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Abstract. We presentadeterministic polynomial-time algorithm that computes the mixed
discriminant of am-tuple of positive semidefinite matrices to within an exponential mul-
tiplicative factor. To this end we extend the notion of doubly stochastic matrix scaling to
a larger class ofi-tuples of positive semidefinite matrices, and provide a polynomial-time
algorithm for this scaling. As a corollary, we obtain a deterministic polynomial algorithm
that computes the mixed volumem€onvex bodies ifR" to within an error which depends

only on the dimension. This answers a question of Dyer, Gritzmann and Hufnagel. A “side
benefit” is a generalization of Rado’s theorem on the existence of a linearly independent
transversal.

1. Introduction
1.1. PermanentMixed Volume and Mixed Discriminant

Permanent Let A = (a;) be ann x n matrix. The number

perA) = Z l—[aio(i),

ce§ i=1
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where §, is the symmetric group on elements, is called the permanent/AfFor a
0, 1 matrix A, perA) counts the number of perfect matching€dnthe bipartite graph
represented b.

Itis #P-hard to compute the permanent of a nonnegative (ey&hratrix [26], and
so it is unlikely to be efficiently computable exactly for all matrices. The realistic goal,
then, is to try and the permanent efficiendlgproximateas well as possible, for large
classes of matrices.

How well can the permanent be approximated in polynomial time? The first efficient
probabilistic algorithm that provides &%’ -factor approximation for the permanent of
a general nonnegative matrix was obtained by Barvinok in [6] and [7].

A deterministic strongly polynomial algorithm also achievirff"2-factor approxi-
mation (with a worse constant in the exponent) for arbitrary nonnegative matrices was
constructed in [21]. The algorithm usestrix scalingto reduce the problem to estimat-
ing the permanent of a doubly stochastic matrix. For these matrices the permanent is
known to lie in the intervalii! /n", 1], and this solves the approximation problem. We
recall that the lower bound @it /n" on the permanent of a doubly stochastic matrix was
conjectured by van der Waerden and proven by Egorychev [11] and Falikman [12] 50
years later. (A slightly weaker, but sufficient for the purposes of [21], bourd'bivas
proven by Friedland [13]).

Recently Jerrum et al. [18] produced an efficient polynomial-time probabilistic al-
gorithm that approximates the permanent extremely tightly)factor), essentially
solving the permanent approximation question.

Mixed Volume LetK;--- K, be convex bodies in the Euclidean sp&feand letV (-)

be the Euclidean volume R". It is well known (see for instance [25]) that the value of
V(1K1 + -« 4+ AnKy) is a homogeneous polynomial of degrean nonnegative vari-
ablesi; - - - Ap, Where “+” denotes the Minkowski sum, andK denotes the dilatation
of K with coefficienti. The coefficientvV (K1---K,) of A1 - Ao+ --- - A, is called the
mixed volumef K - - - K. Alternatively,

an
VKi---Ky)= —— V(K <o AnKp).
(Kz n) TN MKy + -+ 2nKp)

The mixed volume is known to be monotone [25], namiélyC L;, fori = 1,...,n,
impliesV(K1---Kp) < V(L1---Ly). In particular, it is always nonnegative.

The problem of computing the mixed volume of convex bodies is important for
combinatorics and algebraic geometry [9]. For instance, the number of toric solutions to
a generic system af polynomial equations o@" is equal to the mixed volume of the
Newton polytopes of the equations.

This problem is also R-complete, since volume is a special case of mixed volume,
and computing the volume isRtcompleté [8]. Therefore, the reasonable goal, once
again, is to seek approximate solutions.

1 n fact, as one of the referees has pointed out, mixed volume generalizes permanent. This happens when
the bodieX; - - - K,; decompose as sums of c@fivaq ), whereg is theith standard unit vector.
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Efficient polynomial-time probabilistic algorithms that approximate the mixed vol-
ume extremely tightly ((18)-factor) were developed for some classes of well-presented
convex bodies [9].

How well can the mixed volume be approximated in polynomial time? The first
efficient probabilistic algorithm that provides aR™ -factor approximation foarbitrary
well-presented propérconvex bodiesvas obtained by Barvinok in [6].

The question of the existence of an efficideterministicalgorithm for approximat-
ing the mixed volume of arbitrary well-presented proper convex bodies with an error
depending only on the dimension was posed by Dyer et al. [9]. They quote a lower bound
[5] of (2(n/logn))™? for the approximation factor of such an algorithm.

Deterministic polynomial-time algorithms that approximate the mixed volume with
a factor ofn®™ were given, for certain classes of proper convex bodies, in [6] and [9].

Mixed Discriminant Let A; --- A, ben x nreal symmetric matrices. It is well known
(and easily seen) that the value of dgt?; + - - - + X, An) is @a homogeneous polynomial
of degreen in variablesx; - - - x,. The number

n
D(AL--- Ay = ﬁdeKX1A1+~“+XnAn) D
is called themixed discriminanof A; - - - A,. The mixed discriminant is known [3] to be
monotone, namely; < B, fori = 1,...,n, impliesD(A;--- Ay) < D(By---Bp).2
In particular, if the matriceg\; - - - A, are positive semidefinite, the mixed discriminant
D(A;--- Ay is nonnegative.

From now on, we assume that the matriégs - - A, are positive semidefinite.

Mixed discriminants generalize permanents: If the matriégs- - A, are diago-
nal, namelyA; = diag(byj ---by), for j = 1,...,n, let B = (). Then pe(B) =
D(A;--- Ay). It follows that computing the mixed discriminant ofpositive semidef-
inite matrices is #-hard, since it is at least as hard as computing the permanent of a
nonnegative matrix.

A positive definiten x n matrix A defines an ellipsoid iR", by settinga = {x €
R": (x, Ax < 1}. The following relation between the mixed discriminant of positive
definite matrices and the mixed volume of ellipsoids was established in [6]:

3702y DY2(ATE AT < V(Ea, oo En) < unDYAATT-ATH. (2

Herev, is the volume of the unit ball iR".

Recall, that for any convex bodi in R" there exists [19] an ellipsoidk, such
that (after translating its center to the origif)) € K < n&k. For a well-presented
convex bodyK an ellipsoid€y such thatty, < K <€ ny/n+ 1&; can be constructed
efficiently [15].

Barvinok [6], [7] gives an efficient polynomial-time probabilistic algorithm for ap-
proximating the mixed discriminant of positive semidefinite matrices with £%-
factor. Using the relations between the permanent, the mixed discriminant and the mixed

2 Recall that a convex body R" is properif its interior is not empty.
3 Here and henceforth the signdenotes the partial ordering induced by the cone of positive semidefinite
matrices, namelA < B iff B — Ais positive semidefinite.
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volume of ellipsoids (and the fact that every well-presented convex body can be effi-
ciently approximated by an ellipsoid), he obtains approximation results for the permanent
and the mixed volume.

Apartfrom their ties to permanents and mixed volumes, mixed discriminants also have
independent applications to computationally hard problems of combinatorial counting,
such as counting the “coloured spanning trees” [7].

1.2. Our Results

We achieven"/n! ~ e "-factor polynomial-time approximation of the mixed discrimi-
nantdeterministically

Theorem 1.1. There is a function f such that

nn
D(A1---An) < F(Ar--- Ag) < o D(Ar--- An)
holds on every n-tuple of positive semidefinitem matrices A The function f is com-
putable in time polynomial in n andg v, wherev is the maximal binary representation
length of the entries of A - - A,.

Similarly to [6], we obtain mixed volume approximation results, using Theorem 1.1, (2)
and the efficient approximation of convex bodies by ellipsoids.

Theorem 1.2. There is a function g such that
V(Ky-- Kp) < g(Kp--- Kp) <n®™.V(Ky - Kp)

holds on every n-tuple of proper well-presented convex bodiaés K". The function g
is computable in time polynomial in n and the presentation size of the bodies

Our approach to this problem follows the approach of [21]. In short, we reduce the
question of approximating mixed discriminants retuples to that of approximating
mixed discriminants on a smaller class adubly stochastic ftuples. The reduction
technique isn-tuple scaling We then use bounds on the mixed discriminant of dou-
bly stochastin-tuples to obtain the desired approximation. We remark that the tight
upper bound of 1 is trivial, while the tight lower bound oif/n" is a generalization
of the Egorychev—Falikman theorem. This bound was very recently proved by the first
author [16].

Definition 1.3. LetA = (A;--- Ay) andB = (B; - -- B,) be twon-tuples ofn x n
matrices. The tuplB is ascalingof A if there is a vectok € R" and twon x n matrices
T1, To, such thaB; = x; TiA T,, foralli =1,...,n.

An important property of scaling is that we know how it changes the mixed
discriminant.
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Lemma 1.4.

D(B) = X - detT, - detT, - D(A).

n
i=1

Proof. The claim easily follows from the definition of the mixed discriminant and the
multiplicative property of the determinant: détB) = det(A) det(B). O

Definition 1.5[3]. An n-tuple A = (A;--- A,) of positive semidefinite matrices is
doubly stochastic if

Vi, Tr(A) =1 and qu:l. )

| is the identity matrix here and from now on.

Definition 1.6. Let A = (A;--- Ay) be ann-tuple of n x n positive semidefinite
matrices. A positive vectox € R" and a positive definite x n matrix S arescaling
factors of A if the n-tuple B = (B;--- B,) given by Bi = x; SY2A;SY2 is doubly
stochastic,

So far we have given a very “small scale” overview of things. In the next subsection
we go into details.

1.3. An Overview of the Mixed Discriminant Approximation Algorithm
¢ \We define a notion of &ully indecomposablauple,

Definition 1.7. An n-tuple A = (A1, ..., Ay of positive semidefinite
n x n matrices isfully indecomposablé forall SC {1,...,n},0 < |§] < n,
Rank} ;. A) > |S.

and show a reduction of the problem to the case of fully indecomposable tuples.
This is done in Section 2.

o We show that the problem of the existence and computation of scaling factors for
an indecomposable tuple can be translated to determining whether an explicitly
given convex function obtains a minimum over a specific convex set, and to finding
this minimum. We deduce the existence (and uniqueness) of scaling factors for an
indecomposable tuple. This is done in Section 3.

e We give an approximate solution of this convex optimization problem using the
Ellipsoid method.

This, together with Lemma 1.4, reduces the problem to the case of doubly
stochastic tuples. This is done in Section 4.

4 HereSY/2 is the unique positive semidefinite matrix whose squa® is
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Remark 1.8. Matrix scaling and, we believey-tuple scaling as well, are im-
portant problems, even without their ties to permanents and mixed discriminants.
Matrix scaling problems were solved via a convex programming approach in [20]
and, in a more general setting, in [22].

A principal step in establishing complexity bounds for a convex programming
approach is to get an a priori bound on a solution, i.e., an upper bound for the
variation of the convex function on an ellipsoid which contains a solution, and this
was the main technical part of both [20] and [22]. Itis interesting that the notion of
a mixed discriminant enters naturally in obtaining the corresponding upper bound
in our case (Lemma 4.1).

e We conclude by applying the bounds on the mixed discriminant of doubly stochastic

tuples.

The following four theorems correspond to the four clauses above.

Theorem 1.9. LetA = (Aq,..., Ay) be an n-tuple of positive semidefinite matrices
with a positive mixed discriminanThen there is an integet < k < n, a positive
constant ¢ and fully indecomposable tupls - - B¢ of positive semidefinite matrices
such that

k
DA)=c-[]D(®By.
s=1
The tuplesB; - - - By and the constant ¢ can be found in polynomial time

Theorem 1.10. LetA = (Ay,..., Ay) be a fully indecomposable n-tuple of positive
semidefinite matriceThen

1. There exist scaling factors x and S such tht = (x;SY2A;SY2, ...,
Xn SY/2 A, SY2?) is doubly stochastic

2. Let there be two pairs of scaling facto¢g, S) and (x’, S) for A, and assume
a normalization[[_; % = [[(_;x = 1. Then x = x/ forall 1 <i < n and
S =S

Definition 1.11. Let A = (A;--- A,) be ann-tuple of n x n positive semidefinite
matrices. A positive vectox € R" and a positive definita x n matrix Saree-scaling

factorsfor A, if the n-tupleB = (By - - - By), given byB; = x; SY2A; S¥2, is e-doubly
stochasticnamely

> (@r(B) — 1)% < £ 4
i=1
and

ZBi=I. (5)
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Theorem 1.12. LetA = (Aq,..., Ay) be a fully indecomposable n-tuple of positive
semidefinite ix n matricesLete > 0 be a required scaling accuracyhene-scaling
factors X - - - x; and S for A can be found in

o (s (™)

arithmetic operationsHerev is the maximal binary representation length of the entries
in A;--- An. Moreoverif X1 - - - X, and S are the proper scaling factors far then

detS.

n n n

X, < detS - Hx{ < (1+ £?) detS- Hxi.
i=1 i=1 i=1
Theorem 1.13[16]. LetA = (Aq,...An) be a doubly stochastic n-tuple of positive
semidefinite rx n matrices Then

n!
— <DA) =<1 (6

nn

Theorem 1.1 follows by combining Theorems 1.9, 1.10, 1.12 and 1.13.

1.4. Corollaries

The following result is proved in Section 5. It is an easy by-product of Theorems 1.9,
1.10,1.12 and 1.13.

Theorem 1.14. Let Ay, ..., Ay be nx n positive semidefinite matrices and let*
r, > --- >r, > 0 be positive real numbersuch that for any k-set C {1---n} the
matrix A, = ) ;., A has at least k eigenvalues greater than or equaktdhen

n =~
D(A;--- Ay > m-grk. ©)

We use this theorem to prove two corollaries of a combinatayedmetric flavor.

The first proposition is a straightforward attempt to obtain a similar statement for
mixed volumes. Ak-dimensional sectiof a set inR" is its intersection with &-
dimensional affine subspace.

Proposition 1.15. Let Ky, ..., K, be proper convex bodies R" and let s> 0 be
a real numbersuch that for any k-set € {1---n} the body A = > ,_, A has a
k-dimensional section containing a translation of Bx. Here B is a k-dimensional
Euclidean unit ballThen

M(Ky---Kp) > (Q(snm>2)". (8

The second claim generalizes a theorem of Rado, which states faatilies of
vectorsU; - - - Uy in R™ have a linearly independent transversal (namely a choice of
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vectorsu; € Uy, ..., uy € Uy such that; - - - u, are linearly independent) iff for any
a C {1---n}the family| J;., Ui contains|«| independent vectors.

Theorem 1.16. Let U;---U, be n families of vectors iR" and lete > 0 be a real
numbey such that for any k-sat < {1---n} the family U, = |, Ui contains k
vectorsvs - - - vk With

Voly([vs - - - w]) > k.

Here [vy - - - vy] is the k-dimensional box spanned by - - vk, and Vol denotes the
k-dimensional volumé et the maximal length of a vector [, U; be bounded by.

Then there is a choice of vectors @ Uy, ..., u, € U, such that
1 \"2 2 £\ n(+1)/2
i L2 (2 A
Voln([vy -+ vil) = <e1/2n> 22 (2) e ©

2. Reduction to the Fully Indecomposable Case

We start by quoting two properties of the mixed discriminant. First, another representa-
tion [3]:

D(A1..... A) = ) _ det(A,), (10
e,

whereA, is then x n matrix whosd th column is theth column of A, ).
Next, a positivity criterion.

Theorem 2.1[24]. LetA = (A4, ..., Ay) be an n-tuple of positive semidefinite ma-
trices Then the following two conditions are equivalent

1. D(A) > 0.
2. Foralla € {1,...,n},0 < || < n,Rank};_, A) > |a].

Now we proceed with the proof of the main result of this section, Theorem 1.9.

First, we point out that one can check in polynomial time whether the mixed dis-
criminant of a givem-tuple of positive semidefinite matrices vanishes. (Recall that it is
always nonnegative.)

Lemma 2.2. Let A be an n-tuple of positive semidefinite matricElere is a poly-
nomial-time algorithm which decides whethetA) = 0or D(A) > 0.

Proof. We follow the argument of [9, Theorem 8] that solves a similar problem of
determining whether a mixed volume mtonvex well-presented bodies is zero.

LetE; = {ail, ..., &"} bethe setof columns d; . Recall that for positive semidefinite
matricesA, B it holds that IM{A + B) = Im(A) + Im(B), and, therefore, for any
o € {1---n}itholds that I}, _, A)) = SpanlJ;., Ei). Theorem 2.1 implies then
that D(A) > 0 iff forany « € {1---n} the setl J,_, Ei has at leasla| independent
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vectors. By a theorem of Rado, this is true if and onh\Ei- - - E, have a linearly
independent transversal.

Consider two matroids on the ground &t= | ', E;. The firstis the linear matroid
in which the independent sets are the linear independent subdet3 bé second is the
transversal matroid, the bases of which are the transversals of the family. ., E,}.
To determine whethég; - - - E, have a linearly independent transversal, we have to solve
a 2-matroid intersection problem. Since the complexity of this problem is known [10] to
be polynomial, we are done. O

Proof of Theoren1.9. If A is a decomposable-tuple with a positive mixed discrim-
inant, then there exists C [n], with Rank(}; _, A)) = |e|. Our first step is to find a
minimal nonempty sed with this property, or to decide that is indecomposable, in
which case we are done. For this purpose we consitier 1) auxiliary n-tuplesAl,
whereAl is obtained fromA by substitutingA; instead ofA;. Let Dj = D(A"). We
define am x n matrix Z by Z; = 0 if Dj = 0, andZ;; = 1 otherwise. By Lemma 2.2,
the matrix Z is constructible in polynomial time. The next lemma explains how this
matrix highlights the sets we are looking for.

Lemma 2.3. Let@d # o C [n]. The following two statements are equivalent

1. Rank} ., A) = |a|, and « contains no proper nonempty subsets with this

property
2. Zj=1foralli, j exand Z; = 0foralli exand j ¢ «.

The proof of this lemma is essentially the same as that of Lemma 3.3. We refer to the
forthcoming proof of that lemma.

ConsidefZ as an adjacency matrix of adirected gr&b- ([n], E),wheree=i — |
belongs tcE iff Z; = 1. Fori € [n], letW,; be the set of points i which can be reached
fromi. Lemma 2.3 implies that is a minimal set with the property Ra(X; ., Ai) = |«]
iff, for any i € @, W, = « holds, and, moreoveg; is a clique ofG. We compute the
setsW; for alli € [n] and check whetheW is a clique. If it holds for some € [n] and
W, C G, we setx = W, otherwiseA is indecomposable and we are done.

LetS= ), A andletX = Im(S). Letwy, ..., vc be an orthogonal basis of, and
letvy, ..., v, be its completion to an orthogonal basisRSY. LetU be then x ¢ matrix
with columnsuy, . . ., vec and letU + be then x (n—c¢) matrix with columnsic, . . ., vp.
We setB, = U'AU fori € o, andA; = (UL)' AU for j ¢ «. Then:

Lemma 2.4.

D(Aq, ..., Ay = D((B)ica) - D((A))jga)-

1
H?:]_(vi >, Ui )

Proof. LetV be the matrix with column® - - - v,. Clearly, detvV) = detV') =
[T, /{vi, vi). By Lemma 1.4, we havB (A; - - - Ap) =(1/ [T (vi, vi) D(VIALV - -
V'A,V). Observe that, for € o, the matrixV' A,V is zero everywhere, but oncax ¢
upper left submatrix, and this submatrixBgs. Observe also that, for ¢ «, the lower
right (n — ¢) x (n — ¢) submatrix ofV' A}V is preciserA,-. Using representation (10)
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of the mixed discriminant, it is not hard to see that in sych a case the mixed discriminant
decomposeD (VI AV - - VIAV) = D((Bi)ica) - D((A)j¢a)- O

Now we proceed inductively (on dimension) with tire— c)-tuple(Aj )j¢«- We point
out that the minimality ofr implies the indecomposability of the tupl8; )i <, .

It remains to estimate the cost that we pay for decomposingrthpleA. We perform
O(n) steps. In each of these steps the heaviest part by far is constructing the 0—1 matrix
Z, which entails checking (n?) mixed discriminants for being zero. The total cost is,
therefore, polynomial, and we are done. O

The only thing which has yet to be pointed out is that the representation length
v; of the component®; is not much greater than the representation lengtif A.
Indeed, in the course of the decomposition procedure the representation length increases,
essentially, only in construction of orthogonal bases. A moment’s reflection gives that
the multiplicative factor of the increase is at most exponehitaih.

Remark 2.5. We call ann-tuple A = (A;--- A,) of positive semidefinite matrices
scalableif it has a doubly stochastic scaling. The preceding proof provides a nice char-
acterization of scalabilitythe n-tupleA = (A; - - - A,) of positive semidefinite matrices
is scalable if and only if the matrix Z= (sign(D(Al))) is symmetric

Indeed, itis not hard to see that (in the notation of the proof) the magris symmetric
if and only if there is &-partition{1---n} = C; U C, U - U C of the interval, such
that the subspacess .= Im(Ziecs A),s=1..-.k, decompos&" into a direct sum
of orthogonal subspaces. Moreover, for alkls < k, the tupleBs is a projection of
(A)iec, Onto X.

It follows that scaling factors fok can be obtained as an appropriate “concatenation”
of the scaling factors foB; - - - By.

On the other hand, assumehas a doubly stochastic scaling, andBebe a corre-
sponding doubly stochastic tuple. Then cleatly= Zg. It is not hard to check that for
a doubly stochastic tuple the matiZxis symmetric, and the claim follows.

3. A Convex Minimization Problem. Existence and Uniqueness of
Scaling Factors

Given ann-tuple of positive semidefinite matrices, we now define a convex function
whose minima correspond to the scaling factors of the tuple.

Definition 3.1. LetA = (A;--- Ay) be ann-tuple of positive semidefinite matrices.
We define

f&r, ..., &) = fa(€r, ... &) = logdel€ A + - + €M A).

5 Note that, since our scaling algorithm runs in time logarithmic in the representation length, this increase
is tolerable.
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Lemma 3.2. The function f is a convex function &%, and ifA is fully indecompos-
able then f is strictly convédon the hyperplane H-{€ = (&1, ..., &) eR" | Y. & =0.

Before proving this lemma we introduce a lemma and a definition which attempt to
“quantify” the indecomposability of. Consider once again timgn — 1) n-tuplesA,
whereA! is obtained fromA by substitutingA; instead ofA;. Let Dy = D(AY).

Lemma 3.3. Ais indecomposable if and only ifyD> O for all i, j.

Proof. Assume first thah = (Ay, ..., A,) is indecomposable. We claim that for
any 1 < i # j < nthe tupleAl = (A,,..., A satisfies property 2 of Theo-
rem 2.1, and therefore its mixed determinant is positive. Indeed Iet {1---n}.
Then Ranky_, g A) > Rank(} g j; A« = IR], by the indecomposability o&.

In the other direction, leA = (Aq, ..., Ay) be a decomposable tuple, namely for
some subseR C {1---n}, the inequality Rank_, .r A) < |R| holds. Leti, j be a
pair of indices such thate Randj ¢ R, and consider the tuple') = (A7, ..., A)).

We claim thatD (All) = 0. Indeed,

Rank( > Af() = Rank(z Ak) <IRI+1=|RU{j}I,

keRU{j} keR
which, by Theorem 2.1, implieB (Al) = 0. O
Lemma 3.3 suggests the following quantitative measure of indecomposability:
Definition 3.4. Set

M= M, = m|n Dij.
i#]

Proof of Lemma&.2. By definition, the coefficient okyx; - - - X, in the polynomial
detx Ay + - - - + Xn An) is the mixed discriminanD (A; - - - Ap). It turns out [3] that
all the coefficients of this polynomial can be expressed through mixed discriminants.

Letry, ..., ry be nonnegative integers addingntoThen the coefficient oi{l -- e X[ is
equal to
1
t=—— DA A A A ] (11
r n
We denote the set af-tuplesr =ry, ..., r, of nonnegative integers summingndy

P,. In this notation

f(&r, ..., &) = logdel(e A, + - - + €A, = Iothre@*”,

reb,

6 Namely, for allg, £/, and O< A < 1, it holds thatf (A& + (1 — L&) < AT (&) 4+ (1 — 1) f(&)).
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where the coefficients are nonnegative, since they are given by a mixed discriminant
of positive semidefinite matrices multiplied by a multinomial coefficient, gnds the
usual inner productiR". Itis well known [2] that the right-hand side represents a convex
function of&. Nonetheless, we provide another proof of this fact, which will also imply
that f is strictly convex orH if the tuple A; - - - A, is indecomposable.

Let g(¢) = det(€rA; + --- + & A,), namely f = logg. To show thatf is con-
vex we have to show that its Hessiartf is positive semidefinite. Clearlyy?f =
(1/g9)(gvD) — (v9)(v9)"). Therefore, we have to shogrv?g = (vg)(vg)'. For
two vectorsv, w € R", let v ® w denote the matrixwf. Note thatv ® v is positive
semidefinite. Observe that for anye R" it holds thatye?) = eV .y andy?eé-V) =
ev . v ® v, and therefore

av) — (vO(VY' = Y e . Y tefIs@s— Y tte r@s

rebP, seP, r,seP,
1
=5 Z tte S —s) ® (r —s) > 0, (12)
r,seP,

implying the convexity off .

Now, assume the tuplg,, . .., A, to be indecomposable. Recall thaf is the mixed
discriminant of then-tuple obtained fron{Ay, ..., A,) by replacingA; with A, and
thatM = min;.; Dj is positive. In the notation of this lemmBy; is just 4, , wherer;
is the vector with 1 in every coordinate butj, and with 2 in theith and 0 in thejth
coordinates. We now continue the computation from (12):

1
2 (. r+s)
vt = z—gzrsz: t e —s) @ (r —s)
,sePy
1 )
= 8_g2 Z Dij Dkle@,l’u +rkl>(rij ) ® (rij —r)
i#]j,k#l
cM?
z 82 Z (rij — ra) @ (rij — re),
i#] kA
where the last summation is over distinct indideg, k,|. Herec = c(§) =

Min; 2j 4k €5117K . Let g be theith unit vector, and leE; be then x n matrix
with 1 in the(i, j)th coordinate and O everywhere else. Then

rj—r)@jj—ra) = (@ —¢g—-&+a8)dE —¢ —&+8a)
= Ej + Ej + Ex+ Ey
+ 2(Ej + Ex — Ej — Ex — Ej — En).
Let

S= Z [Ei + Ej + Ex+ En + 2(Ei + Ex — Ej — Eix — Ej — Ew)].
i #kA
Finding S might seem like a mess, but actually it is not. By symmetry considerations,
the entries ofS have only two distinct values, on the main diagonal and every else, and
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moreover they sum to zero. Therefore, we only have to find the tra& afd this
is easily seen to bén), = n(n — 1)(n — 2)(n — 3). Accordingly,§; = (n — 1)3 =
N-—DH(n—-2(n—-3)andS; = —(n—2)(n—3) fori # j. Note thatSis simply the
orthogonal projection on the hyperplairk = {§ = (&1,....&) € R" | Y & = 0},
multiplied by (n — 1)3.
Therefore, the projection of?f onto H is greater than or equal {@M? - (n —

1)3/8g%) - In_1, wherel,_1 is an(n — 1) x (n — 1) identity matrix, implyingf is strictly
convex onH. O

Lemma 3.5. Foranyé € R", the gradient(v f )¢ of f até is (Tr(ef SY2A SY2)_,,
where S= 3L, € A) L.

Proof. Recall that the gradierit; log det-))g of f at a nonsingular matriB is just its
inverse transposeB~1)! . Therefore, takingd = (3|, € Aj), and using the Chain
Rule, we get that

af B
e = <(v log det))s) <3—

t
0§ ) ) =Tr(Sé A) = Tr(e"SY?ASY?). O

Lemma 3.6. Apoint&* isaminimum of f on H ifand only if the gradieptf até*isa
constant multiple of1 - - - 1), the vector of all onedn addition (v f)g- =c- (1---1) if
andonlyifx = €,i =1,...,n,and S= (3|, & A)~1, arethe scaling factors fok;
namely the n-tupléx, SY2A;SY? . - . x,SY2 A, SY?) is doubly stochastidn particular,
c=1.

Proof. The first claim: Sincef is convex£* is a point of minimum forf on H if and
only if (v f)e- is a convex combination of the gradientst&tof the defining equations
for H.

The second claim follows immediately from the first claim and Lemma 3.5. O

The value ofM = min;.j D;; plays a key part in the following lemma as well.

Lemma 3.7. Let& € H be such that &) < f(0), then

2de(A; + -+ Ay)
M .

I€ll2 < n*?-log
Proof. Leté& be a pointinH with f (&) < f(0) = logdet{A; + --- + An). Then, in
the notation of the proof of Lemma 3.2,

det(Ar 4 -+ Ay > detl€ Ay +---+ €A

1 . ,
— Ztreﬁﬂ > > Z Dije<€’rlj> > %M Ze@,ﬁj)
i#]

rebP, i#]
2 %MemaX# $I7$] Z %MeHéHx

The last two inequalities usg; & = 0, which, in particular, impliegs, ry) = & — §.
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Therefore,

2de(Ar+---+ Ay)

I€ll2 < n¥2 . |I€]lo < n¥?.log =

O

Theorem 1.10is a simple consequence of Lemma 3.6 and the following lemma which
describes the behavior of minima éfon H.

Lemma 3.8. The function f attains a unique minimum on the hyperplane H

Proof By Lemma 3.2,f is strictly convex onH. Therefore, the minimung*, if
attained, is unique. On the other hand, by Lemma 3.7, the minimuiaf H is the
minimum of f on a ball with finite radius. Since this ball is compact, the minimum is
attained. O

Remark 3.9. We observe that, in the notation of Lemma 3.6,

f(£*) = logde(€f i Ay +--- + € A,)

1
|Og de(S_l) e |Og (W)
i=1"

is the (log)product of the scaling factors ok. NamelyD(A) = e’ ¢ . D(B), where
B = (x1SY?A;SY?. .. x,SY? A,SY?) is doubly stochastic.

4. Finding the Minimum

In the previous section we have seen that finding the point of minimum of the function
f = fa onthe hyperplanél is equivalent to computing the scaling factorg®ofThis is
interesting if we want to scalk. We have also seen that finding the value of the minimum
is equivalent to computing the product of the scaling factor& .ofhis is sufficient for
reduction of the mixed discriminant approximation problem to the doubly stochastic
case. In this section we solve both questions. The solutions will be approximate, but
with an arbitrary degree of precision.

Ourmaintoolis the following property of the ellipsoid algorithm [23]: For a prescribed
accuracys > 0, it finds as-minimizer of a continuous convex functiohin a ball B,
that is a pointx; € B with f (x5) < ming f + §, in no more than

0 (n2 In (%ars(f))) , Varg(f) = mBaxf - mEEn f, (13

iterations. Each iteration requires a single computation of the value and of the gradient
of f at a given point, plu©(n?) elementary operations to run the algorithm itself. In
our case, this is easily seen to cost at n@&h®) elementary operations.

Recall, that the radiuR of the ballB is given by Lemma 3.7R < n%/2.log(2 det A; +
o4 Ag)/M).
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Lemma4.1.
Varg(f) < O(n*?(v + logn)),

wherev is the binary representation length of entriesAn

Proof. We may, without loss of generality, assume that all the matiigaa A have
integer entriesNote that since the binary representation length of entridsigw, the
maximal size of an entry does not exceédiy (10), sinceM is greater than zero, itis at
least one. On the other hand, by Hadamard'’s inequalitgAdet - - - + An) < (n2")" =
n"2"". Therefore R < n%? . logn"2"" = n*?(v + logn).

We conclude that maxf < log(eRdet(A; + - -- + Ay)) < O(n¥2(v + logn)).

On the other hand, the proof of Lemma 3.7 demonstrates that, fog aayH,
f(&) > log(M/2) > —1 holds. Therefore,

Varg(f) < O(n®?(v + logn)). O

Proposition 4.2. LetA = (A4, ..., Ay) be afullyindecomposable n-tuple of positive
semidefinite matriceand let0 < ¢ < 1.Let& be an(¢?/10)-minimizer of f on HThen

xi =€, fori =1,...,n,and S= 3\, € A)~! scaleA to ane-doubly stochastic
tuple

Proof. Let&* be the minimizer off on H. Lets := ¢2/10 andA| := SY/2e A SY/2,
Since, by definition) [, A’ = I, we only need to prove that_, (tr(A)) — 1) < 106.

We prove the proposition by a sequence of easy reductions to simpler cases. First we
show that, in effect, we may assurds doubly stochastic. We know that

log de(e’i Ay + - -- + €7 Ay)

IA

log de(e Ay + - -- + e Ay)
logdet€i Ay + - + € A,) + 6.

A

Taking exponents and observing that, for a sthadf < 1+ 26 holds, we get

det @i Aj+---+€ Ay <det €A+ - -+ Ay) <detlet A+ - -+e" Ay)- (1+28).

SettingS* = (Y, € A)7L, B = (SHY2E A (SH)Y? and(Af) = & — &7, we get
1< dete¥1By +--- +€“"By) < 14 26. (14

Observe thaB = (B, ..., B,) is a doubly stochastic tuple, by Lemma 3.6. Foe
1,...,n let B = (S)¥2e29i B (S)¥2, whereS := (Y., @9 B)~L ThenB =
U'AU, whereU = SY2(S")Y2(S)Y/2 is an orthogonal matriX.Clearly, t(B) =
tr(A), and) L, B/ = Y | A\ = |. Therefore, the claim of the proposition amounts
to proving

Z(tr(B{) —1)2 < 105.
i=1

7 We prove this: Observe the§ = (Zin=1 eAdig)—1 = (S*)*l/ZS(S*)‘%. ThereforeUU! =
31/2(5*)1/251(5*)1/251/2 — gl/Zssl/Z = 1.
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Next, we move from positive semidefinite doubly stochastiaples to an easier case of
doubly stochastic matrices. L be an orthogonal matrix such that SW is diagonal,
namely the columnay, ..., w, of W are eigenvectors &' Letb; = (wj, Biwj). Then
the matrixB = (by) is doubly stochastic, and (14) reduces to

n
1<[]®yi <1+2s, (15)
i=1
wherey € R" is given byy; = e%)i, for j = 1,..., n. Note that
n *
[[y=e"2%=1 (16)
j=1

Our claim amounts to showing, givéis doubly stochastic, (15) and (16), that the matrix
C = (cj) = (bjy;/ Yk_1 biYk) is e-doubly stochastic. Clearlg is row-normalized.
Settingc; = Y_i_; Gj to be the column sums &, we have to shoy " (¢; — 1)* <

¢®. Note that)"' ; ¢; = n. We claim that, sinceB is doubly stochastic[][_; ¢; >
[Ti—1 v/ TTi=1(By)i = 1/(1425) > 1—25. Only the firstinequality has to be justified.
Writing C = diag(1/(By)i) - B - diag(y;), we obtain]_[?:l ¢ = ]_[?=l Y - [T (xB)i,
where we have set = 1/(By);. It remains to use a well-known [4, p. 150] property
of doubly stochastic matrices: for a nonnegative vestdr holds that[]"_,(xB); >

[T
Now we are in a familiar situation. Lemma 3.10 of [21] states that for nonnegative
numberszy, ..., z, summing ton, and for a sufficiently smalh (0 < A < lio is

enough), ) \_;(z — 1> = A = [[{_;z < 1 - A/3 holds. We deduce that in our
case

n
(¢ — 1)? <65 < ¢&?
j=1

J

and we are done. O

Theorem 1.12 follows from Lemma 4.1, Proposition 4.2 and the described properties
of the ellipsoid method.

5. Corollaries
5.1. Proof of Theorem..14

Proof. By a perturbation argument, it suffices to prove the theorem for fully indecom-
posablen-tuples. So from now on we assume tiats indecomposable. We will show
that the product of the scaling factorsAfis at leas |, ri. This, by Theorem 1.13,
will complete the proof.
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By Remark 3.9, it suffices to show that for ary- --x, > 0 with [T_,;x = 1 it
holds that

n
detxaAr + - + X An) = [ [ i 17
i=1
Indeed assume, without loss of generality, thatxXiseare ordered; > xo > --- > X,.
For a symmetric matrid, letA1(A) > A2(A) > --- > Ay(A) be the eigenvalues & in
descending order. We will prove the claim in (17) showing thad ", xi A) > reX,
forallk = 1,...,n. Recall, that ifA and B are two symmetric matrices anl— B is
positive semidefinite, theky(A) > A¢(B), for all 1 < k < n. This follows, for instance
from the Courant—Fischer theorem [14, p. 32]:

(X, AX)

M A) = dim?))ik xerlT,IQéO (X, x) 18

Applying this fact twice gives

n k k

Ak (ZXiAi) > Ak (in Ai) > Ak (Xk . ZA') > Xk,

i=1 i=1 i=1
proving (17) and the theorem. O
5.2. Proof of Propositioril.15
Proof. LetKj,..., K, be proper convex bodies R" and lets > 0 be a real number,

such that for ank-sete € {1---n} the body); _, K; has ak-dimensional section
containing a translation of - B,. We say, in brief, thaK; - - - K,; have ans-section
property.

Let & --- &, be the John ellipsoids of these bodies, namely (after translating the
center of& to the origin) we haveg; € K; € n&, fori = 1,...,n. We may, and
do, assume that the ellipsoids are, in fact, centered at the origin. Cléarly,&, have
ans = (s/n)-section property. Since they and their Minkowski sums are centrally
symmetric convex bodies, we can say even more: forkaggtae C {1---n} the body
Y ics & has &k-dimensional section by lnear subspace containirgj - B.

Observe also that, by monotonicity of mixed volugg; - - - £,) < V(Ky--- Kp).

Let& = {xX: (Aix, X) < 1}, whereA; - - - A, are positive definite matrices. We will
show that the matricef.ﬁii‘1 satisfy the conditions of Theorem 1.14with=--- =r, =
s?/n*. We start with a simple lemma.

Lemmab.1. Foranyxe ) ;_, & it holds that

£) o
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Proof. Writex =) ;_, Vi, where(Ajyi, yi) <1.LetC=C, =}, Ai‘l)*l. Then
C is positive semidefinite an@ < A; for alli € «. It follows that

(Cx,x) = <C<Zyi> Zy.> ZCy.,yl + Y (CyL Y

lea lea i#]

< ZCM,yl + ) (Cy. WA(CyL v
iZ]

< Z ALY+ DAY YO YA AY, )Y < el O
i%]

Fixa C {1---n}. LetU be an|x|-dimensional subspad®’ such that for anx € U
with ||x|| < s it holds that(C,x, x) < |«|?. By the Courant—Fischer theorema has
at least|a| eigenvalues< |«|?/(s)? < n*/s?, and the matrlleea Al =C ' has at
least|a| eigenvalues- s?/n*. Consequently, the matncé&; satisfy the condmons of
Theorem 1.14. Applying the theorem,

s nl

D(AIl---Agl)z%-F.

(19
Therefore, by (2),
V(Ky-Kp) > V(& - &) = 372, DY2(ATT. .. ACY > (Q(sm )"

In the last inequality we have used the fact that the volugnaf the n-dimensional unit
ballis (1//7n)(2re/nm"2(1 4+ O(n~1)). O

5.3. Proof of Theoreni.16

Proof. For ak-seta C {1--.n}, let vi(@) - - - vk(er) be vectors in(J;, Ui with
Volg([vy---w]) = &k LetV = Uycpnivi(@) v} For 1 < i < n, let
A = ) cunv v ® v. We will show that the matricesy satisfy the conditions of
Theorem 1.14 withy, = (¢2/2) - (¢/£)%.

Indeed, letx € {1---n}, with |a| = k. Let B, = Y1 ; vj () ® vj (). Then

k
A, = Z v®szvj(a)®vj(a)=Ba.

veVNUic, Ui j=1

Therefore, it is sufficient to show th& = B, has at least eigenvalues greater than or
equal tory.

Let X = Spanuvi(«) ---vk(a)). By the Courant—Fischer theorem it is enough to
consider th&k x k matrix B | X. We need a simple lemma:

Lemma5.2. Letv;--- v be abasis oR¥, and letC= v; ® v1 + - - - + vk ® vk. Then

detC = Vol?([vy - - - w]).
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Proof. The statement is immediateuif - - - vx are orthogonal. If not, IeT be a matrix
such thaflT vy - - - Tvy are orthogonal, and consideET = Z}‘zl TV, ® Ty,. O

Therefore, daB | X) > ¢2. Next, consider the trace & | X. We have T¢(B | X) =
Z}(:lTr(Uj Q) = Z}‘zl v |2 < ke2 Letrs > Ap--- Ak > O be the eigenvalues of
B | X. They satisfy

k k
[Tn = &* > h <ke (20)
i=1 i=1

Lemma5.3. Leti; > Ay > --- > A¢ be positive numbers satisfyif@0). Then

M= (£2/2) - (/O

Proof Fork = 1the claimistrivial. Assumk > 2. Leti, = 8. Then]‘[ik;ll A > e%/8
and Z:‘;ll A << ke? — 8. By the arithmetic-geometric mean inequality applied to

Apce A1,
ke2 — s\ 7t
X _ 5. .
©s (k—l)

Consider the functiorf (x) = x - (k€2 — x)/(k — 1))*~* on the interval [0k¢?]. This
function is 0 at 0 and it increases from 0 until its maximunxat ¢2. Observe that,

by definition,e < ¢, and therefore the poin?/2) - (¢/£)* is in the interval [ ¢?]

on which the function is increasing. Consequently, in order to prove the lemma, it is
sufficient to check thaff ((¢2/2) - (¢/£)%)) < ¢%. This inequality easily reduces to
2(k — 1) > k— 3 - (¢/0)*, which is, of course true. O

Now, we apply Theorem 1.14:

(%)“ . <%)n(n+1)

n 2
o [[ne= DA Ay
k=1

D( Y mev Y vn®vn>

vieUNV vheUp,NV

Z Dwi®uvi---vn®uvn) = Z Vol?([vy - - - vn)).

V1-+Un V1-*Un

The penultimate equality is based on multilinearity of the mixed discriminant. To see
the last equality, observe that definition (1) together with Lemma 5.2 by ®
V1 Un ® vp) = Aty @ vy + - - - + vp ® vn) = VOI?([y - - - vn]).

Since|V| < n2"1, the number of sequences: - - v, is at mosn"2""—Y |t follows
that there is a choice of vectors- - - v, with v; € U; NV such that

1 \"? 2 £\ N(n+1)/2
=) o2 (E e
Vol (v -+ vn)) = ( e1/2n> 22 (2) ¢
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