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A b s t r a c t .  We introduce the class of event-recording timed automata 
(ERA). An event-recording automaton contains, for every event a, a 
clock that records the time of the last occurrence of a. The class ERA is, 
on one hand, expressive enough to model (finite) timed transition sys- 
tems and, on the other hand, determinizable and closed under all boolean 
operations. As a result, the language inclusion problem is decidable for 
event-recording automata. We present a translation from timed transi- 
tion systems to event-recording automata, which leads to an algorithm 
for checking if two timed transition systems have the same set of timed 
behaviors. 

We also consider event-predicting timed automata (EPA), which contain 
clocks that predict the time of the next occurrence of an event. The class 
of event-clock automata (ECA), which contain both event-recording and 
event-predicting clocks, is a suitable specification language for real-time 
properties. We provide an algorithm for checking if a timed automaton 
meets a specification that is given as an event-clock automaton. 

1 I n t r o d u c t i o n  

Finite au toma ta  are instrumental  for the modeling and analysis of many phenom- 
ena within computer  science. In particular, au toma ta  theory plays an impor tan t  
role in the verification of concurrent finite-state systems [10, 16]. In the trace 
model for concurrent computat ion,  a system is identified with its behaviors. As- 
suming tha t  a behavior is represented as a sequence of states or events, the 
possible behaviors of a system can be viewed as a formal language, and the sys- 
tem can be modeled as an au tomaton  tha t  generates the language ( a  complex 
system is modeled as the product  of au t om a t a  tha t  represent the component  
systems).  Since the admissible behaviors of the system also constitute a formal 
language, the requirements specification can be given by another au tomaton  
(the adequacy of au t om a t a  as a specification formalism is justified by the fact 
tha t  compet ing formalisms such as linear temporal  logic are no more expres- 
sive). The verification problem of checking tha t  a system meets its specification, 
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then, reduces to testing language inclusion between two automata. The decision 
procedure for language inclusion typically involves the complementation of the 
specification automaton, which in turn relies upon determinization [9, 15]. 

To capture the behavior of a real-time system, the model of computation 
needs to be augmented with a notion of time. For this purpose, timed au- 
tomata [3] provide a simple, and yet powerful, way of annotating state-transition 
graphs with timing constraints, using finitely many real-valued variables called 
clocks. A timed automaton, then, accepts timed words--strings in which each 
symbol is paired with a real-valued time-stamp. While the theory of timed au- 
tomata allows the automatic verification of certain real-time requirements of 
finite-state systems [1, 3, 4, 8], and the solution of certain delay problems [2, 
6], the general verification problem (i,e., language inclusion) is undecidable for 
timed automata [3]. This is because, unlike in the untimed case, the nonde- 
terministic variety of timed automata is strictly more expressive than the de- 
terministic variety. The notion of nondeterminism allowed by timed automata, 
therefore, seems too permissive, and we hesitate to accept timed automata as 
the canonical model for finite-state real-time computation [5]. 

In this paper, we obtain a determinizable class of timed automata by re- 
stricting the use of clocks. The clocks of an event-clock automaton have a fixed, 
predefined association with the symbols of the input alphabet (the alphabet sym- 
bols typically represent events). The event-recording clock of the input symbol a 
is a history variable whose value always equals the time of the last occurrence of 
a relative to the current time; the event-predicting clock of a is a prophecy vari- 
able whose value always equals the time of the next occurrence of a relative to 
the current time (if no such occurrence exists, then the clock value is undefined). 
Thus, unlike a timed automaton, an event-clock automaton does not control the 
reassignments of its clocks and, at each input symbol, all clock values of the 
automaton are determined solely by the input word. This property allows the 
determinization of event-clock automata, which, in turn, leads to a complemen- 
ration procedure. Indeed, the class ECA of event-clock automata is closed under 
all boolean operations (timed automata are not closed under complement), and 
the language inclusion problem is decidable for event-clock automata. 

While event-predicting clocks are useful for the specification of timing re- 
quirements, automata that contain only event-recording clocks (event-recording 
automata) are a suitable abstract model for real-time systems. We confirm this 
claim by proving that event-recording automata are as powerful as another popu- 
lar model for real-time computation, timed transition systems [7]. A timed tran- 
sition system associates with each transition a lower bound and an upper bound 
on the time that the transition may be enabled without being taken (many 
related real-time formalisms also use lower and upper time bounds to express 
timing constraints [13, 14]). A run of a timed transition system, then, is again 
a timed word--a sequence of time-stamped state changes. We construct, for a 
given timed transition system T with a finite set of states, an event-recording 
automaton that accepts precisely the runs of T. This result leads to an algorithm 
for checking the equivalence of two finite timed transition systems. 



2 E v e n t - c l o c k  A u t o m a t a  

Timed  words and t imed languages 

We study formal languages of timed words. 3 A timed word ~ over an alphabet 2Y 
is a finite sequence (ao,to)(al,tl)... (an,tn) of symbols a~ E ~ that  are paired 
with nonnegative real numbers ti E R + such that  the sequence ~ = tit2 . . .  t,, of 
t ime-stamps is nondecreasing (i.e., ti _< ti+l for all 0 _< i < n). Sometimes we 
denote the timed word ~ by the pair (~, t-). A timed language over the alphabet  2~ 
is a set of t imed words over ~.  The boolean operations of union, intersection, 
and complement of t imed languages are defined as usual. Given a t imed language 
s over the alphabet 2Y, the projection Untime (s is obtained by discarding the 
time-stamps: Untime(s C 2Y* consists of all strings ~ for which there exists a 
sequence ~ of t ime-stamps such that  (~, ~ E s 

A u t o m a t a  wi th  clocks 

Timed au tomata  are finite-state machines tha t  are constrained with timing re- 
quirements so that  they accept (or generate) t imed words (and thus define timed 
languages); they were proposed in [3] as an abstract model for finite-state real- 
t ime systems. A timed automaton operates with finite control- -a  finite set of 
locations and a finite set of real-valued variables called clocks. Each edge between 
locations specifies a set of clocks to be reset (i.e., restarted). The value of a clock 
always records the amount  of time that  has elapsed since the last time the clock 
was reset: if the clock z is reset while reading the i-th symbol of a t imed input 
word (~, t-), then the value of z while reading the j - th  symbol, for j > i, is tj - t~ 
(assuming that  the clock z is not reset at any position between i and j ) .  The 
edges of the automaton put certain arithmetic constraints on the clock values; 
that  is, the automaton control may proceed along an edge only when the values 
of the clocks satisfy the corresponding constraints. 

Each clock of a timed automaton,  therefore, is a real-valued variable that  
records the time difference between the current input symbol and another in- 
put symbol, namely, the input symbol on which the clock was last reset. This 
association between clocks and input symbols is determined dynamically by the 
behavior of the automaton.  An event-clock automaton, by contrast, employs 
clocks that  have a tight, predefined, association with certain symbols of the 
input word. Suppose that  we model a real-time system so that  the alphabet 
symbols represent events of the system. In most cases, it will suffice to know, for 
each event, the time that  has elapsed since the last occurrence of the event. For 
example, to model a delay of i to 2 seconds between the input and output  events 
of a device, it suffices to use a clock z that  records the time that  has elapsed 
since the last input event, and require the constraint 1 < z < 2 when the output  
event occurs. This observation leads us to the definition of clocks that  have a 
fixed association with input symbols and cannot be reset arbitrarily. 

3 For the clarity of exposition, we limit ourselves to finite words. Our results can be 
extended to the framework of w-languages. 



Event-recording and event-predicting clocks 

Let ~ be a finite alphabet. For every symbol a E ~ ,  we write Xa to denote the 
event-recording clock ofa .  Given a timed word ffl = (ao,to)(al,tl). . .  (an, tn), 
the value of the clock xa at the j - th  position of $ is tj - t/, where i is the largest 
position preceding j such that  ai equals a. If no occurrence of a precedes the 
j - th  position of z0, then the value of the clock za is "undefined," denoted by 3-. 
We write R + = R + U ~• for the set of nonnegative real numbers together with 
the special value 3-. Formally, we define for all 0 < j < n, 

t i - t~ if there exists i such that  0 _< i < j and ai = a 
val(@,j)(xa) =- and for all k with i < k < j ,  ak • a, 

/ if a~ r a for all k with 0 _< k < j .  

Tha t  is, the event-recording clock xa behaves exactly like an automaton clock 
that  is reset every time the automaton encounters the input symbol a. The 
value of x~, therefore, is determined by the input word, not by the automaton. 
Auxiliary variables tha t  record the times of last occurrences of events have been 
used extensively in real-time reasoning, for example, in the context of model- 
checking for t imed Petri  nets [17], and in assertional proof methods [11, 14]. 

Event-recording clocks provide timing information about events in the past. 
The dual notion of event-predicting clocks provides timing information about  
future events. For every symbol a E E, we write y~ to denote the event-predicting 
clock of a. At each position of the timed word ~,  the value of the clock Ya 
indicates the time of the next occurrence of a relative to the time of the current 
input symbol; the special value 3- indicates the absence of a future occurrence 
of a. Formally, we define for all 0 _< j < n, 

{ : - t i i f t h e r e e x i s t s i s u c h t h a t j < i < n a n d a i = a  
val(ffl, j)(y~) = and for all k with j < k < i, ak # a, 

if ak ~ a for all k with j < k _< n. 

The event-predicting clock Ya can be viewed as an automaton clock that  is reset, 
every time the automaton encounters the input symbol a, to a nondeterministic 
negative starting value, and checked for 0 at the subsequent occurrence of a. 

We write Cv for the set {xa, ya ] a E Z} of event-recording and event- 
predicting clocks. For each position j of a timed word ~,  the clock-valuation 
function val(ffl,j), then, is a mapping from C2 to R +. The clock constraints 
compare clock values to rational constants or to the special value 3-. Let Q• 
denote the set of nonnegative rational numbers together with 3_. Formally, a clock 
constraint over the set C of clocks is a boolean combination of atomic formulas of 
the form z < c and z _> c, where z E C and c E Q• The clock constraints over C 
are interpreted with respect to clock-valuation functions from C to R+: the atom 
3-=3- evaluates to true, and all other comparisons that  involve 3- (e.g., 3-> 3) 
evaluate to false. For a clock-valuation function 7 and a clock constraint r we 
write ? ~ r to denote that  according to ? the constraint r evaluates to true. 



S y nt a x  and semant ics  of  event-c lock a u t o m a t a  

An event-clock automaton is a (nondeterministic) finite-state machine whose 
edges are annotated both with input symbols and with clock constraints over 
event-recording and event-predicting clocks. Formally, a event-clock automaton 
A consists of a finite input alphabet S,  a finite set L of locations, a set Lo C_ L 
of start  locations, a set L f  c_ L of accepting locations, and a finite set E of 
edges. Each edge is a quadruple (l, t ' ,  a, r with a source location t e L, a target 
location t '  E L, an input symbol a E E, and a clock constraint r over the 
clocks C~. 

Now let us consider the behavior of an event-clock automaton over the timed 
input word ~ = (ao, to)(al , t l ) . . .  (an, t,~). Starting in one of the start  locations 
and scanning the first input pair (ao, to), the automaton scans the input word 
from left to right, consuming, at each step, an input symbol together with its 
time-stamp. In location t scanning the i-th input pair (ai, ti), the automaton may 
proceed to loca t ion/ '  and the i + 1-st input pair iff there is an edge (l, l ' ,  a, r 
such that  a equals the current input symbol ai and val(~, i) satisfies the clock 
constraint r Formally, a computation of the event-clock automaton A over the 
timed input word z~ is a finite sequence 

of locations li E L and edges ei = (/i, l i+ l , a i , r  E E such that  10 E Lo and 
for all 0 < i < n, val(~,i) ~ r the computation is accepting if tn+l E L I. The 
timed language L:(A) defined by the event-clock automaton A, then, consists of 
all timed words ~ such that  A has an accepting computation over ~.  We write 
ECA for the class of timed languages that  are definable by event-clock automata.  

The event-clock automaton A is an event-recording automaton if all clock 
constraints of A contain only event-recording clocks; A is an event-predicting 
automaton if the clock constraints of A contain only event-predicting clocks. 
The class of timed languages that  can be defined by these two restricted types 
of event-clock automata  are denoted ERA and EPA, respectively. 

E x a m p l e s  o f  even t -c lock  a u t o m a t a  

The event-clock automaton A1 of Figure 2 uses two event-recording clocks, xa 
and xb. The location lo is the start location of A1, and also the sole accepting 
location. The clock constraint xa < 1 that  is associated with the edge from 
t2 t o / 3  ensures that  c occurs within 1 time unit of the preceding a. A similar 
mechanism of checking the value of Xb while reading d ensures that  the time 
difference between b and the subsequent d is always greater than 2. Thus, the 
timed language JC(A1) defined by A1 consists of all timed words of the form 
((abcd) "~, t-) such that  m > 0 and for all 0 _< j < m, t4j+2 < t4j + 1 and t4j+3 > 
t4j+l -{- 2. Note that  the timed language L:(A1) can also be defined using event- 
predicting clocks: require Yc < 1 while reading a, and Yd > 2 while reading b. 

The duality of the two types of clocks is further illustrated by the automata 
of Figure 2. The event-recording automaton A2 accepts all timed words of the 
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Fig. 1. Event-recording automaton A1 
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Fig. 2. Event-recording automaton A2 and event-predicting automaton As 

form (ab*b, t-) such that  the time difference between the two extreme symbols is 1, 
which is enforced by the event-recording clock xa. It is easy to check that  there 
is no event-predicting automaton that  defines the timed language s The 
event-predicting automaton A3, on the other hand, accepts all timed words of 
the form (an*b, t-) such that  the time difference between the two extreme symbols 
is 1; for this purpose, the event-predicting clock Yb is used to predict the time of 
the first b. There is no event-recording automaton that  defines s 

3 Determinist ic  Event-clock Automata  

A finite-state machine (with a single start  location) is deterministic iff all input 
symbols that  label edges with the same source location are palrwise distinct. We 
consider for event-clock automata the notion of determinism that  was proposed 
for timed automata  in [3]. The event-clock automaton A = (~ ,L ,  L0, L f , E )  
is deterministic if A has a single start location (i.e., IL01 = 1) and any two 
edges with the same source location and the same input symbol have mutually 
exclusive clock constraints; that  is, if (/, t ' ,  a, r E E and (/, l", a, r E E then 
for all clock-valuation functions 3', if 3' ~ r then 3' ~= r The determinism 
condition ensures that  at each step during a computation, the choice of the next 
edge is uniquely determined by the current location of the automaton, the input 
word, and the current position of the automaton along the input word. It is 
easy to check that  every deterministic event-clock automaton has at most one 
computation over any given timed input word. 

Of our examples from the previous section, the event-clock automata A1 
and A3 are deterministic. While the automaton As is nondeterministic, it can 



be determinized without changing its language, by adding the clock constraint 
xa < 1 to the self-loop at location t l .  

In the theory of finite-state machines, it is well-known that  every nondeter- 
ministic automaton can be determinized; that  is, the deterministic and nonde- 
terminstic varieties of finite-state machines define the same class of languages 
(the regular languages). In the case of timed automata,  however, the nondeter- 
ministic variety is strictly more expressive than its deterministic counterpart  [3]. 
We now show that  the event-clock automata  form a determinizable subclass of 
the timed automata.  

T h e o r e m  1 ( D e t e r m i n i z a t i o n ) .  For every event-clock (event-recording; event- 
predicting) automaton A ,  there is a deterministic event-clock (event-recording; 
event-predicting) automaton that defines s A ). 

Proof. Let A be the given event-clock automaton with the location set L. The 
locations of the determinized automaton Det(A) are the nonempty subsets of L. 
Consider a location L ~ C_ L of Det(A), and an input symbol a E ,U. Let E ~ C_ E 
be the set of all a-labeled edges of A whose source locations are in L ~. Then, for 
every nonempty subset E "  C_ E ~, there is an edge from L ~ to L H labeled with the 
input symbol a and the clock constraint r iff L"  contains precisely the target 
locations of the edges in E ~, and ~ is the conjunction of all clock constraints 
of E ' -edges  and all negated clock constraints of (E ~ - E~)-edges. It is easy to 
check that  the clock constraints on different a-labeled edges starting from L * are 
mutually exclusive. �9 

Notice that  the determinization of an event-clock automaton causes an expo- 
nential blow-up in the number of locations, but changes neither the number of 
clocks nor the constants tha t  occur in clock constraints. 

The key for the determinization of event-clock automata  is the property that  
at each step during a computation, all clock values are determined solely by 
the input word. We therefore obtain derminizable superclasses of event-clock 
au tomata  if we add more clocks that  do not violate this property. For example, 
for each input symbol a and each natural number i, we could employ a clock 

i that  tha t  records the time since the i-th occurrence of a, and a clock x a Za 
records the time since the i-th-to-last occurrence of a (i.e., xa = x~). Or, more 
ambitiously, we may want to use for each linear temporal  formula ~ a formula- 
recording clock x~ that  measures the time since the last position of the input 
word at which ~ was true, and a formula-predicting clock y~ that  measures the 
t ime until the next position at which ~ will be true. 

4 Proper t ies  of Event-Clock Automata  

E v e n t - c l o c k  a u t o m a t a  as l ab e l ed  t r a n s i t i o n  s y s t e m s  

We now consider an alternative semantics for event-clock automata,  using labeled 
transition systems. Let A -- (Z,L, Lo,Lf,E) be an event-clock automaton.  A 
state of A is a pair (t, 7) that  consists of a location l E L and a clock-valuation 



function 3' from Cs to R +, which determines the values of all clocks. The state 
(/, 7) is initial if l E L0 and 7(Xa) =_l_ for all input symbols a E 27; (l, 7) is final 
if l e L f  and 7(Ya) = 1  for all a E ,U. We write SA for the (infinite) set of states 
of the event-clock automaton A and define a labeled transition relation over SA 
to capture the behavior of A over timed words. 

For two states s, s ~ E SA, an input symbol a E 27, and a reai-vaiued time 
G ! 

delay 5 E R +, let s ~ s  if the automaton A may proceed from the state s to the 
p �9 

state s ~ by reading the input symbol a, and let s ~ s  if A may proceed from s 
to s ~ by letting time 6 pass. Formally, (l, 7 ) ~ ( i ,  "y~) if there is a clock.valuation 
function 7" and an edge ( l , / ' , a , r  E E such that  7 = 7"[Y~ := 0] (i.e., -y agrees 
with 7" on all clocks except y~, which in 7 evaluates to 0), ~ = 7"[x~ := 0], 
and 7 ~ r and (/, 7 ) ~ ( i ' ,  7') if t = l '  and for all input symbols b e 27, 

1. if 7(Xb) =_l_ then 7'(Xb) = 1 ,  else 7'(Xb) = 7 ( X b )  "}- 5; 
2. if "yt(yb) :.1_ then 7(Yb) -~_l_, else 7(Yb) -~ 7'(Yb) + 5. 

We inductively extend the labeled transition relation to timed words: s (~o,to) s' if 
there is a state s" E SA such that  s ~ s "  and s"-~s'; if ~ = (a0, to ) . . .  (a,~, tn) and 
~ . =  ~(an+l , t ,+l ) ,  then s ~ s  ~ if there is a state s '~ such that  s ~, s ~ and 
s"t~+~'~"+~-~Js '. The following lemma shows the correctness of the labeled- 
transition-system semantics for event-clock automata. 

L e m m a  2. The event-clock automaton A accepts the timed word ~2 iff s ~' ~ s ~ 
for some initial state s and some final state s ~ of A. 

T h e  r eg ion  c o n s t r u c t i o n  

The analysis of timed automata builds on the so-called region construction, 
which transforms a timed automaton into an untimed finite-state machine [1, 3]. 
Here we apply the region construction to event-clock automata. We consider 
again the given event-clock automaton A and begin with defining the region- 
equivalence relation ~--A as a finite partition of the infinite state space SA. 

We assume that  all clock constraints of A contain only integer constants 
(otherwise, all constants need to be multiplied by the least common multiple of 
the denominators of all rational numbers that  appear in the clock constraints 
of A). Let c be the largest integer constant that  appears in a clock constraint 
of A. Informally, two clock-valuation functions 7 and 7 ~ from C~ to R + are 
region-equivalent, written 7 --A 7', if 7 and 7' agree on which clocks have the 
undefined value _l_, agree on the integral parts of all defined clock values that  
are at most c, and agree on the ordering of the fractional parts of all defined 
clock values (the fractional part of the event-recording clock xa according to 7 
is 7 (x a ) -  [7(x~)J; the fractional part of the event-predicting clock y~ is [7(Ya)] - 
7(Y~)). Two states (l, 7), (l', 7') ~ SA are region-equivalent if l = l '  and 7 ~A 7'- 
A formal definition of the region-equivalence relation ~A is given in [3]. 

A region of the event-clock automaton A is an ~A-equivalence class of states 
in SA. The number of A-regions is finite--linear in the number of locations, 
exponential in the number of clocks (that is, exponential in the size of the input 
alphabet), and exponential in the size of the clock constraints of A. The region 



equivalence is instrumental for analyzing event-clock automata, because ~A is a 
bisimulation. 

L e m m a 3 .  For all states sl ,sl ,s2 E SA of an event-clock automaton A, all 
input symbols a of A, and all real-valued time delays 5 E R +, if sl ~--A S~ and 

' time delay 5' R + Sl s2, then t]tel;,r is a state s 2 E SA and a E such that 
~., ! I ( a , o )  ! 

8 2 - - A  82  a n d  81 ~ 82  . 

Now we are ready to define the region automaton Reg(A) of A, an untimed 
finite-state machine over the input alphabet ,U. The locations of Reg(A) are the 
regions of A. A region is starting if it contains an initial state of A, and accepting 
if it contains a final state of A. There is an edge from the region p to the region 
p' labeled with the input symbol q if,there are two states s E p and s' E p', and 
a time delay 5 E R +, such that s ~ s'. From Lemmas 2 and 3 it follows that 
the region automaton Reg(A) defines the untimed language Untime (s 

Theorem 4 (Unt iming) .  For every event-clock automaton A, the untimed lan- 
guage Untime( C( A ) ) is regular. 

Closure properties and decision problems 

While the class of timed automata is not closed under complement, and the 
language inclusion (verification) problem for timed automata is undecidable, the 
subclass of event-clock automata is well-behaved. 

Theorem 5 (Closure properties). Each of the classes ECA, ERA, and EPA 
of timed languages are closed under union, intersection, and complement. 

Proof. Closure under union is trivial, because event-clock automata admit multi- 
ple start locations. Closure under intersection is also straightforward, because the 
standard automata-theoretic product construction A1 x A2 for two given event- 
clock (event-recording; event-predicting) automata A~ and A2 yields an event- 
clock (event-recording; event-predicting) automaton. Closure under complement 
relies on the determinization construction: given an event-clock (event-recording; 
event-predicting) automaton A, the event-clock (event-recording; event-predict- 
ing) automaton -~Det(A) that results from complementing the acceptance condi- 
tion of Det (A) (interchange the accepting and the nonaccepting states of Det (A)) 
defines the complement of the timed language s �9 

Unlike (nondeterministic) timed automata, however, event-clock automata are 
not closed under hiding and renaming of input symbols. This is because the 
timed language s that contains all timed words ~ = (a, t-) over a unary alphabet 
in which no two symbols occur with time difference 1 (i.e., tj - ti # 1 for all 
positions i and j of ~) cannot be defined by a timed automaton [3]. With com- 
plementation and renaming (or hiding), on the other hand, s is easily definable 
from a language in ERA N EPA. 

The determinization, closure properties, and region construction can be used 
to solve decision problems for event-clock automata. To check if the timed lan- 
guage of an event-clock automaton A is empty, we construct the region automa- 
ton Reg(A) and check if the untimed language of Reg(A) is empty. To check if 
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the language of the event-clock automaton A1 is included in the language of the 
event-clock automaton As, we determinize As, complement Det(A2), take the 
product with A1, and check if the language of the resulting event-clock automa- 
ton A1 • (As) is empty by constructing the corresponding region automaton. 

T h e o r e m  6 (Language inclusion),  The problem of checking irE(A1) C_ ~(A2) 
for two event-clock automata A1 and A2 is decidable in PSPACE. 

On the other hand, the problem of checking if the language of a given event- 
recording (or event-predicting) automaton is empty can be shown to be PSPACE- 
hard (similar to the hardness proof for emptiness of timed automata [3]). 

Relationship between classes of timed automata 

We briefly review the definition of a timed automaton [3]. A (nondeterministic) 
timed automaton A consists of a finite input alphabet ~,  a finite set L of loca- 
tions, a set L0 _C L of start locations, a set Lf C_ L of accepting locations, a 
finite set C of clocks, and a finite set E of edges. Each edge e is labeled with 
an input symbol, a clock constraint over C, and a reset condition C~ C C that 
specifies the clocks that are reset to 0 when the edge e is traversed. Every timed 
automaton A, then, defines a timed language s and we write NTA for the 
class of timed languages that are definable by timed automata. The class NTA 
is closed under union and intersection, but not under complement. 

The definition of determinism for timed automata is the same as for event- 
clock automata. We write DTA for the class of timed languages that are definable 
by deterministic timed automata. Since DTA is closed under all boolean opera- 
tions, DTA is strictly contained in NTA. 

Theorem 7 (Relationship between classes). 

(1) ERA ~ EPA (2) EPA ~ ERA (3) ERA U EFA C ECA 
(4) ECA C NTA (5) ERA c DTA (6) EPA ~ DTA 
(7) DTA ~ ECA 

Proof. For (1), the language of the event-recording automaton As of Figure 2 
is not definable by an event-predicting automaton. For (2), the language of 
the event-predicting automaton A3 of Figure 2 cannot be defined by an event- 
recording automaton. Similarly, for (3) it is possible to combine As and A3 into 
an event-clock automaton whose language is neither in ERA nor in EPA. 

Every event-clock automaton can be tranlated into a timed automaton. While 
the translation preserves determinism for event-recording automata, event-pre- 
dicting clocks introduce nondeterminism. The inclusions (4) and (5) follow. In- 
clusion (4) is strict, because ECA is closed under complement while NTA is not. 
Inclusion (5) is strict because of (7). For (6), the timed language {(anb, to . . .  tn) I 
30 < i < n.tn - ti = 1) is in EPA but not in DTA. For (7), the timed language 
{(aaa, totlt2) I t2 - to = 1} is in DTA but not in ECA. �9 

In [5], we defined another subclass of NTA that is closed under all boolean 
operations, namely, the class 2DTA of timed languages that are definable by 
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deterministic twoway automata  that  can read the input word a bounded number 
of times. While ECA is easily seen to be contained in 2DTA, and while there 
are obvious similarities between event-predicting clocks and the twoway reading 
of the timed input word, the exact relationship between event-clock automata  
and deterministic twoway automata  remains to be studied. However, because 
they admit nondeterminism, event-clock au tomata  are perhaps more suited for 
specification than deterministic twoway automata.  

5 T i m e d  T r a n s i t i o n  S y s t e m s  a s  E v e n t - c l o c k  A u t o m a t a  

T i m e d  trans i t ion  sys tems  

A transition system T consists of a set S of states, a set So c_ S of initial states, 
and a finite set T of transitions. Each transition T E T is a binary relation over S. 
For each state s E S, the set T(S) gives the possible T-successors of s; tha t  is, 
T(S) = {S' I (S, S') E T}. The transition system T is finite if the set S of states is 
finite. A run ~ of the transition system T is a finite sequence s o ~ s l - ~ . . .  ~ s n  
of states such that  so E So and for all 0 _< i < n, there exists a transition T~ E T 
such that  si+l E Ti(Si). The transition T is enabled at the i , th step of the run 
if T(S~) is nonempty, and T is taken at the i-th step if s~ E T(S~-I) (i.e., multiple 
transitions may be taken at the same step). A variety of programming systems, 
such as message-passing systems and shared-memory systems, can be given a 
transition-system semantics [12]. 

The model of transition systems is extended to timed transition systems so 
that  it is possible to express real-time constraints on the transitions [7]. A timed 
transition system T consists of a transition system (S, So, T)  and two functions 
l and u from 7" to R + that  associate with each transition T E =r a lower bound 
l(T) and an upper bound u(~-). Informally, the transition T must be enabled 
continuously for at least l(T) time units before it can be taken, and T must not 
be enabled continuously for more than U(T) time units without being taken. 
Formally, we associate a real-valued time-stamp with each state change along a 
run. A timed run ~ of the timed transition system T is a finite sequence 

tO ~ t2 ~:~ 
8 0  8 1  ~ � 9  ) 8 n 

of states s~ E S and nondecreasing time-stamps t~ E R + such that  ~ is a run of 
the underlying transition system and 

1. Upper Bound: if T is enabled at all steps k for i < k < j ,  and not taken at 
all steps k for i < k < j ,  then tj  - ti _< U(T); 

2. Lower Bound: if T is taken at the j - th  step then there is some Jtep i < j 
such that  tj - ti _> l(T) and T is enabled at all steps k for i _< k < j ,  and not 
taken at all steps k for i < k < j .  

In other words, to is the initial time, and the transition system proceeds from 
the state si to the state si+l at time ti+l. The semantics of the timed transi- 
tion system T is the set of timed runs of T. Two timed transition systems are 
equivalent if they have the same timed runs. 
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F r o m  t i m e d  t r a n s i t i o n  s y s t e m s  to event-recording automata 

We now show that  the set of timed runs of a finite timed transition system 
can be defined by an event-recording automaton. For this purpose, we need to 
switch from the state-based semantics of transition systems to an event-based 
semantics. With the given timed run f, we associate the timed word 

= . . .  

where .L is a special symbol not in S (as usual, S j_ = S U {_L}). Notice that  the 
timed run f and the corresponding timed word ~(f )  contain the same informa- 
tion: each event (i.e., state change) of ~ is modeled by a pair of s tates--a  source 
state and a target state. Every finite timed transition system T = (S, T, So, l, u), 
then, defines a timed language s  over the alphabet S j_ x S, namely, the set 
of timed words ~(~) that  correspond to timed runs f of T. It is easy to check 
that  two timed transition systems are equivalent if[ they define the same timed 
language. 

T h e o r e m  8 ( T i m e d  t r a n s i t i o n  sy s t ems ) .  For every finite timed transition 
system T, there is an event-recording timed automaton AT that defines the timed 
language s  

Proof. Consider the given finite timed transition system T. Each location of the 
corresponding event-clock automaton AT records a state s E S and, for each 
transition T E T, a pair of states (a(r),/3(T)) E S_L x S such that  if ~- is enabled 
in s, then T has been enabled continuously without being taken since the last 
state change from a(T) to/3(T). In addition, we use a special location i0 as the 
sole start  location of AT. Every location is an accepting location. 

For every initial state So E So, there is an edge from g0 to (so, (a,/3)) la- 
beled with the input symbol (1, so) and the trivial clock constraint true, where 
a(T) =J_ and/3(r)  = so for all transitions r E T. In addition, there is an edge 
from (s, (a,/3)) to (s', (a',/3')) labeled with the input symbol (s, s') and the 
clock constraint r iff there is a transition T E T such that  (s, s') E T, and for all 
transitions T E T,  

1. if T is enabled in s and s' r T(S), then (a'(T),/3'(r)) = (a(T),fl(T)), else 
= <s, 8'>; 

2. if r is enabled in s, then r contains the conjunct x(~(,),~(,)) < U(T); 
3. if S' E r(s),  then r contains the conjunct x(~(,),~(,)) > l(T). 

Notice that  the size of the event-recording automaton AT is exponential in the 
size of the timed transition system T. �9 

To check if two timed transition systems T1 and T2 are equivalent, we construct 
the corresponding event-recording automata  AT1 and AT2 and check if they 
define the same timed language. 

C o r o l l a r y  9. The problem of checking if two finite timed transition systems are 
equivalent is decidable in EXPSPA CE. 
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