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ABSTRACT A thorough evaluation of some of
the most advanced docking and scoring methods cur-
rently available is described, and guidelines for the
choice of an appropriate protocol for docking and
virtual screening are defined. The generation of a
large and highly curated test set of pharmaceutically
relevant protein–ligand complexes with known bind-
ing affinities is described, and three highly regarded
docking programs (Glide, GOLD, and ICM) are evalu-
ated on the same set with respect to their ability to
reproduce crystallographic binding orientations.
Glide correctly identified the crystallographic pose
within 2.0 Å in 61% of the cases, versus 48% for GOLD
and 45% for ICM. In general Glide appears to perform
most consistently with respect to diversity of binding
sites and ligand flexibility, while the performance of
ICM and GOLD is more binding site–dependent and it
is significantly poorer when binding is predominantly
driven by hydrophobic interactions. The results also
show that energy minimization and reranking of the
top N poses can be an effective means to overcome
some of the limitations of a given docking function.
The same docking programs are evaluated in conjunc-
tion with three different scoring functions for their
ability to discriminate actives from inactives in vir-
tual screening. The evaluation, performed on three
different systems (HIV-1 protease, IMPDH, and p38
MAP kinase), confirms that the relative performance
of different docking and scoring methods is to some
extent binding site–dependent. GlideScore appears to
be an effective scoring function for database screen-
ing, with consistent performance across several types
of binding sites, while ChemScore appears to be most
useful in sterically demanding sites since it is more
forgiving of repulsive interactions. Energy minimiza-
tion of docked poses can significantly improve the
enrichments in systems with sterically demanding
binding sites. Overall Glide appears to be a safe gen-
eral choice for docking, while the choice of the best
scoring tool remains to a larger extent system-depen-
dent and should be evaluated on a case-by-case basis.
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INTRODUCTION

A large number of docking programs have been devel-
oped in the last 20 years based on a variety of search

algorithms.1–3 The use of such programs in conjunction
with one or more scoring functions to evaluate and rank-
order potential ligands from chemical collections is now
one of the paradigms of virtual screening. While several
successful applications of this methodology have been
described in recent publications,4,5 there are certainly
many issues surrounding docking and ranking of docked
structures that can still be improved. In this article we
address some of these issues and try to determine how to
best apply the tools that are presently available in a drug
design context.

The primary question all docking programs try to ad-
dress is what combination of orientation and conformation
(pose) is the most favorable relative to all the other
combinations sampled. When applied to screening, the
process also requires a comparison of the best pose (or top
few poses) of a given ligand with those of the other ligands
such that a final ranking or ordering can be obtained. For
the purposes of this article, we will refer to the function
used in evaluating different poses of a given ligand as a
docking function and any function(s) used in either refine-
ment/reranking of docked ligand poses or for comparing
different ligands as a scoring function. There is no require-
ment that the docking function and the scoring function be
the same, although this has most often been the case in the
early years. In practice, several studies have shown that
rescoring docking poses with an alternative function can
have a favorable impact both on pose selection and on
rank-ordering in a virtual screening context.6–12 It must
also be emphasized, however, that the docking function
must evaluate a large number of solutions (numbers of
poses ranging from 104–105 are typical). Even if one saves
a small set of top-ranking poses and rescores them with a
different function, an initial bias will have been introduced
by the docking function.

It has been suggested that a reasonable compromise
between speed and accuracy might include using a simpli-
fied function (e.g., an empirical or knowledge-based func-
tion) as a docking function to save a set of viable poses and
then use a more rigorous (e.g., energy-based) function for the
final pose selection/ranking of ligands.10,12 In this respect, it
has been observed that certain types of scoring functions
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tend to give better predictions in certain types of binding
sites.7,8,11 This dependence should be properly weighted
when a secondary function for rescoring is selected. It has
also been shown that combining the best results from two or
more scoring functions can lead to a considerable reduction
in false positives (consensus scoring).9

In addition to the general methodology, the performance
of the individual tools for docking and scoring has been
assessed in several studies. An analysis of the recent
literature seems to indicate that DOCK,13 FlexX,14 and
GOLD15 are the most widely used docking programs.5,16–21

Direct and indirect comparisons have shown that GOLD
consistently outperforms the other two in terms of average
docking accuracy on a variety of systems.13,15,17,22,23 Among
recently developed programs, ICM24 and Glide25 have
been reported to achieve a high degree of accuracy.24,26,27

While both programs have performed well on internal
validation sets at Vertex, a large-scale comparison involv-
ing these and the previous programs has not yet been
reported. In terms of scoring, the empirical function Chem-
Score28,29 is the most widely used scoring function for
virtual screening, and it has been shown to outperform
most of the others in comparative studies.9,30 GlideScore,
recently developed at Schrodinger, Inc., using ChemScore
as the initial template, has been specifically designed to
maximize enrichment in database screening, and it is
claimed to be an effective tool in its ability to discriminate
between active and inactive compounds on a variety of
systems.27

In this work, we address three main topics: the impor-
tance of test set selection, the appropriate choice of an
accurate docking tool, and the performance of various
docking/scoring combinations in virtual screening. The
first part of this study describes a rigorous attempt at
generating a database of pharmaceutically relevant pro-
tein–ligand complexes, which we view as a prerequisite for
the evaluation of docking and scoring tools dedicated to
drug discovery. The need for the generation of larger test
sets, selected with consistent criteria and highly refined,
has been highlighted by two recent publications.31,32 A
careful analysis of the recently reported test sets shows
that, while the diversity and pharmaceutical relevance of
the protein structures are satisfactory, the same cannot be
said with respect to the ligands. Structural classes that are
of less relevance to drug discovery programs (peptides,
sugars, nucleotides) are still over-represented, with a high
degree of redundancy, and the molecular weight of the
ligands generally ranges from 100 to 1000, far beyond the
range of interest for a drug discovery program. In general
the reported test sets only contain a small percentage of
truly drug-like ligands. Since such test sets are used in the
evaluation/calibration of tools for drug design, it is impor-
tant that the complexes be representative of what is
relevant to the process. If the ultimate objective is to
predict binding of drug-like molecules to pharmaceutically
relevant proteins, complexes between such partners should
clearly be emphasized. Following this premise we gener-
ated a new test set of complexes of known binding affinity,
geared toward drug-like ligands and suitable for a variety

of tasks: evaluation of docking programs and existing
scoring functions, development and calibration of new
scoring functions, and analysis of various aspects of pro-
tein–ligand binding.

In the second part of this study, we compare the
well-established GOLD program with the recent additions
ICM and Glide for their ability to reproduce crystallo-
graphic binding orientations. Critical features evaluated
include the effect of energy minimization on the top
scoring poses and the impact of the nature of the binding
site on the accuracy of each program.

Finally, we analyze the performance of the three docking
programs above in conjunction with three different scoring
functions with respect to their abilities to maximize enrich-
ments in database screening. The well-established empiri-
cal function ChemScore is compared with the recent
addition GlideScore and with the OPLS-AA force field
interaction energy.33 Three targets with different binding
site features were used in these calculations: HIV-1 pro-
tease, IMPDH, and p38 MAP kinase. The objective of this
part of the study was to establish a protocol that efficiently
combines the best available tools to maximize the outcome
of a virtual screening.

METHODS
Complex Selection

A set of over 200 protein–ligand complexes was initially
selected from the Protein Data Bank (PDB) and from the
Vertex structure collection according to the following
criteria:

General:

● binding constant (Ki or Kd) available
● noncovalent binding between ligand and protein
● crystallographic resolution � 3.0 Å

Ligands:

● molecular weight between 200 and 600
● 1 to 12 rotatable bonds
● drug/lead-like
● structurally diverse

Proteins:

● multiple classes
● diverse within classes
● relevant to drug discovery

The cutoffs for molecular weight and number of rotat-
able bonds reflect the distribution reported for the orally
delivered drugs listed in the Physicians’ Desk Reference
(PDR).34 The initial selection was pruned based on a
number of additional criteria. In order to prioritize struc-
tures that are of higher pharmaceutical relevance, we
excluded complexes involving ligand or protein classes
that are less likely to be the focus of a modern drug
discovery program. In particular we removed all the
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complexes with sugar-containing ligands (e.g., 4hmg),
steroids (e.g., 1a27), and macrocycles (e.g., 1mmq), as well
as complexes of heme-containing proteins (e.g., 1phg). On
the same basis, complexes with ligands containing atoms
other than C, N, O, S, F, Cl, Br, and H were also excluded
(e.g., 1tha). We then removed structures with severe
clashes between protein and ligand atoms (e.g., 1dth), or
between protein or ligand atoms and water molecules
involved in binding (e.g., 1c4y). Such structures may be
poorly refined in the binding region and therefore unsuit-
able for the evaluation of docking programs and scoring
functions. We also excluded complexes with potential
ambiguities in the binding region, including structures
with crystallographically related protein units involved in
ligand binding (e.g., 1bm7) and structures with uncertain
protonation state in the binding site (e.g., 1k4g). Finally,
we removed complexes with uncommon features, which
introduce additional complications without adding any
specific value to the test set. Two examples of such
instances are complexes in which ligand binding is medi-
ated by a complex network of water molecules (e.g., 1jqe)
and complexes with unconventional amino acid residues in
the binding site (e.g., 1hlf).

Each ligand was included only once, thus avoiding
common redundancies like methotrexate bound to differ-
ent versions of dihydrofolate reductase or the same ligand
bound to two closely related proteins. The purpose was to
avoid repetitions of almost identical sets of interactions,
thus maximizing the diversity of the interactions repre-
sented in the test set. These criteria reflect our intention to
include the maximum amount of structural information on
systems that are of high interest in a structure-based drug
design context, and exclude those that are only rarely
considered. The final selection included 100 complexes
from the PDB and 50 complexes from the Vertex structure
collection. The PDB codes of the 100 complexes selected
from the PDB are reported in Table I, along with crystallo-
graphic resolutions, dissociation constants, expressed as
pKi [�Log10(Ki)], and additional descriptors that will be
discussed in the following section. The test set includes 63
different proteins from a variety of classes, including
proteases, kinases, nuclear receptors, phosphatases, oxido-
reductases, isomerases, and lyases. Kinases (43 com-
plexes) and proteases (42 complexes) are the most widely
represented, which reflects their high relevance in modern
drug discovery and the fact that these classes more than
others have been the focus of structure-based drug design
efforts, resulting in the generation of a large amount of
structural information. The kinase subset includes 12
different proteins with representatives of tyrosine kinases,
serine/threonine kinases, and nucleotide kinases, while
the protease subset includes 14 different proteins with
representatives of serine proteases, aspartyl proteases,
and metalloproteases, thus ensuring diversity within these
classes. The overall set includes 24 metalloprotein com-
plexes, all of them with a zinc ion in the active site. Several
examples of approved drugs in complex with their targets
are also included (e.g., Agenerase/HIV protease, Aricept/

acetylcholinesterase, Lisinopril/Angiotensin converting en-
zyme).

Complex Preparation

Each of the PDB files of the 150 complexes was pro-
cessed according to the following protocol: the ligand was
extracted, bond orders and correct protonation state were
assigned upon visual inspection, and the structure was
saved to an SD file. If a cofactor was present, the same
procedure was applied, and a separate SD file was gener-
ated. After removal of the ligand, a “clean” protein file was
generated by removing subunits not involved in ligand
binding and far from the active site, solvent, counterions,
and other small molecules located away from the binding
site. Metal ions and tightly bound water molecules in the
ligand binding site were preserved, and the protein struc-
ture was saved to a PDB file. Hydrogen atoms were then
added to the protein, and the structures of protein, ligand,
and cofactor were combined in a single Macromodel file.
The active site was visually inspected and the appropriate
corrections were made for tautomeric states of histidine
residues, orientations of hydroxyl groups, and protonation
state of basic and acidic residues. The hydrogen atoms
were minimized for 1000 steps with Macromodel in
OPLS-AA force field, with all nonhydrogen atoms con-
strained to their original positions. Protein (with cofactor
if present) and ligand with optimized hydrogen positions
were finally saved to separate files.

Docking Studies

The test set of complexes described above was used in
the evaluation. Each ligand was docked back into the
corresponding binding site, and the accuracy of each
prediction was assessed on the basis of the root-mean-
square deviation (RMSD) between the coordinates of the
heavy atoms of the ligand in the top docking pose and
those in the crystal structure. The following paragraphs
describe the search algorithm and scoring methods used in
the three programs. For each program, details of the
calculations performed in this study are provided.

ICM (MolSoft LLC). The Internal Coordinate Mechan-
ics (ICM) program is based on a stochastic algorithm that
relies on global optimization of the entire flexible ligand in
the receptor field (flexible ligand/grid receptor approach).24

Global optimization is performed in the binding site such
that both the intramolecular ligand energy and the ligand–
receptor interaction energy are optimized. The program
combines large-scale random moves of several types with
gradient local minimization and a history mechanism that
both expels from the unwanted minima and promotes the
discovery of new minima. The random moves include
pseudo-Brownian moves, optimally biased moves of groups
of torsions, and single torsion changes. The energy calcula-
tions are based on the ECEPP/3 force field,35 with Merck
molecular force field (MMFF) partial charges. Five poten-
tial maps (electrostatic, hydrogen bond, hydrophobic, van
der Waals attaractive and repulsive) are calculated for the
receptor. The location of the receptor binding pocket can be
specified by the user or selected by the cavity detection
module implemented in the program.
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In the present work, the binding pocket of the receptor
was defined using the crystallographic coordinates of the
ligand as a reference. For each complex, the ligand input
structure was generated with Corina36 (Molecular Net-
works GmbH), and the protein structure, prepared as
described in the previous section, was used as a receptor

input structure. The Monte Carlo (MC) docking runs were
performed using an MC thoroughness setting of 3, which
controls the length of the run, and the top 20 poses were
generated. Subsequent energy minimization of the ICM-
generated poses was performed with Macromodel (v. 8.1)
using both MMFF37–39 and OPLS-AA33 force fields, with

TABLE I. Composition and Properties of PDB Fraction of Test Set

Code Res PKI MW WT HA RB HB HB/HA BF Code Res PKI MW WT HA RB HB HB/HA BF

13gs 1.90 4.62 398.4 — 28 7 2 0.07 0.73 1jsv 1.96 5.70 265.3 — 18 3 4 0.22 0.83
1a42 2.25 9.89 383.5 — 23 7 6 0.26 0.79 1k1j 2.20 7.68 522.6 — 37 9 3 0.08 0.69
1a4k 2.40 8.00 429.4 — 31 6 1 0.03 0.65 1k22 1.93 8.40 429.5 — 31 9 7 0.23 0.84
1a8t 2.55 5.80 452.5 — 34 7 2 0.06 0.76 1k7e 2.30 2.92 232.2 2 17 4 6 0.35 1.00
1afq 1.80 6.21 385.5 2 28 9 4 0.14 0.71 1k7f 1.90 3.32 274.3 2 20 5 5 0.25 0.94
1aoe 1.60 9.66 269.4 — 20 3 4 0.20 0.90 1kv1 2.50 5.94 306.8 — 21 3 3 0.14 0.93
1atl 1.80 6.28 325.4 — 22 8 3 0.14 0.75 1kv2 2.80 10.00 527.7 — 39 8 3 0.08 0.93
1azm 2.00 6.14 222.2 — 13 2 3 0.23 0.88 1l2s 1.94 4.59 317.8 1 19 4 7 0.37 0.73
1bnw 2.25 9.08 338.4 — 19 5 4 0.21 0.74 1l8g 2.50 6.22 466.4 1 31 6 7 0.23 0.72
1bqo 2.30 7.74 513.6 — 34 7 5 0.15 0.73 1lqd 2.70 8.05 424.5 1 32 6 3 0.09 0.79
1br6 2.30 3.22 312.3 — 23 4 4 0.17 0.79 1m48 1.95 5.09 446.5 — 33 8 3 0.09 0.60
1cet 2.05 2.89 319.9 — 22 8 1 0.05 0.56 1mmb 2.10 9.22 477.6 — 32 12 8 0.25 0.69
1cim 2.10 9.55 296.4 — 17 1 6 0.35 0.82 1mnc 2.10 9.00 349.4 — 25 9 8 0.32 0.72
1d3p 2.10 5.11 543.7 1 39 11 1 0.03 0.73 1mq5 2.10 9.00 537.9 — 34 6 1 0.03 0.78
1d4p 2.07 6.30 360.5 — 27 4 3 0.11 0.86 1mq6 2.10 11.15 566.8 1 36 8 1 0.03 0.75
1d6v 2.00 6.17 381.5 1 28 7 1 0.04 0.70 1nhu 2.00 5.66 496.3 — 33 8 2 0.06 0.65
1dib 2.70 7.74 471.4 — 34 7 4 0.12 0.86 1nhv 2.90 5.66 550.4 — 37 8 2 0.05 0.55
1dlr 2.30 9.18 325.4 1 24 4 4 0.17 0.93 1o86 2.00 9.57 405.5 — 29 12 8 0.28 0.77
1efy 2.20 8.22 267.3 — 20 3 2 0.10 0.84 1ohr 2.10 8.70 567.8 1 40 10 6 0.15 0.91
1ela 1.80 6.35 456.5 — 32 10 4 0.13 0.69 1ppc 1.80 6.16 521.6 1 37 9 6 0.16 0.67
1etr 2.20 7.41 508.6 — 35 9 7 0.20 0.84 1pph 1.90 6.22 428.5 1 30 7 7 0.23 0.68
1ett 2.50 6.19 428.5 — 30 7 4 0.13 0.84 1qbu 1.80 10.24 596.7 — 43 10 6 0.14 0.86
1eve 2.50 8.48 379.5 — 28 6 0 0.00 0.84 1qhi 1.90 7.30 299.3 3 22 5 6 0.27 1.00
1exa 1.59 6.30 399.4 — 29 4 4 0.14 1.00 1ql9 2.30 5.36 499.0 2 34 4 1 0.03 0.75
1ezq 2.20 9.05 458.6 — 34 10 6 0.18 0.78 1qpe 2.00 8.40 301.8 — 21 2 3 0.14 0.87
1f0r 2.10 7.66 453.5 — 31 5 2 0.06 0.76 1r09 2.90 4.90 284.4 1 21 3 1 0.05 0.95
1f0t 1.80 6.00 445.5 — 30 6 5 0.17 0.71 1syn 2.00 9.05 500.5 — 37 8 2 0.05 0.85
1f4e 1.90 2.96 269.3 — 18 3 2 0.11 0.81 1thl 1.70 6.42 476.6 — 35 11 7 0.20 0.65
1f4f 2.00 4.62 428.4 — 29 9 1 0.03 0.79 1uvs 2.80 5.40 465.6 — 32 10 2 0.06 0.80
1f4g 1.75 6.48 499.5 — 34 12 5 0.15 0.82 1uvt 2.50 7.64 383.5 — 27 8 2 0.07 0.86
1fcx 1.47 7.12 388.5 — 29 3 2 0.07 1.00 1ydr 2.20 5.52 291.4 1 20 2 2 0.10 0.92
1fcz 1.38 9.22 362.4 — 27 5 2 0.07 1.00 1yds 2.20 5.92 265.3 2 18 5 3 0.17 0.93
1fjs 1.92 9.70 524.5 — 38 9 4 0.11 0.74 1ydt 2.30 7.32 446.4 — 27 9 2 0.07 0.93
1fkg 2.00 8.00 449.6 — 33 10 2 0.06 0.66 2cgr 2.20 7.27 384.4 — 29 7 4 0.14 0.80
1fm6 2.10 7.33 357.4 — 25 7 3 0.12 0.94 2csn 2.50 4.41 285.7 — 18 4 0 0.00 0.85
1fm9 2.10 8.82 546.6 — 41 12 4 0.10 0.95 2pcp 2.20 8.70 243.4 — 18 2 1 0.06 0.95
1frb 1.70 7.77 419.4 — 29 5 3 0.10 0.94 2qwi 2.00 8.40 341.4 — 24 6 10 0.42 0.91
1g4o 1.96 8.68 290.3 — 20 4 4 0.20 0.68 3cpa 2.00 4.00 238.2 — 17 5 7 0.41 0.96
1gwx 2.50 7.30 581.9 — 38 11 3 0.08 0.96 3erk 2.10 5.12 338.4 — 25 3 3 0.12 0.81
1h1p 2.10 4.92 247.3 — 18 3 3 0.17 0.91 3ert 1.90 9.60 387.5 — 29 9 2 0.07 0.87
1h1s 2.00 8.22 402.5 — 28 6 5 0.18 0.85 3std 1.65 11.11 364.4 1 28 6 2 0.07 1.00
1h9u 2.70 8.52 363.5 — 27 3 3 0.11 0.99 3tmn 1.70 5.90 303.4 — 22 6 7 0.32 0.70
1hdq 2.30 5.82 224.2 — 16 4 5 0.31 0.89 4dfr 1.70 8.62 454.5 1 33 9 8 0.24 0.76
1hfc 1.56 8.15 349.4 — 25 9 8 0.32 0.70 4std 2.15 10.33 338.2 2 20 3 3 0.15 1.00
1hpv 1.90 9.22 505.6 1 35 12 5 0.14 0.95 5std 1.95 10.49 375.4 2 28 5 2 0.07 1.00
1htf 2.20 8.09 574.7 1 41 12 6 0.15 0.75 5tln 2.30 6.37 323.3 — 23 8 7 0.30 0.76
1i7z 2.30 6.40 303.3 2 22 5 2 0.09 0.94 7dfr 2.50 4.96 441.4 — 32 9 6 0.19 0.81
1i8z 1.93 9.82 471.6 — 30 5 5 0.17 0.73 7est 1.80 7.60 441.4 — 30 9 3 0.10 0.69
1if7 1.98 10.52 371.4 — 26 6 4 0.15 0.67 830c 1.60 9.28 425.9 — 28 6 5 0.18 0.81
1ly7 2.00 6.19 244.3 — 16 5 8 0.50 0.96 966c 1.90 7.64 391.4 — 27 6 5 0.19 0.80

Res, crystallographic resolution; PKI, �log10Ki; MW, molecular weight of the ligand; WT, number of structural water molecules retained in the
binding pocket; HA, number of heavy atoms of the ligand; RB, number of rotors of the ligand (amide bonds not counted as rotors); HB, number of
hydrogen bonds between protein and ligand in the complex (metal coordination included); HB/HA, degree of hydrogen bonding; BF, fraction of the
solvent-accessible surface area of the ligand that is buried upon binding.
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flexible ligand and rigid receptor. Conjugate gradient
minimization was performed for 1000 steps. The strain
energy of the minimized ligand poses was calculated with
a two-step procedure: restrained minimization of the li-
gand geometry (half-width of flat bottom restraint � 0.5 Å,
force constant � 500 kcal/mol/Å) to convergence (0.01
kJ/Å/mol) followed by removal of the constraints and full
minimization until convergence (0.01 kJ/Å/mol) into the
closest local minimum.9 The refined poses were reranked
based on the calculated interaction energy (van der Waals
and electrostatic) minus the strain energy of the ligand
conformation.

Glide (Schrodinger, Inc.). The Glide (Grid-Based Li-
gand Docking With Energetics) algorithm27 approximates
a systematic search of positions, orientations, and confor-
mations of the ligand in the receptor binding site using a
series of hierarchical filters. The shape and properties of
the receptor are represented on a grid by several different
sets of fields that provide progressively more accurate
scoring of the ligand pose. The fields are computed prior to
docking. The binding site is defined by a rectangular box
confining the translations of the mass center of the ligand.
A set of initial ligand conformations is generated through
exhaustive search of the torsional minima, and the conform-
ers are clustered in a combinatorial fashion. Each cluster,
characterized by a common conformation of the core and
an exhaustive set of side-chain conformations, is docked as
a single object in the first stage. The search begins with a
rough positioning and scoring phase that significantly
narrows the search space and reduces the number of poses
to be further considered to a few hundred. In the following
stage, the selected poses are minimized on precomputed
OPLS-AA van der Waals and electrostatic grids for the
receptor. In the final stage, the 5–10 lowest-energy poses
obtained in this fashion are subjected to a Monte Carlo
procedure in which nearby torsional minima are exam-
ined, and the orientation of peripheral groups of the ligand
is refined. The minimized poses are then rescored using
the GlideScore function, which is a more sophisticated
version of ChemScore28 with force field–based components
and additional terms accounting for solvation and repul-
sive interactions. The choice of the best pose is made using
a model energy score (Emodel) that combines the energy
grid score, GlideScore, and the internal strain of the
ligand.

In the present work, the binding region was defined
by a 12 Å � 12 Å � 12 Å box centered on the mass center
of the crystallographic ligand to confine the mass center
of the docked ligand. Protein and ligand input struc-
tures were prepared as described in the previous sec-
tion. No scaling factors were applied to the van der
Waals radii. Default settings were used for all the re-
maining parameters. The top 20 docking poses were
energy-minimized with Macromodel using both the
OPLS-AA and MMFF force fields, and reranked as de-
scribed in the previous section.

GOLD (Cambridge Crystallographic Data Centre).
The GOLD (Genetic Optimization for Ligand Docking)

program uses a genetic algorithm (GA) to explore the full

range of ligand conformational flexibility and the rota-
tional flexibility of selected receptor hydrogens.15,23 The
mechanism for ligand placement is based on fitting points.
The program adds fitting points to hydrogen-bonding
groups on protein and ligand, and maps acceptor points in
the ligand on donor points in the protein and vice versa.
Additionally, GOLD generates hydrophobic fitting points
in the protein cavity onto which ligand CH groups are
mapped. The genetic algorithm optimizes flexible ligand
dihedrals, ligand ring geometries, dihedrals of protein OH
and NH3

� groups, and the mappings of the fitting points.
The docking poses are ranked based on a molecular
mechanics–like scoring function, which includes a hydro-
gen-bond term, a 4-8 intermolecular van der Waals term,
and a 6-12 intramolecular van der Waals term for the
internal energy of the ligand.

In the present work, the binding site was defined as a
spherical region of 10 Å radius centered on the mass center
of the crystallographic ligand. Protein and ligand input
structures were prepared as described above. Default GA
settings number 423 were used for all calculations, with
the exception that 20 GA runs were performed instead of
10. The top 20 docking poses were energy minimized with
Macromodel in both OPLS-AA and MMFF force fields and
reranked as described above.

Simulated Virtual Screenings

Three targets with known high-resolution crystal
structure were used in this study: HIV-1 protease, ino-
sine monophosphate dehydrogenase (IMPDH), and p38
MAP kinase. Simulated virtual screening was per-
formed on each target using test sets of 10,000 com-
pounds, with N actives selected from Vertex research
programs and 10,000 � N decoys selected from commer-
cial databases. The experimental Ki’s of the active com-
pounds range from low nanomolar to high micromolar,
with a few subnanomolar ligands included for p38. The
selection of decoys was biased toward drug-like mole-
cules using filters for functional groups and cutoffs for
molecular weight and number of rotatable bonds. Com-
position of test sets and cutoffs applied are summarized
in Table II. Importantly, active compounds and decoys
were selected with a similar distribution of molecular
weight, in order to minimize the effects of the notorious
tendency of most scoring functions to favor larger mol-
ecules. Each test set was docked into the target crystal
structures with the ICM, Glide, and GOLD programs,
according to the procedures described in the previous
sections. Energy-minimization was performed on the

TABLE II. Composition of Test Sets Used in Enrichment
Studies and Cutoffs Implemented for Rotatable Bonds

(RB) and Molecular Weights (MW)

Target
RB

Cutoff
MW

Cutoff
No.

Actives

HIV-1 protease 12 600 206
IMPDH 8 500 142
p38 8 500 247
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docking poses with Macromodel employing the
OPLS-AA force field as described in the Docking section.
Both nonminimized and minimized docking poses were
rescored with ChemScore, GlideScore, and OPLS-AA
interaction energy, the latter corrected by the strain
energy of the ligand. The enrichment factors obtained
with the three scoring methods were finally calculated
on each set of poses, thus assessing the performance of
the various docking/scoring combinations, as well as the
impact of energy minimization.

RESULTS AND DISCUSSION

1. Evaluation of Docking Programs

General performance

The results of this study clearly identified Glide as the
most accurate of the three docking programs examined,
with 61% of the top-ranking poses within 2.0 Å of the
corresponding crystal structure. Both GOLD and ICM also
performed reasonably well, with 48% and 45% of top-
ranking poses meeting the same criterion, respectively.
The percentages of top-ranked solutions within a defined

Fig. 1. Distribution of the RMSDs between the top-ranked docking
poses and the corresponding crystal structures. The RMSDs were
calculated on the coordinates of the heavy atoms of the ligands. x axis:
RMSD cutoffs; y axis: percentage of top-ranked docking poses within a
given RMSD cutoff from the crystallographic pose.

Fig. 2. Distribution of the RMSDs between the closest of top 20
docking poses (lowest deviation) and the corresponding crystal structure
for each complex. x axis: RMSD cutoffs; y axis: percentage of closest
docking poses within a given RMSD cutoff from the crystallographic pose.

Fig. 3. Percentage of top-ranked docking poses within 2.0 Å from the
experimental structure before and after minimization and reranking of the
top 20 poses. x axis: pose generation method; y axis: percentage of
top-ranked docking poses within the 2.0 Å cutoff.

Fig. 4. Performance of the three docking programs on complexes with
lower and higher ligand flexibility. x axis: range of ligand flexibility; y axis:
percentage of top-ranked docking poses within 2.0 Å from the correspond-
ing crystal structures.
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RMSD from the experimentally determined structure are
reported in Figure 1.

Analysis of the top 20 docking solutions produced by
each program shows that GOLD was generally as effective
as Glide in sampling the correct pose and placing it in the
top 20. When the top 20 docking poses were compared to
the corresponding crystal structure, the percentages of
best poses (lowest RMSD) within 2.0 Å from the experimen-
tal structure were 79% for Glide and 77% for GOLD (see
Fig. 2). Based on this observation, the GOLD algorithm
appears to be equally efficient in terms of sampling, but
the Glide docking function seems more accurate than the
GOLD fitness function in ranking the sampled poses. The
ICM algorithm appears to perform less well than the other
two in terms of sampling, while the ICM docking function
is better at ranking poses than the GOLD function but not
as accurate as the Glide function.

It is important to point out that, in terms of thorough-
ness of sampling, the default settings for Glide are clearly
defined by Schrodinger, Inc. and extensively validated on
many test systems, while for GOLD there are four differ-
ent sets of GA parameters defined as default and corre-
sponding to different degrees of thoroughness and CPU
consumption. ICM allows the user to specify the degree of
thoroughness as well; however, literature and documenta-
tion do not provide a strong indication as to what settings
to use on a routine basis. In order to perform the study in
an objective manner we used settings that correspond to
similar computing times. The docking studies described in
this work averaged 1–3 min/molecule depending on proces-
sor speed on Linux (from 900 Mhz Intel Pentium III to 2.4
Ghz Intel Pentium IV) for all three programs. Both Glide
and ICM require a precalculated set of grid potentials,
with average computing times of 30–60 min per protein
for Glide and 5–10 min for ICM.

Impact of energy minimization

The effect of energy minimization of the top 20 poses and
reranking of the minimized poses was investigated using
two different force fields. Comparison of the percentages of
top-ranked structures within 2.0 Å of the crystal structure
before and after energy minimization, reported in Figure
3, shows that minimization and reranking did not affect
the accuracy of the Glide poses when the OPLS-AA force
field was employed, while there was a slight decrease in
performance relative to the unminimized poses when
MMFF was used. Minimization and reranking marginally
improved the accuracy of the ICM poses (from 45% to 49%
with either force field), while there was a more significant
improvement on the GOLD poses, especially when
OPLS-AA was used (from 48% to 62%). The performance of
GOLD equaled that of Glide when this additional proce-
dure was applied. The effect of minimization is consistent
with the features of the three docking programs examined.
In Glide, minimization on an OPLS-AA potential energy
grid is already performed in the final stages of docking. It
is therefore not surprising that additional refinement with
an all-atom minimization using the same force field does
not result in an increase of the docking accuracy.

Energy-minimization is also performed as part of the
ICM search protocol, but with a different force field. The
slight improvement observed upon minimization with
either MMFF or OPLS-AA may suggest that either these
two force fields provide a more accurate description of the
protein–ligand interactions than the ECEPP/3 force field
implemented in ICM, or simply that the minimization
performed by ICM is not as thorough and the docking
poses require further refinement. The significant improve-
ment of the GOLD poses after minimization is consistent
with the fact that there is no energy minimization involved
at the docking stage in this program. Severe clashes
between protein and ligand atoms are not uncommon in
GOLD-generated poses, partly because of the softness of
the repulsive term implemented in the fitness function,
and further refinement in a more rigorous fashion appears
to be highly beneficial in this respect. In terms of force
fields, the performances of MMFF and OPLS-AA were
similar, with OPLS-AA achieving a slightly better accu-
racy in two out of three cases, and equal accuracy in the
third (see Fig. 3). This observation further validates the
choice of OPLS-AA as the force field used by Glide, which is
also the best performing docking program in this study. It
is important to mention that the average computing time
for the energy minimization step ranges from 30 to 60
s/pose with the settings used in this work. The cost/benefit
ratio should therefore be carefully evaluated when this
extra step is considered.

Correlations between active site features and
docking accuracy

In order to assess where the difference between Glide
and the other programs lies and on what kinds of systems
each program performs best, the dependence of the dock-
ing accuracy on specific structural descriptors was ana-
lyzed. The complexes were classified in a binary or ternary
fashion with respect to three structural features: flexibility
of the ligand, predominant nature of the interactions
between ligand and receptor, and degree of solvent expo-
sure of the binding pocket. Statistical analysis of the
docking accuracies was performed with regard to such
features.

In terms of flexibility, it is well known that the accuracy
of any docking program decreases with the number of
rotatable bonds of the ligand. The size of the conforma-
tional space to be sampled increases exponentially with
ligand flexibility, and the thoroughness of the sampling
has to be partially sacrificed to keep the computing time
within reasonable limits. Different algorithms use differ-
ent methods to circumvent the problem and maximize the
efficiency of the conformational sampling. In this study the
test systems were divided in two groups: 87 complexes of
ligands with 1–6 rotatable bonds and 63 complexes of
ligands with 7–12 rotatable bonds. The results, illustrated
in Figure 4, show that the loss of accuracy going from less
flexible to more flexible ligands is relatively small for Glide
(from 67% to 52% of correct solutions) and much more
dramatic for GOLD and ICM, with the latter losing more
than half of its predictive power. This indicates that the
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multistage systematic algorithm implemented in Glide
results in a more extensive coverage of conformational
space than both the genetic algorithm and the stochastic
search implemented in GOLD and ICM when runs of
similar timing are considered. This partially explains the
relative performances observed on the complete test set.

In terms of interactions, hydrogen bonds and hydropho-
bic interactions are considered the main contributors to
protein–ligand binding in the vast majority of complexes.
In order to divide the complexes in our test set between
hydrogen bond–driven and hydrophobic-driven, the num-
ber of hydrogen bonds between protein and ligand in each
complex was determined. The degree of hydrogen bonding
(DHB), defined here as the ratio between number of
hydrogen bonds and number of heavy atoms in the ligand,
was used to define the dominant contributor to binding for
each complex. Complexes with a DHB of 0.15 or higher
were classified as hydrogen bond–driven, while complexes
with a DHB of 0.10 or lower were classified as hydrophobic-
driven, with the remaining complexes in the intermediate
category. Ligand–metal interactions were counted as hy-
drogen bonds for their similar nature. The results, illus-
trated in Figure 5, show that all programs perform best on
complexes in which there is a relatively even balance
between hydrogen bonding and hydrophobic interactions.
Interestingly, for both ICM and GOLD, the docking accu-
racy decreases dramatically when binding is mainly driven
by hydrophobic interactions, while Glide, which appears to
be somewhat less sensitive to the nature of binding,
performs better on hydrophobic-driven complexes than on
hydrogen bond–driven complexes. The preference of GOLD
for complexes rich in hydrogen bonds has been pointed out
previously,15 and it can be ascribed to the nature of the
algorithm, in which the mapping of hydrogen bond fitting
points plays a major role. In the case of ICM, this tendency
has not been reported; one possible explanation is that in a
Monte Carlo search, mostly characterized by low-energy
moves, the presence of a set of hydrogen bonds may lock
part of the molecule into its correct orientation during the
search, thus allowing for a more efficient sampling of the
rest of the molecule. For Glide, the difference in perfor-
mance is less significant, and this consistency across active
sites with various degrees of hydrophobicity/hydrophilicity
is another reason for its better performance on the com-
plete test set.

When interactions with metals were specifically consid-
ered, no difference in performance was observed among
the three programs: on the 24 metal-containing complexes,
Glide selected a solution within 2.0 Å of the experimental
structure 9 times, while ICM and GOLD succeeded 8 times
in the same subset. The success rate of the three programs
on such systems was significantly poorer if compared to
the overall performance, which points to the necessity of
further progress in this area, especially considering the
continued interest in zinc metalloproteins as drug discov-
ery targets.

The third aspect analyzed in this context is the impact of
the degree of burial of the binding pocket on the docking
accuracy achieved with different search algorithms. It is

generally the case that buried binding sites restrict the
number of orientations, positions, and conformations acces-
sible to putative binders, but at the same time, they
require a finer sampling in order to achieve the proper set
of interactions without clashes. On the other hand, solvent-
exposed sites require more extensive sampling to cover all
the accessible poses, but at the same time are more
tolerant with respect to the combination of pose descrip-
tors required to achieve the proper set of interactions. In
this study, the binding sites of the test complexes were
divided into three groups, with low, medium, or high
degree of burial, and the docking results were dissected
accordingly. In order to assign the complexes to each
group, the solvent-accessible surface area of the crystallo-
graphic ligand was calculated in the presence and in the
absence of the bound protein partner, and the fraction of
buried ligand was determined for each complex. The
degree of burial was defined as low if the fraction was 0.75
or lower, high if the fraction was 0.90 or higher, and
medium for values in between. The analysis of the perfor-
mances attained by the three programs on each class,
summarized in Figure 6, shows that all of them achieve
the highest degree of accuracy on complexes with buried
binding pockets, and consistently lose accuracy with an
increase in solvent exposure. Once again, Glide appears to
be relatively less sensitive to the features of the binding
pockets, while ICM shows the largest decay in perfor-
mance going from buried to solvent-exposed pockets. These
results indicate that all three search algorithms can
explore an enclosed binding site much more efficiently
than a relatively open one, and also points to the obvious
observation that, in a more sterically constrained site, the
best pose for a given ligand is more unequivocally defined
by the shape of the site. As a consequence, the likelihood of
generating multiple poses with similar score is much lower
and the selection of the best pose is more straightforward.
For the same reason, it is safe to say that, when docking
compounds in a buried binding pocket, an efficient sam-
pling process may be more important than an accurate
scoring/ranking method, while in a solvent-exposed pocket,
both aspects become equally important.

Analysis of problematic structures

In addition to the general trends observed, the results of
this study highlight some limitations and shortcomings
that are common to all docking programs examined. In 12
cases, none of the top 20 poses generated by any of the
three programs was within 2.0 Å of the experimental
structure. Most of these common failures can be ascribed
to a combination of structural features that make it
especially challenging for any docking program to identify
the right solution. Four of the problematic complexes (1cet,
1k1j, 1nhu, 1nhv) are characterized by a dominance of
hydrophobic interactions in solvent-exposed sites. In such
cases, the shape of the pocket does not help to restrict the
number of possible binding orientations, and the lack of a
set of specific anchoring points for the ligand makes the
selection of the best pose very challenging. Moreover, all
four ligands are relatively flexible (8–9 rotatable bonds),
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which adds to the sampling problem. Three complexes
(1qbu and two HIV-1 protease complexes from the Vertex
collection) present highly flexible ligands in almost com-
pletely buried binding sites. In these cases the tightness of
the binding pockets and the very specific conformational
requirements for the ligands to achieve the correct pose
call for a very thorough sampling process, which is very
hard to attain within the boundaries of a limited comput-
ing time. Another aspect that is sometimes problematic in
docking is the presence of charged functionalities in the
ligand, because the desolvation energy required for such
groups to become available for interaction with the protein
is overlooked by most docking functions. In two of the
failed complexes (1cet and 1i8z) there is a basic amine in
the ligand that does not interact with any protein residue
when the crystal complex is analyzed; docking functions
tend to favor poses in which such groups form hydrogen
bonds and/or salt bridges. Docking accuracy can also be
impaired by the occurrence of unconventional interactions,
not properly parameterized in the fitness functions of the
programs employed. Two examples are hydrogen bonds
between hydrogens of electron-poor aromatic rings and
protein acceptors, as observed in one of the Vertex com-
plexes, and hydrogen bonds between the imino form of
anilino nitrogens and protein donors, as observed in 1jsv.
Both complexes were not reproduced by any of the docking
programs. Finally, there are cases in which the interac-
tions between ligand and protein in the experimental pose
are tighter than average and predominantly hydrophobic.
Imperfect refinement of the crystal structure or the pres-
ence of legitimate short-range interactions can introduce
apparent clashes that are not compensated by other
obvious interactions in the crystallographic pose. When
such poses are evaluated in the context of docking, they

receive unfavorable scores since they are not properly
treated by any known docking functions. This provides a
partial explanation for the remaining failures (3ert and
one of the kinase complexes from the Vertex collection).

Summary of relevant findings

The Glide program is shown to have the highest degree
of accuracy on a wide and diverse set of systems, which
makes it the tool of choice in most cases. Energy minimiza-
tion of multiple poses is a highly beneficial postprocessing
step when docking is performed with GOLD, while the
improvement on ICM poses is marginal. Minimization has
no impact on the accuracy of the Glide-generated poses,
and the combination GOLD docking/OPLS-AA minimiza-
tion appears to be as reliable a predictor as Glide. The
Glide program is more tolerant than both ICM and GOLD
of the increase of ligand flexibility, which seems to point to
a more effective conformational sampling method. Analo-
gously, Glide appears to be less sensitive to variations in
the polarity of the binding pocket, with a slight preference
for complexes with prevalent hydrophobic character but a
solid performance across the board. On the other hand,
ICM and GOLD can be considered as reliable as Glide
when operating on highly polar binding sites, where
binding is strongly driven by hydrogen bonding. Compara-
tively, the ability of these same two programs to predict
complexes where binding is driven by hydrophobic interac-
tions is relatively poor. All three programs perform best on
buried binding pockets, with a gradual decrease in perfor-
mance at the increase of solvent exposure. In general,
some systems remain a challenge for docking at the
current stage, which suggests that there is still a margin
for improvement on the existing methods. In particular,
the inclusion of properly weighted solvation terms and a

Fig. 5. Performance of the three docking programs on complexes with
different degrees of hydrogen bonding between ligand and protein. The
degree of hydrogen bonding (DHB) is defined as the ratio between the
number of hydrogen bonds between ligand and protein and the number of
heavy atoms in the ligand. x axis: DHB (low: DHB � 0.10; medium: 0.10 �
DHB � 0.15; High: DHB � 0.15); y-axis: percentage of top-ranked
docking poses within 2.0 Å from the corresponding crystal structures.

Fig. 6. Performance of the three docking programs on complexes with
different degrees of binding site burial. The degree of burial is defined as
the fraction of the solvent-accessible surface area of the ligand that
becomes buried upon binding. x axis: degree of burial; y axis: percentage
of top-ranked docking poses within 2.0 Å from the corresponding crystal
structures.
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more effective representation of metal-mediated interac-
tions in the fitness functions appear to be highly desirable.

2. Evaluation of Docking/Scoring Combinations for
Virtual Screening

The objective of a virtual screening is to select a
subset enriched in compounds with the desired activity
relative to the entire collection. When the percentage of
active compounds in the screening set is known or can
be reliably estimated, the success can be described by
the enrichment factor, which is the ratio between the
percentage of active compounds in the selected subset
and the percentage in the entire database. In a real-life
virtual screening it is common practice to select the top
portion of the ranked compounds for further evaluation,
but the size of such portion is somewhat arbitrary,
generally ranging from 1% to 10% of the entire ranking.
The calculated enrichment factors are dependent upon
the fraction of the ranking considered, and the relative
enrichments achieved by two different methods may
vary throughout the ranking. In order to provide a
complete and unbiased account of the performance of
each method, the results of the virtual screenings are
presented here in two different formats. Tables III–V
report the enrichment factors calculated on the three
targets for each pose generation/scoring combination on
the top 3% of the corresponding rankings. Figure 7
illustrates the performance of each method on the three
targets throughout the top 30% of the corresponding
rankings. Each panel represents the results of the cal-
culations performed on one particular target with one
particular program used at the docking stage. The x axis

denotes the percentage of database sampled, or portion
of the ranking examined, while the y axis denotes the
percentage of active compounds correctly identified in
that portion. Whenever the relative performances of
different methods were different for different top por-
tions of the ranking examined (e.g., method A achieved
better enrichment than method B in the top 3%, worse
enrichment in the top 10%), the enrichment in the top
3% will be used as the main indicator of performance in
this report. The nature of the three active sites used in
this study is significantly different, and the relative
performances of the methods examined varied as a func-
tion of these differences. The results obtained on each
target are summarized below.

HIV-1 protease

In HIV-1 protease the binding site is buried and predomi-
nantly hydrophobic, with an oblong shape suited for large
and flexible ligands. The restrictive size and shape of this
binding site make this enzyme a very challenging system
for docking. Additionally, there is a conserved catalytic
water molecule that is an integral part of this active site,
contributing to the challenging nature of this system, since
interactions with water are generally not handled accu-
rately by most docking/scoring functions. As a demonstra-
tion of this, in the study described in the Docking section,
all three programs performed poorly on the 9 HIV-1
protease complexes included in the test set.

In the virtual screening simulation on this system,
ChemScore consistently achieved the best enrichment,
regardless of the pose generation method (see Fig. 7,
panels A–C, and Table III). The relative insensitivity of
this function to repulsive interactions was probably benefi-
cial in a system where a large amount of sampling would
be necessary to generate an accurate docking result, and
even otherwise correct docking poses may still contain
severe clashes between protein and ligand atoms. The
performance of ChemScore was largely unaffected by
energy minimization of the docking poses, which is consis-
tent with the fact that the attenuation of unfavorable
interactions has limited impact on the scores. For this
system, the combination ICM/ChemScore achieved the
best enrichments, but the performances of Glide/Chem-
Score and GOLD/ChemScore were comparable.

Energy minimization of the docking poses dramatically
improved the enrichments achieved by OPLS-AA and

TABLE III. HIV-1 Protease: Enrichment Factors
Calculated on Top 3% of Ranking for All Pose Generation/

Scoring Combinations

ChemScore GlideScore OPLS-AA

Glide 10.5 3.7 1.5
GOLD 8.3 1.1 0.8
ICM 9.9 2.4 0.3
Glide/min 9.4 3.6 6
GOLD/min 10.2 8.3 3.9
ICM/min 10.5 6.5 8.3

The rows contain the pose generation methods and the columns
scoring methods.

TABLE IV. IMPDH: Enrichment Factors Calculated on Top
3% of Ranking for All Pose Generation/Scoring

Combinations

ChemScore GlideScore OPLS-AA

Glide 6.3 16.4 5.4
GOLD 3.8 2.3 0.9
ICM 4.7 14.1 1.4
Glide/min 11.3 17.6 12.4
GOLD/min 4 6.1 4.7
ICM/min 11.3 16.2 10.3

The rows contain the pose generation methods and the columns
scoring methods.

TABLE V. P38 MAP Kinase: Enrichment Factors
Calculated on Top 3% of Ranking for All Pose Generation/

Scoring Combinations

ChemScore GlideScore OPLS-AA

Glide 5.7 8.8 5.8
GOLD 4.6 8.5 5.7
ICM 2.2 9 9
Glide/min 7.4 9 5.9
GOLD/min 3.8 12 6.9
ICM/min 4.6 10 6.9

The rows contain the pose generation methods and the columns
scoring methods.
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GlideScore on both ICM and GOLD poses, while only
OPLS-AA improved on Glide poses, and less significantly.
Both GlideScore and OPLS-AA performed well on mini-
mized ICM poses, while their performance on both unmini-
mized and minimized Glide poses was surprisingly mod-
est. In terms of pose generation, unminimized poses
generated by the three programs achieved similar enrich-
ments, with Glide poses slightly ahead of ICM and GOLD
poses, while after minimization, ICM and GOLD poses
produced better overall enrichments than Glide poses.

This last observation is consistent with the differential
benefits of postdocking minimization reported in the dock-
ing section for the three programs.

IMPDH

In IMPDH the binding site is relatively polar and predomi-
nantly solvent exposed, but it contains a narrow cavity at the
bottom that often accommodates hydrophobic moieties of
ligands sandwiched between the cofactor and protein resi-
dues. The tightness of such cavity requires a fine sampling to

Fig. 7. Performance of different combinations pose generation/scoring method in the simulated virtual screenings on HIV-1 protease, IMPDH, and
p38. Each panel illustrates the results obtained on one particular system using one particular docking program for pose generation. Target name and
docking program utilized for pose generation are as follows. A: HIV-1 protease/ICM; B: HIV-1 protease/Glide; C: HIV-1 protease/GOLD; D: IMPDH/ICM;
E: IMPDH/Glide; F: IMPDH/GOLD; G: p38/ICM; H: p38/Glide; I: p38/GOLD. The x axis shows the percentage of the global ranking considered, while the
y axis shows the percentage of active compounds correctly identified in that fraction of the ranking. Each line color corresponds to a different scoring
method: blue, ChemScore; red, GlideScore; yellow, OPLS-AA. Thin lines represent the results obtained on the unminimized docking poses; thick lines
represent the results obtained on the energy-minimized docking poses.
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correctly place ligands, and makes docking challenging. The
presence of a cofactor represents an additional challenge,
since in many docking functions the interactions involving
cofactors are not accurately parameterized. None of the three
programs evaluated in this study were particularly effective
at reproducing the four IMPDH complexes present in the
docking test set. On this target, GlideScore consistently
achieved the highest enrichment, regardless of the pose
generation method, with the only exception being unmini-
mized GOLD poses, on which ChemScore did better (see Fig.
7, panels D–F, and Table IV). In general, however, all of the
scoring functions considered achieved modest enrichments
on this particular set of poses. ChemScore consistently
outperformed OPLS-AA on unminimized poses. Energy mini-
mization improved the performance of ChemScore on ICM
and Glide poses, and dramatically improved the performance
of OPLS-AA on all sets of poses, raising it to the same level of
ChemScore. Minimization dramatically improved the perfor-
mance of GlideScore on GOLD poses, but only marginally
improved the performance of GlideScore on ICM and Glide
poses. In terms of pose generation methods, slightly better
enrichments were achieved on Glide poses relative to ICM
poses, and both docking methods clearly outperformed GOLD,
especially in the absence of energy minimization.

The improvement observed in most cases upon minimiza-
tion highlights the importance of refinement of the docking
poses when the active site contains a narrow region impor-
tant for binding, and more extensive sampling may be
required. Refinement is more important when the docking
protocol does not include a minimization component, as it is
the case for GOLD. The great benefits of minimization on
GOLD-generated poses confirm the observations reported in
the docking section on this program.

p38 MAP kinase

The binding site of p38 is relatively buried and mostly
hydrophobic, and it usually accommodates ligands through
a combination of well-defined shape complementarity and
hydrogen bonds with backbone amide groups. These fea-
tures and the absence of narrow subpockets make of p38 a
good system for docking, as confirmed by the fact that all
the three docking program were quite accurate in reproduc-
ing the six p38 complexes present in the docking test set.

On this system, once again GlideScore showed the most
consistent performance, only matched by OPLS-AA on ICM
poses (see Fig 7, panels G–I and Table V). OPLS-AA per-
formed relatively well on all three sets of unminimized poses,
with enrichments equivalent to or better than ChemScore.
Energy minimization did not significantly affect the enrich-
ments on Glide and ICM poses regardless of the scoring
method, while it marginally improved the enrichments
achieved with GlideScore and OPLS-AA on GOLD poses.
This is consistent with the observation that on this system
the docking poses are generally correct even in the absence of
minimization. Interestingly, the best enrichment was
achieved in this case by the combination GOLD/GlideScore,
while in general the performance of the three pose generation
methods can be considered equivalent.

In order to explore all possibilities, the GOLD poses
were also ranked on all three systems using the GOLD
fitness function, and no significant enrichment was
achieved in any of the three cases. ICM contains its own
empirical function to rescore docked poses in a virtual
screening context.40 The score must be recalculated at the
end of the docking stage, and it is relatively time-
consuming (up to 1 min per pose on a Pentium III 1 Ghz).
Since the function had not shown satisfactory results
when previously tested on internal targets, we decided not
to include it in this study.

Overall evaluation

The results obtained on the three systems confirm that,
as recently stated,7,8,30 a universal docking/scoring combi-
nation that outperforms all the others on every system
does not exist. Nevertheless, this study suggests that some
combinations do achieve more consistent performances,
and it provides a set of useful guidelines on how to select
and use the currently available tools. The three binding
pockets used here did not differentiate the performances of
the three docking programs as much as the diverse set of
complexes used in the docking section. Careful analysis of
the results indicates that comparable enrichments across
different systems were achieved when Glide and ICM
poses were rescored with different methods, with the Glide
poses performing slightly better on tighter binding sites.
Both Glide and ICM clearly outperformed GOLD in the
most challenging systems, while GOLD poses achieved
comparable enrichments only in the “easier” binding site of
p38. The similar performances of Glide and ICM could be
viewed as inconsistent with the results described in the
docking section, but different aspects come into play when
docking programs are engaged in virtual screening. A
program must be able to fit real binders to an active site
conformation that is not necessarily optimal for them, and
at the same time minimize the occurrence of false positives
(i.e., inactive compounds that are docked into the active
site and favorably scored). Neither of these issues is
present when the crystallographic ligand is docked back
into the cognate active site, and the ways each program
addresses them contribute to its ability to generate appro-
priate poses in a docking-based virtual screening.

Analysis of the poses generated by Glide and ICM in
different systems shows that, when an ideal fit cannot be
achieved, Glide tends to generate more strained ligand
conformations in order to maximize the interactions with
the protein (data not presented), while ICM tends to
produce more stable ligand conformations at the expense
of less optimal intermolecular contacts. The aggressive
approach applied by Glide, which attempts to reconcile
induced fit with the rigid receptor approach by softening
some of the intramolecular repulsive interactions, in-
creases the probability of finding active compounds but
also the occurrence of false positives. The conservative and
more rigorous approach applied in ICM entails a higher
risk of missing actives but also minimizes the incidence of
false positives. The interplay of these different tendencies,
in conjunction with the intrinsic effectiveness of the search
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algorithms, the nature of the active site, and the affinity of
the actual ligands in the screened collection, determines
the relative performance of the two programs. The results
obtained here indicate that the vigorous approach of Glide
can be more successful on tight binding pockets, where the
amount of sampling required to achieve the correct set of
interactions with the correct conformation of the ligand may
be quite large. In more spacious active sites, the conservative
approach followed by ICM can be equally or more effective.

Energy minimization of the docked poses in OPLS-AA
force field seems to significantly improve the enrichment
on systems with tight binding pockets, while it has basi-
cally no impact on the enrichments achieved on the more
spacious pocket of p38. This suggests that energy minimi-
zation should be common practice when docking-based
virtual screening is performed on sterically demanding
pockets, while in the absence of a clear classification of the
binding pocket it should always be applied. Glide poses
seem to generally benefit less from this postprocessing
step, and this may be ascribed to the fact that the same
force field is already implemented in the docking protocol,
although in a less rigorous fashion (especially with respect
to the intramolecular energy of the ligand).

In terms of scoring, GlideScore appears to be the most
general scoring function tested, with the best performance
across the board on IMPDH and p38. When the binding
site is very tight and docking is likely to produce poses
with severe intermolecular clashes, a function like Chem-
Score, more forgiving of repulsive interactions, can be
more effective. An alternative approach, suggested by
Glide developers, is to reduce the van der Waals radii of
protein and ligand atoms, thus softening the repulsive
terms in GlideScore along the lines discussed above.

Overall, exclusive force field–based scoring, exemplified
in this study by the OPLS-AA energy function, appears to
be less reliable than empirical scoring when ranking
different ligands, although reasonable enrichments can be
achieved in some cases, particularly on minimized docking
poses and spacious binding pockets. In general, testing
different combinations on the target of choice and selecting
the best performing one for the real screening is highly
desirable whenever sufficient data are available. In the
absence of it, the protocol should be selected based on the
nature of the active site, and this study suggests a choice
between Glide and ICM for the docking step, energy
minimization in OPLS-AA, and a choice between Gli-
deScore and ChemScore for rescoring, according to the
criteria described above.

CONCLUSIONS

The field of docking and virtual screening is in continu-
ous evolution, and a thorough assessment of the state of
the art in the field is often incompatible with the time and
resources available to most computational chemists. As a
consequence, the choice of the methods to be used in
real-life applications is often based on the long-term
acquaintance with established methods rather than on a
detailed comparison between earlier and more recent
tools. This work provides an up-to-date evaluation of some

of the most advanced docking and scoring methods, and
analyzes the advancements achieved by recently devel-
oped tools. As a result of the assessment, criteria are
defined to select the best protocol for docking and virtual
screening on different systems.

As pointed out in the first part of this study, an
appropriate test set for evaluation of docking/scoring meth-
ods dedicated to drug discovery should be representative of
the systems that are normally considered in such context.
Following this premise, the generation of a large and
highly curated test set of pharmaceutically relevant pro-
tein–ligand complexes with known binding affinities is
described. Details are provided on the portion of the set
that is based on publicly available structures, thus making
it available for others to use in similar studies.

The comparison among three highly regarded docking
programs (ICM, Glide, and GOLD) for the ability to
reproduce crystallographic binding orientations highlights
the different impact of the binding site features on the
accuracy of each program. While all three programs per-
form well and appear to be reasonable choices for docking
in buried binding sites, Glide appears to perform most
consistently with respect to diversity of binding sites,
ligand flexibility, and overall sampling, resulting in the
best overall docking accuracy. On the overall test set, Glide
correctly identified the crystallographic pose 61% of the
times within 2.0 Å, versus 48% for GOLD and 45% for
ICM. The three programs perform equally well on com-
plexes strongly driven by hydrogen bonding, but both ICM
and GOLD perform poorly when hydrophobic interactions
are predominant. The results also show that saving the top
N scoring poses from any docking function followed by
energy minimization and reranking can be an effective
means to overcome some of the limitations of a given
docking function. This extra step is particularly beneficial
when applied to GOLD-generated poses. Since the addi-
tional computing cost is no longer prohibitive (e.g., 30–60
s per pose), it may make sense to minimize as a general
postdocking step.

The evaluation of the same docking programs in conjunc-
tion with three different scoring functions in simulated
virtual screenings confirms that variations in the nature of
the binding sites have a different impact on different
docking programs and scoring functions. GlideScore ap-
pears to be an effective scoring function for database
screening, with consistent performance across several
types of binding sites, while ChemScore appears to be most
useful in sterically demanding sites, since it is more
forgiving of repulsive interactions. Energy minimization of
docked poses can significantly improve the enrichments in
systems with sterically demanding binding sites, although
Glide poses tend to benefit less than GOLD- or ICM-
generated poses.

Overall, this study indicates that a certain degree of
improvement has been recently achieved both in the
docking and in the scoring methodology, and in both cases
the technology developed for Glide appears to provide the
most consistent benefits. While Glide appears to be a safe
general choice for docking, the choice of the best scoring
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tool remains to a larger extent system-dependent. In
general, it is always advisable to test different docking/
scoring combinations on a given system of interest to select
the best protocol, prior to the full database screen. It
should be pointed out that in studies of the kind described
in this article, there is always some degree of subjectivity
with regard to choice of targets, data sets, and programs
employed. However, we believe that the conclusions pre-
sented here are applicable to a wide range of systems.

In future perspective, the next large improvements in
this field will hopefully be in scoring functions that more
accurately describe the physics of binding and allow not
only for good discrimination between actives and inactives,
but also between closely related analogs. In this regard,
factors such as protein flexibility and solvation need to be
incorporated in a meaningful and efficient manner. Since
we recognize some of the current limitations, we have tried
to emphasize practices that can sometimes overcome some
of them, such as saving and reranking poses, and using a
variety of search/scoring combinations. To be fair, we
should point out that it is common, in practice, to use
graphics as part of the final round of selecting compounds in
docking-based virtual screening. This can certainly remove
some of the shortcomings of various scoring functions (al-
though it tends to introduce other, subjective biases). One
might imagine that a visualization tool that highlights both
favorable and unfavorable contributions to binding based
upon a variety of scoring functions could be quite useful.
Additionally, the judicious use of a variety of postprocessing
filters (e.g., Did we maintain a key hydrogen bond?) and/or
the use of constraints during docking are commonly used to
enhance the results of docking/virtual screening and should
be used whenever possible.
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