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ABSTRACT
Pairwise coverage of factors affecting software has been
proposed to screen for potential errors. Techniques to gen-
erate test suites for pairwise coverage are evaluated accord-
ing to many criteria. A small number of tests is a main cri-
terion, as this dictates the time for test execution. Random-
ness has been exploited to search for small test suites, but
variation occurs in the test suite produced. A worst-case
guarantee on test suite size is desired; repeatable genera-
tion is often necessary. The time to construct the test suite
is also important. Finally, testers must be able to include
certain tests, and to exclude others.

The main approaches to generating test suites for
pairwise coverage are examined; these are exemplified
by AETG, IPO, TCG, TConfig, simulated annealing, and
combinatorial design techniques. A greedy variant of
AETG and TCG is developed. It is deterministic, guar-
anteeing reproducibility. It generates only one candidate
test at a time, providing faster test suite development. It is
shown to provide a logarithmic worst-case guarantee on the
test suite size. It permits users to “seed” the test suite with
specified tests. Finally, comparisons with other greedy ap-
proaches demonstrate that it often yields the smallest test
suite.
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1 Introduction

Software systems are built using components. Conse-
quently, system faults can result from unexpected inter-
actions among components. In an Internet-based soft-
ware system, for example, customers may use a variety of
browsers, operating systems, connection types, and printer
configurations. An example is shown in Table 1. In order
to test this system exhaustively, we must test the software
on all of the possible supported configurations. To test all
possible interactions for the system in Table 1, we would
need 34 = 81 configurations.

This may be feasible for such a small system but the

Component
Web Browser Operating Connection Printer

System Type Config
Netscape Windows LAN Local
IE Macintosh PPP Networked

Mozilla Linux ISDN Screen

Table 1. Four Factors, Each With Three Values

number of necessary tests suffers a combinatorial explo-
sion. With ten components each having four possible set-
tings, 410=1,048,576 test configurations are needed! Each
component is a factor affecting the system, and each setting
of the component is a value or level for the factor. In view
of the infeasibility of exhaustive testing, we can instead ask
for a guarantee that we test all pairs of interactions or all n-
way interactions [1, 2, 3, 4]. In the example shown in Table
1 we can cover all pairs of interactions using only nine dif-
ferent configurations (see Table 2). With ten factors each
with 4 possible values we can cover all pairs of interactions
using at most 25 configurations.

Dalal et al. present empirical results to argue that
the testing of all pairwise interactions in a software sys-
tem finds a large percentage of the existing faults [5]. In
further work, Burr et al. provide more empirical results to
show that this type of test coverage is effective [6]. Duni-
etz et al. link the effectiveness of these methods to software
code coverage. They show that high code block coverage is
obtained when testing all two-way interactions, but higher
subset sizes are needed for good path coverage [2]. Kuhn et
al. examined fault reports for three software systems. They
show that 70% of faults can be discovered by testing all
two-way interactions, while 90% can be detected by testing
all three way interactions. Six-way coverage was required
in these systems to detect 100% of the faults reported [7].

In this paper, we first introduce some combinatorial
definitions to provide a vernacular for examining test suite
generation. We then examine in more detail criteria to eval-
uate methods for this generation, and discuss the impor-
tance of each. Existing techniques are evaluated according
to these criteria, and we find that while each of the available
techniques exhibits some desirable properties, none meets



Test Browser OS Connection Printer
1 Netscape Windows LAN Local
2 Netscape Linux ISDN Networked
3 Netscape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
7 Mozilla Windows PPP Networked
8 Mozilla Linux LAN Screen
9 Mozilla Macintosh ISDN Local

Table 2. Test Suite Covering All Pairs from Table 1

all of the criteria identified. We then suggest a strategy for
satisfying the criteria. A conceptually simple algorithm re-
sults that exhibits nice theoretical properties, especially that
it ensures a logarithmic worst-case guarantee on test suite
size. In order to assess whether the method is also com-
petitive in a practical sense, we describe a careful imple-
mentation of it, and examine a wide variety of sample con-
struction problems, concluding that the method proposed is
faster and often more accurate than existing techniques.

2 Combinatorial Models

An orthogonal array OAλ(N ; k, v, t) is an N × k array
on v symbols such that every N × t sub-array contains all
ordered subsets of size t from v symbols exactly λ times
[8]. Orthogonal arrays have the property that λ = N

vt . Table
2 is an example of an OA(9; 4, 3, 2).

Although the use of orthogonal arrays for testing has
been discussed in the literature [3] these may be of less
interest in component testing because they could lead to
overly large test suites with λ > 1. For cases of v and k
where an orthogonal array with λ = 1 does exist, clearly
this is the optimal test suite. However, there are many val-
ues of v and k where an orthogonal array with λ = 1 does
not exist so we must resort to a less restrictive structure;
one that requires subsets are instead covered at least once
as with covering arrays.

A covering array, CAλ(N ; t, k, v), is anN × k array
on v symbols such that every N × t sub-array contains all
ordered subsets from v symbols of size t at least λ times.
When λ = 1 we use the notation CA(N ; t, k, v). In such
an array, t is called the strength, k the degree and v the or-
der. A covering array is optimal if it contains the minimum
possible number of rows. We call the minimum number
the covering array number, CAN(t, k, v). For example,
CAN(2, 5, 3) = 11 [9, 10].

We can map a covering array to a software test suite
as follows. In a software test we have k components or
factors. Each of these has v configurations or levels. A
test suite is an N × k array where each row is a test case.
Each column represents a component and the value in the
column is the particular configuration. In Table 2 we have
t = 2,k = 4, v = 3, and N = 9. Each component is

represented by one column; each row is an individual test
of the test suite. All pairs of components between any two
columns are tested in this test suite.

Covering arrays only suit the needs of software testers
when all factors have the same number of values. However,
this is often not the case. For instance one factor can have
four possible values and one only two. Indeed, this is a
normal occurrence.

The variation among factor levels can be handledwith
the mixed level covering array. Several authors have sug-
gested its use for software testing (see [9, 11, 12]), but few
results are known about upper bounds and how to construct
these.

A mixed level covering array,
MCA(N ; t, k, (v1, v2, ..., vk)), is an N × k array on
v symbols, where v =

∑k
i=1 vi, with the following

properties:

1. Each column i (1 ≤ i ≤ k) contains only elements
from a set Si with |Si| = vi.

2. The rows of each N × t sub-array cover all t−tuples
of values from the t columns at least once.

We use a shorthand notation to describe mixed level
covering arrays by combining equal entries in (v i : 1 ≤ i ≤
k). For example three entries each equal to 2 can be writ-
ten as 23. We can write an MCA(N ; t, k, (v1v2...vk)) as
an MCA(N ; t, (wr1

1 wr2
2 ...wrs

s )) where k =
∑s

i=1 ri and
(wj : 1 ≤ j ≤ k) ⊆ {v1, v2, ..., vk}.

3 Comparing Methods for Test Suite Gener-
ation

The variety of methods for generating test suites for pair-
wise coverage arises from a number of different objectives
to be addressed. We identify a number of criteria that have
been previously considered. Evidently, completeness of
coverage is a primary goal; we interpret this to be a require-
ment for the test suite to be a covering array of strength
two. In order to accelerate execution of the test suite, small
test suites are desired. Naturally both good performance in
the average case and a worst-carse guarantee on test suite
sizes are desirable. At the same time, efficient construction
of the test suite is needed to reduce time spent construct-
ing, rather than executing, the test suite. Different testers
can have quite different experiences with the same method,
and suffer the difficulty that a test suite size is reported
once that the method does not easily reproduce at a later
time. In many applications, however, predictability of the
test suite’s size and structure is desirable.

It is rarely the case even with automatic test genera-
tion that a tester does not wish to impose certain additional
constraints. For example, the ability to seed a test suite by
specifying the inclusion of certain tests is often necessary.
In addition, constraints among the factors can dictate that
the test suite avoid certain tests; these ‘avoids’ can be in



the form of pairs that need not be covered, or of pairs that
cannot be covered.

These many criteria have led to a wide variety of ap-
proaches, which we review briefly next. Many algebraic
and combinatorial constructions for orthogonal arrays and
covering arrays appear in the literature (see [8, 9, 10] for
example). Combinatorial constructions are only known for
some parameter sets; this severely limits the applicability
to practical testing problems. Nevertheless, Williams et al.
[3, 12] develop a strategy, TConfig, for employing a recur-
sive construction based on orthogonal arrays to construct
test suites. Their method is both fast and general. In ad-
dition, it provides a worst-case guarantee on test suite size
that is optimal up to a constant factor. It does not provide
for seeds or avoids. While it shares the speed of combinato-
rial constructions and permits more general application, it
generates test suites that are often much larger than needed.
This problem is especially prevalent in mixed level cov-
ering arrays, since the method is designed for fixed level
problems.

To address concerns with test suite size, many compu-
tational methods have been explored. Exhaustive genera-
tion is intractable, and optimization methods such as linear
programming have proved successful only on small prob-
lems [10]. Computational search techniques to find cov-
ering arrays include techniques such as hill climbing and
simulated annealing; other sophisticated search techniques
have proved less successful until this time [11]. Both hill
climbing and simulated annealing provide general methods
that appear to produce the smallest test suites across a wide
range of problems [13]. They provide for seeds. However,
predictability is a major concern, and the time to construct
a test suite can be prohibitive. They also fail to produce
a worst-case guarantee on test suite size. Nevertheless, if
minimizing the size of the test suite is of paramount con-
cern, simulated annealing currently appears to be the best
method available.

Most of the available techniques sacrifice some effort
in minimizing the test suite in order to get a simpler tech-
nique. Hence the majority of current techniques for mixed
level arrays use greedymethods to find test suites [1, 4, 14].

The AETG system and the Test Case Generator
(TCG) [1, 15, 14] use a greedy search technique. Each
test suite is built one test at a time, i.e. an N × k array
is built one row at a time. For each subsequent test case to
be added, many are created and then the best chosen (see
[1, 15, 14]). The greedy portion of these algorithms lies in
the step of determining which new symbol to add to each
column of each test. This is of course a local optimum.

In each algorithm, information is maintained about
which test case interactions are still uncovered and is used
as a heuristic to provide a better chance of finding the miss-
ing interactions. AETG uses a random approach to finding
a pool of test cases. Tung et al. [14] suggest a deterministic
algorithm. The authors begin with a deterministic order-
ing of the factors. Another greedy algorithm, In-Parameter-
Order (IPO), has the benefit of reusing old test cases when

new factors are added. It does this by expanding in a verti-
cal and horizontal fashion [4].

4 The Logarithmic Guarantee

Let us explore these in more detail. Suppose that we are
to test a system with k factors f1, . . . , fk. The factor fi

is permitted to take on any of vi levels or values, which
we denote by {σi,j : j = 1, . . . , vi}. The objective is to
produce anMCA(N ; 2, k, (v1...vk)).

The AETG system attempts to make a ‘small’ cover-
ing array using a greedy strategy. It selects a single test at
a time, repeating this until all pairs are covered in at least
one of the selected tests. Since the objective is to minimize
the number of tests, AETG concentrates on the selection of
each test to maximize the number of previously uncovered
pairs that are covered by this test. The paper makes two
main contributions [1]:

1. It shows a logarithmic bound on the number of tests
needed as a function of k.

2. It describes a (greedy) heuristic for the selection of
tests.

The first relies on a conceptually simple construction
method for covering arrays. Having selected some (partial)
collection of tests, we record the pairs P yet to be covered.
Among the

∏k
i=1 vi possible tests, there can be substantial

variation in the number of pairs in P that the test covers.
We select a test that covers that largest number of pairs in
P , add it to the collection of tests, and repeat this step un-
til P = ∅; at this point, we have the covering array. This
is a greedy method, and by no means guarantees the min-
imum size of the possible test suite constructed. However,
it does ensure that at each stage, at least |P|/L new pairs
are covered where L is the product of the two largest of
the sizes {vi}. This in turn ensures that the size of the test
suite constructed is bounded by a logarithmic function of
the number k of factors (see [1] for details).

However, the authors do not propose an algorithm for
finding the test that covers a maximum number of uncov-
ered pairs, and instead adopt a greedy heuristic to produce
each new test in turn. We review their method here. Each
test is selected from a pool ofM candidate tests, whereM
is a constant chosen in advance. To generate each candi-
date, first select a factor fi and a value σi for this factor so
that the choice of σi for fi appears in the maximum num-
ber of uncovered pairs. Set π(1) = i. Then choose a ran-
dom permutation of the indices of the remaining factors to
form a permutation π : {1, . . . , k} → {1, . . . , k}. Now
assume that values τ1, . . . , τi have been selected for factors
fπ(1), . . . , fπ(i). Select a value τi+1 for factor fπ(i+1) by
selecting that value which yields the maximum number of
new pairs with the selected values for the i factors already
fixed.

Repeating this processM times exploits the random-
ness in the factor ordering, and yields different tests from



which to select. Naturally, one selects the best in terms of
newly covered pairs, and adds it to the test suite.

While the authors note that this appears to exhibit a
logarithmic performance in practice, their earlier guarantee
does not apply because the test selection does not ensure
that a selected test covers the maximum possible number of
new pairs. In view of the next result, this is not surprising.

Given a collection P of uncovered pairs, and a spec-
ified number p, it is NP-complete to determine if there ex-
ists a test covering at least p pairs. See [16]. Member-
ship in NP is straightforward, since one can nondetermin-
istically select a test, and compute in polynomial time (de-
terministically) the number of pairs of P covered. To es-
tablish NP-hardness, we give a reduction fromMAX 2SAT
(“Given a logical formula in 2-conjunctive normal form,
and an integer p, is there a truth assignment to the variables
that makes at least p clauses true?”). This problem is NP-
complete (see, for example, [17]). Let F be a formula in 2-
conjunctive normal form with k logical variables. We form
k factors, each with two levels, ‘true’ and ‘false’. For each
clause of F , treat as a covered pair the truth assignment to
the two variables which makes the clause false. Then P
contains all pairs not covered in this way. Now we deter-
mine whether there is a test which covers at least p pairs of
P . A test corresponds directly to a truth assignment for F ,
and an uncovered pair to a clause which evaluates to true.
Thus the existence of such a test is equivalent to a solution
to MAX 2SAT.

In plain terms, what this says is that an efficient tech-
nique to select a test covering the maximum number of un-
covered pairs is unlikely to exist. However, this leaves an
unsatisfactory situation. The current proof of logarithmic
growth hinges on selecting such a test! Fortunately, the sit-
uation is not as bad as it first appears. Indeed a more careful
reading of the proof of logarithmic growth establishes that
one does not need to find a test which covers the maximum
number of uncovered pairs. All one needs is to find a test
that covers the average number of uncovered pairs.

It appears that the test selection in AETG does not en-
sure this, although for practical purposes unlessM is quite
small, the likelihood that at least one of the M candidates
has this property is high. Nevertheless, it is reasonable to
ask for a test selection technique that guarantees to cover at
least the average number. We pursue this next.

The lack of a guarantee results primarily from the
greedy nature of the test selection. In particular, when se-
lecting a value for the ith factor, only its interaction with
the first i − 1 factors is considered. This can (and does)
result in a selection which make selections for the later fac-
tors less desirable. Indeed if there are 100 factors, and we
are selecting a value for the fifth, for example, its interac-
tion with the later 95 factors is arguably more important
than its interaction with the first four. We use this intuition
to suggest an alternate approach.

We consider the construction of a test suite with k
factors. The number of levels for factor i is denoted by
vi. For factors i and j, we define the local density to be

δi,j = ri,j

vivj
where ri,j is the number of uncovered pairs

involving a value of factor i and a value of factor j. In
essence, δi,j indicates the fraction of pairs of assignments
to these factors which remain to be tested. We define the
global density to be δ =

∑
1≤i<j≤k δi,j . At each stage, we

endeavour to find a test covering at least δ uncovered pairs.
To select such a test, we repeatedly fix a value for each

factor, and update the local and global density values. At
each stage, some factors are fixed to a specific value, while
others remain free to take on any of the possible values.
When all factors are fixed, we have succeeded in choosing
the test. Otherwise, select a free factor fs. We have δ =∑

1≤i<j≤k δi,j , which we separate into two terms:

δ =
∑

1≤i<j≤k
i,j "=s

δi,j +
∑

1≤i≤k
i"=s

δi,s.

Whatever level is selected for factor fs, the first summation
is not affected, so we focus on the second.

Write ρi,s,σ for 1
vi
times the number of uncovered

pairs involving some level of factor f i, and level σ of factor
fs. Then rewrite the second summation as

∑

1≤i≤k
i"=s

δi,s =
1
vs

vs∑

σ=1

∑

1≤i≤k
i"=s

ρi,s,σ.

We choose σ to maximize
∑

1≤i≤k
i"=s

ρi,s,σ . It follows
that

∑
1≤i≤k

i"=s
ρi,s,σ ≥

∑
1≤i≤k

i"=s
δi,s. We then fix factor fs

to have value σ, set vs = 1, and update the local densities
setting δi,s to be ρi,s,σ . In the process, the density has not
been decreased (despite some possible – indeed necessary
– decreases in some local densities).

We iterate this process until every factor is fixed. The
factors could be fixed in any order at all, and the final test
has density at least δ. Of course it is possible to be greedy in
the order in which factors are fixed. This has some practical
value as we see later, but does not affect the logarithmic
growth.

If we apply this method to the case where each factor
has the same number of levels, the density is the average
number of uncovered pairs in a test that could be selected,
and we guarantee to select a test with at least this number
of uncovered pairs.

5 A Deterministic Density Algorithm

While the density argument developed establishes that
greedy methods can indeed yield a worst-case guarantee
that is logarithmic, it does not address the question of
whether controlling the worst case has a negative impact on
the expected size of test suites. In this section we describe
a practical implementation of the deterministic density al-
gorithm (DDA).

AETG [1] overcomes the lack of lookahead by ran-
domly reordering the factors, and selecting the best new test



from a set of candidates. While this randomnessmakes pre-
dictability problematic, it does in practice deal with prob-
lems resulting from factor ordering in a greedy method.
Nevertheless, as argued in [14], predictability is important.
With AETG it is also the case that the accuracy obtained by
considering more candidates comes at the price of greater
computation time. TCG [14] addresses the concern with
predictability by making deterministic selections. It always
fixes factors in nonincreasing order by number of levels for
the factor. Within this factor order, it attempts to make the
best selection of value for each factor in turn (measured as
number of pairs covered that were previously uncovered).
In order to avoid the myopia of considering only one can-
didate, however, it retains a set of best candidates so far.
The number of such candidates equals the largest number
of values for a factor. As each is extended, only the best are
retained; once candidate tests are completed, the best is se-
lected for inclusion in the test suite. The determinacy of the
approach addresses not only the issue of predictability, but
to a certain degree also lessens computational resources.
Test results in [13, 14] indicate that TCG sometimes main-
tains the accuracy of AETG, but it can perform poorly with
respect to the accuracy of AETG. In part, the fixed ordering
of factors in TCG removes a degree of freedom that AETG
exploits to an extent.

In assessing the practical value of a deterministic den-
sity approach, certain decisions must be made along the
lines indicated by AETG and TCG. Evidently it would be
possible to use the density selection criterion in a random-
ized approach such as AETG, substituting the selection
based solely on pairs covered with factors already fixed by
the one based on density. We do not pursue this avenue
for two reasons. Primarily, a randomized approach using
density still faces problems with predictability. Moreover,
density provides guidance as to the order in which factors
should be fixed in order to cover the most (or the most im-
portant) pairs.

It would also be possible to adopt TCG’s strategy of
building ‘in parallel’ many candidates for the next test to
be added to the suite. The overhead here is in computation
time, and we expect that the time/accuracy tradeoff merits
further exploration. As a proof of concept, however, we
opt to implement a method that deterministically generates
a single candidate test.

Staying within the logarithmic guarantee is ensured
by selecting a next test that covers at least the average num-
ber of uncovered pairs. However, our intuition is that bet-
ter results will be obtained by covering the largest num-
ber. While we have seen that this is NP-hard, it nonethe-
less indicates that in making choices in the algorithm, we
ought to make choices to improve the density of cover-
age as much as is possible. First we consider the selec-
tion of factors. The density of a factor f i can be taken as
δi =

∑
1≤j≤k, j "=i δi,j . At every stage, we select the factor

with the largest density to fix next. Once a factor is cho-
sen, we need to select a value for this factor. To do this, for
each possible value of the factor, we calculate the resulting

0 4 6 δ2,0 = 1 + 1
4 = 1.25 MCA(N ; 412131)

1 ? δ2,1 = 1 + 2
4 = 1.5 v0 = {0, 1, 2, 3}

. . . δ2,2 = 1 + 2
4 = 1.5 v1 = {4, 5}

v2 = {6, 7, 8}

Symbol chosen is 7 .

Figure 1. Selecting a Symbol

density for the factor if the factor is fixed to the specified
value. The value yielding the largest increase in density
is selected, and the densities updated. In essence, we are
simply using density as a surrogate for the number of pairs
that become covered; in this way, we avoid the issue of not
knowingwhich specific pairs are covered until after the test
is selected.

Making the ‘best’ selection locally ensures in partic-
ular that we always retain a set of choices in which we do
at least as well as the average. However, a few moments’
thought reveals some concerns, particularly for mixed level
arrays. The measure of local density scales the number of
uncovered pairs by the initial number to be covered. Hence
between two factors with two levels each, every pair con-
tributes 1

4 to the global density, while if the two factors
have ten levels each, a pair contributes only 1

100 . This runs
counter to our expectation that the pairs in the first situa-
tion are much more easily covered than those in the sec-
ond. To address this, we redefine local density in a way
that does not affect the logarithmic guarantee. Let vmax
be the largest number of levels for any factor. When we
handle two factors each having more than one level, in the
local density we replace the denominator by v 2max, mak-
ing every pair equally important from a density viewpoint.
When one factor has had its value chosen (i.e. has only one
level now), and the other remains to be chosen, we employ
the denominator vmax. When both factors have been fixed,
we employ the denominator 1. This corrects the method to
focus on factors with many levels rather than factors with
few. In Figure 1 we show one step in this algorithm. In
this example we have already chosen the first test case and
fixed the first factor of the second. The next factor to fix is
the third one. We calculate the local densities for the three
symbols of this factor and select the one with the largest
local density. Since more than one has the largest local
density we select the first.

We implemented the algorithm using local densities
defined in this way. Although the results are competitive
with AETG and TCG, using densities in this way does not
exhibit a preference among pairs to be covered. Consider
two factors. If we consider a possible value for the first,
it may have many or few uncovered pairs with the second
factor; local density as defined does not provide a greater
reward for covering those pairs involving a value appearing
in many uncovered pairs. Hence as a practical matter, we



Minimum Size of a Test Suite
Parameters DDA AETG TCG IPO TConfig
513822 21 19 20
716151453823 43 45 45
514431125 27 30 30
6151463823 34 34 33
415317229 35 41 36 40
41339235 27 28 29 30
313 18 15 19
2100 15 10 15 14
440 43 49 40
4100 51 52 43
1020 201 180 212 231

Table 3. Comparison with Published Results

refined the notion of local density further.
Our objective is to revise the definition of density so

that between one factor and another, each pair as it becomes
covered makes a smaller reduction in the density. In this
way, selection of the best improvement in density leads to
a preference to cover pairs involving values having many
uncovered pairs remaining. Implementing this is straight-
forward. Choose an inflation factor α. For two factors f i

and fj , and a value σ of fi, we calculate the ratio of uncov-
ered pairs involving σ and a value in fj to the value vmax
(or 1 if fj has already been fixed). Summing over all values
of σ and dividing by fmax (or 1 if factor fi has been fixed),
and then raising the result to the power α, gives the local
density δi,j .

It is routine to see that this makes the contribution of
a pair to the density larger when it involves factors between
which which many uncovered pairs remain. We do not de-
scribe a complete set of experiments here, but found that
choosing inflation factor α = 2 (i.e. squaring the previous
contributions) gave a useful improvement. It is necessary
to ensure that such a change does not negate the logarith-
mic guarantee, but it is easily seen that it only changes the
guarantee by a constant factor.

6 Computational Results

In order to assess the practicality of this deterministic den-
sity approach, we implemented a simple C program, DDA,
to compare the sizes of test suites obtained aganst those in
the literature for TCG [14], AETG [1, 18, 15], IPO [19, 4],
and TConfig [20, 3]. We have implemented the AETG and
TCG approaches independently [13], but in order to pro-
vide a preliminary assessment of the practicality of the ap-
proach, we restrict ourselves to comparisons with the test
suite sizes published by others. A more complete compar-
ison with implementations of these alternative approaches
is justified if DDA indeed proves competitive against pub-
lished results.

Table 3 presents sizes of test suites for a collection of
mixed-level covering arrays, and for a few fixed-level cov-
ering arrays, for which results appear in the literature. We

shall not attempt to draw too many conclusions from such a
small sample of cases, when data is available for only some
methods in each case. However, a few simple observations
are in order. TConfig, as expected, appears to be quite ef-
fective in fixed-level cases when the number of values is a
prime or prime power, but does not fare as well when we
depart from cases of this type. AETG constructs M = 50
candidates for each test and selects the best; the method
by which the candidates is chosen involves randomly per-
muting the factors. TCG deterministically builds a number
of candidates equal to the maximum number of levels for
a factor, and chooses the best. Nevertheless, while DDA
constructs only a single candidate for each test, the results
shown suggest that it is competitive; we are currently ex-
ploring the extension of DDA to maintain multiple candi-
dates and select the best. The time/accuracy tradeoff here
is unclear, but may explain to a degree cases in which DDA
is less competitive.

It would be incorrect to think that minimum size of
the test suite is the only parameter of importance. Indeed,
if this were the case, one could in theory employ an ex-
haustive search method rather than a greedy one. More
realistically, one could employ hill-climbing or simulated
annealing [13]. For example, for the mixed-level cover-
ing array 514431125, simulated annealing yields a solution
with only 21 test cases (compare to 27 for DDA, 30 for
TCG and AETG, in Table 3). Nevertheless, this simulated
annealing result took 579 seconds of compute time [13],
while (on a different machine) DDA took .16 seconds. The
point here is not to compare these running times directly,
as different platforms and implementations are involved.
Rather the point is to emphasize that greedy methods are
intended for speed. With this in mind, we report some ex-
ecution times on a SunBlade 1000 system for DDA. The
longest running time in our test cases was 24.9 seconds for
the CA(2, 100, 4). The case 2100 took 7.41 seconds, the
case 41329235 took 5.81 seconds, the case 415317229 took
4.12 seconds. the case 1020 took 1.1 seconds, and all others
took less than 0.2 seconds each.

These results demonstrate that DDA can produce test
suites of reasonable size in a modest amount of time. Com-
parisons with other methods are speculative at best. How-
ever, on the basis of published timings, it appears that
TConfig is faster than DDA, TCG and IPO are in the same
range of timing, and AETG is somewhat slower. We con-
clude only that DDA appears to be competitive in terms of
execution time as well.

One further experiment was conducted. Deterministic
density causes one to focus on those factors for which the
most remains to be covered, and for these factors chooses
the value for which the most remains to be covered. As
such the method lends itself naturally to applications in
which a portion of the covering array has been determined.
For example, we used DDA to find a CA(28;2,15,4). We
then seeded an MCA(N ; 2, 415317229) with these partial
tests, and allowed DDA to complete each partial test to a
complete one, and then add additional tests to complete the



mixed covering array. The result had only 32 tests, an im-
provement upon the results in Table 3. This method may
provide a vehicle for obtaining better results using deter-
ministic density. Moreover, it suggests that the approach
can be quite useful in seeding portions of a covering array
to be completed by DDA.

Our objective here was to assess whether DDA yields
not just an approach of theoretical interest but also a practi-
cal and competitive technique. On the basis of the accuracy
and time reported here, we believe that the method shows
definite promise.

7 Conclusions

Cohen et al. [1] establish that a greedy method that always
selects the next test to maximize newly covered pairs gives
a test suite whose size grow logarithmically with the num-
ber of factors. They design AETG as an heuristic method
to attempt to select a next test that covers close to this maxi-
mum number, but there is no theoretical guarantee that their
method indeed achieves this objective (although the prac-
tical results suggest that it typically does). TCG employs
a deterministic strategy that often, but not always, outper-
forms AETG for accuracy but also provides no such guar-
antee. Indeed, of the methods discussed, only the recursive
combinatorial method TConfig provides such a guarantee;
however, TConfig appears to performwell in practice when
the covering array parameters are of a restricted type.

These observations motivate two questions. The first
is to select a test that covers the maximum number of un-
covered pairs, and we have shown in a strong sense that an
efficient algorithm to do this is unlikely to exist; the prob-
lem is NP-hard. The second question is to determine what
is needed to get a logarithmic bound on the number of tests
in a test suite. Employing the method of Cohen et al. [1],
we observed that it suffices to cover the average number of
uncovered pairs. A density calculation is developed, and
used to ensure that at every stage, selections of factors and
levels is made that ensures that the average number of pairs
covered among the candidate tests that remain at each stage
never declines. Consequently, when all factors have been
assigned levels, the test covers at least the average number
of new pairs. This guarantees the logarithmic bound.

While the logarithmic bound is of theoretical interest,
and answers a question implied in [1], the practical value of
the method that results is not addressed by this theoretical
bound. We therefore developed a deterministic density al-
gorithm (DDA) for generating test suites; instead of choos-
ing factors and values so as not to decrease the density, we
instead choose a “steepest ascent” technique, at each stage
making selections to increase the density as much as possi-
ble. We have compared DDAwith four published methods,
and found it competitive with respect to size of test suites,
and apparently competitive in terms of execution time.

Further comparisons are needed to draw definitive
conclusions, particularly with respect to execution times.
Moreover, the theory underlyingDDA indicates that a wide

variety of candidate selections can be made without losing
the logarithmic bound. It is therefore possible to select one
of the available choices that does not decrease density ran-
domly, or to maintain a set of candidate partial tests for
exploration. AETG uses both of these techniques [1], and
TCG uses the latter [14]. We expect that a randomized ap-
proach based on densities would provide an improvement
in accuracy, at the expense of losing the reproducibility of
the current method. The value of maintainingmultiple can-
didates selected deterministically is less clear, and is the
subject of current research.
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