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A new numerical model of fracture is introduced. This model is composed of brittle sticks which 
respond nonlinearly to displacements. Following a deterministic evolution rule, small fluctuations in an 
initial condition are enhanced by the nonlinearity, and randomly ramified cracks are generated spontaneous· 
ly in result. 

Among a wide variety of nonlinear and non
equilibrium phenomena, fracture may be one of 
the most typical and basic one. In this letter, I 
will propose and analyse a model of fracture 
which is a variant of my model of electric break
down.') 

The first successful theory of brittle fracture is 
the famous Griffith's theory.2) He constructed 
the theory of crack propagation in brittle matter 
such as glass by assuming potentially existing 
small cracks and by considering the energy bal
ance between them. This theory has been inspir
ing many researchers who pursue fracture 
phenomena. For example, Gilvarry3) considered 
a random distribution of the potential cracks and 
obtained a distribution function for fragment size 
in fracture of brittle solids. According to 
Takeuti and Mizutani,4) his distribution function 
can be applied not only to fragments of glass and 
rocks but also to asteroids' sizes and seismic 
frequency. (Scale length from 10-5 to 105 m !) 

This suggests a universality of fracture phenom
ena and may encourage us to make a simple 
model of fracture independent of details of mate
rials and system sizes. 

Kawai5
) proposed a discretized model of solid 

or buildings in order to estimate their ultimate 
strength. His model is composed of rigid body 
elements connected by springs and is named the 
Rigid-Bodies-Spring Model. In this model, mate
rials of objects are not a question at all, and 
balance of forces among those rigid bodies is 
analysed numerically. On this point, my new 
model of fracture, to be introduced in the follow
ing discussion, resembles his model. However, 
his interest is focused mainly on solving technical 
or practical problems and no intensive study has 
been done on pattern formation of cracks. 

First, let us investigate an elementary process 

of fracture. Consider the situation that one end 
of a thin brittle stick of length unity is fixed while 
the other end is free. If we displace the free end 
very little, then the stick may show rigidity and a 
repulsive force may be observed. However, once 
the displacement of the free end, d, exceeds a 
critical value, dc, then the stick gets broken. In 
this case, modulus of rigidity of the stick, G, 
which is defined by the ratio of the force over the 
displacement, may be approximately a constant 
until d is less than dc, and when d becomes 
greater than dc, G may suddenly be reduced to a 
very small value, c:G (O;;;;c:~l), as shown in Fig. 
1. The parameter c: denotes the ratio of reduc
tion of the rigidity and in the case of perfect 
fracture c:=O. The arrow at d=dc in Fig. 1 
inqicates irreversibility, namely, once the stick 
has fractured then even when d becomes smaller 
than dc, the modulus of rigidity keeps the reduced 
value c:G. In this way, we model the elementary 
process of fracture by the nonlinear irreversible 
characteristics of the modulus of rigidity. 

N ext, we consider a plane square net consisting 
of such brittle sticks that are connected stiffly at 
each lattice point. If we assume the case that 
displacements at the lattice points are perpen
dicular to the plane (anti~plane shear problem), 
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Fig. 1. The response of the modulus of rigidity G 

with respect to the displacement d. 
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Fig. 2. The meaning of Uk(i, j) and Gk(i, j). The 

suffix k denotes up, left, down and right for k=1, 
2, 3, and 4, respectively. 

then equilibrium of forces at Ci, j) -th lattice point 
is represented by the following equation: 

Here, u(i, j) denotes the displacement of (i, j)-th 

lattice point, Uk(i, j) (k= 1, 2, 3, 4) is the displace
ment at one of the four nearest neighbors of the 
(i, ;'loth lattice point and Gk(i, j) (k=l, 2, 3, 4) 

indicates the modulus of rigidity of the 
corresponding stick (see Fig. 2). In the case that 
a lattice point is located on a boundary, we have 
to put Gk=O for a missing stick in E4. (1). For 
arbitrarily given {G} and appropriately given 
boundary condition of {U}, Eq. (1) for all combi
nation of (i, j) makes a set of linear equations for 
{u Ci, j) }, and it can be solved numerically. 
Thus we can obtain a static solution of our discre
tized model. 

Here, we note a little about a continuum limit. 
In this limit, Eq. (1) becomes 

17· (Gl7u)=O, (2) 

if G and U are sufficiently smooth. Well-konwn 
Laplace equation is obtained for the special case 
G=const: 

Llu=O. (3) 

N ow, we consider time evolution of the system. 
As it is very difficult to solve dynamical equa
tions, we simulate the time evolution by the fol
lowing procedure: 

1. Give {G} and a boundary condition of 
{ u}. 

2. Solve {u} by Eq. (1). 

3. Check every stick (except already bro-

ken ones). If the breakdown condition, 
IUk(i,j)-u(i,j)l>dc, is satisfied, then 
let GkCi,j)=r::GkCi,j). 

4. Stop if no stick has newly broken in the 
preceding procedure. ,Otherwise, go 
back to procedure 2 and continue the 
routine. 

It is obvious from this procedure that we evolve 
the system by solving the equilibrium condition, 
Eq. (1), and by checking the fracture condition, 
repeatedly. 

In the following analysis, we consider the case 
that the net is a square (n X n) and the boundary 
condition is given by 

u(i, 0) =0 and u(i, n) = U , 

Ci=I, 2, '''n) ( 4) 

where U is chosen to be the minimum value at 
which at least one stick breaks. Namely, this is 
the case that one end of the square brittle plate is 
pulled up until a crack appears while keeping the 
opposite edge fixed. 

An example of evolution on a 10 x 10 net is 
shown in Fig. 3. Here, {G} are given randomly 
as 

G=G+G*Z, (5) 

where G and G* are constants and Z is a random 
number distributed uniformly on [0, 1). The first 
breakdown induces succesive breakdowns of its 
neighbors and this chain-reaction continues until 

••• T=I T=2 T=3 

•• T=4 T=5 

Fig. 3. An example of evolution of brittle fracture 
on a 10 x 10 net. The last figure shows the crack 
pattern at T=5. The parameters are G=2.0, 
G*=2.0, dc=l.O and r::=0.01. 
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Fig. 4. An example of final fracture pattern on a 32 
x 32 net. The parameters are the same as those 
in Fig. 3. 

the broken sticks form a percolation cluster. 
The last figure in Fig. 3 shows the crack pattern 
which corresponds to the pattern of broken sticks 
at T=5. Here the bold line indicates the loca
tion of the first broken stick. In Fig. 4, an 
example of final crack patterns on a 32 x 32 net is 
shown. We can find a dendritic percolation 
crack among smaller cracks. An interesting 
point may be that most of the branches of the 
percolation crack are direct~d from the first bro
ken stick towards one end of the net. 

In the case that there is no randomness in {G}, 
the growth patterns of cracks differ very much. 
Especially, if all {G} take an identical value, then 
all vertical sticks break simultaneously and no 
interesting crack growth process can be observed. 
Hence, we may say that randomness in {G} plays 
an essential role for cracks to be randomly 
ramified. It should be noted here that this system 
is completely deterministic, that is, the growth 
procedure determines the evolution of the system 
uniquely for a given initial value of {G} and 
boundary condition of {u}. Randomness of the 
crack patterns originates only in the randomness 
of the initial value of {G}. 

Although the system sizes are different, the 
crack patterns in Figs. 3 and 4 resemble each 
other. A kind of self-similarity may naturally be 
expected. Fractal features of these cracks are 
examined by the same method as in Ref. 1) and 
the fractal dimension is estimated as 

D=L65±O.05, (6) 

which is very close to those of DLA 6) and electric 
breakdowns.7).!) However, this result is not con
clusive because the maximum system size is not 
sufficiently large (32 x 32). 

The time step which has been introduced in the 
evolution procedure is obviously not a real time. 
However, it may be an interesting problem to 
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Fig. 5. Log-log plot of the averaged total number of 
broken sticks (N ( T)) vs the time step (T). 

The system size is 32 x 32. 

estimate the fracture growth rat~ quantitatively. 
In Fig. 5, averaged number of broken sticks of a 
32X32 net at the time step T, N( T), is plotted 
with respect to T on a log-log scale. The points 
approximately line up and N( T) satisfies the 
following relation: 

N(T)cxT a , a=2.4±O.2. (7) 

This power law indicates that the crack growth 
process has fractal properties not only in its 
spatial patterns but also in the temporal behav
iours. 

We have seen that the growth process of cracks 
can be simulated by my model to some extent. 
Relation between this model and my model of 
electric breakdown will be reported in a separate 
paper.B

) By using these models, more detailed 
analyses of fracture and electric breakdown will 
be done. 
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