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A deterministic alternative to the full configuration interaction quantum

Monte Carlo method
Norm M. Tubman, Joonho Lee, Tyler Y. Takeshita, Martin Head-Gordon, K. Birgitta Whaley1

University of California, Berkeley, Berkeley, CA 94720, USA

(Dated: June 20, 2016)

Development of exponentially scaling methods has seen great progress in tackling larger systems than previously
thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that
allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the
information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the
important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search
Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accu-
racy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such
calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that
can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation
of excited state energies, which we illustrate with benchmark results for the excited states of C2.

Introduction: The scope of traditional approaches to full
configuration interaction (FCI) has been limited to simple di-
atomic molecules 1,2, and there has been little progress in di-
agonalizing spaces much larger than a billion determinants.3–5

However, recent progress in alternative approaches to FCI
problems has increased the scope of FCI beyond simple di-
atomic molecules. Two techniques in particular have been
important in this progress, full configuration quantum Monte
Carlo (FCIQMC)6, and density matrix renormalization group
(DMRG).7–9 Both algorithms provide unique advantages, with
DMRG being the definitive method for systems in which one
can identify degrees of freedom with low levels of entangle-
ment10,11, and FCIQMC showing promise for molecules and
extended systems in two or more dimensions.12,13 The success
of DMRG and FCIQMC in quantum chemistry is highlighted
by their recent applications to unprecedented large-size deter-
minant spaces while also achieving chemical accuracy.12,14–22

The FCIQMC method is a useful technique with a few
limitations which include biased sampling and comparatively
computationally expensive simulations. The biased sampling
is a result of the initiator approximation23 generally employed
in FCIQMC calculations, which additionally limits the space
in which determinants can be sampled. We will denote the
initiator algorithm as iFCIQMC. The initiator approximation
can cause systematic errors in iFCIQMC calculations that can
be unexpectedly large, as evidenced by comparison to vari-
ational DMRG results.24 The need for this approximation is
related to the Monte Carlo sampling and not necessarily re-
lated to power of the technique which we suggest is finding
important determinants.

Here we suggest an alternative to stochastic sampling in
favor of a completely deterministic version of the FCIQMC
technique that efficiently samples the determinant space. We
denote this deterministic algorithm by Adaptive Sampling CI
(ASCI). ASCI does not have the same problem with quantum
entanglement growth that DMRG has for 2 and 3 dimensional
systems, and is also appears faster than FCIQMC in compu-
tational efficiency. Our approach also surpasses other tech-
niques for finding energetically important determinant sub-
spaces. The majority of traditional CI methods encode rel-

evant physical degrees of freedom based on excitation levels
from a reference determinant.25 These excitation-based meth-
ods can also suffer from inaccuracy as they miss important
parts of determinant space. Within the CI framework sev-
eral promising ways to circumvent this problem have been
suggested that focus on selected CI approaches where one
selects relevant determinants based on different criteria.26–41

After presenting the ASCI method, we establish a connec-
tion between FCIQMC and various selected CI approaches.
We then apply the ASCI method to Cr2, a classic hard prob-
lem for many computational electronic structure methods.24

Finally, we demonstrate that excited states are straightforward
to calculate with ASCI. We note that the calculation of ex-
cited states within stochastic FCIQMC is possible, but re-
quires specialized techniques42, or stochastic orthogonaliza-
tion between walker sets, which is quite different from the
method described here.

A path to a deterministic algorithm: In the initial devel-
opment of FCIQMC, one of the original improvements on
the method was to take part of the projection step and make
it deterministic.20 In this work, we go further and develop a
completely deterministic algorithm. Our approach here is to
find important determinants in the same manner as FCIQMC,
i.e. to sample determinants based on the absolute value of the
ground state wave function amplitudes. The FCIQMC tech-
nique was originally presented as a projector method in imag-
inary time and we use this approach to motivate our method.
We start by expanding a wave function in the space of deter-
minants,

ψ(τ) =
∑

i

Ci(τ)|Di⟩, (1)

and the propagator in imaginary time,

−
dCi

dτ
= (Hii − E)Ci +

∑

i ̸=j

HijCj , (2)

which has an asymptotic solution of a stationary state with
dCi

dτ
= 0. In these equations τ is the imaginary time, i is an
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index for determinants, Di are determinants, Ci is the ampli-
tude associated with determinant Di, and Hij , is the Hamilto-
nian matrix element ⟨Di|H|Dj⟩. In FCIQMC, the parameter
E is a free parameter that controls the population of walk-
ers. Here we will consider E to be the ground state energy
or our best approximation thereof. The power of FCIQMC
is that it ignores the unimportant parts of determinant space,
finds important determinants, and samples them according to
their amplitudes. For a stationary state we can solve for the

individual coefficients as Ci = −
∑

i ̸=j
HijCj

(Hii−E) .

The RHS of this equation captures all aspects of the
FCIQMC algorithm. TheHij in the numerator corresponds to
the spawning step (transition moves between determinants),
the sign of Hij in the numerator and specifically summing
over positive and negative terms corresponds to the annihi-
lation step (cancelation of positive and negative walkers), and
the denominator corresponds to the death/cloning step (adding
or removing walkers from the simulation). The key to turn-
ing FCIQMC into a non-stochastic algorithm is to remove the
stochastic sampling and replace it with a deterministic rank-
ing of important determinants. In both approaches the Hamil-
tonian matrix elements and a wave function are needed. In
FCIQMC the wave function is represented by the distribution
of walkers at any given step, whereas for our deterministic
algorithm, we use an approximate wave function at each iter-
ation as follows,

C1
i =

∑
j ̸=iHijC

0
j

(Hii − E)
. (3)

In this equation, we have labeled the coefficients of the ini-
tial wave function as C0, and the output coefficients as C1.
The C0 and C1 coefficients correspond to different determi-
nant spaces, where D1 is the determinant space that includes
everything in D0 plus all single and double excitations from
the determinants in D0. Thus for any good approximation to
the ground state wave function we can use Eq. 3 to determine
the importance of determinants in a much larger space that
what is initially included in D0. This C1 coefficients are es-
sentially a first-order perturbation estimate for CI coefficients
in the Epstein-Nesbet perturbation theory.31

The Deterministic Algorithm: The ASCI algorithm is de-
fined by two determinant subspaces: a core space of size cdets

and a target space of size tdets. The core space determines the
number of terms j we include in the sum in Eq. 3. This is to
say we select cdet determinants with the largest C0

j , and con-
sider only those to be non-zero in the sum of equation Eq. 3.
The space to be searched is the set of single and double ex-
citations of the core set of determinants. Since our objective
is to find the determinants with the largest amplitudes, we in
general only need to search determinants connected to those
with large amplitudes. We illustrate the use of this approx-
imation with numerical tests in the next section. The target

space contains the top tdet determinants, as determined from
the ranking, and is the rank of the matrix diagonalized in each
iteration.

Initalize: set size of the core space, Dcore, to size (cdets)
and the target space, Dtarget, to size (tdets). Set the start-

ing wave function to the Hartree Fock wave function (C0 = 1,
Ci>0 = 0; E=EHF ).

(1) Evaluate the perturbed wave function amplitudes over
all the single and double substitutions, DSD, from the core
space, Dcore.

Ai =

∑core

j ̸=i HijCj

Hii − E
. (4)

(2) From Dcore and DSD, use the corresponding coeffi-
cients {Ci} and {Ai} to select the tdet largest absolute values
to define the new target space, Dtarget.

(3) Form and diagonalize H in the target space.
(4) The lowest eigenvalue is the new energy E. The largest

cdet amplitudes, by magnitude, define the new core space. If
the energy is not converged, return to step (1). For simula-
tions presented here, we halted the simulations when the en-
ergy converged to 10−5 Ha. We have included a convergence
plot of Cr2 for (tdets=1,000,000,cdets=5,000) in Fig. 1.

Figure 1. (Color online): Convergence of the energy with the ASCI

algorithm for Cr2 in the SV basis, frozen core with (24e,30o), for

(tdets=1,000,000,cdets=5,000). The energy is calculated relative to

our final energy (-2086.4038876399 Ha) in the last step (step 7).

The determinants found at the end of the simulation will
in general be the most important determinants for the ground
state wave function. Unlike FCIQMC this technique has no
population control bias, initiator bias, and no sign problem.
The technique described here provides an inherently varia-
tional energy. However, it is possible to extend the accuracy
of the technique with perturbation theory, which comes at the
expense of the energy no longer being variational.43 We use
the following second order correction to the energy,

EPT2 =
∑

i

⟨ψ|H|Di⟩

Hii − E
. (5)

We note that other perturbative corrections can be consid-
ered.43 For the largest systems considered here, only a modest
amount of memory is needed, and all parts except the diago-
nalization step can be trivially parallelized.

Discussion: When performing an ASCI calculation the first
few steps involve the exploration of higher order excitations.
If the starting wave function is a single determinant, then each
step increases the maximum number of excitations that have
been explored by 2. The coefficients A, as calculated in step
(1), can span all single and double excitations from the cur-
rent wave function, and is generally very large. Truncating
the coefficients that are calculated for A in the main part of
the self-consistent loop allows us to consider applying our al-
gorithm to large systems. To maintain size consistency, the
value of tdets and cdets will have to grow with system size.
For the systems considered in this work, it was possible to
converge the value of cdets, as the energy with respect to this
parameter can be extrapolated by running with a few different
values.

Apart from the diagonalization step, the most computation-
ally expensive task is determining A and finding its largest
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values. This can be split among many processors, with the
only non-trivial communication occurring during the final ag-
gregation of the final values.

Further improvements are possible by generating the natu-
ral orbitals after an initial run and using them to recalculate
the electron integrals. The natural orbitals can be generated at
any point in the simulation from the current best wave func-
tion. The natural orbitals are generally thought to produce
compact representations of a wave function.44 For a difficult
system like Cr2, we find the use of natural orbitals to be cru-
cial to obtain accurate energies.

Before we present our results we consider numerical tests
for our approximation of determining the magnitude of A. In
general, the coefficients of the ground state wave function will
span many orders of magnitude, and searching over the deter-
minants with the smallest amplitude coefficients is inefficient.
Using cdets as a parameter to limit the search to only the im-
portant determinants appears to be a well controlled approxi-
mation that can be converged for all the system we tested. This
approach has similarities to the FCIQMC initiator approxima-
tion.23

We demonstrate the accuracy of this approximation by
considering the CN molecule in an STO-3G basis at 1.194
Å (6240 determinants). We show that we can find the most
important determinants in Hilbert space without having to per-
form a diagonalization over a larger determinant space. Table
I provides a comparison of the most important determinants
found with different values of cdets and tdets to those ob-
tained from a full diagonalization over the entire space. For
a simulation of 100 core determinants and a target space of
200 determinants (100/200) we found 182 of the top 200 de-
terminants (91%). The remaining 9% of missed determinants
were found to be close in amplitude to the determinants that
replaced them in the target space. Similar result can be seen
for for all the simulations presented. These results suggest that
for some simulations that the search algorithm isn’t highly de-
pendent on the size of the core space and the small percentage
of determinants that are missed by the algorithm are replaced
by determinants that are similar in importance. Thus we argue
that extremely high accuracy is not needed in determining the
ranking order. The errors of this approximation is even fur-
ther reduced when perturbation corrections are used, which
can correct for any important determinants that were missed.

Benchmark results: Our main goal in presenting this analy-
sis is to demonstrate that a deterministic method is capable of
exploring determinant space in a similar manner to FCIQMC.
We did not focus on algorithmic speed and we only provide
timings here to suggest an upper bound of what can be ex-
pected. For the results presented here we built our own im-
plementation of this algorithm and incorporated tools from
various codes45–47 and electron integrals from various pack-
ages.48,49

C2 with the cc-pVDZ basis set: For C2 simulations, the
convergence of energies to chemical accuracy was easily
achieved, and neither the use of natural orbitals nor pertur-
bation corrections are needed. In comparison with the exact
results4, we were able to achieve an accuracy of 1 mHa using
a diagonalization no larger than 200,000 determinants. The

cdets tdets energy top 200 top 400 top 800

100 200 -91.17389 182 (91%) 200 200

100 400 -91.17637 200 373 (93%) 400

100 800 -91.17749 200 400 724 (91%)

200 400 -91.17657 200 387 (97%) 400

200 800 -91.17753 200 400 758 (95%)

400 800 -91.17755 200 400 776 (97%)

FCI -91.17767

Table I. Test of the CN molecule in finding important determinants.

The energies are in units of Ha. The columns with ’top 200; is the

number of determinants we found that agree with the top 200 deter-

minants, by amplitude, of the exact answer. Likewise for ’top 400’

and ’top 800’. The total FCI space is 6240 determinants for STO-3G

at 1.194 Å.

cdets tdets energy

4,000 10,000 -75.71842

4,000 50,000 -75.72626

4,000 100,000 -75.72786

8,000 100,000 -75.72795

4,000 200,000 -75.72878

10,000 200,000 -75.72891

20,000 200,000 -75.72895

20,000 300,000 -75.72928

15,000 500,000 -75.72953

FCI 27,900,000 -75.72985

Table II. Energy of C2 molecule in units of Hartrees, at bond length

1.27273 Å. The size of the determinant space is given by the D2h

point group and with a frozen core. The benchmark results for this

molecule with cc-pVDZ basis set is given from the following refer-

ence.4,6

total computer time for a simulation of this size was less than
2 cpu hours. Results are presented in Table II, using different
values of tdets and cdets. We also calculated the binding curve
for C2 with our method and compare to FCI results50 in Fig. 2.
The FCI results were reported to 0.1 mHa accuracy in a pre-
vious benchmark. We compare to a subset of these points and
our ASCI+PT2 results agree exactly to this level of accuracy.
We also ran a cc-pVTZ simulation at the equilibrium distance,
and found the ASCI+PT2 energy to be -75.80919 Ha in com-
parison to the DMRG(M=6000) result of -75.809285 Ha, a
difference of 0.1 mHa.

Figure 2. (Color online): C2 binding curve. The blue curve is the

exact FCI result50, the green curve is the ASCI simulation and the

red curve is the ASCI+PT2. For all ASCI calculations tdets and cdets

were fixed to be 300,000 and 30,000 respectively.

Cr2 with the SV basis set: Fig. 3 shows the convergence of
our results for Cr2. In order to make a comparison with pre-
vious studies24, Cr2 calculations were carried out with the SV
basis set51 at 1.5 Å with 24 active electrons in 30 orbitals and
a frozen core. A compact representation of the wave function
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in this system is dependent on having a good set of orbitals.
As part of our algorithm, we run a preliminary calculation
with a target space of 100,000 determinants, after which we
calculated the natural orbitals. The resulting natural orbitals
were used to recalculate the integrals for the production run.
The total energy for our most accurate simulation converged
to within 16 mHa of the predicted full CI basis set energy.24

Figure 3. (Color online): Cr2 energy as a function of tdet size, with

the largest target space going up to 1 million determinants. The plot-

ted energies have been shifted by 2086 Ha. The PT2 correction line

represents our result with the added perturbation theory correction,

which brings our final energy to within 1 mHa of the predicted ex-

act result. The first data point starts with 10,000 determinants. Our

best energy without the perturbation correction is -2086.40388 Ha.

With the perturbation correction it is -2086.4203 Ha. The DMRG

benchmark is -2086.420948 Ha.24

Figure 4. (Color online): Cr2 binding curve. The green curve shows

the ASCI+PT2 energies and the red curve shows the DRMG energies

for (24e,30o). For all ASCI calculations tdets and cdets were fixed

to be 300,000 and 30,000 respectively. The blue curve are ASCI

energies without the frozen core (48e,42o). The extrapolated DMRG

energy for (48e,42o) at 1.5 Å is -2086.44478 Ha24 compared to -

2086.44325 Ha with ASCI+PT2.52

A perturbation theory analysis43 was performed using equa-
tion 5, which results in a final energy within 1 mHa of the
predicted exact result. The timing for the largest simulation
(tdets=106), including the initial run for calculating the natural
orbitals but not including the perturbation correction, requires
approximately 7 cpu hours when run on a single core of a 2.40
GHz Intel Xeon processor. We expect further improvements
will speed up the ASCI simulations significantly.

In Fig. 4, we plot the binding curve of Cr2 for
DMRG(M=1600) and ASCI+PT2 for (24e,30o). The
DMRG(M=1600) calculations are taken from a previous
benchmark study.53 We also plot the ASCI+PT2 for the non-
frozen core calculation of (48e,42o).52 The ASCI results were
calculated with (tdets=300,000,cdets=30,000). At equilibrium
both ASCI results match the extrapolated DMRG results to
less than 1mHa accuracy, as given in a previous references.24

For the (24e,30o) calculation, ASCI is more accurate than the
DMRG(M=1600). As the bond is stretched, it is clear ASCI
is losing some accuracy with regards to DMRG(M=1600),

To demonstrate the distribution of the determinants located
by ASCI we plot a histogram of excitations from the dominant
determinants for Cr2 in Fig. 5. The ratio between different
excitations sectors does not change much in increasing tdet

values from 105 to 106. For this range, the quadruple excita-
tions generally make up half the wave function, while higher
excitations above the quadruples make up roughly 30% of the
wave function.

Excited states: We are also able to calculate excited
states with our technique, as they are obtained automatically
within the diagonalization procedure. For a 6-31G* basis
of C2, we compare against previous FCI simulations for the
first two excited states.54 For a simulation at a distance of
1.25 Å with cdets=104 and tdets=800000, we have the fol-

Figure 5. (Color online): The distribution of determinants of Cr2 by

excitations from the dominant determinant. The x-axis is excitation

level from the dominant determinant, and the y-axis is the fraction of

determinants. Plots (a), (b), (c), (d) have tdets = 100k, 400k, 800k,

and 1 million respectively. Simulations with different tdet spaces (for

the ones shown here) have roughly the same fractional importance

in the different excitation levels. Thus even for our smallest tdet

simulations, large determinant excitations are important.

lowing energies for the ground state and the first two excited
states (−75.7256,−75.6345,−75.6271) in units of Ha. The
exact results are (−75.725995,−75.636861,−75.628883).54

Thus, although the accuracy of the excited states is not as good
as the ground state, it is still straightforward to achieve chem-
ical accuracy (which is generally defined as 0.0016 Ha or 1
kcal/mol).

We can improve the accuracy of excited states by noting
that any eigenstate can be used in Eq. 3. Thus we can find and
rank determinants by their importance to individual excited
states. The excited state optimization can be done simulta-
neously with the ground state method, or in a state-by-state
bootstrap method. For the simultaneous optimization algo-
rithm, we determine a set of important determinants to retain
for each excited state. There is a separate search step for each
excited state, but one diagonalization step that combines all re-
tained determinants. In contrast, the bootstrap method would
converge each excited state one by one, where at each step de-
terminants would be added in specifically for the targeted ex-
cited state. The use of natural orbitals averaged over various
excited states may also be used to improve the algorithm.37,55

A detailed study of the targeted excited state technique will be
presented elsewhere.

Connection to selected CI: As mentioned earlier, the ASCI
method may also be considered a variant of selected CI tech-
niques31,32,35,39 in which there is considerable current inter-
est.26,41,43,56,57 Our method employs first-order perturbation
coefficients for selecting determinants, and is thus related to
the CI method, CIPSI (Configuration Interaction by Pertur-
bation with multiconfigurational zeroth-order wave functions
Selected by Iterative process).31 Another related technique is
the Λ+SD-CI26 method which uses a one-step energy criteria,
and a one-step approach together with our Eq. 3 in order to
find important determinants. Despite these similarities, none
of these algorithms have been pushed to achieve chemical
accuracy for strongly correlated systems, and do not appear
to have been benchmarked against FCIQMC or DMRG. The
largest Λ+SD-CI calculations included roughly 50,000 deter-
minants and attained 1–3 mHa accuracy for C2 6-31G* (com-
parable to our results in Table II). As shown in this work, it is
easy to go more than an order of magnitude in accuracy using
our iterative scheme, without significantly increasing the com-
putational effort. The largest selected CI techniques we are
aware of have been extended up to 4 million determinants58,
but for systems in which no benchmarks exist. Monte Carlo
Configuration Interaction method (MCCI), is another related
technique that can be used to solve CI problems with random
sampling in determinant space, however, it has been bench-
marked far less than other techniques.59,60
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For the future development of ASCI and other selected CI
techniques, it is important to consider how such methods are
different from standard CI methods. The difference is largely
due to the construction of the Hamiltonian. Selected CI tech-
niques need unique data structures in order to construct the
Hamiltonian efficiently.58,61 A previous study demonstrated
that much larger scale simulations, than what we presented
here, is possible for selected CI techniques.58 We are currently
considering various data structures used previously58,62 and
new structures, to determine the best way to scale up our sim-
ulations.

We also note that another group contacted us about improv-
ing the techniques presented here, and their work has since
been published.63 Their results show interesting behavior with
regards to how many determinants are needed to converge a
calculation with respect to increasing system size. Under-
standing this behavior will ultimately be important in deter-
mining just how far we can push ASCI to simulate larger sys-
tems.

Conclusions: We have shown that the underlying dynam-
ics of FCIQMC can be used to generate a deterministic al-
gorithm that can be efficiently used to calculate both ground
and excited states of chemical systems. We have applied this
technique to a known difficult problem in electronic structure
theory, the Cr2 molecule, and shown that chemical accuracy
can be achieved with the cpu power available on any modern
computer. Our results suggest that the ASCI method (and se-
lected CI methods in general) should be considered as a state
of the art CI method in both accuracy and efficiency. The
importance of ASCI and FCIQMC is evident as DMRG and
post-DMRG methods are not yet well suited for simulations
in two and three dimensions. The ASCI method also distin-
guishes itself from FCIQMC in that excited states and other
properties, such as the 2-RDM, are inherently easy to calcu-
late.64,65
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