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Abstract. We present a deterministic polynomial-time algorithm that computes the mixed
discriminant of ann-tuple of positive semidefinite matrices to within an exponential mul-
tiplicative factor. To this end we extend the notion of doubly stochastic matrix scaling to
a larger class ofn-tuples of positive semidefinite matrices, and provide a polynomial-time
algorithm for this scaling. As a corollary, we obtain a deterministic polynomial algorithm
that computes the mixed volume ofn convex bodies inRn to within an error which depends
only on the dimension. This answers a question of Dyer, Gritzmann and Hufnagel. A “side
benefit” is a generalization of Rado’s theorem on the existence of a linearly independent
transversal.

1. Introduction

1.1. Permanent, Mixed Volume and Mixed Discriminant

Permanent. Let A = (aij ) be ann× n matrix. The number

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i ),
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whereSn is the symmetric group onn elements, is called the permanent ofA. For a
0,1 matrix A, per(A) counts the number of perfect matchings inG, the bipartite graph
represented byA.

It is #P-hard to compute the permanent of a nonnegative (even 0,1) matrix [26], and
so it is unlikely to be efficiently computable exactly for all matrices. The realistic goal,
then, is to try and the permanent efficientlyapproximateas well as possible, for large
classes of matrices.

How well can the permanent be approximated in polynomial time? The first efficient
probabilistic algorithm that provides a 2O(n)-factor approximation for the permanent of
a general nonnegative matrix was obtained by Barvinok in [6] and [7].

A deterministic strongly polynomial algorithm also achieving 2O(n)-factor approxi-
mation (with a worse constant in the exponent) for arbitrary nonnegative matrices was
constructed in [21]. The algorithm usesmatrix scalingto reduce the problem to estimat-
ing the permanent of a doubly stochastic matrix. For these matrices the permanent is
known to lie in the interval [n!/nn,1], and this solves the approximation problem. We
recall that the lower bound ofn!/nn on the permanent of a doubly stochastic matrix was
conjectured by van der Waerden and proven by Egorychev [11] and Falikman [12] 50
years later. (A slightly weaker, but sufficient for the purposes of [21], bound ofe−n was
proven by Friedland [13]).

Recently Jerrum et al. [18] produced an efficient polynomial-time probabilistic al-
gorithm that approximates the permanent extremely tightly ((1+ε)-factor), essentially
solving the permanent approximation question.

Mixed Volume. Let K1 · · · Kn be convex bodies in the Euclidean spaceRn, and letV(·)
be the Euclidean volume inRn. It is well known (see for instance [25]) that the value of
V(λ1K1 + · · · + λnKn) is a homogeneous polynomial of degreen in nonnegative vari-
ablesλ1 · · · λn, where “+” denotes the Minkowski sum, andλK denotes the dilatation
of K with coefficientλ. The coefficientV(K1 · · · Kn) of λ1 · λ2 · · · · · λn is called the
mixed volumeof K1 · · · Kn. Alternatively,

V(K1 · · · Kn) = ∂n

∂λ1 · · · ∂λn
V(λ1K1+ · · · + λnKn).

The mixed volume is known to be monotone [25], namelyKi ⊆ Li , for i = 1, . . . ,n,
impliesV(K1 · · · Kn) ≤ V(L1 · · · Ln). In particular, it is always nonnegative.

The problem of computing the mixed volume of convex bodies is important for
combinatorics and algebraic geometry [9]. For instance, the number of toric solutions to
a generic system ofn polynomial equations onCn is equal to the mixed volume of the
Newton polytopes of the equations.

This problem is also #P-complete, since volume is a special case of mixed volume,
and computing the volume is #P-complete1 [8]. Therefore, the reasonable goal, once
again, is to seek approximate solutions.

1 In fact, as one of the referees has pointed out, mixed volume generalizes permanent. This happens when
the bodiesK1 · · · Kn decompose as sums of conv(0,aei ), whereei is thei th standard unit vector.
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Efficient polynomial-time probabilistic algorithms that approximate the mixed vol-
ume extremely tightly ((1+ε)-factor) were developed for some classes of well-presented
convex bodies [9].

How well can the mixed volume be approximated in polynomial time? The first
efficient probabilistic algorithm that provides annO(n)-factor approximation forarbitrary
well-presented proper2 convex bodieswas obtained by Barvinok in [6].

The question of the existence of an efficientdeterministicalgorithm for approximat-
ing the mixed volume of arbitrary well-presented proper convex bodies with an error
depending only on the dimension was posed by Dyer et al. [9]. They quote a lower bound
[5] of (Ä(n/ logn))n/2 for the approximation factor of such an algorithm.

Deterministic polynomial-time algorithms that approximate the mixed volume with
a factor ofnO(n) were given, for certain classes of proper convex bodies, in [6] and [9].

Mixed Discriminant. Let A1 · · · An ben×n real symmetric matrices. It is well known
(and easily seen) that the value of det(x1A1+· · ·+ xn An) is a homogeneous polynomial
of degreen in variablesx1 · · · xn. The number

D(A1 · · · An) = ∂n

∂x1 · · · ∂xn
det(x1A1+ · · · + xn An) (1)

is called themixed discriminantof A1 · · · An. The mixed discriminant is known [3] to be
monotone, namelyAi ¹ Bi , for i = 1, . . . ,n, implies D(A1 · · · An) ≤ D(B1 · · · Bn).3

In particular, if the matricesA1 · · · An are positive semidefinite, the mixed discriminant
D(A1 · · · An) is nonnegative.

From now on, we assume that the matricesA1 · · · An are positive semidefinite.
Mixed discriminants generalize permanents: If the matricesA1 · · · An are diago-

nal, namelyAj = diag(b1 j · · ·bnj), for j = 1, . . . ,n, let B = (bij ). Then per(B) =
D(A1 · · · An). It follows that computing the mixed discriminant ofn positive semidef-
inite matrices is #P-hard, since it is at least as hard as computing the permanent of a
nonnegative matrix.

A positive definiten× n matrix A defines an ellipsoid inRn, by settingEA = {x ∈
Rn: 〈x,Ax〉 ≤ 1}. The following relation between the mixed discriminant of positive
definite matrices and the mixed volume of ellipsoids was established in [6]:

3−(n+1)/2vn D1/2(A−1
1 · · · A−1

n ) ≤ V(EA1 · · · EAn) ≤ vn D1/2(A−1
1 · · · A−1

n ). (2)

Herevn is the volume of the unit ball inRn.
Recall, that for any convex bodyK in Rn there exists [19] an ellipsoidEK , such

that (after translating its center to the origin)EK ⊆ K ⊆ nEK . For a well-presented
convex bodyK an ellipsoidE ′K such thatE ′K ⊆ K ⊆ n

√
n+ 1E ′K can be constructed

efficiently [15].
Barvinok [6], [7] gives an efficient polynomial-time probabilistic algorithm for ap-

proximating the mixed discriminant ofn positive semidefinite matrices with a 2O(n)-
factor. Using the relations between the permanent, the mixed discriminant and the mixed

2 Recall that a convex body inRn
is proper if its interior is not empty.

3 Here and henceforth the sign¹ denotes the partial ordering induced by the cone of positive semidefinite
matrices, namelyA ¹ B iff B− A is positive semidefinite.
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volume of ellipsoids (and the fact that every well-presented convex body can be effi-
ciently approximated by an ellipsoid), he obtains approximation results for the permanent
and the mixed volume.

Apart from their ties to permanents and mixed volumes, mixed discriminants also have
independent applications to computationally hard problems of combinatorial counting,
such as counting the “coloured spanning trees” [7].

1.2. Our Results

We achievenn/n! ≈ e−n-factor polynomial-time approximation of the mixed discrimi-
nantdeterministically.

Theorem 1.1. There is a function f such that

D(A1 · · · An) ≤ f (A1 · · · An) ≤ nn

n!
· D(A1 · · · An)

holds on every n-tuple of positive semidefinite n×n matrices Ai . The function f is com-
putable in time polynomial in n andlogν, whereν is the maximal binary representation
length of the entries of A1 · · · An.

Similarly to [6], we obtain mixed volume approximation results, using Theorem 1.1, (2)
and the efficient approximation of convex bodies by ellipsoids.

Theorem 1.2. There is a function g such that

V(K1 · · · Kn) ≤ g(K1 · · · Kn) ≤ nO(n) · V(K1 · · · Kn)

holds on every n-tuple of proper well-presented convex bodies Ki in Rn. The function g
is computable in time polynomial in n and the presentation size of the bodies.

Our approach to this problem follows the approach of [21]. In short, we reduce the
question of approximating mixed discriminants ofn-tuples to that of approximating
mixed discriminants on a smaller class ofdoubly stochastic n-tuples. The reduction
technique isn-tuple scaling. We then use bounds on the mixed discriminant of dou-
bly stochasticn-tuples to obtain the desired approximation. We remark that the tight
upper bound of 1 is trivial, while the tight lower bound ofn!/nn is a generalization
of the Egorychev–Falikman theorem. This bound was very recently proved by the first
author [16].

Definition 1.3. Let A = (A1 · · · An) andB = (B1 · · · Bn) be twon-tuples ofn × n
matrices. The tupleB is ascalingof A if there is a vectorx ∈ Rn and twon×n matrices
T1, T2, such thatBi = xi T1Ai T2, for all i = 1, . . . ,n.

An important property of scaling is that we know how it changes the mixed
discriminant.
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Lemma 1.4.

D(B) =
n∏

i=1

xi · detT1 · detT2 · D(A).

Proof. The claim easily follows from the definition of the mixed discriminant and the
multiplicative property of the determinant: det(AB) = det(A)det(B).

Definition 1.5 [3]. An n-tuple A = (A1 · · · An) of positive semidefinite matrices is
doubly stochastic if

∀i, Tr(Ai ) = 1 and
∑

i

Ai = I . (3)

I is the identity matrix here and from now on.

Definition 1.6. Let A = (A1 · · · An) be ann-tuple of n × n positive semidefinite
matrices. A positive vectorx ∈ Rn and a positive definiten × n matrix S arescaling
factors of A if the n-tuple B = (B1 · · · Bn) given by Bi = xi S1/2Ai S1/2 is doubly
stochastic.4

So far we have given a very “small scale” overview of things. In the next subsection
we go into details.

1.3. An Overview of the Mixed Discriminant Approximation Algorithm

• We define a notion of afully indecomposabletuple,

Definition 1.7. An n-tuple A = (A1, . . . , An) of positive semidefinite
n × n matrices isfully indecomposableif for all S ⊆ {1, . . . ,n}, 0 < |S| < n,
Rank(

∑
i∈S Ai ) > |S|.

and show a reduction of the problem to the case of fully indecomposable tuples.
This is done in Section 2.
• We show that the problem of the existence and computation of scaling factors for

an indecomposable tuple can be translated to determining whether an explicitly
given convex function obtains a minimum over a specific convex set, and to finding
this minimum. We deduce the existence (and uniqueness) of scaling factors for an
indecomposable tuple. This is done in Section 3.
• We give an approximate solution of this convex optimization problem using the

Ellipsoid method.
This, together with Lemma 1.4, reduces the problem to the case of doubly

stochastic tuples. This is done in Section 4.

4 HereS1/2 is the unique positive semidefinite matrix whose square isS.
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Remark 1.8. Matrix scaling and, we believe,n-tuple scaling as well, are im-
portant problems, even without their ties to permanents and mixed discriminants.
Matrix scaling problems were solved via a convex programming approach in [20]
and, in a more general setting, in [22].

A principal step in establishing complexity bounds for a convex programming
approach is to get an a priori bound on a solution, i.e., an upper bound for the
variation of the convex function on an ellipsoid which contains a solution, and this
was the main technical part of both [20] and [22]. It is interesting that the notion of
a mixed discriminant enters naturally in obtaining the corresponding upper bound
in our case (Lemma 4.1).

• We conclude by applying the bounds on the mixed discriminant of doubly stochastic
tuples.

The following four theorems correspond to the four clauses above.

Theorem 1.9. Let A = (A1, . . . , An) be an n-tuple of positive semidefinite matrices
with a positive mixed discriminant. Then there is an integer1 ≤ k ≤ n, a positive
constant c and fully indecomposable tuplesB1 · · ·Bk of positive semidefinite matrices,
such that

D(A) = c ·
k∏

s=1

D(Bs).

The tuplesB1 · · ·Bk and the constant c can be found in polynomial time.

Theorem 1.10. Let A = (A1, . . . , An) be a fully indecomposable n-tuple of positive
semidefinite matrices. Then:

1. There exist scaling factors x and S such thatB = (x1S1/2A1S1/2, . . . ,

xnS1/2AnS1/2) is doubly stochastic.
2. Let there be two pairs of scaling factors(x, S) and (x′, S′) for A, and assume

a normalization
∏n

i=1 xi =
∏n

i=1 x′i = 1. Then xi = x′i for all 1 ≤ i ≤ n and
S′ = S.

Definition 1.11. Let A = (A1 · · · An) be ann-tuple of n × n positive semidefinite
matrices. A positive vectorx ∈ Rn and a positive definiten× n matrix S areε-scaling
factorsfor A, if the n-tupleB = (B1 · · · Bn), given byBi = xi S1/2Ai S1/2, is ε-doubly
stochastic, namely

n∑
i=1

(Tr(Bi )− 1)2 ≤ ε2 (4)

and
n∑

i=1

Bi = I . (5)
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Theorem 1.12. Let A = (A1, . . . , An) be a fully indecomposable n-tuple of positive
semidefinite n× n matrices. Let ε > 0 be a required scaling accuracy. Thenε-scaling
factors x′1 · · · x′n and S′ for A can be found in

O
(
n5 log

(nν

ε

))
arithmetic operations. Hereν is the maximal binary representation length of the entries
in A1 · · · An. Moreover, if x1 · · · xn and S are the proper scaling factors forA, then

detS ·
n∏

i=1

xi ≤ detS′ ·
n∏

i=1

x′i ≤ (1+ ε2)detS ·
n∏

i=1

xi .

Theorem 1.13[16]. Let A = (A1, . . . An) be a doubly stochastic n-tuple of positive
semidefinite n× n matrices. Then

n!

nn
≤ D(A) ≤ 1. (6)

Theorem 1.1 follows by combining Theorems 1.9, 1.10, 1.12 and 1.13.

1.4. Corollaries

The following result is proved in Section 5. It is an easy by-product of Theorems 1.9,
1.10, 1.12 and 1.13.

Theorem 1.14. Let A1, . . . , An be n× n positive semidefinite matrices and let r1 ≥
r2 ≥ · · · ≥ rn > 0 be positive real numbers, such that for any k-setα ⊆ {1 · · ·n} the
matrix Aα =

∑
i∈α Ai has at least k eigenvalues greater than or equal to rk. Then

D(A1 · · · An) ≥ n!

nn
·

n∏
k=1

rk. (7)

We use this theorem to prove two corollaries of a combinatorial/geometric flavor.
The first proposition is a straightforward attempt to obtain a similar statement for

mixed volumes. Ak-dimensional sectionof a set inRn is its intersection with ak-
dimensional affine subspace.

Proposition 1.15. Let K1, . . . , Kn be proper convex bodies inRn and let s> 0 be
a real number, such that for any k-setα ⊆ {1 · · ·n} the body Aα =

∑
i∈α Ai has a

k-dimensional section containing a translation of s· Bk. Here Bk is a k-dimensional
Euclidean unit ball. Then

M(K1 · · · Kn) ≥ (Ä(sn−5/2))n. (8)

The second claim generalizes a theorem of Rado, which states thatn families of
vectorsU1 · · ·Un in Rn have a linearly independent transversal (namely a choice of
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vectorsu1 ∈ U1, . . . ,un ∈ Un such thatu1 · · ·un are linearly independent) iff for any
α ⊆ {1 · · ·n} the family

⋃
i∈α Ui contains|α| independent vectors.

Theorem 1.16. Let U1 · · ·Un be n families of vectors inRn and letε > 0 be a real
number, such that for any k-setα ⊆ {1 · · ·n} the family Uα =

⋃
i∈α Ui contains k

vectorsv1 · · · vk with

Volk([v1 · · · vk]) ≥ εk.

Here [v1 · · · vk] is the k-dimensional box spanned byv1 · · · vk, and Volk denotes the
k-dimensional volume. Let the maximal length of a vector in

⋃n
i=1 Ui be bounded bỳ.

Then there is a choice of vectors u1 ∈ U1, . . . ,un ∈ Un such that

Voln([v1 · · · vn]) ≥
(

1

e1/2n

)n/2

· 2−n2/2 ·
(ε
`

)n(n+1)/2
· `n. (9)

2. Reduction to the Fully Indecomposable Case

We start by quoting two properties of the mixed discriminant. First, another representa-
tion [3]:

D(A1, . . . , An) =
∑
σ∈Sn

det(Aσ ), (10)

whereAσ is then× n matrix whosei th column is thei th column ofAσ(i ).
Next, a positivity criterion.

Theorem 2.1[24]. Let A = (A1, . . . , An) be an n-tuple of positive semidefinite ma-
trices. Then the following two conditions are equivalent:

1. D(A) > 0.
2. For all α ⊆ {1, . . . ,n}, 0< |α| ≤ n, Rank(

∑
i∈α Ai ) ≥ |α|.

Now we proceed with the proof of the main result of this section, Theorem 1.9.
First, we point out that one can check in polynomial time whether the mixed dis-

criminant of a givenn-tuple of positive semidefinite matrices vanishes. (Recall that it is
always nonnegative.)

Lemma 2.2. Let A be an n-tuple of positive semidefinite matrices. There is a poly-
nomial-time algorithm which decides whether D(A) = 0 or D(A) > 0.

Proof. We follow the argument of [9, Theorem 8] that solves a similar problem of
determining whether a mixed volume ofn convex well-presented bodies is zero.

Let Ei = {a1
i , . . . ,a

n
i }be the set of columns ofAi . Recall that for positive semidefinite

matricesA, B it holds that Im(A + B) = Im(A) + Im(B), and, therefore, for any
α ⊆ {1 · · ·n} it holds that Im(

∑
i∈α Ai ) = Span(

⋃
i∈α Ei ). Theorem 2.1 implies then

that D(A) > 0 iff for any α ⊆ {1 · · ·n} the set
⋃

i∈α Ei has at least|α| independent
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vectors. By a theorem of Rado, this is true if and only ifE1 · · · En have a linearly
independent transversal.

Consider two matroids on the ground setE =⋃n
i=1 Ei . The first is the linear matroid

in which the independent sets are the linear independent subsets ofE. The second is the
transversal matroid, the bases of which are the transversals of the family{E1, . . . , En}.
To determine whetherE1 · · · En have a linearly independent transversal, we have to solve
a 2-matroid intersection problem. Since the complexity of this problem is known [10] to
be polynomial, we are done.

Proof of Theorem1.9. If A is a decomposablen-tuple with a positive mixed discrim-
inant, then there existsα ⊂ [n], with Rank(

∑
i∈α Ai ) = |α|. Our first step is to find a

minimal nonempty setα with this property, or to decide thatA is indecomposable, in
which case we are done. For this purpose we considern(n− 1) auxiliary n-tuplesA ij ,
whereA ij is obtained fromA by substitutingAi instead ofAj . Let Dij = D(A ij ). We
define ann× n matrix Z by Zij = 0 if Dij = 0, andZij = 1 otherwise. By Lemma 2.2,
the matrix Z is constructible in polynomial time. The next lemma explains how this
matrix highlights the sets we are looking for.

Lemma 2.3. Let∅ 6= α ⊆ [n]. The following two statements are equivalent:

1. Rank(
∑

i∈α Ai ) = |α|, and α contains no proper nonempty subsets with this
property.

2. Zij = 1 for all i , j ∈ α and Zij = 0 for all i ∈ α and j /∈ α.

The proof of this lemma is essentially the same as that of Lemma 3.3. We refer to the
forthcoming proof of that lemma.

ConsiderZ as an adjacency matrix of a directed graphG = ([n], E), wheree= i → j
belongs toE iff Zij = 1. Fori ∈ [n], let Wi be the set of points inG which can be reached
from i . Lemma 2.3 implies thatα is a minimal set with the property Rank(

∑
i∈α Ai ) = |α|

iff, for any i ∈ α, Wi = α holds, and, moreover,α is a clique ofG. We compute the
setsWi for all i ∈ [n] and check whetherWi is a clique. If it holds for somei ∈ [n] and
Wi ⊂ G, we setα = Wi , otherwiseA is indecomposable and we are done.

Let S=∑i∈α Ai and letX = Im(S). Letv1, . . . , vc be an orthogonal basis ofX, and
let v1, . . . , vn be its completion to an orthogonal basis ofRn. Let U be then× c matrix
with columnsv1, . . . , vc and letU⊥ be then×(n−c)matrix with columnsvc+1, . . . , vn.
We setBi = Ut Ai U for i ∈ α, andÃj = (U⊥)t Aj U⊥ for j /∈ α. Then:

Lemma 2.4.

D(A1, . . . , An) = 1∏n
i=1〈vi , vi 〉D((Bi )i∈α) · D((Ãj )j /∈α).

Proof. Let V be the matrix with columnsv1 · · · vn. Clearly, det(V) = det(Vt ) =∏n
i=1

√〈vi , vi 〉. By Lemma 1.4, we haveD(A1 · · · An)=(1/
∏n

i=1〈vi , vi 〉)D(Vt A1V · · ·
Vt AnV). Observe that, fori ∈ α, the matrixVt Ai V is zero everywhere, but on ac× c
upper left submatrix, and this submatrix isBi . Observe also that, forj /∈ α, the lower
right (n− c)× (n− c) submatrix ofVt Aj V is preciselyÃj . Using representation (10)
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of the mixed discriminant, it is not hard to see that in such a case the mixed discriminant
decomposes:D(Vt A1V · · ·Vt AnV) = D((Bi )i∈α) · D((Ãj )j /∈α).

Now we proceed inductively (on dimension) with the(n−c)-tuple(Ãj )j /∈α. We point
out that the minimality ofα implies the indecomposability of the tuple(Bi )i∈α.

It remains to estimate the cost that we pay for decomposing then-tupleA. We perform
O(n) steps. In each of these steps the heaviest part by far is constructing the 0–1 matrix
Z, which entails checkingÄ(n2) mixed discriminants for being zero. The total cost is,
therefore, polynomial, and we are done.

The only thing which has yet to be pointed out is that the representation length
νi of the componentsBi is not much greater than the representation lengthν of A.
Indeed, in the course of the decomposition procedure the representation length increases,
essentially, only in construction of orthogonal bases. A moment’s reflection gives that
the multiplicative factor of the increase is at most exponential5 in n.

Remark 2.5. We call ann-tuple A = (A1 · · · An) of positive semidefinite matrices
scalableif it has a doubly stochastic scaling. The preceding proof provides a nice char-
acterization of scalability:the n-tupleA = (A1 · · · An) of positive semidefinite matrices
is scalable if and only if the matrix ZA = (sign(D(A ij ))) is symmetric.

Indeed, it is not hard to see that (in the notation of the proof) the matrixZA is symmetric
if and only if there is ak-partition{1 · · ·n} = C1 ∪ C2 ∪ · · · ∪ Ck of the interval, such
that the subspacesXs := Im(

∑
i∈Cs

Ai ), s = 1 · · · k, decomposeRn into a direct sum
of orthogonal subspaces. Moreover, for all 1≤ s ≤ k, the tupleBs is a projection of
(Ai )i∈Cs onto Xs.

It follows that scaling factors forA can be obtained as an appropriate “concatenation”
of the scaling factors forB1 · · ·Bk.

On the other hand, assumeA has a doubly stochastic scaling, and letB be a corre-
sponding doubly stochastic tuple. Then clearlyZA = ZB. It is not hard to check that for
a doubly stochastic tuple the matrixZ is symmetric, and the claim follows.

3. A Convex Minimization Problem. Existence and Uniqueness of
Scaling Factors

Given ann-tuple of positive semidefinite matrices, we now define a convex function
whose minima correspond to the scaling factors of the tuple.

Definition 3.1. Let A = (A1 · · · An) be ann-tuple of positive semidefinite matrices.
We define

f (ξ1, . . . , ξn) = fA(ξ1, . . . , ξn) = log det(eξ1 A1+ · · · + eξn An).

5 Note that, since our scaling algorithm runs in time logarithmic in the representation length, this increase
is tolerable.
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Lemma 3.2. The function f is a convex function onRn, and ifA is fully indecompos-
able, then f is strictly convex6 on the hyperplane H={ξ=(ξ1, . . . , ξn)∈Rn |∑ ξi =0}.

Before proving this lemma we introduce a lemma and a definition which attempt to
“quantify” the indecomposability ofA. Consider once again then(n− 1) n-tuplesA ij ,
whereA ij is obtained fromA by substitutingAi instead ofAj . Let Dij = D(A ij ).

Lemma 3.3. A is indecomposable if and only if Dij > 0 for all i , j .

Proof. Assume first thatA = (A1, . . . , An) is indecomposable. We claim that for
any 1 ≤ i 6= j ≤ n the tupleA ij = (A′1, . . . , A′n) satisfies property 2 of Theo-
rem 2.1, and therefore its mixed determinant is positive. Indeed, letR ⊆ {1 · · ·n}.
Then Rank(

∑
k∈R A′k) ≥ Rank(

∑
k∈R\{ j } Ak) ≥ |R|, by the indecomposability ofA.

In the other direction, letA = (A1, . . . , An) be a decomposable tuple, namely for
some subsetR ⊂ {1 · · ·n}, the inequality Rank(

∑
k∈R Ak) ≤ |R| holds. Leti, j be a

pair of indices such thati ∈ R and j /∈ R, and consider the tupleA i j = (A′1, . . . , A′n).
We claim thatD(A ij ) = 0. Indeed,

Rank

( ∑
k∈R∪{ j }

A′k

)
= Rank

(∑
k∈R

Ak

)
< |R| + 1= |R∪ { j }|,

which, by Theorem 2.1, impliesD(A ij ) = 0.

Lemma 3.3 suggests the following quantitative measure of indecomposability:

Definition 3.4. Set

M = MA = min
i 6= j

Dij .

Proof of Lemma3.2. By definition, the coefficient ofx1x2 · · · xn in the polynomial
det(x1A1 + · · · + xn An) is the mixed discriminantD(A1 · · · An). It turns out [3] that
all the coefficients of this polynomial can be expressed through mixed discriminants.
Let r1, . . . , rn be nonnegative integers adding ton. Then the coefficient ofxr1

1 · · · xrn
n is

equal to

tr = 1

r1! · · · rn!
D

A1 · · · A1︸ ︷︷ ︸
r1

· · · An · · · An︸ ︷︷ ︸
rn

 . (11)

We denote the set ofn-tuplesr = r1, . . . , rn of nonnegative integers summing ton by
Pn. In this notation

f (ξ1, . . . , ξn) = log det(eξ1 A1+ · · · + eξn An) = log
∑
r∈Pn

tr e
〈ξ,r 〉,

6 Namely, for allξ, ξ ′, and 0< λ < 1, it holds thatf (λξ + (1− λ)ξ ′) < λ f (ξ)+ (1− λ) f (ξ ′).
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where the coefficientstr are nonnegative, since they are given by a mixed discriminant
of positive semidefinite matrices multiplied by a multinomial coefficient, and〈 , 〉 is the
usual inner product inRn. It is well known [2] that the right-hand side represents a convex
function ofξ . Nonetheless, we provide another proof of this fact, which will also imply
that f is strictly convex onH if the tupleA1 · · · An is indecomposable.

Let g(ξ) = det(eξ1 A1 + · · · + eξn An), namely f = logg. To show thatf is con-
vex we have to show that its Hessian52f is positive semidefinite. Clearly,52f =
(1/g2)(g(52g) − (5g)(5g)t ). Therefore, we have to showg52g º (5g)(5g)t . For
two vectorsv,w ∈ Rn, let v ⊗ w denote the matrixvwt . Note thatv ⊗ v is positive
semidefinite. Observe that for anyv ∈ Rn it holds that5e〈ξ,v〉 = e〈ξ,v〉 ·v and52e〈ξ,v〉 =
e〈ξ,v〉 · v ⊗ v, and therefore

g(52g)− (5g)(5g)t =
∑
r∈Pn

tr e
〈ξ,r 〉 ·

∑
s∈Pn

tse
〈ξ,s〉s⊗ s−

∑
r,s∈Pn

tr tse
〈ξ,r+s〉r ⊗ s

= 1

2

∑
r,s∈Pn

tr tse
〈ξ,r+s〉(r − s)⊗ (r − s) º 0, (12)

implying the convexity off .
Now, assume the tupleA1, . . . , An to be indecomposable. Recall thatDij is the mixed

discriminant of then-tuple obtained from(A1, . . . , An) by replacingAj with Ai , and
that M = mini 6= j Dij is positive. In the notation of this lemma,Dij is just 2trij , wherer ij

is the vector with 1 in every coordinate buti, j , and with 2 in thei th and 0 in thej th
coordinates. We now continue the computation from (12):

52 f º 1

2g2

∑
r,s∈Pn

tr tse
〈ξ,r+s〉(r − s)⊗ (r − s)

º 1

8g2

∑
i 6= j,k 6=l

Dij Dkle
〈ξ,rij+rkl〉(r ij − rkl)⊗ (r ij − rkl)

º cM2

8g2

∑
i 6= j 6=k 6=l

(r ij − rkl)⊗ (r ij − rkl),

where the last summation is over distinct indicesi, j, k, l . Here c = c(ξ) =
mini 6= j 6=k 6=l e〈ξ,rij+rkl〉. Let ei be thei th unit vector, and letEij be then × n matrix
with 1 in the(i, j )th coordinate and 0 everywhere else. Then

(r ij − rkl)⊗ (r ij − rkl) = (ei − ej − ek + el )⊗ (ei − ej − ek + el )

= Eii + Ejj + Ekk+ Ell

+ 2(Eil + Ejk − Eij − Eik − Ejl − Ekl).

Let

S=
∑

i 6= j 6=k 6=l

[Eii + Ejj + Ekk+ Ell + 2(Eil + Ejk − Eij − Eik − Ejl − Ekl)].

Finding S might seem like a mess, but actually it is not. By symmetry considerations,
the entries ofShave only two distinct values, on the main diagonal and every else, and
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moreover they sum to zero. Therefore, we only have to find the trace ofS, and this
is easily seen to be(n)4 = n(n − 1)(n − 2)(n − 3). Accordingly, Sii = (n − 1)3 =
(n− 1)(n− 2)(n− 3) andSij = −(n− 2)(n− 3) for i 6= j . Note thatS is simply the
orthogonal projection on the hyperplaneH = {ξ = (ξ1, . . . , ξn) ∈ Rn | ∑ ξi = 0},
multiplied by(n− 1)3.

Therefore, the projection of52 f onto H is greater than or equal to(cM2 · (n −
1)3/8g2) · In−1, whereIn−1 is an(n−1)× (n−1) identity matrix, implying f is strictly
convex onH .

Lemma 3.5. For anyξ ∈ Rn, the gradient(5 f )ξ of f at ξ is (Tr(eξi S1/2Ai S1/2))ni=1,
where S= (∑n

i=1 eξi Ai )
−1.

Proof. Recall that the gradient(5 log det(·))B of f at a nonsingular matrixB is just its
inverse transposed(B−1)t . Therefore, takingB = (∑n

i=1 eξi Ai ), and using the Chain
Rule, we get that

∂ f

∂ξi
= Tr

(
(5 log det(·))B)

(
∂B

∂ξi

)t)
= Tr(Seξi Ai ) = Tr(eξi S1/2Ai S

1/2).

Lemma 3.6. A pointξ ∗ is a minimum of f on H if and only if the gradient5 f atξ∗ is a
constant multiple of(1 · · ·1), the vector of all ones. In addition, (5 f )ξ∗ = c · (1 · · ·1) if
and only if xi = eξ

∗
i , i = 1, . . . ,n,and S= (∑n

i=1 eξ
∗
i Ai )

−1,are the scaling factors forA;
namely the n-tuple(x1S1/2A1S1/2 · · · xnS1/2AnS1/2) is doubly stochastic. In particular,
c = 1.

Proof. The first claim: Sincef is convex,ξ ∗ is a point of minimum forf on H if and
only if (5 f )ξ∗ is a convex combination of the gradients atξ∗ of the defining equations
for H .

The second claim follows immediately from the first claim and Lemma 3.5.

The value ofM = mini 6= j Di j plays a key part in the following lemma as well.

Lemma 3.7. Let ξ ∈ H be such that f(ξ) ≤ f (0), then

‖ξ‖2 ≤ n1/2 · log
2 det(A1+ · · · + An)

M
.

Proof. Let ξ be a point inH with f (ξ) ≤ f (0) = log det(A1 + · · · + An). Then, in
the notation of the proof of Lemma 3.2,

det(A1+ · · · + An) ≥ det(eξ1 A1+ · · · + eξn An)

=
∑
r∈Pn

tr e
〈ξ,r 〉 ≥ 1

2

∑
i 6= j

Dij e
〈ξ,rij 〉 ≥ 1

2 M
∑
i 6= j

e〈ξ,rij 〉

≥ 1
2Memaxi 6= j ξi−ξj ≥ 1

2Me‖ξ‖∞ .

The last two inequalities use
∑

i ξi = 0, which, in particular, implies〈ξ, r ij 〉 = ξi − ξj .
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Therefore,

‖ξ‖2 ≤ n1/2 · ‖ξ‖∞ ≤ n1/2 · log
2 det(A1+ · · · + An)

M
.

Theorem 1.10 is a simple consequence of Lemma 3.6 and the following lemma which
describes the behavior of minima off on H .

Lemma 3.8. The function f attains a unique minimum on the hyperplane H.

Proof. By Lemma 3.2, f is strictly convex onH . Therefore, the minimumξ∗, if
attained, is unique. On the other hand, by Lemma 3.7, the minimum off on H is the
minimum of f on a ball with finite radius. Since this ball is compact, the minimum is
attained.

Remark 3.9. We observe that, in the notation of Lemma 3.6,

f (ξ ∗) = log det(eξ
∗
1 A1+ · · · + eξ

∗
n An)

= log det(S−1) = log

(
1

det(S) ·∏n
i=1 xi

)
is the (log)product of the scaling factors ofA. NamelyD(A) = ef (ξ∗) · D(B), where
B = (x1S1/2A1S1/2 · · · xnS1/2AnS1/2) is doubly stochastic.

4. Finding the Minimum

In the previous section we have seen that finding the point of minimum of the function
f = fA on the hyperplaneH is equivalent to computing the scaling factors ofA. This is
interesting if we want to scaleA. We have also seen that finding the value of the minimum
is equivalent to computing the product of the scaling factors ofA. This is sufficient for
reduction of the mixed discriminant approximation problem to the doubly stochastic
case. In this section we solve both questions. The solutions will be approximate, but
with an arbitrary degree of precision.

Our main tool is the following property of the ellipsoid algorithm [23]: For a prescribed
accuracyδ > 0, it finds aδ-minimizer of a continuous convex functionf in a ball B,
that is a pointxδ ∈ B with f (xδ) ≤ minB f + δ, in no more than

O

(
n2 ln

(
2δ + VarB( f )

δ

))
, VarB( f ) = max

B
f −min

B
f, (13)

iterations. Each iteration requires a single computation of the value and of the gradient
of f at a given point, plusO(n2) elementary operations to run the algorithm itself. In
our case, this is easily seen to cost at mostO(n3) elementary operations.

Recall, that the radiusRof the ballB is given by Lemma 3.7:R≤ n1/2·log(2 det(A1+
· · · + An)/M).
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Lemma 4.1.

VarB( f ) ≤ O(n5/2(ν + logn)),

whereν is the binary representation length of entries inA.

Proof. We may, without loss of generality, assume that all the matricesAi in A have
integer entries. Note that since the binary representation length of entries inA is ν, the
maximal size of an entry does not exceed 2ν . By (10), sinceM is greater than zero, it is at
least one. On the other hand, by Hadamard’s inequality, det(A1+· · ·+ An) ≤ (n2ν)n =
nn2νn. Therefore,R≤ n1/2 · lognn2νn = n3/2(ν + logn).

We conclude that maxB f ≤ log(enRdet(A1+ · · · + An)) ≤ O(n5/2(ν + logn)).
On the other hand, the proof of Lemma 3.7 demonstrates that, for anyξ ∈ H ,

f (ξ) ≥ log(M/2) ≥ −1 holds. Therefore,

VarB( f ) ≤ O(n5/2(ν + logn)).

Proposition 4.2. LetA = (A1, . . . , An) be a fully indecomposable n-tuple of positive
semidefinite matrices, and let0< ε < 1.Letξ be an(ε2/10)-minimizer of f on H. Then
xi = eξi , for i = 1, . . . ,n, and S= (∑n

i=1 eξi Ai )
−1 scaleA to anε-doubly stochastic

tuple.

Proof. Let ξ ∗ be the minimizer off on H . Let δ := ε2/10 andA′i := S1/2eξi Ai S1/2.
Since, by definition,

∑n
i=1 A′i = I , we only need to prove that

∑n
i=1(tr(A

′
i )−1)2 ≤ 10δ.

We prove the proposition by a sequence of easy reductions to simpler cases. First we
show that, in effect, we may assumeA is doubly stochastic. We know that

log det(eξ
∗
1 A1+ · · · + eξ

∗
n An) ≤ log det(eξ1 A1+ · · · + eξn An)

≤ log det(eξ
∗
1 A1+ · · · + eξ

∗
n An)+ δ.

Taking exponents and observing that, for a smallδ, eδ ≤ 1+ 2δ holds, we get

det(eξ
∗
1 A1+· · ·+eξ

∗
n An)≤det(eξ1 A1+· · ·+eξn An)≤det(eξ

∗
1 A1+· · ·+eξ

∗
n An)·(1+2δ).

SettingS∗ = (∑n
i=1 eξ

∗
Ai )
−1, Bi = (S∗)1/2eξ

∗
i Ai (S∗)1/2 and(1ξ)i = ξi − ξ ∗i , we get

1≤ det(e(1ξ)1 B1+ · · · + e(1ξ)n Bn) ≤ 1+ 2δ. (14)

Observe thatB = (B1, . . . , Bn) is a doubly stochastic tuple, by Lemma 3.6. Fori =
1, . . . ,n, let B′i := (S′)1/2e(1ξ)i Bi (S′)1/2, whereS′ := (∑n

i=1 e(1ξ)i Bi )
−1. ThenB′i =

Ut A′i U , whereU = S−1/2(S∗)1/2(S′)1/2 is an orthogonal matrix.7 Clearly, tr(B′i ) =
tr(A′i ), and

∑n
i=1 B′i =

∑n
i=1 A′i = I . Therefore, the claim of the proposition amounts

to proving
n∑

i=1

(tr(B′i )− 1)2 ≤ 10δ.

7 We prove this: Observe thatS′ := (
∑n

i=1 e(1ξ)i Bi )
−1 = (S∗)−1/2S(S∗)−

1
2 . ThereforeUUt =

S−1/2(S∗)1/2S′(S∗)1/2S−1/2 = S−1/2SS−1/2 = I .
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Next, we move from positive semidefinite doubly stochasticn-tuples to an easier case of
doubly stochastic matrices. LetW be an orthogonal matrix such thatWt S′W is diagonal,
namely the columnsw1, . . . , wn of W are eigenvectors ofS′. Letbji = 〈wj , Biwj 〉. Then
the matrixB = (bij ) is doubly stochastic, and (14) reduces to

1≤
n∏

i=1

(By)i ≤ 1+ 2δ, (15)

wherey ∈ Rn is given byyj = e(1ξ)j , for j = 1, . . . ,n. Note that

n∏
j=1

yj = e6j ξj−6j ξ
∗
j = 1. (16)

Our claim amounts to showing, givenB is doubly stochastic, (15) and (16), that the matrix
C = (cij ) = (bij yj /

∑n
k=1 bik yk) is ε-doubly stochastic. Clearly,C is row-normalized.

Settingcj =
∑n

i=1 cij to be the column sums ofC, we have to show
∑n

j=1(cj − 1)2 ≤
ε2. Note that

∑n
j=1 cj = n. We claim that, sinceB is doubly stochastic,

∏n
j=1 cj ≥∏n

j=1 yj /
∏n

i=1(By)i ≥ 1/(1+2δ) ≥ 1−2δ. Only the first inequality has to be justified.
Writing C = diag(1/(By)i ) · B · diag(yj ), we obtain

∏n
j=1 cj =

∏n
j=1 yj ·

∏n
i=1(xB)i ,

where we have setxi = 1/(By)i . It remains to use a well-known [4, p. 150] property
of doubly stochastic matrices: for a nonnegative vectorx it holds that

∏n
i=1(xB)i ≥∏n

i=1 xi .
Now we are in a familiar situation. Lemma 3.10 of [21] states that for nonnegative

numbersz1, . . . , zn summing ton, and for a sufficiently small1 (0 ≤ 1 ≤ 1
10 is

enough),
∑n

j=1(zj − 1)2 = 1 H⇒ ∏n
j=1 zj ≤ 1− 1/3 holds. We deduce that in our

case
n∑

j=1

(cj − 1)2 ≤ 6δ < ε2

and we are done.

Theorem 1.12 follows from Lemma 4.1, Proposition 4.2 and the described properties
of the ellipsoid method.

5. Corollaries

5.1. Proof of Theorem1.14

Proof. By a perturbation argument, it suffices to prove the theorem for fully indecom-
posablen-tuples. So from now on we assume thatA is indecomposable. We will show
that the product of the scaling factors ofA is at least

∏n
i=1 ri . This, by Theorem 1.13,

will complete the proof.
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By Remark 3.9, it suffices to show that for anyx1 · · · xn > 0 with
∏n

i=1 xi = 1 it
holds that

det(x1A1+ · · · + xn An) ≥
n∏

i=1

ri . (17)

Indeed assume, without loss of generality, that thex’s are orderedx1 ≥ x2 ≥ · · · ≥ xn.
For a symmetric matrixA, letλ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the eigenvalues ofA in
descending order. We will prove the claim in (17) showing thatλk(

∑n
i=1 xi Ai ) ≥ rkxk,

for all k = 1, . . . ,n. Recall, that ifA andB are two symmetric matrices andA− B is
positive semidefinite, thenλk(A) ≥ λk(B), for all 1≤ k ≤ n. This follows, for instance
from the Courant–Fischer theorem [14, p. 32]:

λk(A) = max
dim(U )=k

min
x∈U,x 6=0

〈x,Ax〉
〈x, x〉 . (18)

Applying this fact twice gives

λk

(
n∑

i=1

xi Ai

)
≥ λk

(
k∑

i=1

xi Ai

)
≥ λk

(
xk ·

k∑
i=1

Ai

)
≥ rkxk,

proving (17) and the theorem.

5.2. Proof of Proposition1.15

Proof. Let K1, . . . , Kn be proper convex bodies inRn and lets> 0 be a real number,
such that for anyk-setα ⊆ {1 · · ·n} the body

∑
i∈α Ki has ak-dimensional section

containing a translation ofs · Bk. We say, in brief, thatK1 · · · Kn have ans-section
property.

Let E1 · · · En be the John ellipsoids of these bodies, namely (after translating the
center ofEi to the origin) we haveEi ⊆ Ki ⊆ nEi , for i = 1, . . . ,n. We may, and
do, assume that the ellipsoids are, in fact, centered at the origin. Clearly,E1 · · · En have
an s′ = (s/n)-section property. Since they and their Minkowski sums are centrally
symmetric convex bodies, we can say even more: for anyk-setα ⊆ {1 · · ·n} the body∑

i∈α Ei has ak-dimensional section by alinear subspace containings′ · Bk.
Observe also that, by monotonicity of mixed volume,V(E1 · · · En) ≤ V(K1 · · · Kn).
Let Ei = {x: 〈Ai x, x〉 ≤ 1}, whereA1 · · · An are positive definite matrices. We will

show that the matricesA−1
i satisfy the conditions of Theorem 1.14 withr1 = · · · = rn =

s2/n4. We start with a simple lemma.

Lemma 5.1. For any x∈∑i∈α Ei it holds that〈(∑
i∈α

A−1
i

)−1

x, x

〉
≤ |α|2.
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Proof. Write x =∑i∈α yi , where〈Ai yi , yi 〉 ≤ 1. LetC = Cα = (
∑

i∈α A−1
i )−1. Then

C is positive semidefinite andC ¹ Ai for all i ∈ α. It follows that

〈Cx, x〉 =
〈
C

(∑
i∈α

yi

)
,
∑
i∈α

yi

〉
=
∑

i

〈Cyi , yi 〉 +
∑
i 6= j

〈Cyi , yj 〉

≤
∑

i

〈Cyi , yi 〉 +
∑
i 6= j

〈Cyi , yi 〉1/2〈Cyj , yj 〉1/2

≤
∑

i

〈Ai yi , yi 〉 +
∑
i 6= j

〈Ai yi , yi 〉1/2〈Aj yj , yj 〉1/2 ≤ |α|2.

Fix α ⊆ {1 · · ·n}. LetU be an|α|-dimensional subspaceRn such that for anyx ∈ U
with ‖x‖ ≤ s′ it holds that〈Cαx, x〉 ≤ |α|2. By the Courant–Fischer theorem,Cα has
at least|α| eigenvalues≤ |α|2/(s′)2 ≤ n4/s2, and the matrix

∑
i∈α A−1

i = C−1
α has at

least|α| eigenvalues≥ s2/n4. Consequently, the matricesA−1
i satisfy the conditions of

Theorem 1.14. Applying the theorem,

D(A−1
1 · · · A−1

n ) ≥ s2n

n4n
· n!

nn
. (19)

Therefore, by (2),

V(K1 · · · Kn) ≥ V(E1 · · · En) ≥ 3−(n+1)/2vn D1/2(A−1
1 · · · A−1

n ) ≥ (Ä(sn−5/2))n.

In the last inequality we have used the fact that the volumevn of then-dimensional unit
ball is (1/

√
πn)(2πe/n)n/2(1+ O(n−1)).

5.3. Proof of Theorem1.16

Proof. For a k-set α ⊆ {1 · · ·n}, let v1(α) · · · vk(α) be vectors in
⋃

i∈α Ui with
Volk([v1 · · · vk]) ≥ εk. Let V = ⋃

α⊆{1···n}{v1(α) · · · vk(α)}. For 1 ≤ i ≤ n, let
Ai =

∑
v∈Ui∩V v ⊗ v. We will show that the matricesAi satisfy the conditions of

Theorem 1.14 withrk = (`2/2) · (ε/`)2k.
Indeed, letα ⊆ {1 · · ·n}, with |α| = k. Let Bα =

∑k
j=1 vj (α)⊗ vj (α). Then

Aα =
∑

v∈V∩∪i∈αUi

v ⊗ v º
k∑

j=1

vj (α)⊗ vj (α) = Bα.

Therefore, it is sufficient to show thatB = Bα has at leastk eigenvalues greater than or
equal tork.

Let X = Span(v1(α) · · · vk(α)). By the Courant–Fischer theorem it is enough to
consider thek× k matrix B | X. We need a simple lemma:

Lemma 5.2. Letv1 · · · vk be a basis ofRk, and let C= v1⊗ v1+ · · · + vk ⊗ vk. Then

detC = Vol2([v1 · · · vk]).
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Proof. The statement is immediate ifv1 · · · vk are orthogonal. If not, letT be a matrix
such thatTv1 · · · Tvk are orthogonal, and considerTCTt =∑k

j=1 Tvj ⊗ Tvj .

Therefore, det(B | X) ≥ ε2k. Next, consider the trace ofB | X. We have Tr(B | X) =∑k
j=1 Tr(vj ⊗ vj ) =

∑k
j=1 ‖vj ‖2 ≤ k`2. Let λ1 ≥ λ2 · · · λk > 0 be the eigenvalues of

B | X. They satisfy

k∏
i=1

λi ≥ ε2k,

k∑
i=1

λi ≤ k`2. (20)

Lemma 5.3. Let λ1 ≥ λ2 ≥ · · · ≥ λk be positive numbers satisfying(20). Then
λk ≥ (`2/2) · (ε/`)2k.

Proof. Fork = 1 the claim is trivial. Assumek ≥ 2. Letλk = δ. Then
∏k−1

i=1 λi ≥ ε2k/δ

and
∑k−1

i=1 λi ≤≤ k`2 − δ. By the arithmetic-geometric mean inequality applied to
λ1 · · · λk−1,

ε2k ≤ δ ·
(

k`2− δ
k− 1

)k−1

.

Consider the functionf (x) = x · ((k`2 − x)/(k − 1))k−1 on the interval [0, k`2]. This
function is 0 at 0 and it increases from 0 until its maximum atx = `2. Observe that,
by definition,ε ≤ `, and therefore the point(`2/2) · (ε/`)2k is in the interval [0, `2]
on which the function is increasing. Consequently, in order to prove the lemma, it is
sufficient to check thatf ((`2/2) · (ε/`)2k) < ε2k. This inequality easily reduces to
2(k− 1) ≥ k− 1

2 · (ε/`)2k, which is, of course true.

Now, we apply Theorem 1.14:(
`2

2e

)n

·
(ε
`

)n(n+1)
≤ n!

nn
·

n∏
k=1

rk ≤ D(A1 · · · An)

= D

( ∑
v1∈U1∩V

v1⊗ v1 · · ·
∑

vn∈Un∩V

vn ⊗ vn

)

=
∑
v1···vn

D(v1⊗ v1 · · · vn ⊗ vn) =
∑
v1···vn

Vol2([v1 · · · vn]).

The penultimate equality is based on multilinearity of the mixed discriminant. To see
the last equality, observe that definition (1) together with Lemma 5.2 implyD(v1 ⊗
v1 · · · vn ⊗ vn) = det(v1⊗ v1+ · · · + vn ⊗ vn) = Vol2([v1 · · · vn]).

Since|V | ≤ n2n−1, the number of sequencesv1 · · · vn is at mostnn2n(n−1). It follows
that there is a choice of vectorsv1 · · · vn with vi ∈ Ui ∩ V such that

Vol([v1 · · · vn]) ≥
(

1

e1/2n

)n/2

· 2−n2/2 ·
(ε
`

)n(n+1)/2
· `n.
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5. I. Bárány and Z. Furedi, Computing the volume is difficult,Discrete Comput. Geom., 2 (1987), 319–326.
6. A. I. Barvinok, Computing mixed discriminants, mixed volumes, and permanents,Discrete Comput.

Geom., 18 (1997), 205–237.
7. A. I. Barvinok, Polynomial time algorithms to approximate permanents and mixed discriminants within

a simply exponential factor,Random Struct. Algorithms, 14 (1999), 29–61.
8. M. Dyer and A. Frieze, The complexity of computing the volume of a polyhedron,SIAM J. Comput., 17

(1988), 967–994.
9. M. Dyer, P. Gritzmann and A. Hufnagel, On the complexity of computing mixed volumes,SIAM J.

Comput., 27(2) (1998), 356–400.
10. J. Edmonds, Submodular functions, matroids, and certain polyhedra, inCombinatorial Structures and

Their Applications(R. Guy, H. Hanani, N. Sauer and J. Sch¨onheim, eds.), Gordon and Breach, New York,
1970, pp. 69–87.

11. G. P. Egorychev, The solution of van der Waerden’s problem for permanents,Adv. in Math., 42 (1981),
299–305.

12. D. I. Falikman, Proof of the van der Waerden’s conjecture on the permanent of a doubly stochastic matrix,
Mat. Zametki, 29(6) (1981), 931–938, 957 (in Russian).

13. S. Friedland, A lower bound for the permanent of a doubly stochastic matrix,Ann. of Math., 110(1979),
167–176.

14. C. D. Godsil,Algebraic Combinatorics, Chapman and Hall, London, 1993.
15. M. Grötschel, L. Lovasz and A. Schrijver,Geometric Algorithms and Combinatorial Optimization,

Springer-Verlag, Berlin, 1988.
16. L. Gurvits, Van der Waerden conjecture for mixed discriminants,Adv. in Math., to appear.
17. M. Jerrum and A. Sinclair, Approximating the permanent,SIAM J. Comput., 18 (1989), 1149–1178.
18. M. Jerrum, A. Sinclair and E. Vigoda, A polynomial-time approximation algorithm for the permanent of

a matrix with non-negative entries,Proc. 33rd ACM Symp. on Theory of Computing, 2001.
19. F. John, Extremum problems with inequalities as subsidiary conditions, inStudies and Essays, Presented

to R. Courant on His60th Birthday, Interscience, New York, 1948.
20. B. Kalantari and L. Khachian, On the complexity of nonnegative matrix scaling,Linear Algebra Appl.,

240(1996), 87–104.
21. N. Linial, A. Samorodnitsky and A. Wigderson, A deterministic strongly polynomial algorithm for matrix

scaling and approximate permanents,Proc. 30th ACM Symp. on Theory of Computing, 1998.
22. A. Nemirovski and U. Rothblum, On complexity of matrix scaling,Linear Algebra Appl. 302/303(1999),

435–460.
23. Y. Nesterov and A. Nemirovskii,Interior-Point Polynomial Algorithms in Convex Programming, SIAM,

Philadelphia, PA, 1994.
24. A. Panov, On mixed discriminants connected with positive semidefinite quadratic forms,Soviet Math.

Dokl., 31 (1985).
25. R. Schneider,Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and Its Ap-

plications, vol. 44, Cambridge University Press, New York, 1993.
26. L. G. Valiant, The complexity of computing the permanent,Theoret. Comput. Sci., 8(2) (1979), 189–201.

Received April17, 2000,and in revised form November2, 2001.Online publication March27, 2002.


