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A Detection Statistic for Random-Valued

Impulse Noise
Yiqiu Dong, Raymond H. Chan, and Shufang Xu

Abstract

This paper proposes an image statistic for detecting random-valued impulse noise. By this statistic,

we can identify most of the noisy pixels in the corrupted images. Combining it with an edge-preserving

regularization, we obtain a powerful two-stage method for denoising random-valued impulse noise even

for noise level as high as 60%. Simulation results show that our method is significantly better than a

number of existing techniques in terms of image restoration and noise detection.

Index Terms

random-valued impulse noise, noise detector, edge-preserving regularization, image denoising.

I. INTRODUCTION

Digital images are often corrupted by impulse noise due to transmission errors, malfunctioning pixel

elements in the camera sensors, faulty memory locations, and timing errors in analog-to-digital conversion

[1]. An important characteristic of this type of noise is that only part of the pixels are corrupted and

the rest are noise-free. In most applications, denoising the image is fundamental to subsequent image

processing operations, such as edge detection, image segmentation, object recognition, etc. The goal of

noise removal is to suppress the noise while preserving image details. To this end, a variety of techniques

have been proposed to remove impulse noise.

One of the most popular methods is the median filter [2], which can suppress noise with high

computational efficiency. However, since every pixel in the image is replaced by the median value in
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its neighborhood, the median filter often removes desirable details in the image and blurs it too. The

weighted median filter [3] and the center-weighted median filter [4] were proposed as remedy to improve

the median filter by giving more weight to some selected pixels in the filtering window. Although these

two filters can preserve more details than the median filter, they are still implemented uniformly across

the image without considering whether the current pixel is noise-free or not.

Over the years, better noise removal methods with different kinds of noise detectors have been proposed,

for example, switching median (SM) filter [5], multi-state median (MSM) filter [6], adaptive center

weighted median (ACWM) filter [7], the peak-and-valley filter [8], [9], signal dependent rank order

mean (SD-ROM) filter [10], conditional signal-adaptive median (CSAM) filter [11], the pixel-wise MAD

(PWMAD) filter [12], modified threshold Boolean filter (TBF) [13], Jarque-Bera test based median (JM)

filter [14], two-output nonlinear filter [15], and iterative median filter [16], etc. With the noise detector,

these filters will check each pixel if it is corrupted or not. Then, only noisy pixels are changed so as to

avoid undue distortion. The main drawback of these filters is that they just use median values or their

variations to restore the noisy pixels, and hence they usually cannot preserve the image details even when

the images are mildly corrupted, say with noise ratio less than 30%, see (1) for the definition of noise

ratio.

In the last few years, many methods based on fuzzy techniques have been developed for noise removal

too [17], [18]. Fuzzy system is well-suited to model the uncertainty that occurs when both noise removal

and detail preservation are required. But when the images are highly corrupted, discovering the rulebase

structure becomes quite difficult. In order to overcome this difficult, many methods based on neuro-fuzzy

system are proposed [19]–[23], which make full use of the ability of neural networks to learn from

examples. With suitable and sufficient training, they can preserve the image details during noise removal.

Recently, an edge-preserving regularization method has been proposed to remove impulse noise [24].

It uses a non-smooth data-fitting term along with edge-preserving regularization. In order to improve

this variational method in removing impulse noise, a two-stage method was proposed in [25], [26]. In

the first phase, it uses either the adaptive median (AM) filter [27] or the ACWM filter [7] to identify

pixels which are likely to be noise (noise candidates). In the second phase, these noise candidates are

restored by the edge-preserving regularization which allows edges and noise-free pixels to be preserved.

This method, denoted by AM-EPR and ACWM-EPR, can restore large patches of noisy pixels because

it introduces pertinent prior information via the regularization term. It is most efficient in dealing with

high noise ratio, e.g. ratio as high as 90% for salt-and-pepper impulse noise and 50% for random-valued

impulse noise can be removed by AM-EPR and ACWM-EPR respectively, see [25], [26]. Its capability
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is mainly limited by the accuracy of the noise detector in the first phase. The aim of this paper is to find

a better noise detector for the two-stage method, especially for the random-valued impulse noise.

In [28], Garnett et al. introduced a new local image statistic called ROAD to identify the impulse

noisy pixels, and incorporated it into a filter designed to remove additive Gaussian noise. The result is a

trilateral filter capable of removing mixed Gaussian and impulse noise. This method also performs well

for removing impulse noise. But when the noise level is high, it blurs the images seriously.

Our new local image statistic and hence a new noise detector is based on ROAD. Our idea is to amplify

the differences between noisy pixels and noise-free pixels in ROAD so that the noise detection can be

more accurate. We use this new statistic in phase one of the two-stage method [25], [26] to detect the

noisy candidate pixels and utilize again the edge-preserving regularization method in [24], [29] in the

second phase. We have compared our method, denoted by ROLD-EPR, with a number of methods. It

outperforms the others in both image restoration and noise detection. In particular, when the random-

valued impulse noise ratio is as high as 60%, it still can remove most of the noise while preserving

image details.

The outline of this paper is as follows. In Section II, we define the new statistic. Section III describes

our noise removal method in detail. Section IV gives simulation results to demonstrate the performance

of the new method. Finally conclusions are drawn in Section V.

II. THE ROLD STATISTIC FOR DETECTING IMPULSE NOISE

When an image is corrupted by impulse noise, only part of the pixels are changed. To be precise, let

xi,j and yi,j be the pixel values at location (i, j) in the original image and the noisy image, respectively.

Let the dynamic range of the image be [smin, smax]. If the noise ratio is p, then

yi,j =





xi,j , with probability 1− p,

ni,j , with probability p,
(1)

where ni,j is the gray-level value of the noisy pixel. There are two models of impulse noise: the easier-to-

restore salt-and-pepper noise where ni,j = smin or smax; and the more difficult random-valued impulse

noise where ni,j are uniformly-distributed random numbers in [smin, smax]. Here, for simplicity we let

the dynamic range of the images be [0, 1]. Since there are excellent noise detectors such as the peak-and-

valley [8] and AM [27] filters for detecting salt-and-pepper noise even for noise ratio as high as 90%,

in this paper, we only focus on the detection and denoising of random-valued impulse noise.
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A. Review on ROAD

First, we briefly review the statistic, called ROAD, proposed in [28]. Let ΩN denote the set of

coordinates in a (2N + 1)-by-(2N + 1) window centered at (0, 0), i.e.,

ΩN = {(s, t)| −N ≤ s, t ≤ N},

and let Ω0
N = ΩN\(0, 0). Define dst as the absolute difference between the gray-level values yi+s,j+t

and yi,j , i.e.,

dst(yi,j) = |yi+s,j+t − yi,j |, ∀(s, t) ∈ Ω0
N . (2)

Sort the dst values in increasing order, and let rk be the kth smallest one amongst them. Then define

ROADm(yi,j) =
m∑

k=1

rk(yi,j), (3)

where 2 ≤ m ≤ (2N + 1)2 − 2.

As an example, if we set N to 1 and m to 4, ROAD provides a measure of how close the current pixel

value is to its four closest neighbors in a 3-by-3 window. We note that noisy pixels should have intensities

vary greatly from those of its neighbors (i.e. their ROAD values will be large), whereas noise-free pixels

should have at least half of the neighbors having similar intensity (i.e. their ROAD values will be small),

even for pixels on the edges, see [28]. Thus one can use ROAD to detect impulse noise, i.e. if the ROAD

value of a pixel is greater than a certain fixed threshold, then we consider it as a noisy pixel; otherwise

the pixel is considered noise-free.

In [28], it is suggested that we use the 5-by-5 windows and m = 12 if the noise ratio is higher than

25%, and use the 3-by-3 windows and m = 4 if otherwise.

B. Definition of ROLD

The ROAD is already a good statistic. However, for random-valued impulse noise, some noise values

may be close to their neighbors’ values, in which case, the ROAD value of the pixel may not be large

enough for it to be distinguished from the noise-free pixels. Thus one way to improve the ROAD statistic

is to find a way to increase these ROAD values, and yet keep the small ROAD values from increasing

much. Here, we use a logarithmic function to realize this goal.

Using the logarithmic function on the absolute difference dst defined in (2), we get

D̃st(yi,j) = loga |yi+s,j+t − yi,j |, ∀(s, t) ∈ Ω0
N .
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Clear for any a > 1, the number D̃st is always in (−∞, 0]. In order to keep it in the dynamic range

[0, 1], we use a truncation and a linear transformation:

Dst(yi,j) ≡ 1 + max{loga |yi+s,j+t − yi,j |,−b}/b, ∀(s, t) ∈ Ω0
N ,

where a, b are positive numbers to be chosen. Note that the value of a controls the shape of the curve

of the logarithmic function and the value of b decides the truncation position.

The selections of the numbers a and b have great effects on the accuracy of our detection. To choose

them properly, consider the function ha,b(x) defined as

ha,b(x) = 1 + max{loga x,−b}/b, (x ≥ 0), (4)

we can prove the following property.

Theorem 1: Let ha,b be defined as in (4), and let (a1, b1) and (a2, b2) be two pairs of numbers with

ab1
1 = ab2

2 , then we have ha1,b1(x) = ha2,b2(x) for all x ≥ 0.

Proof: It follows from ab1
1 = ab2

2 that

1
b1

loga1
x =

ln x

b1 ln a1
=

ln x

b2 ln a2
=

1
b2

loga2
x.

Hence

1 + max{ 1
b1

loga1
x,−1} = 1 + max{ 1

b2
loga2

x,−1}.

From the definition of ha,b(x), we find that the range of x for ha,b(x) to be zero is [0, 1
ab ]. Combining

with Theorem 1, the main problem of choosing a and b (or more precisely ab) is to decide this range. This

is just another good reason for using the logarithmic function: it converts the problem about the shape

of the transformation function into one about the truncation point. Recall that x denotes the absolute

difference between a pixel value and that of its neighbors. In general, for an 8-bit gray-level image, if

this absolute difference is less than 8, it is not noticeable [30]. So we set ha,b(x) = 0 in [0, 8
255 ]. Since

8
256 = (1

2)5, we choose a = 2 and b = 5. Accordingly we define Dst(yi,j) as

Dst(yi,j) = 1 + max{log2 |yi+s,j+t − yi,j |,−5}/5, ∀(s, t) ∈ Ω0
N .

Arrange all Dst in an increasing order, and let Rk be the kth smallest Dst for all (s, t) ∈ Ω0
N . Like

ROAD, we define our local image statistic as

ROLDm(yi,j) =
m∑

k=1

Rk(yi,j).
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Fig. 1. The error-bar charts for the statistics on “Lena” (a, b) and on “Bridge” (c, d) with different choices of N and m:

N = 1, m = 4 in the first row and N = 2, m = 12 in the second row.

We name this statistic as “Rank-Ordered Logarithmic Difference”, and ROLD for short. With ROLD, we

can define a noise detector by employing a threshold T : a pixel yi,j is detected as noisy if ROLDm(yi,j) >

T , and noise-free if otherwise.

C. Comparison of ROAD and ROLD

To demonstrate that ROLD is a better statistic than ROAD, we test them on two 512-by-512 images.

One is a homogeneous image “Lena”, and the other is the image “Bridge” which has many fine details.

Here, we suppose the locations of all noisy pixels are known in advance, then all pixels can be grouped

into two sets: the noisy pixel set and the noise-free pixel set.

In Figure 1, we show the error-bar charts for the statistics on the images with different choices of N

and m given in [28]. The four charts in the first row are with N = 1 (3-by-3 windows) and m = 4, the

ones in the second row are with N = 2 (5-by-5 windows) and m = 12. In all these figures, the upper

dashed lines represent the mean ROAD (Figure 1(a, c)) and ROLD (Figure 1(b, d)) values for the noisy

pixels, and the lower dashed lines represent those of the noise-free pixels. The error bars represent the

standard deviations of ROAD and ROLD values for the two sets. The height of the bars tells how tightly

the values are clustered around the means. We can see from the figures that the distance between the

means and the separation between the error bars all increase in our statistic ROLD, and hence it will be

easier to separate noisy pixels from noise-free pixels. Thus the noise detection by our statistic will be
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(b) False-hit rate

Fig. 2. The detection results by two statistics for the image “Lena” corrupted by 50% random-valued impulse noise.

more accurate. In addition, we see that for highly corrupted images, the statistics using 5-by-5 windows

perform better than the ones using 3-by-3 windows, a fact pointed out in [28] already.

In order to illustrate more clearly that it is easier to separate noisy pixels from noise-free pixels by

ROLD, we perform another experiment. Consider the “Lena” image corrupted by 50% random-valued

impulse noise. We test the detection capability of the two statistics using 5-by-5 windows with thresholds

Te of the form: Te = µ+ e ·σ, where µ and σ are the mean and the standard deviation of statistic values

for all noisy pixels, and e ∈ [−0.5, 0.5]. In Figure 2, we plot the percentage of the noisy pixels identified

correctly, and the percentage of the noise-free pixels identified as noise (“false-hit” pixels). Here, we

tried three different values of b for ROLD (as noted in Theorem 1, the ROLD is dependent only on ab).

It is easy to see that ROLD performs better than ROAD. For example, ROLD with b = 5 can identify

roughly 6% more noisy pixels than ROAD can, yet the “false-hit” percentages differ by no more than

0.5%. Among ROLD with different b, the ROLD with b = 5 is the best, which can identify much more

noise than ROLD (b = 4) with less “false-hit” pixels than ROLD (b = 6).

D. Multiplication versus logarithm

Although log X · Y = log X + log Y , we cannot simply replace the summation in (3) by
m∏

k=1

rk(yi,j)

to get a better statistic. Here, we use a simple model to explain this point. Suppose X and Y are

independent and both uniformly distributed in [0, 1], it is easy to calculate the probability densities of

X · Y and log X + log Y :

fX·Y (y) = − log y, y ∈ [0, 1],

flog X+log Y (z) = −zez, z ∈ (−∞, 0].
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Since these two densities are defined on different domains: [0, 1] and (−∞, 0], in order to compare them,

we use a transformation z = log y for (log X +log Y ) so that y is defined on (0, 1]. In Figure 3, we plot

the graphs of fX·Y (y) and flog X+log Y (y). It is obvious that multiplication will lead to the statistic values

very concentrated, especially near 0. Hence, the impulse noise will be difficult to distinguish. However,

the logarithmic function makes the distribution much more dispersed, so that the noisy pixels can be

distinguished from the noise-free ones more easily.

III. OUR METHOD

After the noise detection, most nonlinear methods replace the noisy pixels by the median filter or its

variants without considering features in the images such as the possible presence of edges. In [24], [29],

Nikolova used edge-preserving regularization to remove impulse noise. This method is not good because

the regularization is applied to all pixels in the image, even if they are noise-free.

Recently, a two-stage iterative method for removing random-valued impulse noise is proposed in [26].

In the first phase, they use the ACWM filter [7] to identify pixels which are likely to be corrupted

(noise candidates). In the second phase, these noise candidates are restored by using the edge-preserving

regularization in [24], [29]. The method, denoted by ACWM-EPR, can restore noise as high as 50%, and

its capability is mainly limited by the accuracy of the noise detector ACWM in the first phase.

Since now we have a good noise detector ROLD, we can combine it with the edge-preserving

regularization in the two-stage method. We denote the new method ROLD-EPR method. To ensure high

accuracy of detection, it is executed iteratively with decreasing thresholds, see [26]. At early iterations,

with large thresholds, ROLD will identify pixels that are most likely to be noisy. In the subsequent

iterations, we decrease the threshold to include more noise candidates. Suppose the noisy image is y.

Our algorithm is as follows.
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Algorithm ROLD-EPR:

Step 1: Set k = 0 and u(0) = y.

Step 2: (Noise detection) If ROLD(u(k)
i,j ) > Tk, then u

(k)
i,j is noise, and (i, j) ∈ Nk, the noise candidate

set; otherwise, u
(k)
i,j is noise-free.

Step 3: (Noise restoration) Restore all pixels in Nk by minimizing the following functional [31]:

∑

(i,j)∈Nk

( ∑

(m,n)∈Vi,j∩Nk

ϕ(u(k+1)
i,j − u(k+1)

m,n ) + 2
∑

(m,n)∈Vi,j\Nk

ϕ(u(k+1)
i,j − ym,n)

)
, (5)

where Vi,j is the set of the four closest neighbors of (i, j), and ϕ is an edge-preserving potential

function [32]. For all (i, j) /∈ Nk, take u
(k+1)
i,j = u

(k)
i,j .

Step 4: Stop the iteration as soon as k is larger than Kmax, the maximum number of iterations.

Otherwise, set k = k + 1, and go back to Step 2.

We note that in (5), we only have the regularization term and no data-fitting term. It is because the data

are fitted exactly for uncorrupted pixels, see [31].

When computing ROLD values, we follow the rules in [28]: if the noise ratio is higher than 25%, we

use 5-by-5 windows and m = 12; otherwise, we use 3-by-3 windows and m = 4. For the edge-preserving

potential function, we select ϕ(t) = |t|1.3 as in [26]. To find the minimizer of (5), we use the global BB

method proposed in [33] so as to improve the computational efficiency.

The remaining problem is to select the thresholds Tk. In order to identify the noise as much as possible

with high accuracy, T0 should be close to the mean ROLD value for the noisy pixels, which gives the

central tendency of the impulse noise. From Figure 1, we see that with 3-by-3 windows and noise ratio

p ≤ 25%, the mean ROLD values for the noisy pixels are always in the range [1.7, 2.1]; and with 5-by-5

windows and p > 25%, the mean ROLD values for the noisy pixels are in [4.9, 5.9]. We therefore define

the initial threshold as T0 = s · q, where s ∈ [1.7, 2.1] if p ≤ 25% or s ∈ [4.9, 5.9] if p > 25%, and

q is the proportion of the pixels in the images whose ROLD values are less than s. In the subsequent

iterations, we let Tk = Tk−1 · q. Extensive simulations conducted on standard test images [34] indicate

that with s in the specified range, our method is robust against the choice of s, see Section IV-C. Hence,

in our simulations, we use s = 1.9, the midpoint of [1.7, 2.1] for p ≤ 25%, and s = 5.4, the midpoint of

[4.9, 5.9] for p > 25%. In both cases Kmax = 7 is enough.

IV. SIMULATIONS

In this section, we compare the image restoration and noise detection capability of our method with a

number of methods that are capable of removing random-valued impulse noise. We have tried many com-
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monly used images, and our method has out-performed all other methods we tested. For illustrations, the

results for 512-by-512, 8-bit gray-level images “Baboon”, “Bridge”, “Lena” and “Pentagon” are presented

here. Complete results can be found in http://www.math.cuhk.edu.hk/̃rchan/paper/dcx/.

A. Comparison of image restoration

The performance of all methods are compared quantitatively by using the peak signal-to-noise ratio

(PSNR) [30] and the two-dimensional correlation (COR) [22] which are defined as

PSNR = 10 log10

2552

1
MN

∑M
i=1

∑N
j=1(ui,j − xi,j)2

(dB),

COR =

∑M
i=1

∑N
j=1(ui,j − ū)(xi,j − x̄)√(∑M

i=1

∑N
j=1(ui,j − ū)2

)(∑M
i=1

∑N
j=1(xi,j − x̄)2

) ,

where ui,j and xi,j denote the pixel values of the restored image and the original image respectively, ū

and x̄ denote the averages of all pixel values in the images, and the image size is M -by-N . For both

criteria, larger values signify better image restoration.

In Tables I and II, we list the best PSNR and COR values from all methods for the four images with

different noise ratios. The best values for other methods are underlined so that they can be compared

easily with the values from our method. Although the trilateral filter together with ROAD statistic [28]

is for removing mixed Gaussian and impulse noise, it is already an excellent method for impulse noise

removal. Therefore we also list its results here for comparison, and use the parameter values suggested

in [28]. For fair comparison, we also tried the ROAD statistic as the noise detector in the first phase of

the two-stage method (denoted by ROAD-EPR in the tables). For this, we need to define s as in Section

III. From Figure 1, we see that the mean ROAD values are near 1 for 3-by-3 windows when p ≤ 25%

and near 2.4 for 5-by-5 windows when p > 25%. Therefore we set s = 1 for p ≤ 25% and s = 2.4 for

p > 25% when using ROAD-EPR method. It is clear from the tables that for all the images and noise

ratios tested, our method gives the best PSNR and COR values amongst all the methods.

To compare the results subjectively, we enlarge portion of the images restored by some methods listed

in Table I. Figure 4 shows the results in restoring 60% corrupted images of “Lena” and “Pentagon”.

In the images restored by ACWM-EPR [26] or ROAD-EPR methods, there are still many noticeable

noise patches. Although no noticeable noise is observed by the ROAD-trilateral filter, the images are

blurred seriously. In contrast, our method performs better, and can suppress the noise successfully while

preserving more details. To further compare the capability of preserving image details, in Figure 5, we

give the restored results for two images with rich details but corrupted by 40% impulse noise. We see
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TABLE I

COMPARISON OF RESTORATION RESULTS IN PSNR (DB) FOR IMAGES CORRUPTED WITH RANDOM-VALUED IMPULSE NOISE

“Baboon” image “Bridge” image “Lena” image “Pentagon” image

Method 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

Median Filter [2] 22.52 20.65 19.36 25.04 22.17 19.36 32.37 27.64 21.58 28.29 25.16 23.41

Switching Scheme I [5] 23.67 20.85 19.27 26.26 22.66 19.13 32.93 27.90 20.61 29.34 26.26 23.90

Switching Scheme II [5] 22.46 21.35 19.42 25.90 22.85 19.04 33.43 27.75 20.61 28.28 26.43 23.85

SD-ROM Filter (M=2,

without training) [10]

23.70 21.33 19.33 27.04 23.33 19.43 35.29 28.59 21.64 30.25 26.54 22.82

SD-ROM Filter (M=1296,

with training) [10]

23.81 21.49 19.45 26.56 23.80 20.66 35.71 29.85 23.41 30.38 27.27 24.33

PSM Filter [35] 23.43 21.07 19.56 26.33 22.75 19.73 35.09 28.92 22.06 29.18 26.19 23.87

TSM Filter [36] 23.73 21.38 19.44 26.52 22.89 19.60 34.21 28.30 21.67 29.29 26.29 23.59

MSM Filter [6] 24.02 21.52 19.63 27.27 23.55 20.07 35.44 29.26 22.14 30.34 27.04 24.22

ACWM Filter [7] 24.17 21.58 19.56 27.08 23.23 19.27 36.07 28.79 21.19 30.23 26.84 23.50

PWMAD Filter [12] 23.78 21.56 19.68 26.90 23.83 20.83 36.50 31.41 24.30 30.11 27.33 24.46

Luo, Iterative Median Fil-

ter [16]

24.18 21.41 19.08 27.05 23.88 19.74 36.90 30.25 22.96 30.42 26.93 23.72

ROAD-Trilateral Filter

[28]

24.18 21.60 19.52 27.60 24.01 20.84 36.70 31.12 26.08 30.33 27.14 24.60

ACWM-EPR [26] 23.97 21.62 19.87 27.31 24.60 20.89 36.57 32.21 24.62 30.03 27.35 24.59

ROAD-EPR 24.24 21.53 19.96 27.42 24.52 22.04 36.79 32.32 28.37 30.35 27.06 25.00

ROLD-EPR 24.49 21.92 20.38 27.86 24.79 22.59 37.45 32.76 29.03 30.73 27.73 25.70

that for the other methods, there are still some noticeable noise unremoved and there exist some loss

and discontinuity of the details, such as the hair around the mouth of the baboon and the edges of the

bridge. In contrast, the visual qualities of our restored images are quite good, even with the abundance

of image details and the high noise level present in the images.

B. Comparison of noise detection

For good performance, the capability of noise detection is very important. Here, we compare our

method with all the methods in Table I that have noise detectors. Table III lists the number of missed

noisy pixels (“miss” term) and the number of “false-hit” pixels. For random-valued impulse noise, the

noisy pixel values may not be so different from those of their neighbors, therefore it is easier for a
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TABLE II

COMPARISON OF RESTORATION RESULTS IN COR FOR IMAGES CORRUPTED WITH RANDOM-VALUED IMPULSE NOISE

“Baboon” image “Bridge” image “Lena” image “Pentagon” image

Method 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

Median Filter [2] 0.894 0.831 0.771 0.966 0.935 0.889 0.993 0.982 0.939 0.924 0.839 0.756

Switching Scheme I [5] 0.921 0.841 0.758 0.974 0.940 0.866 0.994 0.981 0.907 0.941 0.876 0.777

Switching Scheme II [5] 0.896 0.858 0.768 0.972 0.943 0.866 0.995 0.981 0.907 0.924 0.881 0.774

SD-ROM Filter (M=2,

without training) [10]

0.921 0.857 0.770 0.978 0.948 0.868 0.996 0.983 0.917 0.952 0.887 0.737

SD-ROM Filter (M=1296,

with training) [10]

0.922 0.864 0.781 0.976 0.954 0.903 0.997 0.988 0.945 0.953 0.902 0.796

PSM Filter [35] 0.918 0.852 0.777 0.975 0.941 0.879 0.996 0.984 0.927 0.939 0.876 0.780

TSM Filter [36] 0.923 0.859 0.786 0.976 0.943 0.894 0.995 0.982 0.935 0.940 0.878 0.787

MSM Filter [6] 0.927 0.864 0.782 0.979 0.951 0.893 0.997 0.986 0.933 0.951 0.897 0.796

ACWM Filter [7] 0.930 0.869 0.776 0.979 0.947 0.866 0.997 0.984 0.911 0.952 0.893 0.761

PWMAD Filter [12] 0.922 0.867 0.783 0.978 0.954 0.910 0.997 0.991 0.958 0.951 0.904 0.809

Luo, Iterative Median Fil-

ter [16]

0.931 0.860 0.745 0.979 0.954 0.881 0.997 0.986 0.938 0.954 0.899 0.769

ROAD-Trilateral Filter

[28]

0.929 0.870 0.792 0.980 0.956 0.908 0.997 0.991 0.971 0.953 0.899 0.814

ACWM-EPR [26] 0.926 0.870 0.796 0.980 0.960 0.910 0.997 0.992 0.960 0.950 0.903 0.816

ROAD-EPR 0.932 0.871 0.809 0.981 0.961 0.929 0.997 0.993 0.982 0.953 0.901 0.836

ROLD-EPR 0.935 0.880 0.821 0.982 0.963 0.938 0.998 0.994 0.985 0.957 0.913 0.857

noise detector to miss a noisy pixel or wrongly detect a noise-free pixel. A good noise detector should

be able to identify most of the noisy pixels, and yet its “false-hit” rate should be as small as possible.

In Table III, although some methods, such as the SD-ROM and ACWM filters, produce less “false-hit”

than ours, there are too many missed noisy pixels. These pixels will lead to the presence of noticeable

noise patches. Comparing with other methods, our method can distinguish more noise pixels with fewer

mistakes. Even when the noise level is as high as 60%, our method can still identify most of the noisy

pixels. In fact, if one computes the sum of the “miss” term and the “false-hit” term, our method has the

lowest sum amongst all methods except for ACWM at 40% noise level.

We note that although the number of missed pixels seems to be large for our method, they are in fact
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(a) (b) (c) (d) (e)

Fig. 4. Results of different methods in restoring 60% corrupted images “Lena” and “Pentagon”: (a) Original images, (b) Results

after ACWM-EPR method [26], (c) Results after ROAD-EPR method, (d) Results after ROAD-trilateral filter [28], (e) Results

after our ROLD-EPR method.

pixels with corrupted values that are close to the true value, and hence are difficult to detect correctly.

To illustrate this, we give in Table IV, the mean errors of the set of all missed pixels and the set of all

noisy pixels, i.e.

E(A) =
1

]A
∑

(i,j)∈A
|yi,j − xi,j |,

where A denotes either the set of all missed pixels or the set of all noisy pixels, ] stands for cardinality,

and yi,j and xi,j are the noisy pixel and true pixel values respectively. It is clear from the table that most

of the missed noisy pixels in fact have intensities very close to their true pixel values.

C. Robustness with respect to s

Here we show that our method is robust against the choice of s, see the definition of s at the end of

Section III. In the first row of Figure 6, we plot the PSNR values of the restored images by our method

for s varying from 1.7 to 2.1 and for the four test images with noise ratios 10% and 20%. In the second

row of Figure 6, we plot the PSNR values by our method for s from 4.9 to 5.9 with noise ratios 40%

and 60%. From the plots, we can see that the PSNR is very stable, and the maximum difference in each

case is less than 0.5 dB. Hence, we can set s = 1.9 for p ≤ 25%, and s = 5.4 for p > 25%.
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(a) (b) (c) (d) (e)

Fig. 5. Results of different methods in restoring 40% corrupted images “Baboon” and “Bridge”: (a) Original images, (b)

Results after the ACWM-EPR method [26], (c) Results after the ROAD-EPR method, (d) Results after the ROAD-trilateral filter

[28], (e) Results after our ROLD-EPR method.

V. CONCLUSION

In this paper, we propose a new local image statistic ROLD, by which we can identify more noisy

pixels with less false-hits. We combine it with the edge-preserving regularization in the two-stage method

[26] to get a powerful method for removing random-valued impulse noise. Simulation results show that

our method outperforms a number of existing methods both visually and quantitatively.
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[23] M. E. Yüksel, “A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise,” IEEE

Transactions on Image Processing, vol. 15, pp. 928–936, 2006.

[24] M. Nikolova, “A variational approach to remove outliers and impulse noise,” Journal of Mathematical Imaging and Vision,

vol. 20, pp. 99–120, 2004.

[25] R. H. Chan, C.-W. Ho and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-

preserving regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–1485, 2005.

[26] R. H. Chan, C. Hu and M. Nikolova, “An iterative procedure for removing random-valued impulse noise,” IEEE Signal

Processing Letters, vol. 11, pp. 921–924, 2004.

DRAFT



17

[27] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,” IEEE Transactions on Image

Processing, vol. 4, pp. 499–502, 1995.

[28] R. Garnett, T. Huegerich, C. Chui and W.-J. He, “A universal noise removal algorithm with an impulse detector,” IEEE

Transactions on Image Processing, vol. 14, pp. 1747–1754, 2005.

[29] M. Nikolova, “Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of

outliers,” SIAM Journal on Numerical Analysis, vol. 40, pp. 965–994, 2002.

[30] A. Bovik, Handbook of Image and Video Processing. Academic Press, 2000.

[31] R. H. Chan, C.-W. Ho, C.-Y. Leung and M. Nikolova, “Minimization of detail-preserving regularization functional by

Newton’s method with continuation,” in ICIP, 2005, pp. 125–128.
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