
 Open access Proceedings Article DOI:10.1109/HPCA.2014.6835955

A detailed GPU cache model based on reuse distance theory — Source link

Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, Henri E. Bal

Institutions: Eindhoven University of Technology, VU University Amsterdam

Published on: 19 Jun 2014 - High-Performance Computer Architecture

Topics: Cache algorithms, Cache, Cache-oblivious algorithm, Cache coloring and Smart Cache

Related papers:

 Analyzing CUDA workloads using a detailed GPU simulator

 Rodinia: A benchmark suite for heterogeneous computing

 Cache-Conscious Wavefront Scheduling

 MRPB: Memory request prioritization for massively parallel processors

 Improving GPU performance via large warps and two-level warp scheduling

Share this paper:

View more about this paper here: https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-
48t0labj4v

https://typeset.io/
https://www.doi.org/10.1109/HPCA.2014.6835955
https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v
https://typeset.io/authors/cedric-nugteren-3dh9ryp30x
https://typeset.io/authors/gert-jan-van-den-braak-2jzulmo9fh
https://typeset.io/authors/henk-corporaal-kmyo4lhb78
https://typeset.io/authors/henri-e-bal-25tcmk92xt
https://typeset.io/institutions/eindhoven-university-of-technology-131kgvqf
https://typeset.io/institutions/vu-university-amsterdam-2i0ocm9k
https://typeset.io/conferences/high-performance-computer-architecture-j5a7h3a9
https://typeset.io/topics/cache-algorithms-u99b01nk
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/cache-oblivious-algorithm-2kw57nbq
https://typeset.io/topics/cache-coloring-3bnx8t50
https://typeset.io/topics/smart-cache-2nbqtadk
https://typeset.io/papers/analyzing-cuda-workloads-using-a-detailed-gpu-simulator-lz9yu5o7va
https://typeset.io/papers/rodinia-a-benchmark-suite-for-heterogeneous-computing-gib3ik78jh
https://typeset.io/papers/cache-conscious-wavefront-scheduling-446l2v0d4a
https://typeset.io/papers/mrpb-memory-request-prioritization-for-massively-parallel-2ath0x5g6r
https://typeset.io/papers/improving-gpu-performance-via-large-warps-and-two-level-warp-4nmd7en3xg
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v
https://twitter.com/intent/tweet?text=A%20detailed%20GPU%20cache%20model%20based%20on%20reuse%20distance%20theory&url=https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v
https://typeset.io/papers/a-detailed-gpu-cache-model-based-on-reuse-distance-theory-48t0labj4v

A Detailed GPU Cache Model Based on Reuse Distance Theory

Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal

Eindhoven University of Technology

{c.nugteren, g.j.w.v.d.braak, h.corporaal}@tue.nl

Henri Bal

Vrije Universiteit Amsterdam

bal@cs.vu.nl

Abstract

As modern GPUs rely partly on their on-chip memories

to counter the imminent off-chip memory wall, the efficient

use of their caches has become important for performance

and energy. However, optimising cache locality system-

atically requires insight into and prediction of cache be-

haviour. On sequential processors, stack distance or reuse

distance theory is a well-known means to model cache be-

haviour. However, it is not straightforward to apply this

theory to GPUs, mainly because of the parallel execution

model and fine-grained multi-threading. This work extends

reuse distance to GPUs by modelling: 1) the GPU’s hier-

archy of threads, warps, threadblocks, and sets of active

threads, 2) conditional and non-uniform latencies, 3) cache

associativity, 4) miss-status holding-registers, and 5) warp

divergence. We implement the model in C++ and extend the

Ocelot GPU emulator to extract lists of memory addresses.

We compare our model with measured cache miss rates for

the Parboil and PolyBench/GPU benchmark suites, showing

a mean absolute error of 6% and 8% for two cache config-

urations. We show that our model is faster and even more

accurate compared to the GPGPU-Sim simulator.

1. Introduction

In the past decade, graphics processing units (GPUs)

have emerged as a popular platform for non-graphics com-

putations. Through languages such as OpenCL and CUDA,

programmers can use these massively parallel architec-

tures for domains such as linear algebra, image processing

and molecular science. To counter the imminent memory

wall [9], GPUs have been equipped with software-managed

(scratch-pad) and hardware-managed (cache) on-chip mem-

ories. In particular for integrated solutions with general-

purpose memories (e.g. ARM Mali, Xbox One) off-chip

memory bandwidth is scarce: using the on-chip memories

efficiently is paramount to exploit the GPU’s full potential.

Because GPUs are designed to hide their memory la-

tencies through fine-grained multi-threading, the goal of

a GPU’s on-chip memory is not to reduce latencies as is

the case for CPUs. Instead, the GPU’s on-chip memories

serve the purpose of reducing the off-chip memory traf-

fic. An increased cache hit rate will translate to perfor-

mance improvements for memory-intensive programs, as

off-chip memory traffic (the performance limiting factor) is

decreased proportionally. In fact, many GPU programs are

memory bandwidth intensive: for an example set of bench-

marks, this is as much as 18 out of 31 [13]. Specific ex-

amples of cache optimisations include cache blocking for

sparse matrix vector multiplication (5x speed-up) [24] and

tiling for a stencil computation (3x speed-up) [19].

Since GPUs rely on their on-chip memories to reduce

off-chip memory traffic, optimising GPU programs for

cache locality has become important for performance and

energy. However, to be able to perform cache locality opti-

misations efficiently, insight into the types of cache misses

and a prediction of the amount and source of cache misses

is essential, as shown for example in [4, 12, 16]. A cache

model can also be used to guide compilers to select their op-

timisation parameters, e.g. a loop-tiling factor and a thread

coarsening factor. An example is the polyhedral model

based C-to-CUDA compiler PPCG [22], which leaves the

problem of tile-size selection to the programmer because

of a lack of insight into cache behaviour. Additionally, a

model can accelerate design space exploration, i.e. find-

ing cost-efficient values for cache parameters such as asso-

ciativity or the cache-line size. An analytical cache model

can thus help to obtain insight into cache usage, to guide

programmers and compilers, and to evaluate the effects of

cache parameters on cache miss rates.

A well-known cache model is the 3C model [10], dis-

tinguishing three types of cache misses: 1) compulsory (or

cold): misses because of a first time access, 2) capacity:

misses because of a limited cache size, and 3) conflict:

misses due to a limited cache associativity or a non-ideal

replacement policy. To estimate the amount of cache misses

based on the 3C model, a reuse distance profile (or ‘stack’)

can be constructed from a memory access trace [4]. The

reuse distance theory keeps track of memory requests, mov-

ing recently used addresses to the top of an address stack.

Addresses not yet present in the stack are the compulsory

misses, and addresses with a stack depth larger than the

cache size are the capacity misses. Although this model

does not take conflict misses into account, it gives a good

lower bound for the total miss rate on sequential architec-

tures [4] and even on multi-core CPUs [18].

Existing performance and power models for GPUs

(e.g. [2, 11]) have not included a cache model up to

1

now: they are only valid for (older) GPUs without data

caches. However, understanding cache behaviour is im-

portant as off-chip memory bandwidth is becoming increas-

ingly scarce relative to compute power [9]. The main chal-

lenges of creating a cache model for GPUs lie in the execu-

tion model: as we will see in this paper, fine-grained multi-

threading and parallelism make it non-trivial to find the or-

der in which memory requests appear to the cache. Because

reuse distance theory can only be applied to an ordered

memory access trace, it is not directly suited for GPUs.

This work extends the reuse distance theory to model GPU

caches through the following extensions:

1. The reuse distance theory is adjusted to match the

GPU’s parallel execution model. This includes mod-

elling threads, warps, threadblocks, cores, and sets of

active threadblocks.

2. The GPU’s memory latency is modelled by keeping

track of in-flight accesses and their arrival times, in-

troducing a new type of misses: latency misses. Fur-

thermore, the memory’s non-uniformity is modelled

by sampling from a half-normal distribution.

3. Limited associativity is modelled by creating a pri-

vate reuse distance stack per cache set. We identify the

mapping of addresses to sets with micro-benchmarks.

4. The effects of miss-status holding-registers

(MSHRs) are modelled, which store in-flight memory

request information.

5. Threads within a warp are executed in lock-step, but

individual warps can make different progress. This

warp divergence is modelled by simulating a thread-

pool from which warps can be selected for execution.

The model is implemented in C++ (optimised for perfor-

mance) and the source-code is available on-line1, including

a custom CUDA memory access tracer for the Ocelot emu-

lator [7]. Our contributions can be summarised as follows:

• Five extensions to the reuse distance theory are pro-

posed, creating a detailed cache model for GPUs (sec-

tion 4). The model is validated for two cache configu-

rations and for two benchmark suites (section 6).

• Two architectural details are found through micro-

benchmarking: 1) the GPU’s mapping of addresses to

sets, and 2) the number of MSHRs (section 5).

• The usability of the model is demonstrated by showing

an example cache parameter sweep (section 7).

1http://github.com/cnugteren/gpu-cache-model

This work focuses on the GPU’s L1 data caches: after it

is known in what order memory accesses appear in the L1

cache and which of those miss, existing multi-core CPU

models can be applied to model the GPU’s L2 cache.

2. Related work

There is only a single other complete GPU cache model

presented in the literature (to the best of our knowledge).

This model by Tang et al. [21] is also based on reuse dis-

tance theory. However, there are a number of reasons why

we propose a new cache model. First, in contrast to our

work, Tang et al. model only a single threadblock, assume

warps to execute in lock-step, do not model MSHRs and

the mapping of addresses to sets, and do not give any de-

tails on the used memory latency model. Second, their

validation is very limited: 1) they validate against a GPU

simulator, not against real hardware, and 2) they include

only basic, hand-picked kernels with non-representative in-

put data-sizes. Third, their model is limited to kernels that

can be statically analysed. This is in contrast to our ap-

proach, where we support any GPU kernel: we use an em-

ulator to generate traces. Our final reason is practical: their

model is not available in the form of source-code or binary.

Another cache model [15] is part of a complete GPU

model, but assumes hit and miss rates to be known. Fur-

thermore, other work has used reuse distance to analyse

non-GPU multi-core and many-core workloads [6, 17, 18].

In contrast to our work, they investigate cache contention

caused by running multiple programs on different cores.

Because they do not target GPUs, many of their assump-

tions (e.g. no data reuse among threads, execution order

known) are not valid for our work (and vice versa).

3. Background

This section briefly introduces the GPU execution

model, the cache architecture, and the reuse distance the-

ory. Additional background information on GPUs can be

found in the CUDA programming guide [14] and on caches

and reuse distance theory in literature [5].

We use NVIDIA’s Fermi architecture as an exam-

ple throughout this paper and experiment on a GeForce

GTX470 GPU (but can be applied to others as well). The

Fermi architecture has up to 16 cores (also known as

streaming multiprocessors or compute units), of which 14

are available in the GTX470. The cores each contain 32

processing elements and share a 64KB on-chip data mem-

ory, configurable as a combination of a scratchpad and a

L1 cache (16/48KB or 48/16KB). All cores share a larger

L2 cache (up to 768KB). This work focuses on the L1 data

cache, the main challenge of modelling GPU caches. The

GPU’s L1 cache handles only off-chip loads: stores are han-

dled by the L2 cache only, not by the L1 cache [14]. There-

fore, only loads are considered in this work, although the

presented cache model can be applied to stores as well.

The cache-related terminology used is as follows [5].

‘Cache-line’ describes a location in the cache, while ‘cache-

block’ refers to the data that goes into a cache-line. Further-

more, S represents the number of sets in a cache.

3.1. The CUDA/OpenCL execution model

The programming frameworks CUDA and OpenCL al-

low programmers to specify small programs (kernels) that

are executed multiple times. Each instance of a kernel

(threads in CUDA terminology, workitems in OpenCL ter-

minology) has its own unique identifier in order to work

on different data. Programmers furthermore divide all their

threads in fixed-sized blocks (threadblocks in CUDA, work-

groups in OpenCL). Within a threadblock, threads share an

on-chip local memory and can synchronise through barri-

ers. However, there is no synchronisation or communica-

tion support among threads in different blocks.

In a Fermi GPU, a threadblock is mapped in its en-

tirety onto a core. Together, threads from one or more

threadblocks can form a set of active threads on a single

core. For Fermi GPUs, this is limited to 8 threadblocks or

1536 threads, whichever limit is reached first [14]. Such

a set of active threads executes concurrently in a multi-

threaded fashion as warps (NVIDIA terminology) or wave-

fronts (AMD terminology). In the Fermi architecture, a

warp is a group of 32 threads executing in lock-step in an

SIMD-like fashion on a single core, dividing the workload

over the core’s processing elements [14].

3.2. The GPU cache architecture

The Fermi GPU has multiple data caches: a L1 cache for

each core and a shared L2 cache. Fermi has a 16KB 4-way

associative L1 cache, which can store 128 cache-lines of

128 bytes each [23]. The 128 lines are divided over 32 sets,

each containing 4 lines: every memory address is mapped

onto one of the sets of the cache using a mapping func-

tion. Reads to the off-chip memory are cached in L1, writes

are not. The GPU’s cache replacement policy is unknown,

however, the simulator GPGPU-Sim [3] assumes a least-

recently-used (LRU) policy, although no proof is given.

3.3. Reuse distance theory

Given an ordered memory access trace, a reuse distance

profile (or stack) [4] can be computed as follows. For each

access, the reuse distance is the number of unique addresses

accessed between this access and the most recent previous

access to the same address. When there is no previous ac-

cess, the distance is set to infinity (∞). Constructing a reuse

distance profile can be done at for example address granu-

larity or at cache-line granularity. An example of both is

given in table 1, assuming a cache-line size of 4 elements

(time progresses from left to right).

A reuse distance profile can be used directly to obtain

cache hit/miss rates. Given a fully-associative cache of n

lines with a least recently used (LRU) replacement policy,

Table 1. Reuse distance example
access x[0] x[5] x[3] x[9] x[3] x[3] x[5]

address 0 5 3 9 3 3 5

distance ∞ ∞ ∞ ∞ 1 0 2

cache-line 0 1 0 2 0 0 1

distance ∞ ∞ 1 ∞ 1 0 2

any access with a reuse distance d larger than or equal to

n (d ≥ n) will miss. Vice versa, when d < n, the access

will hit in the cache. In this way, the reuse distance pro-

file at cache-line granularity gives the compulsory miss rate

(d = ∞) and the capacity miss rate (d ≥ n and d 6= ∞).

For our example in table 1, given a cache size of 2 lines,

we find 3 compulsory misses (42%), and 1 capacity miss

(14%). A reuse distance profile can also be visualised by

constructing a histogram, containing all necessary data to

compute compulsory and capacity miss rates. A histogram

for our example data from table 1 is given in figure 1 (at

cache-line granularity).

distance 0 1 2 ∞

frequency 1 2 1 3

0 1 2

reuse distance

fr
e

q
u

e
n

c
y
 (

%
)

0
1

0
2

0
3

0

Figure 1. A table and histogram reuse dis-

tance profile for the example from table 1

4. Reuse distance for GPUs

Reuse distance theory can only be applied to an ordered

memory access trace2: finding this order for a GPU is not

trivial. This section discusses five extensions to the reuse

distance theory, four of which are related to finding the or-

der in which memory accesses appear to the cache. The the-

ory is extended by: 1) integrating the GPU’s parallel execu-

tion model of threads, warps, threadblocks and sets of active

threads, 2) introducing non-uniform memory latencies, 3)

modelling cache associativity, 4) modelling MSHRs, and 5)

modelling warp divergence. Furthermore, implementation

details of the model are given.

4.1. The GPU’s parallel execution model

A GPU typically executes thousands of small, light-

weight threads. Because of the parallelism expressed in the

execution model, these threads can to some extent be exe-

cuted independently on different cores. Furthermore, due

to limited resources (e.g. register file, scratchpad memory),

not all threads can be active at the same time, i.e. eligible

for execution. Tang et al. [21] argue that there is limited

reuse across different threadblocks on the same core: they

2The traces used in this work are not obtained from simulation: they

are rather unordered lists of memory accesses and only contain ordering

information with respect to a single thread.

model only a single block of threads on a single core. To

create a more realistic model, we do model complete sets of

active threads (one or more threadblocks). Furthermore, we

model multiple of such sets and multiple cores (because the

workload can vary for different cores).

To determine which threads execute together as a set of

active threads on a single core, we follow Fermi’s execu-

tion model (an example is shown in figure 2). First, thread-

blocks are divided round-robin over the cores until they are

full. Then, a new threadblock is scheduled when another

threadblock is done (first-done, first-serve). For each core,

threadblocks are grouped in sets of active threads accord-

ing to the block-size and the resource limitations as listed in

section G.1 of the CUDA programming guide [14]. Further-

more, threads in a warp are scheduled simultaneously. De-

termining the scheduling order among warps in a set of ac-

tive threads is not straightforward (e.g. dependent on thread

workload and cache contents): this is approximated step-

by-step in the remainder of this paper.

1 threadblock

16 warps

512 threads

core 0

core 1

0 512 1024 1536

3 threadblocks

1 active set

in
s
tr

u
c
ti
o
n
s threads

instr. 0

instr. 1

per core execution order

N-1

(of the kernel)

execution model

example with

two cores

execution

order example

with two instruct-

ions and 3 active blocks

Figure 2. Execution model examples

Transforming the parallel execution model into an or-

dered memory access trace can be done by: 1) applying the

GPU’s thread-scheduling policy, and 2) by taking into ac-

count pipeline and memory latencies. For now, we assume

a basic round-robin scheduling policy among warps in a set

of active threads (divergence is discussed in sections 4.4

and 4.5), and zero-latency hardware (latencies are discussed

in section 4.2). Now, for a given kernel, its execution can be

sequentialised to obtain an instruction trace. We illustrate

this with an educational example: a kernel with 4 threads,

each performing 2 loads (x[2*tid] and x[2*tid+1],

for which ‘tid’ denotes a thread’s unique identifier). Given

the round-robin scheduling of threads and no latencies, we

obtain the reuse distances (for lines) as shown in table 2, as-

suming a cache-line size of 4 elements, a single thread per

warp, and only a single set of threads on a single core.

Table 2. GPU reuse distance computation
instruction 0 0 0 0 1 1 1 1

thread ID 0 1 2 3 0 1 2 3

address 0 2 4 6 1 3 5 7

cache-line 0 0 1 1 0 0 1 1

distance ∞ 0 ∞ 0 1 0 1 0

However, before a reuse distance profile can be con-

structed from a given thread order, memory requests need

to be combined according to the GPU’s memory coalesc-

ing capabilities. Coalescing is applied in specific cases,

for example when threads from a single warp access the

same cache-line. Coalescing is implemented according to

the specifications of the GPU architecture, as described in

section G.4.2 of the CUDA programming guide [14].

4.2. Memory latencies

In reuse distance theory for sequential processors it is

assumed that either: 1) memory latencies are non-existent,

or 2) memory accesses cannot overtake each other. Al-

though individual threads on a GPU execute in-order, these

assumptions are not valid across different GPU threads.

Moreover, the GPU’s memory latencies are typically high

compared to CPU latencies. Therefore, the reuse distance

theory is extended to model the GPU’s latencies.

First of all, the notion of time is introduced. Every

column in the reuse distance theory is assigned with a

monotonously increasing time-stamp (not reflecting actual

processor cycles or time). Now, each access is assigned a

specific latency to delay its effect. We illustrate this based

on the same example as shown in table 2 with 2 accesses

and 4 threads. Table 3 shows the updated results: every

memory request occurs at a fixed time (0–7) and is assigned

a latency (a fixed value of 2 time units in this example).

Accumulation of an access’s latency with its issued time-

stamp determines when the request will have effect in the

cache. We show this in the ‘effect at’ row of table 3. Now,

computation of the reuse distances is no longer based on

the ‘cache-line’ row, but on the new ‘cache effect’ row, as

shown in the table. In this particular example, the cache-line

data is simply shifted by 2 time-stamps (highlighted).

Table 3. Reuse distance with fixed latencies
time 0 1 2 3 4 5 6 7 8 9

instruction 0 0 0 0 1 1 1 1 - -

thread ID 0 1 2 3 0 1 2 3 - -

address 0 2 4 6 1 3 5 7 - -

cache-line 0 0 1 1 0 0 1 1 - -

cache effect - - 0 0 1 1 0 0 1 1

distance ∞ ∞ ∞ ∞ 0 1 0 1 - -

hit/miss m m m m h h h h - -

latency 2 2 2 2 2 2 2 2 - -

effect at 2 3 4 5 6 7 8 9 - -

Adding the notion of time and latency changes the reuse

distances obtained. This can be seen for example by com-

paring the distances found in tables 2 and 3. The addition

of latencies can thus transform capacity misses in hits and

vice-versa. However, this approach can also introduce addi-

tional infinite distances (∞) that are not compulsory misses.

To repair this, the notion of latency misses is introduced:

requests that miss in the cache because an earlier request to

the same cache-line is still in-flight.

So far, we have modelled only a fixed latency. To better

reflect the reality, two additional aspects are also modelled:

1) conditional latencies applied depending on the reuse dis-

tance, and 2) non-uniform memory latencies. In this case,

we need to distinguish between cache hits (to model the

pipeline latency) and cache misses (to model the memory

latency). This requires us to embed information about the

cache size in the model, making the reuse distance profile

no longer cache-size independent.

The example of table 3 is extended to include a hit la-

tency of 0 and a miss latency of 2. If we furthermore as-

sume a cache-size of 2 lines, the results as shown in table 4

are obtained. We observe that the reuse distances change

again, influenced by the reduced latency of the last 4 mem-

ory accesses. Furthermore, multiple ‘cache effects’ can now

occur simultaneously at a single time-stamp (highlighted in

the table). Such simultaneous accesses are handled in the

order in which the memory accesses were issued.

Table 4. Extended with conditional latencies
time 0 1 2 3 4 5 6 7

instruction 0 0 0 0 1 1 1 1

thread ID 0 1 2 3 0 1 2 3

address 0 2 4 6 1 3 5 7

cache-line 0 0 1 1 0 0 1 1

cache effect - - 0 0 1 0 1 0 1 1

distance ∞ ∞ ∞ ∞ 0 0 1 0

hit/miss m m m m h h h h

latency 2 2 2 2 0 0 0 0

effect at 2 3 4 5 4 5 6 7

This theory is extended to a more realistic model by clip-

ping the ‘effect at’ time to the time of a still in-flight request

for the same cache-line (if present). This will for example

change the ‘effect at’ time of the request at time-stamp 1

in table 4 from 3 to 2, as the request for cache-line 0 was

already made at time-stamp 0.

Finally, the non-uniform latency of accessing the GPU’s

off-chip memory is modelled. Because a detailed model

of the memory latency is beyond the scope of this pa-

per (it requires a full GPU model or simulator, includ-

ing e.g. the pipeline and interconnect), a probabilistic

approach is taken. The memory latency is modelled as

λmin+|N (0, σ2)|: a fixed minimum latency λmin offset by

the absolute value of a normal distribution N (µ, σ2) with

zero mean, i.e. a half-normal distribution. The parameters

to set are the memory’s best-case latency λmin and a mea-

sure for the memory’s non-uniformity: the standard devia-

tion σ of the half-normal distribution.

The ‘latencies’ discussed in this section are not real la-

tencies: the cache model is not a complete GPU model and

does not have a notion of actual clock cycles. For example,

there can be a varying number of non-memory operations

between two memory accesses, affecting latency greatly. To

model the effects of non-memory operations would require

integration with a complete GPU model, which is beyond

the scope of this work. Therefore, the introduction of la-

tencies to our model should be seen as a way to capture the

global ordering roughly rather than as a way to obtain an

exact reuse distance profile.

4.3. Cache associativity

The reuse distance theory models the compulsory and

capacity misses, but does not take into account misses

caused by the limited associativity of a cache (part of the

conflict misses). It has been shown that such misses form a

relatively small percentage of the total amount of misses for

sequential processors, even in the case of a direct mapped

cache [4]. However, typical GPU programs are more sensi-

tive to associativity, because they often show regular mem-

ory access patterns on large data structures (e.g. matrix or

image operations). To improve the accuracy, we extend the

reuse distance theory to model cache associativity.

The reuse distance theory can be extended to model as-

sociativity as follows. Instead of keeping track of a single

reuse stack, a private stack is created for each set in the

cache. In that way, a set becomes a small cache with a size

in lines equal to the number of ways, i.e. the associativity.

For a fully-associative cache, this reduces again to a single

stack because it has only a single set.

Along with the introduction of multiple sets (and their

corresponding reuse stacks), we need to define a mapping

of memory addresses to sets. Such a mapping can be either

obtained directly by taking the last log2(S) bits from the

line address, or by a more advanced hashing function, cre-

ating a hash-associative cache [5]. The simulator GPGPU-

Sim [3] uses a direct mapping for Fermi GPUs, but does not

claim that this is realistic. Therefore, because Fermi’s map-

ping function is not public knowledge, a micro-benchmark

was constructed to find the mapping. Therefore, because

Fermi’s mapping function is not public knowledge, a micro-

benchmark was constructed (see section 5), finding a hash-

ing function with a 5-bits XOR operation for a Fermi GPU.

4.4. Missstatus holdingregisters

A GPU can have only a finite number of memory re-

quests pending: pending requests are stored in miss-status

holding registers (MSHRs), per-core registers that keep

track of in-flight (in progress) memory requests. The reuse

distance theory is extended to model such registers to im-

prove the accuracy of the cache model. MSHRs are organ-

ised in such a way that each entry can service a unique

cache-line request: requests to the same cache-line are

merged into a single entry (up to a certain limit). A limited

amount of registers limits the number of outstanding mem-

ory requests: either all MSHR entries are occupied when a

new cache-line is requested, or an MSHR entry correspond-

ing to a specific cache-line is full. In either case, the active

warp will be stalled because it cannot perform any more

memory requests. While waiting for an entry to become

free, the GPU processes warps that do not require MSHRs.

We model the limited amount of MSHRs, but assume

that requests to the same cache-line are merged into a sin-

gle entry. Our model keeps track of the number of unique

outstanding memory requests. Before a warp modifies the

reuse stack, it is ensured that it is either a hit or that the num-

ber of outstanding requests is not exceeding the number of

MSHRs. If the warp cannot continue, it is put on-hold and

issued again later. This is illustrated in table 5, in which the

example of table 4 is shown, but now with the assumption

that there is only a single MSHR available. Only threads

0 and 2 are shown to make the example concise. From ta-

ble 5, we see that instruction 0 of thread 2 is cancelled and

re-issued at a later time. Also, we see that instruction 1 of

thread 2 (issued at time 4) does not have to be postponed: it

uses the already occupied MSHR for cache-line 1.

Table 5. Extended with MSHR modelling
time 0 1 2 3 4 5 6

instruction 0 0 1 0 1 - -

thread ID 0 2 0 2 2 - -

address 0 4 1 4 5 - -

cache-line 0 1 0 1 1 - -

cache effect - - 0 0 - - 1 1

distance ∞ ∞ 0 ∞ ∞ - -

MSHRs used 0 1 0 0 1 - -

status miss cancel hit miss miss - -

MSHRs used 1 - 0 1 1 - -

latency 2 - 0 2 2 - -

effect at 2 - 2 5 6 - -

Similar to the case of the hash function of the cache, it

is not publicly known how many MSHRs a GPU core has.

The GPU simulator GPGPU-Sim [3] uses a default of 32

MSHRs per core for a Fermi GPU, but does not claim that

this value is realistic. Through micro-benchmarking (see

section 5), we find that a Fermi GPU core has 64 MSHRs

and a single warp can use only up to 6 MSHRs.

The relevance of modelling MSHRs is demonstrated

with a simple experiment for the GPU’s 16KB (128 lines)

cache. The experiment consists of a kernel that performs a

copy of a 2D matrix in a column-major fashion: each thread

copies an entire row. Cache-line locality is not among

threads (accesses are uncoalesced) but within each thread.

Figure 3 illustrates the experiment and shows the results,

varying the height of the 2D matrix from 32 to 1024 (equal

to the number of threads: one threadblock only). A constant

width of 1024 is set and a data-size of 4 bytes is used. The

results show that the measured cache miss rates do not cor-

respond to the miss rates when assuming an ordered round-

robin schedule. We conclude from the table that, because of

the limited number of MSHRs, certain threads run ahead of

others. This can result in performance improvements (256–

1024 threads) or losses (64–128) compared to a fair round-

robin schedule. In other words: for a GPU cache model to

be accurate, MSHRs need to be modelled.

width (1024)

n
u

m
b

e
r

o
f

th
re

a
d

s

line locality

threads measured expected

(height) miss rate (round-robin)

32 3.13% 3.13% =
1

32

64 3.77% 3.13%

128 32.71% 3.13%

256 42.05% 100.00%

512 67.20% 100.00%

1024 82.28% 100.00%

Figure 3. The relevance of MSHR modelling

For example, when running 128 threads in round-robin,

each cache-line can store a single cache-block (for a cache

of 128 lines). However, when warps diverge, threads can

run ahead and request new cache-blocks while others are

still using their previous cache-block. Due to a non-oracle

replacement policy, this can result in additional misses. On

the other hand, when running 256 threads in round-robin,

threads 128–255 overwrite the cache-blocks required by

threads 0–127. In this case, divergence can only amelio-

rate cache behaviour: when threads run faster than others,

they can benefit from their intra-thread cache-line locality.

4.5. Warp divergence

As a final extension, a warp divergence model is in-

troduced. Warp divergence is defined as the process that

causes program counters of warps to differ from each other

as execution progresses. This is not to be confused with the

non-cache related concept of thread divergence, which de-

scribes divergence within warps caused by branch instruc-

tions taken by a subset of threads in a warp. Instead, we

discuss warp divergence: divergence among warps as a re-

sult of aspects such as on-chip local memory bank conflicts,

non-uniform memory access latencies, instruction or data

cache misses, and per-warp branches in program code.

Because we do not model the entire GPU and only have

information on memory references, not all possible sources

of warp divergence are modelled. Instead, the focus lies

on the memory-related sources: 1) data cache hit and miss

latencies, 2) non-uniform off-chip memory latencies, and 3)

the limited number of MSHRs. The first two are introduced

in section 4.2, and the third in section 4.4. This section

models how these sources affect the warp execution order.

To model warp divergence, the concept of a warp queue

is introduced. Initially, the queue is filled with all active

warps (from one or more threadblocks) ordered by warp

identifier (thread identifier modulo the warp size). As long

as the queue is non-empty, a warp is selected based on a

first-in first-out (FIFO) policy and a single memory request

is processed for each thread in the reuse distance model.

After a warp finishes a memory request, it is not directly

pushed to the back of the warp queue. Instead, it is delayed

proportionally to the corresponding request’s latency. Fur-

thermore, if a warp does not succeed because all MSHRs

are in use, it is sent to the back of the warp queue.

4.6. Implementation of the model

This section gives an overview of the implementation of

the model and its infrastructure, as illustrated by figure 4.

GPU cache model

memory
coalescing

extended reuse
distance theory

warp and block
scheduling

Ocelot tracer
A

B

C
D

CUDA kernel

cache miss rate
comparison

performance
counters

E

Figure 4. Infrastructure of the cache model

The Ocelot GPU emulator [7] is used to produce (un-

ordered) memory access traces for CUDA kernels. A cus-

tom tracer (A) is implemented on top of Ocelot, creating

a trace containing for each access: 1) the thread ID, 2)

whether it is a read or a write, 3) the memory address, and

4) the size of the memory access. Because Ocelot does not

simulate the GPU, the ‘traces’ are actually unordered lists

of memory accesses rather than ordered traces that can be

obtained from simulators. The only ordering in the traces is

with respect to the instruction stream of a single thread.

Before the reuse distance theory can be applied, the

memory accesses have to be ordered. Therefore, we first

perform the allocation of threads to warps, warps to thread-

blocks, and threadblocks to cores (B). We follow the

GPU’s execution model as discussed in sections 3.1 and 4.1,

and in section 4.1 of the CUDA programming guide [14].

The thread to warp allocation in particular can be modi-

fied for architecture exploration purposes, e.g. by changing

the warp size or by implementing a strided assignment of

threads to warps. Another possible modification is to incor-

porate dynamic warp scheduling to reduce warp branch di-

vergence, performing for example thread block compaction

or two-level warp scheduling. However, dynamic warp

scheduling techniques might rely on details not available to

the cache model, such as branch and warp divergence infor-

mation. A solution for this is to implement such a dynamic

warp scheduler in Ocelot (already used to produce traces).

Rather than using this scheduler to change the schedule in

Ocelot (which makes no sense for an emulator), it can be

used to report a specialised thread to warp assignment that

can be used within our cache model.

Next, a memory coalescing model (C) is implemented

according to the behaviour as defined in section G.4.2 of

the CUDA programming guide [14]. Coalescing is mod-

elled before applying the reuse distance theory, as this can

give a significant reduction in computational and memory

complexity of the cache model: coalescing can compact the

memory trace significantly.

All extensions to the reuse distance theory are imple-

mented on top of the original theory (D). In this way,

we can make use of the already available computational

and memory efficient implementations for sequential pro-

cessors [1]. A naı̈ve implementation of a reuse distance

stack has a computational complexity of O(NM), in which

N is the trace length (the total number of memory ac-

cesses) and M the number of unique accesses. To han-

dle the GPU’s large number of threads and accesses, a

more computationally efficient version is used: a binary-

tree C++ implementation of Bennett and Kruskal’s algo-

rithm [1]. This implementation has a computational com-

plexity of O(N log(N)), is independent of M , and gives

a better scaling for traces where M is proportional to N .

When modelling associativity, we increase the complexity

by creating a binary-tree for each set in the cache. However,

because the number of accesses per set is pre-computed,

the size of each tree is reduced accordingly, achieving an

overall comparable complexity. Further optimisations could

be made to reduce the memory footprint (around 2GB for

benchmarks from section 6), e.g. with a splay tree [1, 8].

To reduce the overall complexity and computational re-

quirements, the number of threads can be limited in two

ways: 1) a limited number of cores can be modelled, gen-

eralising results across all cores, and 2) a limited number

of threads can be modelled. These core and thread counts

are configurable parameters, set to a single core with up to

8192 threads for our experiments.

Finally, a verification method based on hardware coun-

ters (E) is included. NVIDIA’s profiler NVPROF is used to

output the measured number of cache-line hits and misses

in the L1 data cache. The comparison of these numbers with

the cache model’s result is automated, producing the graphs

as shown in the remainder of this work.

4.7. Overview of abstractions

The reuse distance theory assumes a least-recently-used

(LRU) cache replacement policy, and so does our model.

From the results of the micro-benchmark to find the asso-

ciativity hash function (section 5.1, figure 5), we observe

that the replacement policy resembles LRU in this case: or-

acle replacement would have caused a single miss only for

each experiment. However, this is not a definite proof, and

thus the commonly used LRU policy is assumed.

Synchronisation barriers at threadblock level are not in-

cluded in the model. This could be added to the theory to

model warp divergence (and convergence) more precisely.

Different types of latencies are used in our model to

represent in-flight memory requests and warp divergence.

However, as discussed, this leaves the model in a grey area

between a dedicated cache model and a full GPU model.

To improve our latency and divergence model further, the

model needs to be extended beyond caches only.

5. Micro-benchmarks

To complete the models of sections 4.3 (associativity)

and 4.4 (MSHRs), additional information was obtained

through micro-benchmarking: carefully designing a bench-

mark to extract details on the GPU architecture. This sec-

tion describes these micro-benchmarks and the results.

5.1. Associativity microbenchmark

The first micro-benchmark is designed to find the map-

ping of addresses to cache sets, crucial information to model

associativity. Our micro-benchmark (shown in figure 5)

launches a single block of 128 threads (4 warps), each per-

forming 3 stages. In the first stage, each thread performs

32 coalesced loads designed to fill the entire 16KB of the

L1 cache with subsequent addresses (an assumption at this

point). This access pattern is repeated in the third stage

while measuring the latencies of the individual loads. If

we do not perform anything in the second stage, all loads

show a low latency and are thus cache hits. This verifies

our assumption. Now, performing a single load in the sec-

ond stage will give increased memory latencies for some of

the loads3 in the third stage, as they become cache misses.

By performing a sweep over different loads for the second

stage, a mapping of addresses that belong to the same set is

obtained. We find only up to 4 cache misses each time in the

third stage as long as line-aligned accesses are performed:

this is because of the 4-way associativity [23].

From the obtained mapping, the hashing function used to

map addresses to sets is reverse-engineered. For the 16KB

cache with 32 sets, we find that the 5 bits 7–11 and the 5

bits 13,14,15,17,19 of the byte-address are input to an XOR

port to obtain a log2(S16KB) = 5 bits set index, as shown in

figure 6. The first gap in the address (the 12th bit) is a con-

sequence of the cache configuration possibilities: Fermi’s

cache can also be configured as a 48KB 6-way associative

cache with 64 sets. If the micro-benchmark is repeated, we

find that the log2(S48KB) = 6 set index bits are constructed

by taking the 16KB’s 5 bits (after the XOR operation) and

prefixing bit 12.

To verify the found hashing function, an experiment with

strided accesses is performed for the 16KB case. We con-

struct a kernel with two identical loops, each time perform-

ing a number of non-overlapping 128-byte coalesced loads.

The kernel is configured with a single warp only. The miss

3The number of misses is dependent on the order of accesses by the

128 threads and the cache replacement policy.

1 g l o b a l

2 void mb1 (i n t ∗ mem, i n t ∗ t ime , i n t sv) {
3

4 / / S t a g e 1

5 f o r (i =0 ; i <32; i ++)

6 temp = mem[t i d + i ∗1 2 8] ;

7

8 / / S t a g e 2

9 i f (t i d == 0)

10 temp = mem[sv] ;

11

12 / / S t a g e 3

13 f o r (i =0 ; i <32; i ++) {
14 s t a r t = c l o c k () ;

15 temp = mem[t i d + i ∗1 2 8] ;

16 t im e [t i d + i ∗128] = c l o c k () − s t a r t ;

17 }
18 }

Figure 5. Associativity micro-benchmark

(simplified code for illustration)

2345678910111213141517 01

index within line (2^7 bytes)

set index (2^5 sets)

set index (2^6 sets)

19

16KB cache / 32 sets

48KB cache / 64 sets

Figure 6. Usage of the byte-address bits

rate is measured at cache-line granularity using NVIDIA’s

profiler NVPROF. A sweep is performed over the number

of loop iterations and the stride of the memory accesses.

Figure 7 shows the results: either a cache miss rate of 100%

(misses in both loops) or 50% (only misses in the first loop).

The final row counts the number of set index bits varied

across the loads, derived as the number of 50% miss rates

in the row minus 1 (4 loop iterations always fit in a single

set). The figure confirms the hypothesis, as the number of

varied set bits (final row) corresponds to the number of bits

included in the hashing function counting from the log2 of

the stride. For example, with a stride of 212 and 128 loads,

bits 12–18 are included, of which only 4 bits (13, 14, 15,

17) are used in the computation of the set index.

7
-1

3

8
-1

4

9
-1

5

1
0

-1
6

1
1

-1
7

1
2

-1
8

1
3

-1
9

1
4

-2
0

1
5

-2
1

1
6

-2
2

1
7

-2
3

1
8

-2
4

1
9

-2
5

2
0

-2
6

2
1

-2
7

5 5 5 5 5 4 5 4 3 2 2 1 1 0 0

8

4

16

32

64

128

256

(#times) -1

lo
o

p
 i
te

ra
ti
o

n
s

(#
 l
o

a
d

s
)

50%

cache

misses

100%

cache

misses

bits accessed

(for 128 loads)

log stride 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

19

17

15

14

13117 8 9 10

2

additional set

bits used

(right to left)

Figure 7. Hash function verification

5.2. MSHR microbenchmark

Similar to the case of the hash function for associativity,

it is not known how many MSHRs are available in the GPU.

Therefore, we constructed the following micro-benchmark

to find the number of MSHRs per GPU core. Initially, a

CUDA kernel with only a single thread is launched. The

kernel, as shown in figure 8, performs a configurable num-

ber of non-overlapping loads without dependences, which

are timed in its entirety. The idea is that the GPU will issue

multiple loads at a time, limited by the MSHRs. The re-

sults of this experiment are shown in figure 9 for a varying

number of warps and a varying number of loads per warp (1

thread per warp as threads within a warp run in lock-step).

1 g l o b a l void mb2 (i n t ∗ mem, i n t ∗ t ime) {
2 i f (t i d % 32 == 0) {
3 s t a r t = c l o c k () ;

4

5 / / Loop o f i n d e p e n d e n t l o a d s (u n r o l l e d)

6 f o r (i =0 ; i<NUM LOADS; i ++)

7 temp = mem[3 2∗ (t i d + i ∗NUM WARPS∗32)] ;

8

9 t im e [t i d / 3 2] = c l o c k () − s t a r t ;

10 }
11 }

Figure 8. MSHR micro-bench (simplified)

1 2 ... 10 11 12 13 ... 16 17

number of warps (single threadblock)

la
te

n
c
y
 (

c
y
c
le

s
)

0
5

0
0

1
0

0
0

1−8 loads per warp

6 6 6 5 5 4 4 3

number of low
latency loads1 load

2 loads
3 loads
4 loads

5 loads
6 loads

7 loads
8 loads

Figure 9. MSHR micro-benchmark results

When evaluating the results of figure 9 for a single warp

(leftmost bars), we see that performing up to 6 loads yields

a similar latency. When performing an additional 7th load,

we observe a sudden increase in latency. From this data, we

conclude that there are only 6 MSHRs available in this case:

performing a 7th (or 13th, 19th, etc.) request increases the

latency significantly. However, when evaluating the results

of launching multiple warps, we observe that additional ac-

cesses can be performed without increasing the latency sig-

nificantly4. In fact, this is true for up to 10 warps, allowing

a total of 10 · 6 = 60 simultaneous requests. The figure

shows a decrease to 5 loads per warp for 11 warps, 4 for

13 warps, and 3 for 17 warps. From this, we conclude that

4As the number of instructions increases when performing more loads

or running more warps, the measured latency increases a bit as well.

there are 64 MSHRs (e.g. 16 warps with 4 simultaneous

requests each). We also conclude that a single warp is only

allowed to use up to 6 entries, although this specific limit

could be unrelated to the MSHR table, e.g. there could be a

limit on the number of outstanding incomplete instructions.

6. Verification of the model

To demonstrate the usefulness and accuracy of the cache

model, the modelled cache miss rates are compared against

cache miss rates using hardware counters on a Fermi GPU

and against a simulator. The verification is performed for

both the 16KB 32-set 4-way and 48KB 64-set 6-way cache

configuration on a GeForce GTX470 (newer Kepler GPUs

also support 32KB [14]). To ensure a wide variety of GPU

kernels, two complete benchmark suites are included: Poly-

Bench/GPU5 and Parboil [20]. The only exclusions made

are the ‘mb sad calc’ kernel from Parboil’s ‘sad’ bench-

mark, because it relies on the GPU’s texture memory and

texture cache, and the ‘histo main’ kernel from Parboil’s

‘histo’ benchmark, as it only uses atomic memory accesses.

PolyBench/GPU is configured to use default data-sizes, and

Parboil to use the ‘medium’ inputs (or ‘large’ where un-

available). For all Parboil benchmarks that run multiple iter-

ations, the iteration limit is set to a maximum of 2. The two

benchmark suites differ significantly: PolyBench/GPU con-

tains mostly naive implementations of variants of matrix-

multiplications (e.g. no on-chip local memory, limited par-

allelism), whereas Parboil contains optimised kernels of all

sorts. Note that Parboil also contains benchmarks where

‘caching’ is performed manually in scratchpad memory.

Their differences also become apparent by disabling the

GPU’s L1 data-cache in an experiment (the L2 is still en-

abled): the geometric mean performance drops by 5% (Par-

boil) and 15% (PolyBench/GPU).

6.1. Comparison against hardware counters

Using the infrastructure described in section 4.6, mod-

elled and measured miss rates are collected for the two

cache configurations. Figure 10 shows the results for the

16KB configuration, with kernel invocations on the x-axis.

Bracketed letters are used in case a kernel is invoked multi-

ple times. For each kernel, the left bar shows the modelled

L1 data cache miss rate, and the right shows the measured

miss rate using the profiler. The following types of mea-

sured misses are distinguished: 1) compulsory misses, 2)

capacity misses, 3) associativity misses, 4) MSHR misses,

and 5) latency misses. Latency misses are not included in

figure 10’s cache miss rate number: the profiler does not in-

clude these types of misses as they don’t cause additional

memory requests. We observe the following:

• The modelled compulsory misses (green) are lower or

equal to the measured misses (blue) for all kernels.

5Available on-line at: http://www.cse.ohio-state.edu/

˜pouchet/software/polybench/

b
fs

c
u

tc
p

 (
a

)

c
u

tc
p

 (
b

)

h
is

to
 p

re
s
c
a

n
 (

a
)

h
is

to
 i
n

te
rm

e
d

ia
te

s
 (

a
)

h
is

to
 f

in
a

l
(a

)

h
is

to
 p

re
s
c
a

n
 (

b
)

h
is

to
 i
n

te
rm

e
d

ia
te

s
 (

b
)

h
is

to
 f

in
a

l
(b

)

lb
m

 S
tr

e
a

m
C

o
lli

d
e

 (
a

)

lb
m

 S
tr

e
a

m
C

o
lli

d
e

 (
b

)

la
rg

e
r_

s
a

d
_

c
a

lc
_

8

la
rg

e
r_

s
a

d
_

c
a

lc
_

1
6

s
g

e
m

m

s
p

m
v
 (

a
)

s
p

m
v
 (

b
)

s
te

n
c
il

(a
)

s
te

n
c
il

(b
)

tp
a

c
f

65

38 37 40

85

58

40

86

57

19 19

84

55

81

60 61

98 98

73

100

37 37
42

58
63

44

58
63

9 10

88

56

96

50 52

98 98

74

C
a

c
h

e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0

0

(latency misses
are not measured

by the profiler)

model (compulsory) model (capacity) model (associativity) model (latency) profiler

m
ri

−
g

 b
in

n
in

g

m
ri

−
g

 s
p

lit
S

o
rt

m
ri

−
g

 s
c
a

n
_

L
1

 (
a

)

m
ri

−
g

 s
c
a

n
_

in
te

r1
 (

a
)

m
ri

−
g

 s
c
a

n
_

in
te

r2
 (

a
)

m
ri

−
g

 u
n

ifo
rm

A
d

d
 (

a
)

m
ri

−
g

 s
p

lit
R

e
a

rr

m
ri

−
g

 r
e

o
rd

e
r

m
ri

−
g

 s
c
a

n
_

L
1

 (
b

)

m
ri

−
g

 s
c
a

n
_

in
te

r1
 (

b
)

m
ri

−
g

 s
c
a

n
_

in
te

r1
 (

c
)

m
ri

−
g

 s
c
a

n
_

in
te

r2
 (

b
)

m
ri

−
g

 s
c
a

n
_

in
te

r2
 (

c
)

m
ri

−
g

 u
n

ifo
rm

A
d

d
 (

b
)

m
ri

−
g

 g
ri

d
d

in
g

 (
c
)

m
ri

−
q

 P
h

iM
a

g

m
ri

−
q

 C
o

m
p

u
te

Q
 (

a
)

m
ri

−
q

 C
o

m
p

u
te

Q
 (

b
)

33

100 100

50 50

92 91

43

100

50

100 100

50

92

22

100 100 100

41

100 100

50 50

98

88

70

100

50

100 100

50

98

22

100 100 100

C
a

c
h

e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0

0

model (compulsory) model (capacity) model (associativity) model (latency) profiler

a
ta

x
 0

a
ta

x
 1

b
ic

g
 0

b
ic

g
 1

c
o

n
vo

lu
ti
o

n
 2

D

c
o

n
vo

lu
ti
o

n
 3

D

c
o

rr
e

la
ti
o

n
 0

c
o

rr
e

la
ti
o

n
 1

c
o

rr
e

la
ti
o

n
 2

c
o
va

ri
a

n
c
e

 0

c
o
va

ri
a

n
c
e

 1

fd
td

 2
D

 0

fd
td

 2
D

 1

fd
td

 2
D

 2

g
e

m
m

g
e

s
u

m
m

v

m
v
t

0

m
v
t

1

s
y
r2

k

s
y
rk

67

50 50

70

12

53 52

26
20

51

35

67

45

59
50

98

68

50

67

51

79

51 51

79

21

52 52

26
22

51 54

70
77

61

51

98

79

51

88

77

C
a

c
h

e
 m

is
s
 r

a
te

 (
%

)
0

5
0

1
0

0

(latency misses
are not measured
by the profiler)

model (compulsory) model (capacity) model (associativity) model (latency) profiler

Figure 10. Results for Parboil (top and middle) and PolyBench/GPU (bottom), showing modelled (left)

and measured (right) 16KB L1 miss rates: matching values represent a high modelling accuracy

This is important because the amount of compulsory

misses is cache parameter independent. Furthermore,

note that this results in a perfect model for cases where

the only type of misses are compulsory, e.g. in many

of the ‘mri-g’ and ‘mri-q’ kernels.

• Overall, most kernels show almost no associativity

misses. However, there are still cases where asso-

ciativity misses account for a significant fraction of

the total amount of misses, in particular for the Poly-

Bench/GPU benchmarks.

• These benchmarks show no additional misses caused

by the limited number of MSHRs. In contrary, limiting

the size of the MSHR table reduces the cache miss rate

in many cases, as will also be shown in section 7.

• The kernels that show the largest difference between

measured and modelled misses (e.g. ‘bfs’, ‘atax 0’,

‘histo intermediates’) are very sensitive to the memory

latency parameter. To improve the accuracy for these

benchmarks, the model needs to be extended beyond

caches only to obtain more realistic latency values.

cutcp
c
a

c
h

e
 m

is
s
 r

a
te

 (
%

)

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

lbm

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

sgemm

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

spmv

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

stencil

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

tpacf

0

25

50

75

100

1−way 4−way 16−way

4 KB 16 KB 64 KB

32 B 128 B 512 B

16 64 256

associativity
cache−size
cache−line size
number of MSHRs

Figure 12. Evaluation of different values (x-axis) for four parameters (coloured series) for 6 kernels.

0 20 40 60 80 100

0
1
0

2
0

absolute error (%)

fr
e
q
u
e
n
c
y

model (16KB)

0 20 40 60 80 100

0
1
0

2
0

absolute error (%)

fr
e
q
u
e
n
c
y

simulator (16KB)

0 20 40 60 80 100

0
1
0

2
0

absolute error (%)

fr
e
q
u
e
n
c
y

model (48KB)

0 20 40 60 80 100

0
1
0

2
0

absolute error (%)

fr
e
q
u
e
n
c
y

simulator (48KB)

Figure 11. Absolute errors for the cache

model (top) and for GPGPU-Sim (bottom)

The results of figure 10 are summarised in the top half

of figure 11, augmented with the results for the 48KB con-

figuration (not shown in detail). The arithmetic mean in

absolute error6 for our model is 6.4% for the 16KB con-

figuration and 8.3% for the 48KB configuration. Finally,

three scenarios are tested where a single component of the

model is disabled each time, showing how much the intro-

duced extensions to the reuse distance theory contribute to

the precision of the model. The 6.4% arithmetic mean in

absolute error changes as follows for the 16KB cache con-

figuration: 1) a 9.6% error when associativity is not mod-

elled, 2) a 12.1% error when latencies are not modelled, and

3) a 7.1% error when the number of MSHRs is unlimited.

6.2. Comparison against simulation

As a secondary verification metric, our cache model is

compared against version 3.2.0 of the GPGPU-Sim sim-

ulator [3]. The (Fermi) simulator is configured with the

specifications of the GTX470 GPU (both 16KB and 48KB

caches) and runs the two benchmark suites: Parboil and

PolyBench/GPU. The results are reported in the bottom half

of figure 11, in which we show the absolute difference in

cache miss rate compared to the results of the profiler. The

simulator shows on average a larger error compared to our

6Note: the absolute error of a metric measured in percentages (miss

rate) is also given in percentages.

model: it produces a mean absolute error of 18.1% for the

16KB configuration and 21.4% for the 48KB configuration.

Additionally, the run-time of the simulator is on average a

factor 268x higher than our model. For example, GPGPU-

Sim completes ‘cutcp’ in 10 hours, whereas the model takes

10 seconds (excluding 4 minutes emulation in Ocelot).

7. Example use: evaluating cache parameters

To demonstrate the use of the model, a sweep over the

cache parameters is performed. Evaluating all design points

or finding optimal design points is beyond the scope of

this work. Four different values are evaluated for the main

parameters: 1) associativity, 2) cache-size, 3) cache-line

size, and 4) the number of MSHRs. The values evaluated

are 0.25x, 0.5x, 2x, and 4x the GPU’s original value for

the 16KB configuration. The results (figure 12) include 6

benchmarks from Parboil, chosen because of their mix of

different types of cache misses. We observe the following:

• Associativity is a parameter of little importance for the

evaluated benchmarks. Small benefits of a high asso-

ciativity are only visible for ‘stencil’ and ‘lbm’, bench-

marks originally showing 2–3% associativity misses.

Because hits and misses influence the thread order, a

lower associativity can sometimes give a lower miss

rate, as is the case for ‘spmv’ and ‘cutcp’.

• Cache-size is the most important parameter for ‘lbm’

and ‘spmv’, showing significant miss rate reductions.

• Cache-line size can have both a positive and a nega-

tive influence on cache misses. For our benchmarks, a

cache-line size of 128B or 256B gives the best results.

• Using only 16 or 32 MSHRs yields better cache be-

haviour for ‘lbm’ and ‘spmv’: a low number of MSHRs

allows inter-thread locality to be better exploited (see

section 4.4). The other benchmarks are not signifi-

cantly influenced by the MSHR parameter.

8. Summary and future work

This work has shown that reuse distance theory can be

used to model GPU caches in detail by extending it with: 1)

scheduling of the GPU’s threads, warps, threadblocks, cores

and sets of active threads, 2) in-flight memory requests and

conditional and non-uniform latencies, 3) cache associativ-

ity, 4) miss-status holding-registers (MSHRs), 5) and warp

divergence. Additionally, micro-benchmarks showed how

a Fermi GPU maps addresses to sets in hash-associative

caches, and how many MSHRs are available per core.

The new cache model has been evaluated against the

Parboil and PolyBench/GPU benchmark suites, comparing

modelled miss rates for the GPU’s L1 data caches against

measured miss rates using hardware counters. The results

distinguish different types of cache misses. An example are

latency misses, a type not even measured by hardware coun-

ters. On average, our model predicts cache miss rates with

an absolute error of 6.4% (16KB 4-way) and 8.3% (48KB

6-way). From the 57 tested kernel invocations, 47 lie within

a 10% absolute error margin. Compared to the GPU simula-

tor GPGPU-Sim, our cache model shows a better accuracy

(6–8% versus 18–21%) and a lower run-time (267x on av-

erage). The importance of the discussed extensions become

clear when evaluating them separately, showing a reduction

in average absolute error when modelling: cache associa-

tivity (9.6% → 6.4%), latencies (12.1% → 6.4%), and a

limited amount of MSHRs (7.1% → 6.4%).

A more accurate memory latency and warp divergence

model can help improve the cache model further, but would

require integration with a full GPU execution model. Ad-

ditionally, the model can be extended to include other GPU

caches, such as the L2, the texture caches, or Kepler’s new

read-only L1 cache. Future work includes the verification

of the model on AMD Radeon and ARM Mali GPUs.

References

[1] G. Almási, C. Caşcaval, and D. Padua. Calculating Stack

Distances Efficiently. In MSP: Workshop on Memory System

Performance. ACM, 2002.

[2] S. Baghsorkhi, M. Delahaye, S. Patel, W. Gropp, and W.-M.

Hwu. An Adaptive Performance Modeling Tool for GPU

Architectures. In PPoPP-15: Symposium on Principles and

Practice of Parallel Programming. ACM, 2010.

[3] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.

Analyzing CUDA Workloads using a Detailed GPU Simu-

lator. In ISPASS: International Symposium on Performance

Analysis of Systems and Software. IEEE, 2009.

[4] K. Beyls and E. D’Hollander. Reuse Distance as a Metric

for Cache Behavior. In IASTED: Conference on Parallel

and Distributed Computing and Systems, 2001.

[5] M. Brehob. On the Mathematics of Caching. PhD thesis,

Michigan State University, 2003.

[6] X. Chen and T. Aamodt. A First-order Fine-grained Mul-

tithreaded Throughput Model. In HPCA-15: High Perfor-

mance Computer Architecture. IEEE, 2009.

[7] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot:

A Dynamic Optimization Framework for Bulk-Synchronous

Applications in Heterogeneous Systems. In PACT-19: Par-

allel Architectures and Compilation Techniques, 2010.
[8] C. Ding and Y. Zhong. Predicting Whole-Program Locality

through Reuse Distance Analysis. In PLDI-24: Program-

ming Language Design and Implementation. ACM, 2003.
[9] S. Fuller and L. Millett. Computing Performance: Game

Over or Next Level? IEEE Computer, 44, 2011.
[10] M. Hill and A. Smith. Evaluating Associativity in CPU

Caches. IEEE Transactions on Computers, 38, 1989.
[11] S. Hong and H. Kim. An Integrated GPU Power and Per-

formance Model. In ISCA-37: International Symposium on

Computer Architecture. ACM, 2010.
[12] M. Kandemir, A. Choudhary, N. Shenoy, P. Banerjee, and

J. Ramanujam. A Hyperplane Based Approach for Optimiz-

ing Spatial Locality in Loop Nests. In ICS-12: International

Conference on Supercomputing. ACM, 1998.
[13] O. Kayiran, A. Jog, M. Kandemir, and C. Das. Neither More

Nor Less: Optimizing Thread-level Parallelism for GPG-

PUs. In PACT-22: Parallel Architectures and Compilation

Techniques. IEEE, 2013.
[14] NVIDIA. CUDA C Programming Guide 5.5, 2013.
[15] A. Parakh, M. Balakrishnan, and K. Paul. Performance Es-

timation of GPUs with Cache. In IPDPSW-26: Parallel and

Distributed Processing Workshops. IEEE, 2012.
[16] T. Rogers, M. O’Connor, and T. Aamodt. Cache-Conscious

Wavefront Scheduling. In MICRO-45: International Sym-

posium on Microarchitecture. IEEE, 2012.
[17] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-

Schaffer. Modeling Performance Variation due to Cache

Sharing. In HPCA-19: High Performance Computer Archi-

tecture. IEEE, 2013.
[18] D. Schuff, B. Parsons, and V. Pai. Multicore-Aware Reuse

Distance Analysis. In IPDPSW-24: Parallel and Distributed

Processing Workshops and PhD Forum. IEEE, 2010.
[19] J. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung, N. Obeid,

L. Chang, G. Liu, and W.-M. Hwu. Optimization and Archi-

tecture Effects on GPU Computing Workload Performance.

In INPAR: Innovative Parallel Computing, 2012.
[20] J. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. Liu, and W.-M. Hwu. Parboil: A Revised

Benchmark Suite for Scientific and Commercial Throughput

Computing. Technical Report IMPACT-12-01, University of

Illinois, 2012.
[21] T. Tang, X. Yang, and Y. Lin. Cache Miss Analysis for GPU

Programs Based on Stack Distance Profile. In ICDCS-31:

Distributed Computing Systems. IEEE, 2011.
[22] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Igna-

cio Gómez, C. Tenllado, and F. Catthoor. Polyhedral Parallel

Code Generation for CUDA. ACM Transactions on Archi-

tecture and Code Optimisations, 9(4):Article 54, Jan. 2013.
[23] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and

A. Moshovos. Demystifying GPU Microarchitecture

through Microbenchmarking. In ISPASS: Performance

Analysis of Systems and Software. IEEE, 2010.
[24] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu. Op-

timizing Sparse Matrix Vector Multiplication Using Cache

Blocking Method on Fermi GPU. In SNPD-13. IEEE, 2012.

