reflective flat surface. The reflected beam is focused by a 
lens (focal lengthf ) on a position sensitive detector (Fig. 
2), consisting of two closely spaced detectors (split detec- 
tor). The assumption is made that the width of the gap 
between the two detectors is small compared to the size of 
the laser beam at the detector. We further assume here that 
Do <I so that almost all the light is reflected by the canti- 
lever. In the focal plane of the lens the intensity distribu- 
tion is also Gaussian with a diameteri 
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FIG. 1. The response of an interferometer expressed as the number of 
photons incident on the detector per second as function of the tip position, 
z. At quadrature, point Q, a change in cantilever position As, causes a 
change in the amount of photons incident on the detector, AN. 

(3) 

A displacement of the cantilever Az results in a displace- 
ment of the laser spot on the split detector, As. We assume 
that the cantilever rotates around its base as a solid body 
and that there is no bending of the cantilever. In that case 
As is given by 

The factor 2 is due to the fact that the angular deflection of 
the reflected laser beam is twice the angular deflection of 
the cantilever. At first sight one might expect that only 
displacements larger than the laser spot can be detected 
(Rayleigh criterium’5). This, however, is not true. If the 
split detector is positioned at the focal plane of the lens, 
much smaller displacements can be detected by substract- 
ing the signals of the two detectors. The detection limit is 
determined by the accuracy of the difference signal and in 
the ideal case considered here by the number of photons 
detected. This is illustrated in Fig. 3. This difference signal, 
in terms of photons incident on the detector, can be calcu- 

SD 

FIG. 2. A collimated laser beam (diameter De) is incident on the canti- 
lever (length I). The reflected light is focused by a lens (focal length f ) 
onto the split detector SD. 
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FIG. 3. In optical beam deflection a small tip displacement Ax causes a 
change As in the position of the intensity distribution at the split detector. 
This small displacement is detected by sub&acting the signals of the two 
segments of the detector. 

lated using Eqs. (3) and (4) and the fact that the irradi- 
ante profile at the split detector is Gaussian 

where the numerical factor is due to the Gaussian shape of 
the laser beam (see Appendix A) and diffraction. The 
SNR can now be calculated 

AN 
SN%b,= (tN,ot) I/Z= (8~ lNtot> 

l/24 Az 
-j- 1. (6) 

This equation suggests that Do should be made as large as 
possible in order to maximize the SNR. However, our anal- 
ysis is only valid for Do < I. For Do> I diffraction of the 
laser beam at the cantilever will disturb the Gaussian irra- 
diance distribution of the reflected beam. This situation 
will be discussed in Sec. V. 

In the limiting case (Do = I), when the whole cantilever 
is used, the ratio between SNRti and SNRobd is ~“~:l 
[ratio between Rqs. (2) and (6)]. This leads to the remark- 
able conclusion that for the ideal cases, in terms of sensi- 
tivity, the optical beam deflection method and the interfer- 
ometer are equivalent. In Ref. 16 we have made this 
plausible by indicating the physical equivalence of both 
methods (see also Sec. VI). 

In the next sections various setups using optical beam 
deflection, less ideal than presented here but more realistic, 
will be discussed. 

111. A COLLIMATED LASER BEAM ON THE 
CANTILEVER 

Meyer and Amer” introduced the optical beam deflec- 
tion technique using a collimated beam from a HeNe laser 
which was incident on a relative large square mirror at- 
tached to the back of a tungsten cantilever. The setup in 
that situation is the same as in the previous section, except 
for the focusing lens in front of the detector which was 
omitted. A derivation of the SNR in this case leads to 

XAZ -m_ 
2g1g2 D(X) I ’ 
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where Ptot is the total optical power incident on the detec- 
tor, q the quantum efficiency of the detector, h Plancks 
constant, c speed of light in air, B the bandwidth of the 
detection system, X is the distance between cantilever and 
detector, and g2 is a geometrical factor and equal to 4(?r/ 
2) 1’2 for Gaussian laser beams (see Appendix A). The 
geometrical factor g, takes the gradual bending of the can- 
tilever into account.‘7-‘9 Depending on the position of the 
laser spot on the cantilever, it can have a value between 0 
(base) and 2 (top). The actual angular deflection is ob- 
tained when AZ/~ is multiplied by gr. 

The conclusion could be drawn, that by making X as 
large as possible the SNR would reach an unlimited value. 
The diameter of the collimated laser beam D(X), however, 
is not constant when X becomes large. Given a laser beam 
waist (diameter De) the diameter of a Gaussian laser beam 
as a function of X is given by14 

D(X)=D, 11+(g2\‘“. (8) 

SNR, is maximized when X becomes very large and ap- 
proaches a diffraction limited value for X#rri$jd4il and the 
ratio X/D(X) is fixed by diffraction. In that case, Eq. (7) 
reduces to Eq. (6) if Eq. (6) is rewritten using the optical 
power instead of photons incident on the detector 

(9) 

Thus from the above analysis it is clear that, when using a 
collimated laser beam, the distance between cantilever and 
detector should be large: X,?rfld4d. The limiting case can 
also be obtained by positioning a focusing lens in front of 
the detector (see previous section). Since both As and Dpsa 
(diameter of the laser spot at the detector) are propor- 
tional toJ the above analysis shows that the designer of an 
AFM has a freedom of choice with respect of the focal 
length of the lens used. 

Iv. LASER BEAM FOCUSED 0~ THE CANTILEVER 

A major drawback of the configurations using colli- 
mated laser beams, is the fact that large reflective surfaces 
are required to direct the reflected laser beam towards the 
detector. This can be done by attaching a mirror to the 
back of the cantilever.‘o*” Recently, microfabricated can- 
tilevers2’ which have a reflective gold coating on the back- 
side have become commercially available.‘2”3 The cantile- 
vers have a triangular form with a base-height ratio of 
about 1 and the dimensions are small, typically 100 or 200 
pm. Since the cantilever has a triangular hole at the base, 
the area that can be used effectively for the reflection of the 
laser beam is about 50 pm in diameter. Due to diffraction 
it is not possible to create a laser beam of that size which 
stays collimated over a wide range. A laser beam with a 
waist of 50 ,um and a wavelength of 780 nm doubles its size 
after only 5 mm [see Eq. (S)]. Thus it is clear that colli- 
mated laser beams can be used no longer in that situation. 
In this and the next section two alternative configurations 
which can be used for small cantilevers will be discussed. 

FIG. 4. A beam from a diode laser is focused at the cantilever (length I). 
The reflected beam is detected by the split detector SD. Distance between 
cantilever and detector is X. 

We first consider the situation in which the Gaussian 
laser beam is focused on the cantilever as shown in Fig. 4. 
In that case, optical power loss is small. Assuming that the 
detector is positioned far from the waist region [Eq. (3) is 
valid], the relative displacement of the Gaussian laser spot 
at the detector can be written as 

As rDoAz 
-= 
D @ g1ZTi19 (10) 

where Do is the spot diameter on the cantilever. Having 
obtained this equation and using Fq. (A3) in Appendix A, 
some mathematics results in 

(11) 

This equation is the same as SNR, [Eq. (9)], the expres- 
sion describing the setup using a collimated laser beam. 
When examining the two configurations more closely, it is 
clear that they are comparable. Only the waist region in the 
setup with the laser beam focused on the cantilever is much 
shorter and the limiting case (restricted by diffraction) is 
already reached when the detector is at a very close dis- 
tance from the cantilever. The SNR for intermediate cases 
(detector position from waist region to the far field) can be 
calculated using Eqs. (7) and ( 8). 

As can be seen from Eq. ( 11) , the SNR is independent 
of the distance X between cantilever and detector (as long 
as the spot size is smaller than the detector size and the 
detector is positioned far from the waist region). The geo- 
metrical amplification factor of 800 (2X/Z, Drake et aL21) 
is not as important as it seems at first sight. It is true that 
the displacement of the spot at the detector is proportional 
to X, but that holds also for the diameter of the spot. As 
mentioned before, this ratio is fixed by diffraction. Posi- 
tioning a focusing lens in front of the detector will not 
increase the sensitivity because the ratio As/D,,,, is already 
constrained by diffraction. In fact, the SNR will decrease. 
In the case when the cantilever is imaged at the detector, 
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LASER 

FIG. 5. The laser beam is focused at the detector. (I: distance lens- 
cantilever, b: distance cantilever-focus, X distance cantilever-detector. 
Only part of the laser beam is reflected by the small cantilever. 

no signal will be detected at all. This is in contrast to the 
configuration with the collimated laser beam. 

V. LASER BEAM FOCUSED ON THE PSD 

As a second case the situation where the laser beam is 
focused at the detector will be considered. In previous sec- 
tions we have found that the SNR is proportional to the 
beam displacement at the detector relative to the diameter 
of the beam at that position. Thus focusing the beam at the 
detector could increase the SNR. On the other hand, the 
dimensions of the microfabricated cantilever are such that 
only the central part of the Gaussian laser beam will be 
reflected, as is shown in Fig. 5. This means that only a 
fraction of the available optical power is used. Moreover, 
due to diffraction the size of the light spot at the detector 
increases. Both effects result in a decrease of the SNR. 
Thus, in order to obtain an expression for the SNR in this 
case, we have to take these effects into account. 

For sake of simplicity we approximate the laser beam 
at the cantilever by plane waves. The reflective surface of 
the cantilever is approximated by a circular disk (diameter 
0,). It is assumed that the diffraction of the reflected waves 
is dominated by the small dimensions of this disk. This 
assumption is valid if the diameter of the laser beam at the 
cantilever is much larger than DC If the laser beam is 
almost perpendicular to the cantilever the optical power 
that is reflected.towards the detector can be approximated “_. 
by 

(a+b12 @ 
pclet=2 --p-- ‘iTz ptot, (12) 

where D is the diameter of the laser beam at the lens, a is 
the separation between lens and cantilever, and b between 
cantilever and position of the focus (see Fig. 5). The factor 
2 is due to the fact that the maximum intensity in a Gauss- 

ian laser beam is twice the average intensity. In Appendix 
B it is shown that the size of the light spot on the detector 
is given by the diameter of the first Fresnel zone, Dpsd 
=2 (LX) 1’2 (X is the distance between cantilever and de- 
tector) . l5 The relative displacement is given by 

As x 1’2LLz 
-= 
D psd g1 z 0 T - (13) 

Using Eqs. (12), (13), and (B3) (Appendix B) and set- 
ting X equal to b, an expression for SNR can be derived 

(14) 

where g3 is a geometrical factor and is equal to 8/n- (see 
Appendix B) . 

A variation of the previous scheme is obtained when 
the reflected light is collected by a lens and focused onto 
the detector. In that case the situation can be described by 
Fraunhofer diffraction theory.15 An Airy disk is formed at 
the detector with the diameter of the central spot 

Using this equation and E?q. ( 12) (see also last remark in 
Appendix B) the SNR is 

o*58f1g2 
a+bD,D,hz ---- 

b D l /z * (16) 

As before, the SNR is not a function of j 
The practical use of the setups in this section is not 

apparent at first sight. But if one wishes to build an AFM 
in’which the tip and not the sample is scanned, the laser 
spot at the cantilever should be large enough to minimize 
the fluctuations in the,detector signal caused by the canti- 
lever movement. Another solution would be to scan the 
laser beam simultaneously. 

VI. DISCUSSION 

In the second section we have compared the SNR of 
optical beam deflection to the SNR of an interferometer. 
We came to the conclusion that the precision of cantilever 
displacement measurement of the two techniques are 
equivalent. It can be made plausible that the physical prin- 
ciples underlying both methods are similar and that optical 
beam deflection in essence is also an interferometric tech- 
nique, In the following discussion we restrict ourselves to 
the situation described in Sec. II, where the size of the 
cantilever is large. Suppose we split the collimated laser 
beam into two collimated beams, one incident at the base 
of the cantilever and the other at the top of the cantilever 
(Fig. 6). The lens causes the two beams to interfere at the 
detector and an interference pattern will be formed. A tip 
displacement causes a change in phase difference between 
the two beams which results in a shift of the interference 
pattern at the detector. By an optimal measurement of the 
change in interference pattern, phase differences intro- 
duced by cantilever displacements are detected. The two 
beams can be considered as the outer rays of the collimated 
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FIG. 6. Hypothetical setup of the optical beam deflection using two collimated laser beams. In the focal plane of the lens the two beams interfere and 
the interference pattern as shown on the upper right side will be formed. This pattern shifts if the cantilever position changes. A single Gaussian laser 
beam results in a Gaussian interference pattern (second pattern). Cantilever displacement causes a shift of this pattern which can be measured by a split 
detector. 

laser beam actually used in optical beam deflection. In ad- placement should be maximized by illuminating the canti- 
dition to these rays numerous other rays form the Gaussian lever surface (Do/la 1) totally. This effect can be amplified 
intensity profile. In the focal plane of the lens at the detec- by attaching a large elongated mirror to the cantilever. 
tor, all these rays interfere and form an interference pattern Secondly, the interference of the rays coming from various 
which is again a Gaussian spot. A tip displacement results points of the cantilever should be optimal. When using 
in a change of the interference pattern which is now a normal imaging optics this is obtained in the Fourier plane. 
simple shift of the Gaussian beam waist. This shift is de- In the case of a focusing lens in front of the detector (Sec. 
tected by a split detector. In this way the optical beam II) this is in the focal plane of the lens. Using no lens 
deflection technique can be considered as an interferomet- (Sets. III and IV), this is in the far-field region. Thirdly, 
ric technique. the total optical power available should be used. 

Setting SNRi,f [Eq. (2)] equal to 1 and rewritting the 
equation gives 

We have derived the SNRs for various setups using 
optical beam deflection. The minimum detectable displace- 
ments (hz),i, of the setups are compared in Table I using 
practical numerical values for the parameters involved. Re- 

2-r 1 
12 2AZmia = 

( ~NtoJ2 ) 1’2’ (17) 

where &Dim is the minimum detectable cantilever displace- 
ment. The term on the left-hand side can be substituted by 
A4, the uncertainty in phase difference between the two 
interfering beams. The square-root term on the right-hand 
side is substituted by An, the uncertainty in the number of 
photons incident on the detector (quadrature). Equation 
(17) becomes 

Ac$ An= 1. (18) 

This is in agreement with the uncertainty relation for the 
harmonic oscillator, A$An>l, where I$ is the phase of the 
oscillator and n the number of quanta.22 Moreover, we thus 
see that the Michelson interferometer is an optimal method 
for detecting phase differences between two beams. 

The sensitivity of the optical beam deflection technique’ 
depends on three important factors. Firstly, the difference 
of the optical path length introduced by a cantilever dis- 
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TABLE I. Comparison of the sensitivity of the optical displacement de- 
tection techniques. Setup,: collimated laser on the cantilever plus focusing 
lens in front of detector. Setup,: laser beam focused at the cantilever. 
Setup.,: laser beam focused at the detector. SetupT: Same as setup, but 
with a focusing lens in front of the detector. (Az),,,~” is in m/Hz”‘. The 
numerical values used: 7j=O.8, P,,=l mW, /2=780 nm, g,=1.5 (for all 
expressions) and DdZ=1/3 [Setup,, Eq. (9)], Dc/Z=1/3 [setupI, Eq. 
(ll)], a/b=lO, D=4 mm, D,=50pm, X=5 mm and 1=200pm [setup,, 
Bq. (14) and setups, Eq. ( 16)]. 

Setw.3 
Setup4 
Setups 
Optical beam deflection (Ref. 18) 
Interferometry (Ref. 5) 
Fiberinterferometry (Ref. 9) 
Laser diode feedback (Ref. 3) 

(bz)min 

7.9x lo-l5 
8.5~ lo-l4 
2.1 x IO--‘3 
LOX 10-13 
1.7x 10-13 
5.5x lo-‘4 
3.0x 10-12 
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ported measured sensitivities of various optical displace- 
ment detection systems are also included. As we have seen 
in Sec. IV, the sensitivity of the setups using a collimated 
laser beam or a focused laser beam on the cantilever is the 
same. This is due to the fact that the change in optical path 
length is the same since in both cases the same relative area 
of the cantilever is occupied by the laser beam. The sensi- 
tivity of the setups in which the cantilever reflects only a 
central part of the Gaussian laser beam (setup~~) is a 
factor 10 less than setupl,3. This is due to the fact that not 
all available optical power is used. From Table I it is clear 
that atomic resolution in a 10 kHz bandwidth is achievable 
for all the detection schemes using optical beam deflection 
described here. 

Furthermore, in practical situations interferometry 
and optical beam deflection have about the same sensitiv- 
ity, and the measured values are a factor 10 larger than the 
theoretical limits set by Eqs. (2) and (6) [see (hz),, of 
setupI]. That is because in our analysis we have-assumed a 
detection system that is limited by shot noise only. 

In practice many other sources contribute to the over- 
all noise level. In an AFM mechanical and acoustic vibra- 
tions are dominant factors. Mechanical vibrations can be 
greatly reduced by using an air-damped optical bench, by 
attaching the AFM to the ceiling with elastic cords with a 
low elastic constant” or by using a slab of granite on the 
inner tubes of car tires. Mechanical vibrations have a low 
frequency nature ( < 100 Hz). Acoustic noise is reduced by 
covering the AFM with an air-tight box” or using an ul- 
trahigh vacuum chamber. l8 Secondly, electronic noise -is 
created by line pickup and the power supplies for the elec- 
tronics. The 50 Hz disturbance is the dominant factor, but 
also its higher harmonics contribute to the electronic noise. 
Low-noise signal amplifiers, stable high-voltage amplifiers, 
and grounding of the AFM are essential to reduce the level 
of electronic noise. 

Laser instabilities, such as pointing instability, inten- 
sity variations, and frequency variations (e.g., mode hop- 
ping), also contribute to the noise. Furthermore, due to 
thermal excitation the cantilever shows random fluctua- 
tions around its equilibrium. A detailed analysis of these 
phenomena is given elsewhere. l7 

VII. CONCLUSIONS 

For various setups of the optical beam deflection tech- 
nique we have calculated the signal-to-noise ratio. When 
applied to atomic force microscopy, the calculated signal- 
to-noise ratios are sufficient to obtain atomic resolution. 

The optical beam deflection technique is almost as sen- 
sitive as interferometry based detection systems. In prac- 
tice the optical beam deflection setups use less optical com- 
ponents and are easier to align. 

APPENDIX A 

The deflection of the cantilever results into a shift of 
optical energy from one side of the split detector to the 
other side. The total optical power in a Gaussian laser 
beam is 

0 5 IO 

- Y(m) 
-5 I5 

* 10 

FIG. 7. Energy distributions at the detector plane in the configuration of 
Fig. 5 calculated using Fresnel zones. Yis the radius from the center of 
the detector. The reflective surface at the cantilever is approximated by a 
circular disk with a diameter of 50 pm. Line 1: distance between canti- 
lever and detector is 10 mm, energy ratio is 0.64; line 2: 5 mm, 0.85; line 
3: 2 mm, 0.93. a.~: arbitrary units. 

where I, is the intensity at the center and’D is the diameter 
of the laser beam (intensity at D/2 is l/ e2 times I,). The 
energy transferred 

AP=AsDI&T/~)~~~. 

Using Eq. (Al ) to eliminate IO this results in 

(A21 

2 l/= As 
AP=4 ; 0 5 ptot- 

The numerical factor is set equal to g,. Equation (A3) 
gives the connection between a translation of the reflected 
Gaussian beam at the split detector and a shift of optical 
energy. 

APPENDIX B 

In Sec. V the configuration in which the laser beam is 
focused on the detector, is analyzed. When the distance 
between cantilever and detector is small, we are in the 
neir-field region and the intensity distribution must be de- 
scribed by Fresnel diffraction theory.” The problem is 
somewhat simplified by assuming that the phase within a 
Fresnel zones stays constant. In Fig. 7 graphs of the energy 
distributions in the detector plane resulting from these cal- 
culations are shown. The first minimum in intensity is 
reached at the edge of the first Fresnel zone. When the 
distance between cantilever and detector increases, energy 
is transferred from the central lobe to the side lobes and the 
central lobe spreads out (Fig. 7). To obtain a detection 
setup with a well-defined spot at the split detector, the 
optical power contained within the central maximum 
should not become smaller than 85% of the total power 
impinging on the detector (in the case of a Gaussian beam, 
87% of the total optical power is contained within the 
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limits defined by the diameter of the beam). This ratio 
depends on the distance cantilever detector and on the 
diameter of the circular disk. As can be seen in Fig. 7 the 
energy distribution at the center is constant and not Gauss- 
ian. In approximation, the optical power in the central lobe 
pd, is 

PC.=; D:&,. 031) 

D$=4J.X and thus is linearly dependent on X, the separa- 
tion between cantilever and detector, and I0 is inversely 
dependent on X2. Thus PC1 is inversely dependent on X. 
The total optical power on the detector, however, stays 
constant. Only more energy will be contained in the side 
lobes when X becomes larger. The change in optical power 
as a result of a spot displacement is described by 

AP= 2AsD& 

Using Eq. (B 1) simple calculus shows 

WI 

AP=;; PC,. 
8d 

033) 

The numerical factor is denoted by g3. 
In case of Fraunhofer diffraction an Airy disk is pro- 

duced at the detector. The diameter of an Airy disk is 
about twice the diameter of a Gaussian laser beam when 
originating from an aperture or beam waist having the 
same size. In first approximation the form of an Airy disk 
comes close to a Gaussian function. Because of this, the 
numerical factor in Eq. (A3) is substituted by g2/2. 
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