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Abstract

Background: Theauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This

is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1

expression. As a result, diverse aspects of PIN1 expression are dispersed across dozens of papers entirely devoted to

other specific topics related to the auxin pathway. Integration of these puzzle pieces about PIN1 expression revealed

that, along with a recurring pattern, some features of PIN1 expression varied from article to article. To determine if this

uncertainty is related to the specific foci of articles or has a basis in the variability of PIN1 gene activity, we performed a

comprehensive 3D analysis of PIN1 expression patterns in Arabidopsis thaliana roots.

Results: We provide here a detailed map of PIN1 expression in the primary root, in the lateral root primordia and at the

root-shoot junction. The variability in PIN1 expression pattern observed in individual roots may occur due to differences

in auxin distribution between plants. To simulate this effect, we analysed PIN1 expression in the roots from wild type

seedlings treated with different IAA concentrations and pin mutants. Most changes in PIN1 expression after exogenous

IAA treatment and in pin mutants were also recorded in wild type but with lower frequency and intensity. Comparative

studies of exogenous auxin effects on PIN1pro:GUS and PIN1pro:PIN1-GFP plants indicated that a positive auxin effect is

explicit at the level of PIN1 promoter activity, whereas the inhibitory effect relates to post-transcriptional regulation.

Conclusions: Our results suggest that the PIN1 expression pattern in the root meristem accurately reflects changes in

auxin content. This explains the variability of PIN1 expression in the individual roots and makes PIN1 a good marker for

studying root meristem activity.
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Background

The plant hormone auxin affects various processes in

plant growth and development [1, 2]. In the root, auxin is

the main factor responsible for the formation and main-

tenance of stem cell niches in the meristem, development

of lateral and adventitious roots, and gravitropism among

other processes. Auxin regulates many diverse physio-

logical processes due to its uneven distribution in the

tissues—an outcome of active transportation mechanisms

[3, 4]. PIN efflux carriers, localized in the plasma mem-

brane, are the major contributors to the formation of

auxin concentration gradients and maxima [5, 6]. Polar

localization of PIN proteins on the plasma membranes

creates directed auxin streams in a tissue [7]. For example,

in the root meristem, PIN proteins ensure rootward

(acropetal) and shootward (basipetal) flows in the vascular

system and epidermis, respectively [8].

As compared to other members of the family lack

of PIN1 activity results in most severe phenotypes
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suggesting a crucial role of this protein in auxin transport

[7, 9, 10]. The first deviations from normal development

are observed in pin1 mutants at the globular and heart

stages of embryogenesis, when one to two thirds of pin1

embryos show disrupted hypophysis [10]. The basal

localization of PIN1 in the plasma membranes provides

for directional auxin flow in the globular embryo, where

PIN1 in conjunction with other PINs (PIN3, PIN4 and

PIN7) contributes to the establishment of the apical-basal

embryonic axis. After germination, PIN1 is expressed in

the apical meristems and vascular tissues (reviewed in

[2]). Along with pin-shaped inflorescences, fused coty-

ledons and other shoot abnormalities are evident in

pin1 mutants [9]. The roots of pin1 seedlings are

slightly shortened; their apical meristem is also a bit

reduced [7].

In the root, PIN1 mediates rootward auxin flow within

the root meristem towards the quiescent centre (QC),

which is the site of maximum auxin concentration [3, 7].

PIN1 proteins were predominantly detected on the root-

ward sides of the stele and endodermis cells along with

some expression in the epidermis, cortex and the QC

[11, 12]. Additionally, the PIN1 expression pattern in the

root was somewhat variable [12].

In Arabidopsis, the lateral and adventitious roots ori-

ginate from a founder cell belonging to the protoxylem-

pole pericycle in a similar way in roots and hypocotyls,

respectively [13–15]. PIN1 is expressed starting from the

first division of the founder cell and, at each division,

occupies the newly formed cell boundary. As a result, in

the multi-layered primordium, only the outer sides of

the peripheral cells do not have PIN1, whereas the inner

cells acquire PIN1 at all sides [14]. The preferential posi-

tioning of PIN1 towards the lateral root primordium tip

became more pronounced at later stages of primordium

development. In the hypocotyl, PIN1 expression PIN1

expression visualized with PIN1pro:PIN1-GFP and PIN1-

pro:GUS was restricted to the vascular tissue [16].

By directing auxin efflux from cells, PIN1 reduces the

cellular auxin concentration. Multiple feedbacks exist in

plants to balance this decrease: auxin regulates PIN1 ex-

pression at the levels of transcription, protein stability

and subcellular localization [12, 17, 18]. At the tissue

level, positive and negative regulation of PIN1 expression

by auxin creates an auxin maximum at a distance from

the root end, which may provide for specification and

maintenance of the QC [19].

The phenotypic defects in single pin mutants are not

developed due to ectopic upregulation of the remaining

PIN genes, which partially substitute for the activity of the

knocked-out gene [20]. In the root, PIN1 functional re-

dundancy was demonstrated in pin2 single, pin2pin3,

pin2pin4 double and in pin3pin4pin7, pin2pin3pin4 triple

mutants [7, 12, 20]. In the pin2 mutant, PIN1 was

ectopically induced in the PIN2 expression domain in the

cortex and epidermis with polarization, which PIN2 ex-

hibited in these tissues in wild type plants [12].

PIN1 expression in the Arabidopsis root has been re-

ported in multiple publications, but the data are frag-

mented and scattered [11, 12, 18, 21–26]. At the same

time, testing of PIN1 expression in the root becomes a

pervasive approach in experiments on the regulation of

auxin distribution. This requires description of the stable

PIN1 pattern and its possible variations. PIN1 activity in

the root has also been investigated in other plant species

[27–31]. In order to obtain a deeper understanding of

the role of PINs in plant growth and development, an

in-depth description of PIN1 expression patterns in

Arabidopsis will be helpful.

In this study, we conducted a 3D analysis of PIN1 ex-

pression in A. thaliana root of wild type and single pin

mutants using specific antibodies. We show variations in

PIN1 expression and demonstrate that they occurred ex-

clusively at the border of the PIN1 expression domain.

We also determined quantitatively the changes in

PIN1 expression in response to exogenous auxin treat-

ments using two reporter lines (PIN1pro:PIN1-GFP and

PIN1pro:GUS). We found that there is a dependence be-

tween the exogenous auxin dose and the changes in the

PIN1 expression level and domain. Significant differ-

ences in auxin response observed between PIN1pro:-

PIN1-GFP and PIN1pro:GUS plants allowed us to

conclude that auxin activates PIN1 expression at the

level of its promoter activity, whereas auxin inhibits it at

the post-transcriptional level.

Based on the similarities in PIN1 expression changes

after auxin treatments and in pin mutants with the vari-

able part of its expression pattern in control plants, we

suggest that the variability in PIN1 expression may be

explained by slight differences in endogenous auxin

levels in the individual roots.

Results

Whole-mount immunolocalization of PIN1 in Arabidopsis

thaliana roots and hypocotyls was performed with specific

antibodies to PIN1 (See Methods). Three-dimensional

analysis of PIN1 expression was carried out with the

iRoCS Toolbox [32]. PIN1 expression was detected at the

root-shoot junction, in developing lateral root primordia

and in the tips of primary roots. Stable and variable fea-

tures in PIN1 expression are described in detail below.

PIN1 expression in the root tip

Differentiating stele in the root meristematic zone repre-

sent a well-known PIN1 expression domain [11, 12]. The

stele initials and two to four horizontal rows of their de-

scendants had the brightest anti-PIN1 signal in all tested

roots (Fig. 1; Additional file 1). In this domain, PIN1
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proteins occupied the rootward and lateral surfaces of

the plasma membranes, but there was higher accumula-

tion of PIN1 on the rootward sides.

In differentiating vascular and pericycle cells, the PIN1

signal remained intense and was preferentially posi-

tioned rootward, although the amount of signal per cell

gradually decreased in the shootward direction (Fig. 1).

The decrease in PIN1 expression differed in the cell line-

ages of the stele. The protophloem and phloem-pole

pericycle lost PIN1 signal in the transition domain of the

meristem (Fig. 1, Additional file 1; sections 3). A gradual

decrease in PIN1 expression as the root protophloem

cells differentiated has been shown previously [25]. The

procambium and xylem-pole pericycle cells generally

lost PIN1 expression at the end of the meristematic zone

(Fig. 1, Additional file 1; sections 4). Metaxylem precur-

sor cells and protoxylem lineages expressed PIN1 in the

elongation zone. Metaxylem precursor cells lost PIN1

signal just after passing the meristematic/elongation

zone border, but expression in the protoxylem was still

visible at a distance from the border (Fig. 1, Additional

file 1; sections 4; Fig. 2).

In the quiescent center, the first tier of the columella

(columella stem cells or initials; CSC), the cortex/endo-

dermis initials and the epidermis/lateral root cap initials,

PIN1 proteins occupied the entire plasma membrane.

PIN1 signal was not detected in the lateral root cap. It

was absent in this lineage immediately after asymmetric

division of the epidermis/lateral root cap initials. In the

epidermis lineage PIN1 was expressed with the rootward

polarity in the first 2–6 cells.

In the first cells of the endodermis lineage, PIN1

proteins occupied the rootward and lateral sides. Fur-

ther, in endodermal cells, PIN1 proteins remained at the

rootward sides and at about one-third of the internal lat-

eral side. The lateral PIN1 disappeared, and the root-

ward PIN1 became gradually weaker at the beginning of

the transition domain. There was no PIN1 expression in

the endodermis cells outside the meristematic zone.

In the first cells of the cortex lineage, PIN1 protein oc-

cupies both the lateral and rootward sides of the plasma

membranes (Fig. 2c). The descendants of these cells ex-

hibit primarily rootward signal, which becomes weaker

with each division. In some roots, staining extended to

the 16th cortex horizontal row, and various degrees of

lateralization were observed (up to the 10th row).

Along with the stable features of the PIN1 expression

pattern (e.g., strong expression in the stele), we identi-

fied the following variable features differed from root to

root: the length of the PIN1 expression domain and the

number of cells with the polarization type (rootward,

spreading completely or partially localized to the lateral

sides) (Fig. 2).

In the stele, PIN1 showed rootward positioning wher-

ever it was expressed, but the presence of the PIN1 pro-

tein on the lateral sides of the plasma membranes varied

in differentiating stele lineages, starting from the third

cell from the QC (Fig. 2c; Additional file 2). PIN1 may

occupy both inner and outer lateral sides (as at the be-

ginning of the lineage), or only the inner lateral side, or

be absent from the lateral sides. In the pericycle, PIN1

started to switch from equal signal intensities on both

Fig. 1 Whole-mount immunolocalisation of PIN1 in A. thaliana root tip. A longitudinal section (above) and five transverse sections (1–5)

showing anti-PIN1 signal (green channel) and anti-PIN2 staining (white channel). CEI—cortex/endodermis initials, ELI—epidermis/lateral root

cap initials, CSC—columella stem cell (columella initials), QC—the quiescent centre, c2—the second columella tier, c3—the third columella tier,

epid—epidermis, c—cortex, en—endodermis, prc—pericycle, vsc—vasculature, px—protoxylem, pph—protophloem, mx—metaxylem.

Coloured triangles—the end of the expression domain in the respective layer. White triangle—rootward PIN1 location in xylem elements in the

elongation zone. MZ—the meristematic zone. Bars = 50 μm
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lateral sides to decreasing signal on the outer one as early

as in the first descendants of the initials. In the middle of

the meristematic zone, PIN1 signal usually covered along

with the rootward only the inner lateral sides of the peri-

cycle cells. PIN1 disappeared from the lateral sides of the

protoxylem and metaxylem cells in the transition domain.

The transition from one polarization type to another

occurred in the same cell lineage at variable distances

from the QC in different roots. Variability was also de-

tected in the QC, columella initials and their descen-

dants. In some roots, the QC and columella initials did

not have polar PIN1. In others, PIN1 was polarized root-

ward to varying degrees. Rarely, we observed weak non-

polar PIN1 signal in the second and third columella

tiers. A weak signal was also found using anti-PIN1 anti-

bodies in the second and third columella tiers in pin1

roots (Additional file 3), suggesting that PIN1 signal

there might be non-specific.

Patterning of PIN1 expression during lateral root

development

PIN1 expression in the pericycle of the maturation zone

was observed starting from the first stage of lateral root

primordium development (LRP-I), after the first trans-

verse (anticlinal) division of the founder cell. PIN1 local-

ized at the contiguous plasma membranes of adjacent

daughters (Fig. 3a). After a series of anticlinal divisions,

the LRP-I primordium cells divided periclinally and

formed a two-layered LRP-II primordium [33]. At each

cell division during LRP-I and LRP-II, PIN1 proteins oc-

cupied the contiguous membranes between the daughter

cells, marking all newly formed boundaries (Fig. 3b).

Cells in the outer layer (OL), followed by the inner layer

(IL), undergo periclinal divisions that take the primor-

dium to the LRP-III and LRP-IV stages [33]. At these

stages, PIN1 proteins also occupy the membranes be-

tween the daughter cells but with a bias in polarity

Fig. 2 Variability in PIN1 expression domain in different lineages in the root tip. a and b The primary root tips of two individual 4 dag seedlings

labelled with anti-PIN1 (green channel) and DAPI (blue channel). CSC—columella stem cell, c2—the second columella tier, c3- the third columella tier,

epid—epidermis, c—cortex, en—endodermis, prc—pericycle, vsc—vasculature, px—protoxylem. Coloured triangles—the end of the expression

domain in the respective layer. Bars = 50 μm. c A general scheme of stable and variable parts of the PIN1 expression pattern in the root tip of A.

thaliana. PIN1 expression domain is on the left: dark grey—the stable part of the PIN1 protein domain for the root meristem of a 4 dag seedling,

grown on MS medium (see Methods); light grey is its variable part. On the right, stable and variable features of PIN1 polarization are shown.

RW—rootward polarity, RWL—rootward and lateral polarity, RWLI—rootward and inner lateral polarity, NP—nonpolar
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towards the primordium tip (Fig. 3c–d). Cells at the

primordium border start differentiating at this time,

which can be observed as a decrease (LRP-III) followed

by a loss (LRP-IV) of PIN1 expression in this region.

These changes likely promote auxin flow towards the

primordium tip. From LRP-IV, PIN1 expression grad-

ually decreases in the outer layers (OL2 and OL1)

(Fig. 3d, e). Then, QC cells become pre-specified: the

WOX5 marker starts to localize to the central cells of

OL2 [34]. The pre-specified QC expresses PIN1 without

polarization. From LRP-VI, all outer layers—epidermis,

cortex and endodermis—can be distinguished (Fig. 3f ).

As a result, at the LRP-VII stage, the PIN1 expression

pattern is similar to the pattern in the primary root:

PIN1 is highly expressed in the vasculature and in peri-

cycle precursors, and rootward signal is visible in the de-

veloping cortex and endodermis (Fig. 3g).

PIN1 expressing cells were sometimes found close to

the developing lateral primordium (Additional file 4).

The rootward PIN1 signal was detected in xylem ele-

ments (Additional file 4a–d) and individual cells of the

outer layers of the primary root near the primordium

(Additional file 4e). The PIN1 expression domain in

these tissues was dramatically extended after auxin

treatment (see below).

PIN1 expression in hypocotyl

At the root-shoot junction, PIN1 was detected with

rootward polarity in the vascular cells flanking the

mature xylem vessels (Fig. 4a–c). In most of the seed-

lings, within a few days after germination, we also ob-

served PIN1 expression in one or two symmetrical

primordia-like organs at the root-shoot border

(Fig. 4b). In 3 dag seedlings PIN1 expression in these

primordia-like organs resembled those of LRP-V or

LRP-VI (Fig. 4d), suggesting that they may give rise

to adventitious roots, which in Arabidopsis originate

from hypocotyl pericycle cells in a similar way as the

lateral roots from root pericycle cells (reviewed in

[35]). However, in the older seedlings, we observed

that the primordia-like organ lost PIN1 signal and did

not develop into adventitious roots. We suggest that

these organs are adventitious root primordia that have

initiated without developing further. The primordia

arrested or delayed in development were previously

described for lateral roots [36].

Fig. 3 Changes in PIN1 expression during lateral root primordium development. a–g The seven stages of primordium development are shown

in roman numerals. IL (IL1, IL2)—inner layers, OL (OL1, OL2)—outer layers. Pre-specified QC cells are marked by asterisks. Developing tissues:

epid—epidermis, c—cortex, en—endodermis. White arrows show the directions of auxin flux. Anti-PIN1 staining is in green, DAPI is in the

blue channel. Bars = 50 μm
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Exogenous auxin modulates PIN1 expression

PIN1 expression patterns in wild type plants showed

variability in the roots (Fig. 2). This may be caused by

variation in the auxin distribution that occurs naturally

during plant growth. To test this hypothesis, we assessed

the effect of seedling treatments with different concen-

trations of exogenous auxin (IAA or NAA).

Auxin treatment changed the PIN1 expression domain

in the root meristem (Fig. 5a). Auxin effect on PIN1 pro-

tein expression in the root apical meristem was dual:

auxin upregulated PIN1 expression in low-level treat-

ments (0.01 and 0.1 μM NAA) and inhibited expression

at high dosage (1 μM NAA or more) (Fig. 5b). In roots

treated with exogenous auxin, we observed both exten-

sion (0.01 and 0.1 μM NAA) and shortening (1 μM

NAA) of PIN1 expression domains in the vasculature

and outer layers—features we noted as variable in con-

trol (untreated) plants. For example, in low-level treat-

ments, the PIN1 expression domain was extended in the

endodermis, cortex, and stele; in many roots, PIN1 was

also detected in the second and third tiers of the columella

(Fig. 5b). In contrast, under high-level treatments, the

PIN1 domain was significantly reduced in all of the tissues

listed above.

To estimate the changes in PIN1 expression in the pri-

mary root meristem quantitatively, we analysed auxin-

induced (24 h treatment by 0.01, 0.1, 1, 5 and 10 μМ

IAA) reporter activity in PIN1pro:GUS and PIN1pro:-

PIN1-GFP plants (see Methods, Additional file 5). Thus,

we were able to compare the auxin effect on PIN1

promoter activity in PIN1pro:GUS with auxin-

dependent post-transcriptional regulation of PIN1-

GFP protein in PIN1pro:PIN1-GFP. Using ImageJ

[37], we quantified the maximal and average inten-

sities of the reporter signals, as well as the width

and length of the PIN1 expression domains in the

meristem (See Methods).

Statistical analysis of the measured characteristics

supported auxin dose–response of PIN1 expression

(Fig. 5c-d). In both lines (PIN1pro:GUS and PIN1pro:-

PIN1-GFP), the length of the expression domain in the

stele was significantly increased along the root central

axis after treatment with low IAA concentration

(0.01 μM, p-value < 0001) (Fig. 5c). Additionally, the

length of the PIN1 expression domain was significantly

decreased by high IAA concentrations (above 1 μM) in

both lines.

By analysing the maximal intensity of the reporter ac-

tivity, we found differences between the lines. In the

PIN1pro:PIN1-GFP line, a significant increase (by 36 %

and 27 %, p-value < 0.001) in GFP fluorescence was de-

tected under 0.01 and 0.1 μM IAA (Fig. 5d). After 5 and

10 μM IAA treatment, GFP fluorescence was signifi-

cantly reduced (by 27 % and 48 %, respectively, p-value

< 0.001). GUS staining was always increased with in-

creased exogenous auxin (Fig. 5d). Starting from 0.1 μM

IAA, the treatment caused significant upregulation of

PIN1 promoter activity (p-value < 0.05). Taking into

account that the PIN1pro:GUS line reveals the PIN1 pro-

moter activity by GUS staining and the PIN1pro:PIN1-

GFP line monitors the amount of PIN1-GFP protein, we

conclude that the auxin effect on PIN1 expression in-

volves both transcriptional and post-transcriptional

regulation. Namely, the positive auxin effect on PIN1 ex-

pression is explicit at the level of PIN1 promoter activity,

whereas the inhibitory auxin effect relates to post-

transcriptional regulation of PIN1 expression.

Fig. 4 PIN1 expression at the root-shoot junction in 3 dag seedlings.

a and b PIN1 signal (in green) was detected in the vascular elements

attached to the mature xylem vessels throughout the whole hypocotyl.

PIN1 was polarized rootward (white arrows). c The rootward PIN1

signal in the cells flanking the mature xylem vessels of the hypocotyl.

d Magnified view of the white rectangular region from (b). Bars = 50 μm
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Summarizing the experimental data on exogenous

auxin treatments, we conclude that the variability in the

PIN1 expression pattern, which was observed among

untreated roots, may be simulated by exogenous auxin

treatment. This indicates that differences in endogenous

auxin levels among individual roots may be the source

of variability in the PIN1 expression pattern.

PIN1 expression in pin mutants

Because PIN proteins mediated auxin efflux from indi-

vidual cells, we expected that auxin distribution in the

root tips of pin knockouts would be slightly different

from control plants. Indeed, cross-regulation of PIN1 ex-

pression in the pin2 mutant has been reported before

[12]. We analysed the changes in PIN1 immunolocaliza-

tion in the roots of single knockouts of the genes encod-

ing long PINs (pin2, pin3, pin4 and pin7). The changes

in the PIN1 expression domain compared to controls

are summarized in Additional file 6 and Fig. 6.

In wild type plants, PIN1 was expressed and polarized

rootward up to the six youngest epidermal cell row

(Fig. 2c). In the pin2 mutant, the PIN1 domain in the

epidermis was frequently (75 % of plants) extended

up to the twentieth cell row (Fig. 6). In the ectopic

domain (from 6th to 20th epidermis rows), the PIN1

protein had shootward polarity inherent to PIN2,

which allowed PIN1 to partially substitute the

knocked-out gene. In the wild type cortex, PIN1 was

expressed rootward, and it gradually declined in in-

tensity up to the 16th cell row from the QC (Fig. 2c).

In the cortex of the pin2 mutant, PIN1 has the same

rootward polarization but in an extended domain. We

detected a high level of PIN1 expression up to the

18th cell row from the QC, which then gradually

decreased moving out towards the 25th cell row.

These data support previously reported findings [12].

In addition, in pin2 mutants, we observed non-polar

expression of PIN1 in the second columella tier more

frequently than in wild type (85 % of plants). The in-

tensity of the expression was weak but still stronger

than in those rare cases when it was detected in this

region in wild type.

Fig. 5 Auxin regulated PIN1 expression in the root tip. a and b Immunostaining of PIN1 expression in wild type plants treated with low (0.1 μM)

and high (1 μM) NAA dosage for 24 h. a The effect of exogenous low-level auxin on PIN1 upregulation in the meristem and at the sites of lateral

primordia outgrowth. b Modulation of PIN1 expression domain under low and high NAA treatments, compared to control. The variation in length

of the expression domains for different cell lineages is shown by coloured triangles. CSC—columella stem cell, c2—the second columella tier, c3- the

third columella tier, epid—epidermis, c—cortex, en—endodermis, prc—pericycle, vsc—vasculature. Anti-PIN1 staining is in green, DAPI is in the blue

channel. Bars = 50 μm. c and d Quantitative estimates of the changes in PIN1 domain length (c) and PIN1 maximal expression intensity (d) under

exogenous IAA treatments with different dosages. The experimental images were analysed in ImageJ (See Methods). Green line—estimates for

PIN1pro:PIN1-GFP plants; blue line—for PIN1pro:GUS plants. The measured values for each IAA dosage and for each reporter line were normalized to

controls. Statistics differences were identified by t-test: * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001
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Changes in PIN1 expression in the vasculature, endo-

dermis and cortex of pin3, pin4, pin7 mutants were simi-

lar: the PIN1 expression domain extended further to the

elongation zone in 60–75 % of plants (Additional file 6;

Fig. 6). In the pin7 mutant, PIN1 also showed ectopic ex-

pression in the second columella tier, similar to the pin2

mutant. In the pin3 mutant, the domain of PIN1 ectopic

expression in the columella was enlarged and covered up

to four tiers.

The experimental results show that, in single pin mu-

tants, PIN1 expression extended to the sites of normal

expression for knocked-out PIN2, PIN3, PIN4 and PIN7

genes. With the exception of the significantly extended

PIN1 domain in the epidermis and cortex of pin2 mu-

tants, all other changes in the PIN1 expression pattern

in pin mutants were enough close to the spectrum of

variability detected in wild type. We assume that the

changes in PIN1 expression might be a reaction to

changes in endogenous auxin content in pin mutants.

Tissue-specific auxin accumulation or depletion, which

must occur in the absence of one of the PINs, may result

in adjustment of the PIN1 expression domain.

Discussion

Auxin levels control the identities of cells and underlie a

wide range of developmental phenomena (reviewed in

[1, 2]). Auxin gradients in tissues are the result of auxin

movement between cells due to diffusion and active trans-

port. Auxin efflux carriers of the PIN family were shown

to be key regulators of auxin distribution (reviewed in

[38]). PIN1 is the founding member of this family, and its

expression is often used to monitor the effects of other

factors on auxin distribution (for example, [21–26]). Vari-

ous aspects of PIN1 expression but only in relation to the

main topics of these papers were described. Here, we

present a study focused on PIN1 expression in A. thaliana

root, which confirmed a number of published facts and re-

vealed some new features of PIN1 expression in the pri-

mary root all along its length, up to the root-shoot

junction. The regular anatomy of the root apex allowed us

to describe the variation and complexity of PIN1 expres-

sion in 3D and revealed the stable and varying parts of the

expression pattern (Fig. 2, Additional file 2).

The stele is the main PIN1 expression domain in the

root meristem [11, 12, 18, 23]. Observations of PIN1

Fig. 6 PIN1 expression patterns in pin mutants (b – e) compared to wild type (a). CSC—columella stem cell, c2—the second columella tier,

c3—the third columella tier, epid—epidermis, c—cortex, en—endodermis, prc—pericycle, vsc—vasculature. Coloured triangles—the end of the

expression domain in the respective layer. Anti-PIN1 staining is in green, DAPI is in the blue channel. Bars = 50 μm
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expression in 3D demonstrate that it is not uniform; dis-

tinct cell lineages stop expressing PIN1 at different dis-

tances from the QC (Fig. 1). The protophloem and

protophloem-pole pericycle lost PIN1 signal in the prox-

imal two-thirds of the meristem; procambium and the

rest of pericycle lost PIN1 expression from there to the

end of the meristem. In contrast, xylem precursors still

expressed PIN1 in the distal part of the elongation zone.

PIN1 has been suggested to be a marker for non-

differentiated cells [25]. Here, we found that it accurately

marked the beginning and end of the transition domain

in the root tip. As previously described [39], there are

no clear markers for the transition domain of the meri-

stem. We suggest that the reference point for the begin-

ning of the transition domain could be the first cell in

the protophloem lineage, which lost PIN1 signal. The

reference point for the end of the transition domain

could be the last protoxylem cell expressing PIN1.

Moreover, the end of the PIN1 expression domain in the

endodermis coincided with the end of the meristem,

which coud be estimated based on the first rapidly

elongated cortex cell [40].

In the stele, PIN1 is mainly localized rootward, driving

auxin across the vasculature towards the QC. Some

spreading of PIN1 protein to the inner lateral sides of

the stele cells was observed [18, 23]. In xylem precursors

(protoxylem and metaxylem lineages), PIN1 had root-

ward localization (RW), whereas in procambium cells,

PIN1 also occupied the lateral sides [24]. We investi-

gated PIN1 on the rootward and lateral sides of the stele

cells in more detail (Fig. 2c). All stele initials and their

first daughters have the “procambium mode” of PIN1

expression (RWL) in which PIN1 occupies the rootward

and lateral parts of the plasma membrane. Furthermore,

there is a difference in PIN1 expression in the descen-

dants of different lineages. Vascular precursors in ap-

proximately ten of the horizontal rows from the QC

along with stable RW have two types of PIN1 lateral

polarization (RWL and RWLI). The RWLI type of

polarization means that along with RW, PIN1 protein

settles on the inner lateral sides and allows inward auxin

flow. The xylem precursors completely lose PIN1 lateral

positioning in the upper one-third of the meristematic

zone. The other vascular (mainly procambium) cells

show variation in the lateral positioning up to the end of

the meristematic zone, accompanied by a gradual de-

crease in PIN1 expression. In the pericycle, constant

rootward positioning of PIN1 was also maintained up to

the end of the meristematic zone, with the lateral polar-

ity becoming RWLI early in the cell lineage.

Weak rootward PIN1 with some lateral spreading was

also reported in the endodermis ([7, 11, 12, 18, 21, 23].

As in the stele initials, in the first cells of the endoder-

mis and cortex lineages, PIN1 is located at the rootward

and lateral sides (Fig. 2c). In the endodermis, variations

in polarization looked similar to those in the pericycle;

along with stable rootward positioning, PIN1 spread to

the lower part of the internal lateral side (RWLI).

In the cortex, only weak rootward signal was re-

corded, mainly in the youngest cells [7, 12, 21, 26]. We

additionally showed spreading of PIN1 to the lateral

sides in these cells and extension of the PIN1 domain to

the middle of the meristematic zone in some roots

(Fig. 2c).

Our data on PIN1 expression in the youngest epider-

mal cells, the QC, the columella initials, the hypocotyl

and lateral root primordia (Figs. 1, 3, 4) was consistent

with previous reports [12–14, 16, 26].

Comparing our map of PIN1 expression (Fig. 2c) with

the auxin distribution map in the root tip [41], we see

that stable PIN1 expression occurs in regions with high

to intermediate auxin levels. The regions with variable

PIN1 expression are characterized by declining auxin.

Roots slightly differ in the endogenous auxin level, and

this may result in different sizes for the PIN1 expression

domain. We hypothesized that changing the auxin level

in the root, for example, by auxin treatment, would

move the edge between high/intermediate and low auxin

levels and this would increase or decrease the length of

the PIN1 expression domain. The changes in PIN1 do-

main length observed after auxin treatment might also

correlate with auxin induced changes in the size of the

root meristem, as previously described [22, 42, 43].

Indeed, we showed that treatment with low concentra-

tions of auxin (0.01 μM and 0.1 μM NAA) led to length-

ening of the expression domain in the stele, endodermis,

cortex and columella (Fig. 5a–b). In contrast, treatment

with high auxin concentrations (1 μM NAA) reduced

the PIN1 expression domain (Fig. 5b). Quantitative ana-

lysis of the expression changes in PIN1pro:PIN1-GFP

and PIN1pro:GUS roots after IAA treatment supported

the results statistically (Fig. 5c, d).

Similar dose effects have been found previously using

another auxin: 0.1 μM 2.4-D was found to be the opti-

mal concentration for upregulation of PIN1pro:PIN1-

GFP expression in epidermal cells, whereas PIN1-GFP

activity decreased in the stele at higher 2.4-D concentra-

tions [12]. We suggest that the changes in the root auxin

level after treatment with exogenous auxin and their in-

fluence on the PIN1 expression domain simulated and

exaggerated the naturally occurring variations in auxin

distribution that occur between individual roots. These

changes can influence PIN1 expression.

By analysing the maximal intensities of reporter activity

in PIN1pro:PIN1-GFP and PIN1pro:GUS plants, we found

significant differences between the auxin responses of the

lines (Fig. 5d). In PIN1pro:PIN1-GFP, GFP fluorescence

significantly increased and decreased (p-value < 0001)
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under 0.01–0.1 μM IAA and 5–10 μM IAA, respectively.

GUS staining in PIN1pro:GUS increased with an increase

in exogenous auxin dose. These results suggest that posi-

tive and negative effects of auxin on PIN1 are mediated at

different levels—transcriptional and post-transcriptional.

The shortening of the PIN1 expression domain at a high

auxin dosage may be regulated post-transcriptionally.

Finally, we analysed PIN1 expression domain in the

single pin mutants. We expected that local changes in

endogenous auxin level occur in pin mutants, which

might affect PIN1 expression. PIN2, PIN3, PIN4 and

PIN7 are expressed together with PIN1 in the root meri-

stem and may provide redundancy if one of them is mu-

tated [7, 12]. The PIN1 cross-regulation in the pin2

mutant were described previously [12]. Here, we pro-

vide a comparative description of PIN1 expression in

single pin2, pin3, pin4 and pin7 mutants (Fig. 6,

Additional file 6). In pin2 and pin3 mutants, PIN1 al-

most fully occupies the domain of the knocked-out PIN

genes. In the case of pin4, it is in the vasculature only. In

the pin7 mutant, PIN1 completely occupies the PIN7 ex-

pression domain in the vascular system, and it partially oc-

cupies the first columella tier. Comparing the expression

patterns of PIN1 in pin mutants (Additional file 6) with

the wild type (Additional file 2), we find that the changes

in PIN1 expression mainly fall within the spectrum of

variability observed in wild type plants.

By regulating PIN1 expression level and the size of the

PIN1 expression domain, auxin determines the efficiency

of its own transport. By controlling PIN1 polarity, auxin

determines the directions of its own streams. The root-

ward polarity of PIN1 promotes auxin flow to the root tip.

The inner lateral location of PIN1 in the endodermis and

pericycle collects auxin from the shootward auxin flow to

the vasculature, and PIN1 lateralization in procambial

cells allows to accumulate auxin in the narrower stream in

xylem precursors. This accumulation is probably import-

ant for vascular differentiation inside the meristem [44].

NAA treatments at concentrations as low as 0.1–1 μM

(2–4 h) affected PIN1 polarity and caused PIN1 to

spread across the entire inner lateral sides in the endo-

dermis and pericycle, but higher NAA concentrations

did not show further polarization, suggesting saturation

of the effect [18]. This may indicate that the responses

of expression level and polarization to auxin are differ-

ent. In our experiments, comparing the maps of PIN1

expression and its polar locations (Fig. 2c) gave evidence

showing that PIN1 polarization may be more sensitive to

minor changes in auxin cellular concentrations than the

PIN1 expression level.

Conclusions
PIN proteins reduce the cellular auxin level by carrying

auxin out of the cell. As a feedback mechanism, auxin

regulates the transcription, stability and polarization of

PINs. We have clarified the role of the founding member

of the PIN family (PIN1) in these close and intercon-

nected relationships that establish the auxin distribution,

which is a key piece of positional information for cell

fate determination in the root stem cell niche.

Methods

Plant materials

The following plant varieties were used in the experiments:

Arabidopsis thaliana Col-0 (L.) Heyhn; reporter lines PIN1-

pro:GUS (−1388,+82) [kindly provided by Drs Sodnom

Sangaev and Alexei Kochetov, Institute of Cytology and

Genetics, Novosibirsk, Russia] and PIN1pro:PIN1-GFP [12];

pin2 (eir2-1) (CS8058); pin4-3 (NASC: 9368); pin3-5

(NASC: 9364); pin7-2 (NASC: 9366).

Growth conditions and treatments

Seeds were surface-sterilized and sown on solid Ara-

bidopsis medium (AM; ½ MS medium containing 1 %

sucrose, 5 mM MES and 1.1 % agar, pH 5.6 adjusted

with KOH). After vernalization for 16 h at 4 °C, seeds

were germinated on vertically oriented plates under a

16:8 h light:dark period with a light intensity of

80 μmol s-1 m-2. Four-day-old pin mutants were sub-

jected to immunolocalisation.

Three-day-old seedlings (Col-0, PIN1pro:PIN1:GFP

and PIN1pro:GUS) grown on the AM medium were

transferred to liquid AM supplemented with different

concentrations of IAA (0, 0.01, 0.1, 1, 5, 10 μM) or NAA

(0, 0.01, 0.1, 0.5, 1 μM) for 24 h.

Whole-mount in situ immunolocalisation

Immunolocalisation in Arabidopsis plants was performed

according to a whole-mount in situ protocol [45]. Briefly,

seedlings were fixed in 4 % formaldehyde and treated with

methanol. Cell walls were digested with a mixture of

Dricelaze and Macerozyme, membranes were perme-

abilized with the mixture of DMSO and NP40, and the

resulting samples were incubated with primary and sec-

ondary antibodies. Seedlings were stained with DAPI and

mounted on microspore slides with a spacer. Affinity puri-

fied primary anti-PIN1 (mouse, clone 7E7F) antibodies

were diluted 1:40, anti-PIN2 (guinea pig, clone 192) anti-

bodies were diluted 1:400. The secondary Alexa-488/Alexa

555 conjugated anti-mouse and anti-guinea pig antibodies

were diluted 1:400.

Microscopy

Analysis of the fluorescent signal after in situ immuno-

localization was performed with a Zeiss Stemi SV11

APO stereomicroscope equipped with a fluorescent

HBO lamp and a GFP filter set (488 nm excitation and

530–550 nm emission). Analysis of PIN1pro:PIN1-GFP
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was performed under an Axio Imager M1 fluorescence

microscope. PIN1pro:GUS plants were treated accord-

ing to a standard protocol and analysed under a light

microscope. For high-resolution images, plants con-

taining fluorescent markers were fixed with 4 %

formaldehyde and mounted in Prolong Gold anti-fade

reagent containing DAPI (Molecular Probes). Fluores-

cence was analysed with a Zeiss LSM 5 DUO scanning

microscope.

Image analysis

The confocal images were analysed with the ZEN image

browser. Three-dimensional image analysis was per-

formed using the iRoCs toolbox [32]. Quantitative ana-

lysis of reporter activity in PIN1pro:PIN1-GFP and

PIN1pro:GUS lines was performed in ImageJ [37]. Im-

ages were analysed in the green and red channels for the

reporters GFP and GUS, respectively. The maximum

and average fluorescence intensity/GUS staining, and

the length of the expression domains in stele were

measured in individual roots. Image analysis for PIN1-

pro:GUS was performed according to a previously de-

scribed method [46]. The maximal intensities of GFP

signal and GUS staining were measured along the cen-

tral root axis by using the analyse/PlotProfile tool.

They were estimated along a thick line that was half

the width of the PIN1 domain in the stele. The length

of the expression domain corresponded to the distance

between the CSC and the closest point along the same

thick line with an intensity value below those of the

CSC. The significance of the differences in the activ-

ities of reporters between the control and auxin treated

roots was assessed by t-test.

Additional files

Additional file 1: The details of PIN expression in the root tip,

visualized in 3D. The longitudinal section is above. Five transverse

section made at different lengths from the QC are shown below. The

signal disappears in the upper third of the meristematic zone (MZ) in the

protophloem (pph) and protophloem-pole pericycle. In the distal part of

elongation zone protoxylem (px), cells still express PIN1. Bars = 50 μm.

(TIF 13846 kb)

Additional file 2: Stable and variable features of the PIN1

expression domain in the meristem. The first column indicates cell

position along the central root axis: CSC—columella initials, CEI—cortex/

endodermis initials, ELI—epidermis/lateral root cap initials, QC—the

quiescent centre. 1–30 - the cell numbers in the lineage from the QC.

RW—rootward polarity, NP—nonpolar, RWL—rootward and lateral

polarity (on the both sides of the plasma membrane), RWLI—rootward

with spreading to the inner lateral side, RWLIp—the same as RWLI, but

only part of the inner lateral side is occupied by PIN1. The typical (most

frequent) polarity is highlighted in bold font. (DOCX 15 kb)

Additional file 3: PIN1 expression pattern in the pin1 mutant

(negative control). A weak signal is present in the second and third

columella tiers (c2, c3). Anti-PIN1 staining is in green, DAPI is in the blue

channel. Bars = 50 μm. (TIF 10907 kb)

Additional file 4: PIN1 expression in closer proximity to the

developing lateral primordium. a-d. PIN1 signal (red arrows) was

detected in the xylem elements. c. Magnification of the white box

from figure b. e. PIN1 signal (red arrows) was detected in individual

cells of the outer layers of the primary root. The white inset shows

the same primordium, but with a different focal plane. Anti-PIN1

staining is in green, DAPI is in the white channel. Bars = 50 μm.

(TIF 16686 kb)

Additional file 5: Auxin treatment effect on the reporter lines

PIN1pro:PIN1-GFP and PIN1pro:GUS. Examples of PIN1-GFP expression

(a) and GUS staining (b) are given for the roots under low (0.01 μМ IAA)

and high (10 μМ IAA) treatments, and these are compared with the control.

Bars = 50 μm. (TIF 7755 kb)

Additional file 6: PIN1 expression in the roots of A. thaliana pin

mutants. PIN1 positioning on the plasma membrane was described as

follows: RW—rootward, RWLI—rootward and lateral internal,

SW—shootward. The percentages of roots having the listed features are

shown in brackets. QC—the quiescent centre, CSC—columella stem cells,

LRC—the lateral root cap. (DOCX 13 kb)
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