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A deterministic quantum dot 
micropillar single photon source 
with >65% extraction efficiency 
based on fluorescence imaging 
method
Shunfa Liu1, Yuming Wei1, Rongling Su1, Rongbin Su1, Ben Ma3,4, Zesheng Chen3,4,  

Haiqiao Ni3,4, Zhichuan Niu3,4, Ying Yu1, Yujia Wei1, Xuehua Wang1 & Siyuan Yu1,2

We report optical positioning of single quantum dots (QDs) in planar distributed Bragg reflector (DBR) cavity 
with an average position uncertainty of ≈20 nm using an optimized photoluminescence imaging method. 
We create single-photon sources based on these QDs in determined micropillar cavities. The brightness of 
the QD fluorescence is greatly enhanced on resonance with the fundamental mode of the cavity, leading to 
an high extraction efficiency of 68% ± 6% into a lens with numerical aperture of 0.65, and simultaneously 
exhibiting low multi-photon probability (g(2)(0) = 0.144 ± 0.012) at this collection efficiency.

Bright and indistinguishable single photons are one of key elements in photonic quantum technologies1,2, such 
as quantum teleportation3,4, optical quantum networks5, and Boson sampling devices for intermediate quantum 
computing tasks6–8. In recent years, single self-assembled quantum dots (QDs) integrated into photonic micro-
structures9, including microcavities10,11, microlens12, waveguides13, gratings14 and nanowires15,16, have turned out 
to be very promising candidates for realizing bright single photon sources. An extraction e�ciency in excess of 
70% has been demonstrated both with micropillar17,18 and nanowire15 systems. �e indistinguishability of the 
emitted photons, which is an equally important characteristic of single photon sources, can be achieved using 
resonant �uorescence excitation19,20. So far, bright and indistinguishable single photons are mostly achieved in 
QD-micropillar systems due to the large Purcell e�ect21 and the excellent suppression for the resonant laser22,23.

However, earlier QD-micropillar devices were based on statistical approaches by which several thousands of 
devices were fabricated. �e yield of appropriate QDs that match optical modes both in space and spectra was in 
the low 10−3. �us the most challenge stems from the random nature of the QD nucleation process. Considerable 
e�orts have been devoted to deterministically embed a single, pre-selected quantum emitter in a photonic struc-
ture11,12,14,24–27. Most of these techniques rely on cryogenic optical lithography that can only determine circular 
pillars. Recently, a fast, high-throughput and wide-�led quantum dot positioning technique has been developed 
to locate single quantum dots with an accuracy of several nanometers14,28. Most attractively, it is compatible with 
room-temperature high-resolution electron-beam lithography, which can be used to de�ne precise and sophisticated 
features such as elliptical micropillars29 and integrated light sources based on micropillar cavities30 in the future.

Here we �rst use the photoluminescence imaging technique developed in ref.14 to determine the position of 
single QDs in planar distributed Bragg re�ector (DBR) cavities with respect to �ducial alignment marks with 
an average position uncertainty of ≈20 nm. We also use this information to fabricate and demonstrate QD 
single-photon sources in micropillar cavities. Fine tuning of the QD line into the cavity resonance is obtained 
at temperatures ranging from 4 K to 40 K with a device yield of approximately 45% in 47 devices. �e device 
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simultaneously exhibits high collection e�ciency of 68% ± 6% into a lens with numerical aperture of 0.65, and 
low multi-photon probability (g(2)(0) = 0.144 ± 0.012) at this collection e�ciency.

Results
Determining QD’s position using photoluminescence imaging technique. �e deterministically posi-
tioned QD-in-micropillar structures are processed by two-color photoluminescence (PL) imaging (Fig. 1(a)) combined 
with standard electron-beam lithography. First, we select the QDs with their emission wavelengths near the cavity mode 
by collecting their emissions with a microscope objective (NA = 0.65) into a grating spectrometer. Subsequently, spatial 
selection is achieved by imaging the QD positions with respect to alignment marks, which is incorporated into the same 
micro-PL set-up. �is step ensures the position of the QD at the maximum of the pillar fundamental mode.

In detail, an array of Ti/Au metal alignment marks is fabricated on the surface of the DBR planar cavity struc-
ture through a standard li�-o� process. �en a wavelength-tunable pulsed laser is used to give rise to a PL emis-
sion from the QDs, while a 1050 nm light emitting diode (LED) with a power of ≈2 mW is simultaneously used to 
illuminate the alignment marks. �e illumination wavelength of LED is chosen out of the stopband (870–980 nm) 
of our Bragg mirrors to regain contrast in the image. �e microscope objective is focused on the QD layer at the 
center of λ-GaAs cavity (≈1.85 µm below the surface) when imaging the �uorescence from the QDs, while imag-
ing of the alignment marks is done by focusing on the planar surface of the structure to ensure its positioning 
accuracy. �e exposure time of EMCCD is set at 0.1 s to reduce sample dri� during images acquisition.

Representative images of the alignment marks (focused on the planar surface) and QD photoluminescence 
(focused on ≈1.85 µm below the surface) are shown in Fig. 1(b,c), respectively. A circular bright spot and related 
alignment marks are clearly visible in Fig. 1(b), which represents the emission from one single QD within an 
≈60 µm ×60 µm �eld of view. Orthogonal line cuts of the alignment marks are �tted with Gaussian functions 
using a nonlinear least squares approach, determining their centre positions with an typical uncertainty of 
≈18.4 nm (Fig. 1(d,e)). While the circular spot becomes optimally focused at the cost of fading the alignment 

Figure 1. (a) Schematic of the micro-photoluminescence measurement and two-color photoluminescence 
imaging setup. (b–e) Method to acquire the relative position of the QD: (b) EMCCD image of the alignment 
marks when focusing on the surface. (c) EMCCD image of the photoluminescence from a single QD when 
focusing on the QD layer that is at the center of λ-GaAs cavity (≈1.85 µm below the surface). (d,e) x(y) axis 
line cut along the horizontal(vertical) dot line in (b) and (c), showing the QD emission, light intensity re�ected 
by metallic marks. Herein, the Lorenz �t (red lines) and Gaussian �ts (blue lines) are used to determine the 
location of the QD and the center position of alignment mark, respectively. �e positions are then translated 
from a pixel value on the images to a distance on the sample by counting the number of pixels between two 
nearby marks with known distance. (f) Histograms of the uncertainties of the QD and alignment mark positions 
and QD-alignment mark separations (47 images). �e uncertainties represent one standard deviation values 
determined by a nonlinear least squares �t of the data.
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marks in Fig. 1(c), with the extracted peak of x-positions with one standard deviation uncertainty as low as 
6.6 nm, much better than that of 20.6 nm when focused on the planar surface (Fig. 1(e)). Furthermore, histo-
grams of the measured values in Fig. 1(f) show that the mean uncertainties in the quantum dot, alignment mark, 
and the QD-alignment mark separation are 10.9 nm, 17.1 nm, and 20.6 nm, respectively. �us this PL imaging 
technique allow us to determine the QD position by pointing the maximum of the QD emission according to the 
two-dimensional alignments marks, with an average position uncertainty of ≈20 nm.

Spectral matching by carefully designing the pillar radius. A�er selecting the QD with desired pho-
ton energy (around the planar cavity mode) and accurately determining its position, the fundamental mode of 
pillar should be carefully designed to achieve spectral matching. As the energy of fundamental mode increases 
when the radius decreases31,32, the pillar radius (R) is purposefully chosen according to the deviation of the emis-
sion frequency of the QD from the planar cavity mode. And then, typical micropillar cavities are fabricated (see 
micropillar fabrication in the Method Section). A scanning electron microscopy (SEM) image of a typical pillar 
with a diameter of 2 µm is presented in Fig. 2(a), which is superimposed with the normalized electric �eld inten-

sity distribution (|
→
|E ) calculated by 3D-FDTD method (detailed in Fig. S1 in Supplementary Information). 

Figure 2(b),(c) show the representative photoluminescence images of the device before and a�er fabrication, 
indicating a QD emission is just in the center of a micropillar structure. Figure 2(d) presents the measured and 
theoretical energy of the fundamental mode for the pillar cavities as a function of the designed diameter. �e 
black circles represent the experiment cavity modes of di�erent diameters acquired by raising the power of excita-
tion laser, which is well matched to the theory result (red line) according to equation32,33:
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By selecting appropriate pillar diameter for QD with di�erent emission energy, we achieve a device yield of 
45% in 47 devices by matching the emission wavelength between QD and fundamental mode in the range of 4 K 
to 40 K. �e deviation from an ideal fabrication process is mainly due to the large diameter interval of 0.5 µm, the 
slightly shi�s of QD emissions during heating and cooling for several times or within the etching processes that 
change the strain environment of the QDs, which are also found in ref.17.
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Figure 2. (a) Scanning electron microscopy (SEM) image of a typical pillar with a diameter of 2 µm, along  
with the normalized electric �eld intensity distribution |

→
|E  calculated by 3D-FDTD method. (b,c) 

Photoluminescence images of a 4 µm diameter micropillar with a single quantum dot in the center before (b) 
and a�er (c) fabrication. Scale bar represents 2 µm. (d) �e average of measured energy (black dot with error 
bar) of the fundamental mode (HE 11) for the pillar cavities as a function of the designed diameter, which are 
well described by theory according to Eq. (1) plotted in red line. Inset is a typical experiment cavity mode of a 
micropillar with a diameter of 4 µm acquired by raising the excitation power.
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Single photon source performance. Now we turn to characterize the emission produced by the optically 
positioned QD within a micropillar with a diameter of 2 µm. �e extracted Q factor of fundamental mode (Qpillar) 
in our investigated device is 1438 ± 2. A typical temperature dependent micro-PL is presented in Fig. 3(a). A 
strong enhancement on spectral resonance between fundamental mode (FM) and QD due to the Purcell e�ect is 
observed at T = 11.1 K. Time-photoluminescence measurements are carried out to determine the Purcell 
enhancement of the system. �e spontaneous emission decay of the QD before fabrication (in planar structure) 
and in the micropillar cavity (tested at 11.1 K) are shown in Fig. 3(b). �e single exponential �ts of the decay 
curves indicate a lifetime of τ −on resnance = 530 ± 6 ps for the QD in the micropillar cavity under above-barrier 
excitation (780 nm) and a lifetime of τ =0  1120 ± 4 ps for the QD in the planar structure, according to the meas-
ured lifetime, we calculate the Purcell enhancement of the spontaneous emission rate as a factor of 

= = . ± .
τ

τ −
F 2 1 0 3p

on resnance

0 , which is di�erent from the theoretical maximum of Fp = 5.4 for a micropillar with 

12/25 pairs DBRs and a diameter of 2 µm (Fig. S2 in Supplementary Information). �e large deviation of the PL 
decay time might be caused by a long carrier relaxation time from higher energy states to the lowest exciton state 
under above-barrier excitation34–36 or the slow decay processes of other emitters non-resonantly coupled to the 
cavity, which masks the real Fp. The theoretical Q-factor of the planar cavity is calculated to be 1820 with 
3D-FDTD method, and the experimental Q D2  is extracted to be 1676 by raising the excitation power in the high 
density region of the wafer, a slight reduction of Q D2  can be caused by the absorption in the active QDs layer32,37.

To prove the brightness of this optical positioned QD in micropillar structure, we determine both the collec-
tion e�ciency and the second order autocorrelation function at zero delay g (0)(2)  when the QD emission is satu-
rated. Figure 4(a,b) presents a PL spectrum of a single QD before (Fig. 4(a)) and a�er (Fig. 4(b)) fabrication under 
non-resonant,780 nm pulsed excitation. Only the emission line which has a central wavelength (915.01 nm) 
within cavity mode appears with bright luminescence. In order to get pure QD �uorescence, a narrow band �lter 
with a bandwidth of 1 nm is inserted into the collection arm of the confocal optical path. �e inset in Fig. 4(d) 
shows a spectrum a�er �ltering in which only one peak remains. Figure 4(d) shows the detected �uorescent 
counts on a silicon single-photon detector as a function of normalized pulse laser power, achieving the total �ux 

Ntotal = 1,679,000 counts/s. To deduce the corresponding number of photons collected per excitation pulse in the 
�rst lens, we calibrate all the optical components of the detection path, as shown in Table 1. We estimate the total 
transmission rates of optical set-ups as η = . ± .(2 7 0 24)%

setup
, where the uncertainty is based on the spread of 

transmission values measured for the optical components, and represents a one standard deviation value. To 
verify that these photons are true single photon, namely only one photon is generated when QD is driven by one 
laser pulse, we carried out an intensity-correlation measurement at saturated pump power density of 24 W/cm2. 
�e result is displayed in Fig. 4(e). Although there is a dip at zero time delay which indicates only one photon 

Figure 3. (a) Temperature dependent spectra of a micropillar with a diameter of 2 µm, a strong enhancement 
on spectral resonance between fundamental mode (FM) and QD due to the Purcell e�ect is observed at 
T = 11.1 K. (b) Time resolved measurements of the QD under above-barrier excitation (780 nm) before 
fabrication (in planar structure) and in the micropillar cavity at the temperature of 11.1 K.
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generation at a time, two obvious small peaks around zero time delay lead to a g (0)(2)  of 0.205 ± 0.010. Here, the 
value of g (0)(2)  is calculated from the integrated photon counts in the zero time delay peaks divided by the average 
of the adjacent four peaks, and its error denotes one standard deviation. �e �tting function for each peak is the 
convolution of a double exponential decay (exciton decay response) with a Gaussian (single-photon detector time 
response)19. In these measurements, the proper mode-locking of the pulsed laser was carefully checked. �ese 
observations of two-peaks are not unique and occur in a similar way on a multitude of dots on this sample or 
other samples grown using the same MBE system38. We attribute these two peaks to a recapture process with 
assistance of trapped states in the QD sample39,40. �e carriers can be trapped in these states �rst for a certain time 
and a�er that there is a recapture process from trapped states into the QD following the initial recombination38–41. 
To remove the e�ect of re-excitation, we multiply the total �ux Ntotal with 

+ g

1

1 (0)(2)
 and get a pure single photon 

�ux N0. �us we estimate extraction e�ciency η that is the percentage of generated single photons collected into 

the �rst objective lens (NA = 0.65) as η = 
η

.

N

MHz

/

79 3

setup0  = 65% ± 6%. To obtain high pure combined with high bright-

ness, we study the QD emission under 858 nm pulsed excitation (near the wetting layer of QD). �ere is only one 
peak le� in the spectrum as shown in Fig. 4(c). �e power dependent �uorescent counts and the intensity auto-
correlation measurement presented in Fig. 4(d) and Fig. 4(f) indicate a maximum of 1,657,000 counts/s with 

g (0)(2)  of 0.144 ± 0.012 at saturated pump power, revealing an extraction e�ciency of 68% ± 6%. To verify such 
an extraction e�ciency, we measured the PL intensity as a function of the energy detuning between the QD emis-
sion and cavity mode under 780 nm continuous-wave (CW) excitation42–44. By modeling the experimental data, 
we yield a Purcell factor of 3.95 ± 2.44 (details in Supplementary Information section 3), the error can be caused 

Figure 4. (a,b) PL spectra of a single QD in a micropillar with a diameter of 2 µm before (a) and a�er (b) 
fabrication under non-resonant, 780 nm pulsed excitation. (c) PL spectrum of the QD in micropillar under 
858 nm pulsed excitation. (d) Detected �uorescent counts of the same QD as a function of the normalized pulse 
laser power P P/ sat under 780 nm (black) and 858 nm (red) pulsed excitation, here P and Psat represent to the 
excitation and saturation power. �e inset shows a spectrum a�er a longpass �lter and a narrow band �lter with 
a bandwidth of 1 nm. (e,f) Intensity-correlation histogram obtained using a Hanbury Brown and Twiss-type 
set-up under 780 nm (e) and 858 nm (f) pulsed excitation. �e value of g (0)2  is calculated from the integrated 
photon counts in the zero time delay peaks divided by the average of the adjacent four peaks, and its error 
denotes one standard deviation. �e �tting function for each peak is the convolution of a double exponential 
decay (exciton decay response) with a Gaussian (single-photon detector time response)19. Owing to the limited 
time response, the small two peaks around the zero time have �nite overlaps.

Transmission Error bar

Optical window 0.929 ±3.0%

50 × microscope objective 0.787 ±3.0%

50/50 beam splitter 0.490 ±3.0%

50/50 beam splitter 0.490 ±3.0%

Silver mirror 0.956 ±3.0%

A 920 nm narrow band �lter/a 900 nm long pass �lter 0.568 ±2.0%

A coupling lens 0.960 ±3.0%

Single-photon detector e�ciency 0.300 ±5.0%

Overall detection e�ciency 0.027 ±9.1%

Table 1. Experimental set-up calibration.
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by the uncertainty of intensity measurements. �is result agrees well with the = .F 4 3p  calculated using 3D-FDTD 
simulation, and can satisfy the Fp needed (around 4) to achieve an extraction e�ciency of 68% ± 6% according to 

the well known equation η = × .
+

Q

Q

F

F1

pillar

D

p

p2

Discussion
In this paper, we have realized positioning single QDs in planar DBR cavity with respect to alignment marks with 
an average position uncertainty of ≈20 nm using an optimized two-color photoluminescence imaging technique 
developed by Luca Sapienza and coworkers14. We have used this technique to create single-photon sources based 
on positioned QD in a micropillar cavity that simultaneously exhibit high brightness (η = 68% ± 6%) and purity 
( = . ± .g (0) 0 144 0 012)(2) . As a next step one could also implement a resonance �uorescence excitation to achieve 
highly indistinguishable on-demand photons. We believe these deterministic single QD micropillar structures can 
be used in devices including strongly-coupled QD-microcavity systems45,46, on-chip quantum optics with quantum 
dot microcavities30, and orbital angular momentum modes (OAM) from quantum light sources47, which is very 
encouraging for the implementation of integrated quantum dot based quantum circuits2.

Methods
Sample growth. �e investigated sample consists a single layer of low density In(Ga)As QDs grown via 
molecular beam epitaxy and located at the center of a λ-thick GaAs cavity surrounded by two Al 0.9 Ga 0.1 As/
GaAs Bragg mirrors with 12 (25) pairs. �e density of self-assembled InAs quantum dots varies continuously 
along the wafer by stopping the rotation of the substrate during InAs deposition. In our experiment, a density of 
about 108 cm−2 was chosen for photoluminescence imaging. A silicon delta-doping was introduced 10 nm above 
the QD layer to stochastically charge the single QDs with an excess electron.

Micropillar fabrication. �e sample is �rst spin coated with a negative tone electron beam resist (HSQ 
fox15); �e resist is exposed using a VISTEC EBPG5000 ES PLUS electron-beam lithography (EBL) system at 
100 kV; Followed by the exposure and development process, the mask pattern of the pillar with a certain diameter 
is transferred into the sample via an inductively-coupled plasma reactive ion etching system (ICP-RIE, Oxford 
Instrument Plasmalab System 100 ICP180).

Optical measurements. An optical microscopy cryostat (Montana, T = 4 K-300 K) mounted on a motor-
ized positioning system with piezo-electric actuators is used for optical measurements. A 800 fs pulsed laser with 
tunable wavelengths from 750 nm to 1040 nm and a 79.3 MHz repetition rate is used to give rise to a PL emission 
from the QDs. �e laser beam was focused onto a selected QD with the laser spot of ≈1.5 µm. Re�ected light 
and �uorescence from the sample go back through the 50/50 and 80/20 beam splitters and are imaged onto an 
Electron Multiplied Charged Couple Device (EMCCD) or a spectrometer. Two 900 nm long-pass �lters (LPFs) 
are inserted in front of the EMCCD camera and the spectrometer respectively to remove re�ected excitation light. 
Our auto-correlation measurements is taken out using typical Hanbury Brown and Twiss (HBT)-type set-up.

References
 1. O’Brien, J. Photonic quantum technologies. Nature Photonics 3, 687–695 (2010).
 2. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nature Photonics 10, 631–641 (2016).
 3. Gao, W. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Communications 4, 2744 (2013).
 4. Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nature Photonics 7, 311–315 (2013).
 5. Faraon, A. et al. Integrated quantum optical networks based on quantum dots and photonic crystals. New Journal of Physics 13, 

5314–5317 (2011).
 6. He, Y. et al. Time-bin-encoded boson sampling with a single-photon device. Physical Review Letters 118, 190501 (2017).
 7. Wang, H. et al. High-e�ciency multiphoton boson sampling. Nature Photonics (2017).
 8. Loredo, J. et al. Boson sampling with single-photon fock states from a bright solid-state source. Physical Review Letters 118, 130503 (2017).
 9. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews 

of Modern Physics 87, 347 (2015).
 10. Pelton, M. et al. An e�cient source of single photons: a single quantum dot in a micropost microcavity. Physical Review Letters 89, 

233602 (2003).
 11. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158 (2005).
 12. Gschrey, M. et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ 

electron-beam lithography. Nature Communications 6 (2015).
 13. Arcari, M. et al. Near-unity coupling e�ciency of a quantum emitter to a photonic crystal waveguide. Physical Review Letters 113, 

093603 (2014).
 14. Sapienza, L., Davanço, M., Badolato, A. & Srinivasan, K. Nanoscale optical positioning of single quantum dots for bright and pure 

single-photon emission. Nature communications 6 (2015).
 15. Claudon, J. et al. A highly e�cient single-photon source based on a quantum dot in a photonic nanowire. Nature Photonics 4, 

174–177 (2010).
 16. Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nature Communications 3, 737 (2012).
 17. Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot 

micropillar device with 74% extraction e�ciency. Optics express 24, 8539–8546 (2016).
 18. Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nature Communications 4, 1425 (2013).
 19. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nature nanotechnology 8, 

213–217 (2013).
 20. Flagg, E. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nature Physics 5, 203–207 (2009).
 21. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Physical Review 69, 681 (1946).
 22. Ding, X. et al. On-demand single photons with high extraction e�ciency and near-unity indistinguishability from a resonantly 

driven quantum dot in a micropillar. Physical review letters 116, 020401 (2016).
 23. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nature Photonics (2016).



www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | 7: 13986  | DOI:10.1038/s41598-017-13433-w

 24. Jamil, A. et al. On-chip generation and guiding of quantum light from a site-controlled quantum dot. Applied Physics Letters 104, 
46–52 (2014).

 25. Dousse, A. et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-�eld optical 
lithography. Physical Review Letters 101, 267404 (2008).

 26. �on, S. M. et al. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Applied Physics Letters 
94, 111115–3 (2009).

 27. Kojima, T., Kojima, K., Asano, T. & Noda, S. Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot 
based on optical microscopic photoluminescence imaging. Applied Physics Letters 102, 011110 (2013).

 28. Jin Liu et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Review of Scienti�c 
Instruments 88, 023116 (2017).

 29. Reitzenstein, S. et al. Polarization-dependent strong coupling in elliptical high- q micropillar cavities. Physical Review B 82, 
2955–2970 (2010).

 30. Stock, E. et al. On-chip quantum optics with quantum dot microcavities. Advanced Materials 25, 707–10 (2012).
 31. Gerard, J. M., Barrier, D., Marzin, J. Y. & Kuszelewicz, R. Quantum boxes as active probes for photonic microstructures: �e pillar 

microcavity case. Applied Physics Letters 69, 449–451 (1996).
 32. Reitzenstein, S. & Forchel, A. Quantum dot micropillars. Journal of Physics D: Applied Physics 43, 033001 (2010).
 33. Gutbrod, T. et al. Angle dependence of the spontaneous emission from con�ned optical modes in photonic dots. Physical Review B 

59, 2223 (1999).
 34. Liu, F. et al. High purcell factor generation of coherent on-chip single photons. arXiv preprint arXiv 1706, 04422 (2017).
 35. Berstermann, T. et al. Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots. 

Physical Review B 76, 165318 (2007).
 36. Reithmaier, G. et al. A carrier relaxation bottleneck probed in single ingaas quantum dots using integrated superconducting single 

photon detectors. Applied Physics Letters 105, 081107 (2014).
 37. Rivera, T. et al. Optical losses in plasma-etched algaas microresonators using re�ection spectroscopy. Applied physics letters 74, 

911–913 (1999).
 38. Yu, S. et al. Tunable-correlation phenomenon of single photons emitted from a self-assembled quantum dot. Physica E: Low-

dimensional Systems and Nanostructures (2016).
 39. Dalgarno, P. A. et al. Hole recapture limited single photon generation from a single n-type charge-tunable quantum dot. Applied 

Physics Letters 92, 215 (2008).
 40. Aichele, T., Zwiller, V. & Benson, O. Visible single-photon generation from semiconductor quantum dots. New Journal of Physics 6, 

90 (2004).
 41. Nguyen, H. S. et al. Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy. 

Physical Review B - Condensed Matter and Materials Physics 87, 1–15 (2013).
 42. Böckler, C. et al. Electrically driven high-q quantum dot-micropillar cavities. Applied Physics Letters 92, 091107 (2008).
 43. Munsch, M. et al. Continuous-wave versus time-resolved measurements of purcell factors for quantum dots in semiconductor 

microcavities. Physical Review B 80, 115312 (2009).
 44. Unsleber, S. et al. Deterministic generation of bright single resonance �uorescence photons from a purcell-enhanced quantum dot-

micropillar system. Optics express 23, 32977–32985 (2015).
 45. Reinhard, A. et al. Strongly correlated photons on a chip. Nature Photonics 6, 93–96 (2011).
 46. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–9 (2006).
 47. Li, H. et al. Orbital angular momentum vertical-cavity surface-emitting lasers. Optica 2, 21–21 (2015).

Acknowledgements
�e authors wish to thank Lin Liu, Li-Dan Zhou, Chun-chuan Yang, Zhi-Chao Nong for technical assistance in 
microfabrication, as well as Prof. Jin Liu, Mr. Xiong Wu and Ming-Bo He for valuable discussions. �is work is 
supported by the Natural Science Foundation of Guang-dong Province (20167612042030003), and the Specialized 
Research Fund for the Doctoral Program of Higher Education of China (20167612031610002), National Key Basic 
Research Program of China (2013CB933304), National Natural Science Foundation of China (91321313, 61274125).

Author Contributions
Y.Y., Y.J.W. and S.Y.Y. conceived and designed the experiments. B.M., Z.S.C., H.Q.N. and Z.C.N. grew and 
fabricated the sample. S.F.L. and R.B.S. fabricated the devices, Y.M.W., S.F.L., and R.L.S. made the optical 
measurements. Y.Y., Y.J.W., S.F.L., Y.M.W., S.Y.Y. and X.H.W. analyzed the data. Y.Y. and S.F.L. wrote the 
manuscript, with input from all authors.Y.Y., S.Y.Y. and X.H.W. guided the project.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-13433-w.

Competing Interests: �e authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-13433-w
http://creativecommons.org/licenses/by/4.0/

	A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging  ...
	Results

	Determining QD’s position using photoluminescence imaging technique. 
	Spectral matching by carefully designing the pillar radius. 
	Single photon source performance. 

	Discussion

	Methods

	Sample growth. 
	Micropillar fabrication. 
	Optical measurements. 

	Acknowledgements

	Figure 1 (a) Schematic of the micro-photoluminescence measurement and two-color photoluminescence imaging setup.
	Figure 2 (a) Scanning electron microscopy (SEM) image of a typical pillar with a diameter of 2 μm, along with the normalized electric field intensity distribution calculated by 3D-FDTD method.
	Figure 3 (a) Temperature dependent spectra of a micropillar with a diameter of 2 μm, a strong enhancement on spectral resonance between fundamental mode (FM) and QD due to the Purcell effect is observed at T = 11.
	Figure 4 (a,b) PL spectra of a single QD in a micropillar with a diameter of 2 μm before (a) and after (b) fabrication under non-resonant, 780 nm pulsed excitation.
	Table 1 Experimental set-up calibration.


