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ABSTRACT Hypersoft set (HSS) was proposed in 2018 as a generalization of the soft set (SS). In this

paper, the novelty of complex multi-fuzzy hypersoft set (CMFHSS) is discussed, which can deal with

uncertainties, vagueness, and unclearness of data that lie in the information by taking into account the

amplitude and phase terms (P-terms) of the complex numbers (C-numbers) at the same time. This CMFHSS

establishes a hybrid framework of the multi-fuzzy set (MFS) and HSS characterized in a complex system.

This framework is more flexible in two ways; firstly, it permits a wide range of values for membership

function by expanding them to the unit circle in a complex frame of reference through characterization

of the multi-fuzzy hypersoft set (MFHSS) involves an additional term called the P-terms to consider the

periodic nature of the information. Secondly, in CMFHSS, the attributes can be further sub-partitioned into

attribute values for a better understanding. We characterize its fundamental operations as a complement,

union, and intersection and support them with examples. We develop the proverbial meaning of similarity

measures (SM) and entropy (ENT) of CMFHSS and present the fundamental relationship. These tools can

be utilized to figure out the best alternative out of a bunch that has various applications in the field of

optimization. Additionally, mathematical models are given to analyze the reliability and predominance of

the establishedmethodologies. Moreover, the advantages and comparative analysis of the proposedmeasures

with existing measures are also depicted in detail. Lastly, the mathematical models are given to represent the

validity and applicability of the presented measures.

INDEX TERMS Soft set (SS), hypersoft set (HSS), multi-fuzzy set (MFS), multi-fuzzy hypersoft set

(MFHSS), complex multi-fuzzy hypersoft set (CMFSS), entropy (ENT), similarity measures (SM).

I. INTRODUCTION

The significant existing theories, i.e., the theory of likeli-

hood, the theory of fuzzy sets (f-sets) [2], [3], the theory of

intuitionistic f-sets [4], the theory of vague sets [6], the the-

ory of interval mathematics [5]. The theory of rough sets

[8] can be regarded as numerical apparatuses for managing

uncertainties. However, all these theories have their own

troubles, as brought up in [9]. The explanation behind these

difficulties is, perhaps, the deficiency of the parametrization

instruments. Molodtsov [9] started the SS theory idea as
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another mathematical apparatus for managing uncertainties

or vagueness that is liberated from the above challenges. The

SS theory has rich potential for applications like economic,

designing, clinical science etc. SS is called (binary, basic,

rudimentary) neighborhood systems [10] and is an excep-

tional example of setting subordinate f-sets, as characterized

by Thielle [11].

Maji et al. [12] conceptualized fuzzy soft sets (fs-sets)

by embedding SS and fuzzy set (FS). Roy and Maji [13]

introduced the application of fuzzy soft set (FSS) theory in

object recognition issues. Yang et al. [14] presented the idea

of an MFSS by consolidating the MFS and SS and practiced

it to MCDM, Dey and Pal [15] generalized the idea of a
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MFSS. Zhang and Shu [16] expanded the notion of MFSS

and presented the idea of possibility MFSS and applied it to

a MCDM.

The fuzzy event’s probability measures have played a key

role in FS and their hybrid structures addressed in [17]. De

Luca and Termini [18] recommended a specific arrangement

of axioms for fuzzy ENT. On the opposite side, SM, which is

a significant apparatus for deciding the level of SM between

two articles, has gained substantially more consideration than

ENT. Pappis and his teammates have given a arrangement

of articles [19], [20] which took a proverbial view of the

SM. The ENT and SM for some different sets, for example,

interval-valued FS [21], FSS [26], and intuitionistic FSS

[23] have been broadly utilized in tackling issues identified

with the decision making, pattern recognition, and image

processing.

Al-Qudah et al. [24] built up a mixed framework of

complex fuzzy sets (CF-sets) and multi-fuzzy sets (MF sets)

called the CMFS. This model helps take care of issues with

the characteristics of multifaceted portrayal. To renovate this

framework more useful, to renovate new powerful outcomes,

they will form it into a CMFSS in request to consolidate the

benefits of SS and apply them to the CMFS models. Their

proposedmodel will be able to deal with uncertainties, vague-

ness, and unclearness of 2D multi-fuzzy data by catching

the A-terms and P-terms of the C-numbers at the same time.

In 2018, Al-Qudah et al. [25] presented the idea of CMFSS,

which consolidates the benefits of both the CMFS and soft

set.

In a diversity of practical applications, the attributes should

be more sub-partitioned into attribute values for clearer

understanding. Samarandache [27] fulfilled this need and

developed the concept of the HSS as a generalization of the

SS. He opened various fields in this perspective and gener-

alized SS to the HSS by renovating it into a multi-attribute

function. He also made the separation between the kinds

of initial universes, crisp fuzzy (CF), intuitionistic fuzzy

(IF), neutrosophic (NS), and plithogenic (PLG), respectively.

Thus, he also showed that an HSS could be crisp, fuzzy, IF,

NS, and PLG, respectively, and demonstrated these outcomes

with models.

Saeed et al. [22], [28], [56] explained some basic con-

cepts like Hypersoft (HS) subset, HS complement, not HS

set, absolute set, union, intersection, AND, OR, restricted

union, extended intersection, relevant complement, restricted

difference, restricted symmetric difference, HS set rela-

tion, sub relation, complement relation, HS representation in

matrices form, different operations on matrices and applied

similarity measure technique for medical diagnosis pur-

pose in neutrosophic environment. Saeed et al. [55] char-

acterized mapping under a hypersoft set environment, then

some of its essential properties like HS images, HS inverse

images were also discussed. Mujahid et al. [52] discussed

hypersoft points in different fuzzy-like environments. In

2020, Rahman et al. [53] defined complex HSS and devel-

oped the HS set’s hybrids with a complex fuzzy set,

complex intuitionistic fuzzy set, and complex neutrosophic

set, respectively. They also discussed their fundamentals,

i.e., subset, equal sets, null set, absolute set etc., and theoretic

operations i.e. complement, union, intersection etc. In 2020,

Rahman et al. [54] conceptualized convexity cum concavity

on HSS and presented its pictorial versions with illustrative

examples.

The primary commitments of our exploration are as per the

following. Firstly, we present the idea of CMFHSS, which

joins the benefits of both the CMFS and HSS. Secondly,

we characterize a few ideal notions of CMFHSS as well as

some fundamental operations, in particular the complement,

union, intersection, AND, and OR. The essential properties

and applicable laws relating to this idea, such as DeMorgan’s

laws, are also verified. We present the proverbial meaning

of ENT and SM of CMFHSS and study the fundamental

relations between them. Additionally, mathematical models

are given to analyze the reliability and the predominance

of the setup methodology. Moreover, comparisons between

proposed strategies and existing theories are additionally

depicted in detail. Lastly, the mathematical structures are

represented to justify the validity and applicability of the

presented measures.

Section II focuses on some basic definitions and terminolo-

gies used in the paper. In Section III, the idea of a CMFHSS

with its properties is presented. In Section IV, the set-theoretic

operations of CMFHSS are conceptualized. In Section V,

we present the proverbial meaning of ENT for CMFHSS,

supported by an example. In Section VI, the SM between

CMFHSS and the connection between the ENT and SM are

examined. Section VII concludes the paper.

II. PRELIMINARIES

In this section, we discuss about some basic concepts includ-

ing FS, SS, FSS, FHSS, MFS, MFSS, CMFSS, SM, ENT,

CFH-set and CFH-subset.

Definition 1 [2]: The FS, R = {(y, I (y))|y ∈ Y } such that

I : Y → [0, 1],

where Y is the collection of objects and I (y) represents the

membership grade of y ∈ Y .

Definition 2 [9]: A pair (I ,Q) is said to be SS over the

universe Y , where I is a mapping given as

I : Q → P(Y ),

for ǫ ∈ Q, I (ǫ) can be regarded as ǫ approximate elements of

the SS (I ,Q).

Definition 3 [12]: Let Y , Q be initial universe and set of

parameters respectively. Let P(Y ) denote the power set of all

fuzzy subsets of Y and Q ⊆ E . A pair (I ,Q) is said to be FSS

over Y , where I : Q → P(Y ).

Definition 4 [28]: Suppose Y and I (Y ) be the uni-

versal set and all fuzzy subsets of Y respectively. Let

m1,m2,m3, · · · ,mn be the distinct attributes whose attribute

values belongs to the sets M1,M2,M3, . . . ,Mn respectively,

where Mi ∩ Mj = 8 for i 6= j and i, j belongs to
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{1, 2, 3, . . . , n}. Then the FHSS is the pair (6L ,L) over Y

defined by a map 6L : L → I (Y ), where L = F1 × F2 ×

F3 × . . . × Fn.

Definition 5 [29]: Let k be a non zero non negative integer

and Y 6= 8. A MFS Q in Y is a ordered sequences Q =

{〈y, λ1(y), . . . , λk (y)〉 : y ∈ Y }, where λi : Y → Oi =

[0, 1], i = 1, 2, ..., k . A function λQ(y) = (λ1(y), . . . , λk (y))

is said to be multi-membership map of MF sets Q, k = Dim

Q and their collection in Y is M kFS(Y ).

Definition 6 [14]: A pair (I ,Q) is said to be MFSS with

dim k if I : Q → M kFS(Y ) and I (e), e ∈ Q is its collection

of e-approximate members.

Definition 7 [25]: A pair (I ,Q) is said to be a CMFSS

of dim k over Y if I : Q → CM k (Y ) and be represented

as (I ,Q) = {〈ǫ, I (ǫ)〉 : ǫ ∈ Q, I (ǫ) ∈ CM k (Y )}, where

I (ǫ) = {〈y, λsI (ǫ)(y) = ρsI (ǫ)(y).ǫ
iωsI (ǫ)(y)〉 : ǫ ∈ Q, y ∈

Y , s = 1, 2, . . . , k}, where λsI (ǫ)(y)s∈k is a complex multi

membership function y ∈ X with real valued functions A-part

= (ρsI (ǫ)(y))s∈k ∈ [0, 1] and P-part = (ωs
I (ǫ)(y))s∈k . The

collection of all such sets is represented by CM kFSS.

Definition 8 [26]:A function S from FS(Y ,E)×FS(Y ,E)

to [0, 1] is called a SM for FSS, if it fulfills the following

points.

1) S(XQ, 8Q) = 0, for anyQ ∈ E , and S((I ,Q), (I ,Q)) =

1 for any (I ,Q) ∈ FS(Y ,E),

2) S((I ,Q), (J ,C)) = S((J ,C), (I ,Q)), for any

(I ,Q), (J ,C) ∈ FS(Y ,E),

3) For any (I ,Q), (J ,C), (H ,O) ∈ FS(Y ,E) if

(I ,Q) ⊆ (J ,C) ⊆ (H ,O), then S((H ,O), (I ,Q)) =

min(S((H ,O), (J ,C)), S((J ,C), (I ,Q))).

Definition 9 [26]: A real valued function E from FS(Y ,E)

to [0,∞] for FSS is called a ENT, if E satisfies the given

conditions.

1) E(I ,Q) = 0 if (I ,Q) is a SS,

2) E(I ,Q) = 1 if I (e) = 0.5, for any e ∈ Q, where [0.5]

is the FS having membership function [0.5](y) = 0.5,

for every y ∈ Y ,

3) Suppose (I ,Q) be crisp set than that of (J ,C) which is,

for e ∈ Q and y ∈ Y , I (e)(y) ≤ J (e)(y) if J (e)(y) ≤ 0.5

and I (e)(y) ≥ J (e)(y) if J (e)(y) ≥ 0.5. Then E(I ,Q) ≤

E(J ,C),

4) E(I ,Q) = E(I c,Q), where (I c,Q) is the complement

of FSS (I ,Q), which can be written as I c(e) = (I (e))c,

for every e ∈ Q.

Definition 10 [53]: Let M1,M2,M3, . . . . .,Mn be dis-

joint sets having attribute values of n distinct attributes

m1,m2,m3, . . . . .,mn respectively for n ≥ 1,G = M1 ×

M2 × M3 × . . . . . × Mn and ξ (y) be a CF-set over Y for all

ǫ = (c1, c2, c3, . . . . ., cn) ∈ G. Then, complex fuzzy hypersoft

set (CFH-set) ̟G over Y is defined as:

̟G = {(ǫ, ξ (ǫ)) : ǫ ∈ G, ξ (ǫ) ∈ C(Y )}

where

ξ : G → C(Y ), ξ (ǫ) = ∅ if ǫ /∈ G.

is a CF-approximate function of ̟G and its value ξ (ǫ) is

called ǫ-member of CFH-set ∀ǫ ∈ G.

Definition 11 [53]: Let ̟W1
= (ξ1,W1) and ̟W2

=

(ξ2,W2) be two CFH-sets over the same Y . The set ̟W1
=

(ξ1,W1) is said to be the CFH-subset of ̟W2
= (ξ2,W2), if

1) W1 ⊆ W2,

2) ∀y ∈ W1, ξ1(y) ⊆ ξ2(y) i.e. rW1
(y) ≤ rW2

(y) and

ωW1
(y) ≤ ωW2

(y), where rW1
(y) and ωW1

(y) are ampli-

tude and phase terms of ξ1(y), whereas rW2
(y) and

ωW2
(y) are amplitude and phase terms of ξ2(y).

III. COMPLEX MULTI-FUZZY HYPERSOFT SET (CMFHSS)

Throughout this section, the following data is considered:

D = A1 ×A2 ×A3 × . . .×An, E = B1 ×B2 ×B3 × . . .×Bn,

R = C1 × C2 × C3 × . . . × Cn, e = (e1, e2, e3, . . . en),

ℵ = N1 × N2 × N3 × . . . × Nn.

Definition 12: Let m1,m2,m3, · · · ,mn be the distinct

attributes with the corresponding attributive values to the sets

M1,M2,M3, · · · ,Mn respectively, where Mi ∩ Mj = 8 for

i 6= j. A pair (J ,D) is called a MFHSS of dimension k

over Y , whereJ is a function given asJ : D → M kFHS(Y ).

For e ∈ D, J (e) may be regarded as the set of e-approximate

elements of the MFHSS (J ,D).

Definition 13: A pair (J ,D) is called a CMFHSS of

dimension k over Y , whereJ is amapping given byJ : D →

CM k (Y ). A complex multi-fuzzy hypersoft set of dimension

k(CM kFHSS(Y )) is a mapping from parameters to CM k (Y ).

It is a parameterized family of complex multi-fuzzy subsets

of Y , and it can be written as: as (J ,D) = {〈e,J (e)〉 :

e ∈ D,J (e) ∈ CM k (Y )}, where J (e) = {〈y, λs
J (e)

(y) =

ρs
J (e)

(y).e
iωs

J (e)(y)〉 : e ∈ D, y ∈ Y , s = 1, 2, . . . , k}, where

µs
J (e)

(y)s∈k is a complex-valued grade of multi membership

function y ∈ Y . By definition, the values of λs
J (e)

(y)s∈k may

all lie in the complex plane within the unit circle, and are

thus of the form [λs
J (e)

(y) = ρs
J (e)

(y).e
iωs

J (e)(y)]s∈k , where

(i2 = −1), each of the A-terms (ρs
J (e)

(y))s∈k and the P-terms

(ωs
J (e)

(y))s∈k are both real-valued, and (ρ
s
J (e)

(y))s∈k ∈ [0, 1].

The set of all CM kFHSS in Y is denoted by CM kFHSS(Y ).

Example 1: Suppose a person desired to take loan from one

of the bank for certain period. Suppose Y = {y1 = JPMorgan,

y2 = Wells Fargo, y3 = Goldmqan Saches} be the set of three

banks in USA. It is well reputed that a year has four periods

and the interest rate are different in each period. Let a1 =

Repayment tenor, a2 = Interest rate, a3 = Documentation,

distinct attributes whose attribute values belong to the sets

E1,E2,E3. Let E1 = {f1 = Flexible, f2 = Difficult }, E2 =

{f3 = High, f4 = Low}, E3 = {f5 = Easy}. We construct

CMFHSS having three dimension.

J (f1, f3, f5) = {y1/(0.9e
i2π (2/4), 0.2ei2π (4/4), 0.9ei2π (3/4)),

y2/(0.8e
i2π (1/4), 0.4ei2π (3/4), 0.1ei2π (2/4)),

y3/(0.4e
i2π (3/4), 0.2ei2π (4/4), 0.8ei2π (1/4)},

J (f1, f4, f5) = {y1/(0.8e
i2π (2/4), 0.2ei2π (4/4), 0.3ei2π (3/4)),

y2/(0.5e
i2π (1/4), 0.4ei2π (2/4), 0.6ei2π(3/4)),

y3/(0.1e
i2π (3/4), 0.2ei2π (1/4), 0.8ei2π (4/4)},
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J (f2, f3, f5) = {y1/(0.1e
i2π (2/4), 0.2ei2π(4/4), 0.1ei2π (2/4)),

y2/(0.8e
i2π (2/4), 0.4ei2π (4/4), 0.5ei2π (2/4)),

y3/(0.04e
i2π (1/4),0.2ei2π (2/4),0.078ei2π (3/4)},

J (f2, f4, f5) = {y1/(0.2e
i2π (2/4), 0.2ei2π (2/4), 0.09ei2π (3/4)),

y2/(0.7e
i2π (1/4), 0.4ei2π(3/4), 0.01ei2π(2/4)),

y3/(0.1e
i2π (3/4), 0.2ei2π (1/4), 0.8ei2π (3/4)},

In this example, the A-terms speak the belongingness

degrees to the arrangement of interest rates and the P-terms

speak the belongingness degrees to the period of sea-

sons with respect to the attributes values. In the CMF

value y1/(0.8e
i2π(2=4), y2/0.2e

i2π (4=4), y3/0.3e
i2π (3=4) the

first value (0.8ei2π (2=4) demonstrates which is interest rate

of loan is high in the late spring, since the A-term 0.8 is

near to one and the P-term (2 = 4) tells the year (the late

spring season) which have second period w.r.t the attributes

value (f1, f3, f5). While the subsequent membership value

0.2ei2π (4=4) demonstrates that the interest rate is low in the

winter, since the P-term 0.2 which is near to zero and the

P-term (4 = 4) speaks to the 4th season of the year (the winter

season) with respect to the attributes value (f1, f3, f5). Now,

we are going to describe the basic concept and operations of

CMFHSS.

Definition 14: Let (J ,D) and (̟, E) be two CM kFHSS

over Y . Now, (J ,D) is said to be a CMFHSS subset of (̟, E)

if,

1) D ⊆ E and

2) ∀e ∈ D, J (e) ⊑ ̟ (e).

In this case, we can write J (e) ⊑ ̟ (e).

Definition 15: (J ,D) and (̟, E) be two CM kFHSS over

Y . (J ,D) and (̟, E) are said to be a CMFHSS equal if

(J ,D) is a CMFHSS subset of (̟, E) and (̟, E) is a

CMFHSS subset of (J ,D).

Definition 16: A CM kFHSS (J ,D) over Y is said to be a

null CMFHSS, denoted by (J ,D)φk , if J (e) = 0k , for all

e ∈ D (i.e., ρs
J (e)

(y) = 0 and ωs
J (e)

(y) = 0φ , ∀ e ∈ D, x ∈

Y , s = 1, 2, . . . , k).

Definition 17: A CM kFHSS (J ,D) over Y is said to be

absolute CMFHSS, denoted by (J ,D)Uk , if J (e) = 1k , ∀

e ∈ D (i.e, ρs
J (e)

(y) = 1, ωs
J (e)

(y) = 2π , ∀ e ∈ D, y ∈

X , s = 1, 2, . . . , k).

IV. BASIC OPERATIONS ON CMFHSS-SETS

In this section, we develop some fundamental theoretic opera-

tions, laws of CMFHSS like union, intersection, complement,

De Morgan’s law and associative are discussed in detail.

Definition 18: Let (J ,D) be a CM kFHSS over Y and

(J ,D)c denotes the complement of (J ,D) which is defined

as (J ,D)c = (J c, ⇁ D), where J c : D → CM k (Y )

is a mapping represented by J c(e) = {〈y, λs
J c(e)

(y) =

ρs
J c(e)

(y).e
iωs

J c(e)
(y)

〉 : e ∈⇁ D, y ∈ Y , s = 1, 2, . . . , k},

where the complement of the A-term is ρsFc(e)(y) = 1 −

ρs
J (e)

(y) and the complement of the P-term is ωs
J c(e)

(y) =

2π − iωs
J (e)

(y).

Example 2: From example 1, consider

J (f1, f3, f5) = {y1/(0.9e
i2π (2=4), 0.2ei2π (4=4), 0.9ei2π (3=4)),

y2/(0.8e
i2π (1=4), 0.4ei2π (3=4), 0.1ei2π (2=4)),

y3/(0.4e
i2π (3=4), 0.2ei2π (4=4), 0.8ei2π (1=4))},

By applying definition 19, we get the complement

J
c(f1, f3, f5)= {y1/(0.1e

i2π(2=4), 0.8ei2π (0=4), 0.1ei2π (1=4)),

y2/(0.2e
i2π (3=4), 0.6ei2π (1=4), 0.9ei2π(2=4)),

y3/(0.6e
i2π (1=4), 0.8ei2π(0=4), 0.2ei2π (3=4))},

Proposition 1: If (J ,D) is a CM kFHSS over Y , then

1) ((J ,D)c)c = (J ,D),

2) ((J ,D)φk )
c = (J ,D)Yk , where (J ,D)Yk and

(J ,D)φk are the absolute and null CMFHSS, respec-

tively.

3) ((J ,D)Yk )
c = (J ,D)φk

Proof: Here, we present the proof of 1 from

definition 18, since the proofs of 2 and 3 are obvious from

definitions 19. Suppose that (J ,D) is a complex multi-fuzzy

HSS having k as a dimension over Y . The complement (J ,D)

can be written as (J ,D)c = (J c, ⇁ D) is defined as:

(J ,D)c = {〈e, ρs
J c(e)(y).e

iωs
J c (e)(y)〉 : e ∈⇁ D, y ∈ Y },

where s = 1, 2, . . . , k

= {〈e, [1 − ρs
J (e)(y)].e

i[2π−ωs
J (e)(y)]〉 : e ∈⇁ D, y ∈ Y },

Now, let (J ,D)c = (̟, E) = (J c, ⇁ D). Then we get:

(̟, E)c

= {〈e, [1 − ρs
J c(e)(y)].e

i[2π−ωs
J c(e)

(y)
]〉 : e ∈⇁ (⇁ D),

y ∈ Y }

= {〈e, [1 − (1 − ρs)J c(e)(y)].e
i[2π−(2π−ωs)J c(e)(y)]〉 :

e ∈⇁ (⇁ D)y ∈ Y }

= {e, ρs
J (e)(y).e

iωs
J (e)(y)〉 : e ∈ J , y ∈ Y } = (J ,D).

Definition 19: The union of two CM kFHSS (J ,D) and

(̟, E) over Y , denoted by (J ,D) ∪ (̟, E), is a CMFHSS

(8,R), whereR = D ∪ E, ∀ e ∈ R and y ∈ Y ,

8(e) =























J (e) = [ρs
J (e)(y).e

iωs
J (e)(y)]s∈k , if e ∈ D − E,

̟ (e) = [ρs̟ (e)(y).e
iωs

̟ (e)(y)]s∈k , if e ∈ E − D,

J (e) ∩ ̟ (e) = [(ρs
J (e)(y) ∨ ρs̟ (e)(y))

.e
i[ωs

J (e)(y)∪ωs
̟ (e)(y)]]s∈k , if e ∈ E ∩ D.

(1)

Wewrite (8,R) = (J ,D)∪(̟, E), wheremax of operator is

denoted by ∪ and the P-term e
i[ωs

J (e)(y)∪ωs
̟ (e)(y)]]s∈k lie in the

interval [0, 2π ] and it can be evaluated by using any operators

which are given below.

1) Sum : ωs
J (e)∪̟ (e)(y) = ωs

J (e)(y) + ωs
̟ (e)(y),

∀ s = 1, 2, . . . , k.
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2) Max : ωs
J (e)∪̟ (e)(y) = Max(ωs

J (e)(y), ω
s
̟ (e)(y)), ∀

s = 1, 2, . . . , k.

3) Min : ωs
J (e)∪̟ (e)(y) = Min(ωs

J (e)(y), ω
s
̟ (e)(y)),

∀ s = 1, 2, . . . , k.

4) Winner Takes All,

ωs
J (e)∪̟ (e)(y) =

{

ωs
J (e)(y), if rs

J (e)
≻ rs

̟ (e)
,

ωs
̟ (e)(y), if rs

J (e)
≺ rs

̟ (e)
.

∀ s = 1, 2, . . . , k.

Definition 20: The intersection of two CM kFHSS (J ,D)

and (̟, E) over Y , denoted by (J ,D)∩(̟, E), is a CMFHSS

(9,R), whereR = D ∪ E, ∀e ∈ R and y ∈ Y ,

9(e) =























J (e) = [ρs
J (e)(y).e

iωs
J (e)(y)]s∈k , if e ∈ D − E,

̟ (e) = [ρs̟ (e)(y).e
iωs

̟ (e)(y)]s∈k , if e ∈ E − D,

J (e) ∩ ̟ (e) = [(ρs
J (e)(y) ∧ ρs̟ (e)(y))

.e
i[ωs

J (e)(y)∩ωs
̟ (e)(y)]]s∈k , if e ∈ E ∩ D.

(2)

We write (9,R) = (J ,D) ∩ (̟, E), where min of oper-

ator is denoted by ∧ and the phase term (e
ωs
J (e)∩̟ (e) .(y))s∈k

of the function belong to [0, 2π ]. Some theorems on

the union, intersection and complement of CMFHSS will

also be given. These theorems will make the connection

between the set theoretic operations that have been examined

previously.

Theorem 1: Suppose (J ,D) and (̟, E) be two CM kFHSS

over Y . Then the following conditions are satisfied.

1) (J ,D) ∪ (J ,D)φk = (J ,D),

2) (J ,D) ∪ (J ,D)φk = (J ,D)φk ,

3) (J ,D) ∪ (J ,D)Yk = (J ,D)Yk ,

4) (J ,D) ∩ (J ,D)Yk = (J ,D).

Proof: The proofs are obvious by applying Defini-

tions 20 and 21.

Theorem 2: Suppose (J ,D), (̟, E) and (⊕,R) be three

CM kFHSS over Y having k as a dimension. Then the follow-

ing associative laws hold true

1) (J ,D) ∪ ((̟, E) ∪ (⊕,R)) = ((J ,D) ∪ ((̟, E)) ∪

(⊕,R).

2) (J ,D) ∩ ((̟, E) ∩ (⊕,R)) = ((J ,D) ∩ ((̟, E)) ∩

(⊕,R).

Proof:

1) Suppose that ((̟, E)∪ (⊕,R)) = (M ,N ), where N =

E ∪ R, by definition 20, we have ((̟, E) ∪ (⊕,R)) to

be a CM kFHSS(M ,N ), where N = E∪R and ∀e ∈ N ,

M (e) = E(e) ∪ R(e)

=

[

(ρs̟ (e)(y) ∨ ρs⊕(e)(y).e
i[ωs

̟ (e)(y)∨ωs⊕(e)(y)]]s∈k

]

,

Suppose that (⊗, ℵ) = ((J ,D)∪ (M ,N )), where ⊗ =

J ∪ M , By using Definition 20, we have ((J ,D) ∪

(M ,N )) to be a CM kFHSS (⊗, ℵ), where ℵ = D ∪ N

and for all e ∈ ℵ,

⊗(e)

=























J (e) = [ρs
J (e)(y).e

iωs
J (e)(y)]s∈k , if e ∈ D − N ,

M (e) = [ρs̟ (e)(y).e
iωs

̟ (e)(y)]s∈k , if e ∈ N − D,

J (e) ∪M (e) = [(ρs
J (e)(y) ∨ ρsM (e)(y))

.e
i[ωs

J (e)(y)∪ωsM (e)(y)]]s∈k , if e ∈ N ∩ D.

(3)

Now, let (J ,D) ∪ ((̟, E) ∪ (⊕,R)) = ((J ,D) ∪

(M ,N )). We notice the case when e ∈ D ∩ N as the

remainder cases which are trivial. Hence, (J ,D) ∪

((̟, E) ∪ (⊕,R))

= (J ,D) ∪ (M ,N )

= J (e) ∪ ̟ (e)

= J (e) ∪ (̟ (e) ∪ ⊕(e))

=

[

(ρs
J (e)(y) ∨ ρs̟ (e)∪⊕(e)(y))

.e
i[ωs

J (e)(y)∪ωs
̟ (e)∪⊕(e)(y)]

]

s∈k

=

[

(ρs
J (e)(y) ∨ ρs̟ (e)∪⊕(e)(y))

.e
i[ωs

J (e)(y)∪ωs
̟ (e)∪⊕(e)(y)]

]

s∈k

=

[

(ρs
J (e)(y) ∨ [ρs̟ (e)(y) ∨ ρs⊕(e)(y))]

.e
iωs

J (e)(y)∪[ω
s
̟ (e)(y)∪ωs⊕(y)

]

s∈k

=

[

[ρs
J (e)(y) ∨ ρs̟ (e)(y)] ∨ ρs⊕(e)(y))

.e
i[ωs

J (e)(y)∪ωs
̟ (e)(y)]∪ωs⊕(y)

]

s∈k

=

[

(ρs
J (e)∪̟ (e)(y) ∨ ρs⊕(e)(y))

.e
i[ωs

J (e)∪̟ (e)(y)∪ωs⊕(e)(y)]

]

s∈k

= ((J ,D) ∪ (̟, E)) ∪ (⊕,R). Therefore, we have

(J ,D) ∪ ((̟, E) ∪ (⊕,R)) = ((J ,D) ∪ (̟, E)) ∪

(⊕,R).

2) The proof resemble as that in part (1) and therefore is

leave out.

Theorem 3: Suppose (J ,D) and (̟, E) be two CM kFHSS

over Y . Then these De Morgan’s laws holds true.

1) ((J ,D) ∪ (̟, E))c = (J ,D)c ∩ (̟, E)c,

2) ((J ,D) ∩ (̟, E))c = (J ,D)c ∪ (̟, E)c.

1) Proof: Suppose that (J ,D)∪ (̟, E) = (⊕,R), where

R = D ∪ E and ∀e ∈ C

⊕(e)

=























J (e) = [ρs
J (e)(y).e

iωs
J (e)(y)]s∈k , if e ∈ D − E,

̟ (e) = [ρs̟ (e)(y).e
iωs

̟ (e)(y)]s∈k , if e ∈ E − D,

J (e) ∩ ̟ (e) = [(ρs
J (e)(y) ∨ ρs̟ (e)(y))

.e
i[ωs

J (e)(y)∪ωs
̟ (e)(y)]]s∈k , if e ∈ E ∩ D.

(4)
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Since (J ,D) ∪ (̟, E) = (⊕,R), then we have,

((J ,D) ∪ (̟, E))c = (⊕,R)c = (⊕c,R). Hence

∀e ∈ R

⊕c(e)=



























































J
c(e)

= [ρs
J c(e)(y).e

iωs
J c(e)

(y)
]s∈k , if e ∈ D − E,

̟ c(e)

= [ρs̟ c(e)(y).e
iωs

̟c(e)
(y)
]s∈k , if e ∈ E − D,

J
c(e) ∩ ̟ c(e)

= [(ρs
J c(e)(y) ∨ ρs̟ c(e)(y))

.e
i[ωs

J c(e)
(y)∪ωs

̟c(e)
(y)]

]s∈k , if e ∈ E ∩ D.

(5)

Since (J ,D)c = (J c,D) and (̟, E)c = (̟ c, E) then

we have, (J ,D)c ∩ (̟, E)c = (J c,D) ∩ (̟ c, E).

Suppose that (J c,D) ∩ (̟ c, E) ∩ (T , J ), where J =

D ∪ E . Hence e ∈ J .

T (e)

=



























J
c(e)= [ρs

J c(e)(y).e
iωs

J c(e)
(y)
]s∈k , if e ∈ D−E,

̟ c(e)= [ρs̟ c(e)(y).e
iωs

̟c(e)
(y)
]s∈k , if e ∈ E−D,

J
c(e) ∩ ̟ c(e) = [(ρs

J c(e)(y) ∨ ρs̟ c(e)(y))

.e
i[ωs

J c(e)
(y)∪ωs

̟c(e)
(y)]

]s∈k , if e ∈ E ∩ D.

(6)

Thus, (⊕c,R) and (T , J ) are the similar operators, ∀

e ∈ R(J ), ((J ,D) ∪ (̟, E))c = (J ,D)c ∩ (̟, E)c

and this completes the proof.

2) The proof is same as that of part (1) and therefore is

leave out.

V. ENTROPY (ENT) ON CMFHS-SETS

ENT is one of the principal characteristics of f-sets as its

addresses the primary inquiry when managing f-sets. How

fuzzy is an FS? ENT is a tool that is used to measure the

fuzziness of FS. In this part, we present the idea of ENT of

CMFHSS. Some related theorems and an application for a

person selection decision issue who wishes to buy a car are

built to utilize the recently created ENT-based CMFHSS to

demonstrate its validity and importance.

Definition 21: A function E : CM kFHSS(Y ) → [0, 1]

is said to be ENT on CM kFHSS, if E fulfils the given

conditions.

1) E(J ,D) = 0 ⇔ ρsF (e)(y) = 1 and ωs
F(e)(e)(y) = 2π,

∀ e ∈ D, y ∈ Y , s = 1, 2, . . . , k .

2) E(J ,D) = 1 ⇔ ρs
J (e)

(y) = 0.5 and ω
j

J
(e)(y) = π , ∀

e ∈ D, y ∈ Y , s = 1, 2, . . . , k.

3) E(J ,D) = E(J ,D)c.

4) if (J ,D) ⊆ (̟,D), i.e, ρs
J (e)

(y) ≤ ρs̟ (e)(y) and

ωs
J (e)

(y) ≤ ωs
̟ (e)(y), e ∈ E, y ∈ Y , s = 1, 2, . . . , k ,

then E(J ,D) ≥ E(̟,D).

Theorem 4: Let Y = {y1, y2, . . . , yp} be the nonempty

universal set of elements and D be the universal set of

parameters. Hence (J ,D) = {D(e) = rs
J (e)

(y).e
iωs

J (e)(y)|l =

1, 2, 3, . . . ,m}, where e ∈ D, is a family of CM kFHSS.

DefineE(J ,D) as follows:E(J ,D) = 1
2m

6m
l=1[E

r
l (J ,D)+

Eω
l

(J ,D)
2π

],

where,

Erl (J ,D) =
1

nk
6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) − ρs

J c(el )
(yp)|],

and

Eω
l (J ,D) =

1

nk
6n
p=16

k
s=1[1 − |ωs

J (el )
(yp) − ωs

J c(el )
(yp)|],

then E(J ,D) is an ENT of CM kFHSS.

Proof:We prove that the E(J ,D) fulfils the all require-

ments given in Definition 22.

1) E(J ,D) = 0,⇔ 1
2m

6m
l=1[E

r
l (J ,D)+Eω

l
(J ,D)
2π

] = 0,

⇔ Erl (J ,D) = 0 and Eω
l (J ,D) = 0

⇔ ∀el ∈ D, yp ∈ Y , s = 1, 2, 3 . . . , n

6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) − ρs

J c(el )
(yp)|] = 0, and

6n
p=16

k
s=1[1 − |ωs

J (el )
(yp) − ωs

J c(el )
(yp)|] = 0,

⇔ ∀el ∈ D, yp ∈ Y , s = 1, 2, 3 . . . , n,

|ρs
J (el )

(yp) − ρs
J c(el )

(yp) = 1, |ωs
J (el )

(yp) −

ωs
J c(el )

(yp)| = 2π, ⇔ ∀ el ∈ D, yp ∈ Y , s =

1, 2, 3 . . . , n, ρs
J (el )

(yp) = 1, ωs
J (el )

(yp) = 2π ,

2) For (J ,D) ∈ CM kFSS(Y ), we have E(J ,D) = 1,

6m
l=1[E

r
l (J ,D) + Eω

l
(J ,D)
2π

] = 2m, ⇔ Erl (J ,D) =

1, and Eω
l (J ,D)] = 2π , ⇔ ∀el ∈ D, yp ∈

Y , s = 1, 2, 3 . . . , n, 1
nk

6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) −

ρs
J c(el )

(yp)|] = 1, and 1
nk

6n
p=16

k
s=1[1 − |ωs

J (el )
(yp) −

ωs
J c(el )

(yp)|] = 2π, ⇔ ∀el ∈ D, yp ∈

Y , s = 1, 2, 3 . . . , n, 6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) −

ρs
J c(el )

(yp)|] = nk, and 6n
p=16

k
s=1[2π − |ωs

J (el )
(yp)−

ωs
J c(el )

(yp)|] = 2π (nk), ⇔ ∀ el ∈ D, yp ∈ Y , s =

1, 2, 3 . . . , n, [1 − |ρs
J (el )

(yp) − ρs
J c(el )

(yp)|] = 1,

and [2π − |ωs
J (el )

(yp) − ωs
J c(el )

(yp)|] = 2π , ⇔

∀el ∈ D, yp ∈ Y , s = 1, 2, 3 . . . , n, |ρs
J c(el )

(yp) −

ρs
J (el )

(yp)| = 0, and |ωs
J c(el )

(yp) − ωs
J (el )

(yp)| = 0,

⇔ ∀el ∈ D, yp ∈ Y , s = 1, 2, 3 . . . , n, ρs
J (el )

(yp) = 1
2

and ωs
J (el )

(yp) = π ,

3) For E(J ,D) ∈ CM kFSS(Y ), we have, Erl (J ,D) =
1
nk

6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) − ρs

J c(el )
(yp)|],

1
nk

6n
p=1

6k
s=1[1 − |ρs

J c(el )
(yp) − ρs

J (el )
(yp)|], = Erl (J ,D)c,

Similarly, we can prove Erl (J ,D) = Erl (J ,D)c it is

obvious that E(J ,D) = E(J ,D)c.

4) Suppose (J ,D) and (̟,D) ∈ CM kFSS(Y ).

If (J ,D) ⊆ (̟,D),

⇒ ∀el ∈ D, y ∈ Y , s = 1, 2, 3 . . . , k,

ρs
J (el )

(yp) ≤ ρs̟ (el )
(yp) and ωs

J (el )
(yp) ≤ ωs

̟ (el )
(yp)

⇒ ∀el ∈ D, y ∈ Y , s = 1, 2, 3 . . . , k ,

|ρs
J (el )

(yp) − ρs
J c(el )

(yp)| ≤ |ρs̟ (el )
(yp) − ρs̟ c(el )

(yp)|,
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and |ωs
J (el )

(yp) − ωs
J c(el )

(yp)| ≤ |ωs
̟ (el )

(yp) −

ωs
̟ c(el )

(yp)|,

⇒ ∀el ∈ D, y ∈ Y , s = 1, 2, 3 . . . , k,

1 − |ρs
J (el )

(yp) − ρs
J c(el )

(yp)| ≥ 1 −|ρs̟ (el )
(yp) −

ρs̟ c(el )
(yp)|,

and

2π − |ωs
J (el )

(yp) − ωs
J c(el )

(yp)|

≥ 2π − |ωs
̟ (el )

(yp) − ωs
̟ c(el )

(yp)|,

⇒
1

nk
6n
p=16

k
s=1([1 − |rs

J (el )
(yp) − ρs

J c(el )
(yp)|]),

≥
1

nk
6n
p=16

k
s=1([1 − |ρs̟ (el )

(yp) − ρs̟ c(el )
(yp)|]),

and

1

nk
6n
p=16

k
s=1([2π − |ωs

J (el )
(yp) − ωs

J c(el )
(yp)|])

≥
1

nk
6n
p=16

k
s=1([2π − |ωs

̟ (el )
(yp) − ωs

̟ c(el )
(yp)|]),

⇒ Erl (J ,D) ≥ Erl (̟,D),

and

⇒ Eω
l (J ,D) ≥ Eω

l (̟,D),

⇒ Erl (J ,D) + Eω
l (J ,D) ≥ Erl (̟,D) + Eω

l (̟,D),

⇒
1

2m
6m
l=1[E

r
l (J ,D) + Eω

l

(J ,D)

2π
]

≥
1

2m
6m
l=1[E

r
l (̟,D) + Eω

l

(̟,D)

2π
],

⇒ E(J ,D) ≥ E(̟,D).

A. THE PROPOSED ENT-BASED CMFHSS WITH

APPLICATION

In this section, we utilize the idea of CMFHSS to build a novel

algorithm and strategy, called ENT-based CMFHSS, in which

we expand ENT depending on CMFHSS under a fuzzy envi-

ronment. Also, a person selection decision issue who wish to

buy a car is built to utilize the recently created ENT-based

CMFHSS to demonstrate its validity and importance.

1) THE PROPOSED ENT BASED CMFHSS WITH APPLICATION

Let Y be a non-empty universal set, and suppose Y ⊂ A be

the set of alternatives under discussion, presented by Y =

{x1, x2, ..., xm}. Let D = A1 × A2 × ... × An, where n ≥ 1

and Ai is the set of all attribute values of the attribute ai,

i = 1, 2, 3, ..., n. The construction steps for the proposed

CMFHSS-based ENT are as per the following or see fig 5

1) Input each of the CMFHSS.

2) Calculate ENT for each CMFHSS using the for-

mula E(J ,D) = 1
2m

6m
l=1[E

r
l (J ,D) + Eω

l
(J ,D)
2π

],

where Erl (J ,D) = 1
nk

6n
p=16

k
s=1[1 − |ρs

J (el )
(yp) −

ρs
J c(el )

(yp)|], and Eω
l (J ,D) = 1

nk
6n
p=16

k
s=1[1 −

|ωs
J (el )

(yp) − ωs
J c(el )

(yp)|].

3) Find such CMFHSS which has minimum ENT and

chose it for best optimal.

4) Choose any one, if it received more than one optimal.

Example 3: Assume that a car company CEO who has

three clients needs to know which client would perhaps to

purchase a car from him. Assume that he has clients Harry,

Jonas, and William looking for a car. Let X = {a = Acura,

b = Bentley, c = BMW} be collection of cars, let a1 =

Feature, a2 = Cost, a3 = Colour, be distinct attributes whose

corresponding attribute values belong to the sets F1,F2,F3.

Let F1 = {f1 = Safety feature, f2 = Convenience feature },

F2 = {f3 = High}, F3 = {f4 = Pearl, f5 = metallic}.

The attractiveness of the set the car to Harry, Jonas, and

William encoded into CMFHSS (J ,D), (̟,D) and (⊕,D)

respectively. Construct the CM kFHSS (J ,D), (̟,D) and

(⊕,D) presenting attractiveness of the car of Harry, Jonas,

and William respectively.

1) This can be done with the support of customers.

(J ,D)

=

{

J (f1, f3, f4) =

{

(0.3ei0.4π , 0.4ei0.3π , 0.7ei0.1π )

a
,

(0.8ei0.2π , 0.4ei0.8π , 0.1ei0.6π )

b
,

(0.8ei0.2π , 0.7ei0.2π , 0.8ei0.5π )

c

}

,

{

J (f1, f3, f5)

=

{

(0.3ei0.3π , 0.3ei0.4π , 0.6ei0.4π )

a
,

(0.8ei0.2π , 0.6ei0.1π , 0.7ei0.9π )

b
,

(0.2ei0.9π , 0.2ei0.4π , 0.8ei0.3π )

c

}

,

{

J (f2, f3, f4)

=

{

(0.3ei0.9π , 0.2ei0.7π , 0.3ei0.8π )

a
,

(0.2ei0.4π , 0.2ei0.6π , 0.2ei0.3π )

b
,

(0.9ei0.3π , 0.3ei0.6π , 0.3ei0.2π )

c

}

{

J (f2, f3, f5)

=

{

(0.3ei0.5π , 0.7ei0.3π , 0.3ei0.8π )

a
,

(0.3ei0.4π , 0.9ei0.3π , 0.3ei0.9π )

b
,

(0.4ei0.7π , 0.2ei0.1π , 0.7ei0.4π )

c

}}

,

(̟,D)

=

{

J (f1, f3, f4) =

{

(0.2ei0.7π , 0.2ei0.8π , 0.9ei0.2π )

a
,
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(0.7ei0.5π , 0.2ei0.6π , 0.3ei0.8π )

b
,

(0.4ei0.3π , 0.8ei0.9π , 0.5ei0.3π )

c

}

,

{

J (f1, f3, f5)

=

{

(0.6ei0.9π , 0.2ei0.8π , 0.2ei0.9π )

a
,

(0.2ei0.8π , 0.6ei0.1π , 0.7ei0.3π )

b
,

(0.3ei0.6π , 0.2ei0.7π , 0.7ei0.3π )

c

}

,

{

J (f2, f3, f4)

=

{

(0.3ei0.9π , 0.8ei0.9π , 0.5ei0.9π )

a
,

(0.8ei0.5π , 0.6ei0.7π , 0.9ei0.2π )

b
,

(0.6ei0.9π , 0.2ei0.9π , 0.2ei0.6π )

c

}

{

J (f2, f3, f5)

=

{

(0.6ei0.5π , 0.7ei0.4π , 0.8ei0.8π )

a
,

(0.3ei0.4π , 0.9ei0.3π , 0.3ei0.2π )

b
,

(0.4ei0.7π , 0.1ei0.3π , 0.9ei0.5π )

c

}}

,

(⊕,D)

=

{

J (f1, f3, f4) =

{

(0.4ei0.8π , 0.6ei0.1π , 0.8ei0.8π )

a
,

(0.2ei0.9π , 0.8ei0.4π , 0.2ei0.6π )

b
,

(0.3ei0.2π , 0.8ei0.2π , 0.8ei0.1π )

c

}

,

{

J (f1, f3, f5)

=

{

(0.7ei0.2π , 0.9ei0.1π , 0.3ei0.6π )

a
,

(0.5ei0.2π , 0.2ei0.8π , 0.4ei0.6π )

b
,

(0.2ei0.6π , 0.1ei0.5π , 0.8ei0.4π )

c

}

,

{

J (f2, f3, f4)

=

{

(0.5ei0.9π , 0.2ei0.6π , 0.4ei0.7π )

a
,

(0.8ei0.6π , 0.6ei0.7π , 0.9ei0.2π )

b
,

(0.2ei0.9π , 0.3ei0.8π , 0.6ei0.5π )

c

}

{

J (f2, f3, f5)

=

{

(0.2ei0.5π , 0.2ei0.5π , 0.1ei0.4π )

a
,

(0.5ei0.4π , 0.3ei0.4π , 0.5ei0.2π )

b
,

(0.2ei0.5π , 0.9ei0.2π , 0.4ei0.5π )

c

}}

.

2) Calculate the Entropies of (J ,D), (̟,D) and (⊕,D)

using the formula mention in algorithm, see Table 1.

Hence the Entropies of the CM kFSSs (J ,D), (̟,D)

and (⊕,D) are as given below E(J ,D) = 0.569,

E(̟,D) = 0.553, E(⊕,D) = 0.51 respectively.

3) Optimal solution is to choose (⊕,D) as it hs minimum

value of ENT.

4) William has higher chance to purchase car.

All alternatives are ranked by ENT based CMFHSS depicted

in the following clustered cone 1.

B. COMPARATIVE STUDIES

A few comparisons of the initiated techniques with short-

comings are discussed to analyze the proposed technique’s

validity and predominance. Additionally, we will compare

TABLE 1. Entropies.
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TABLE 2. Comparison of the proposed ENT based CMFHSS with existing entropies.

FIGURE 1. Ranking of alternative by ENT based CMFHSS.

our proposed ENT based CMFHSS with nine other existing

entropies, including the idea presented by Szmidt et al. [42]

based on non-probabilistic-type ENT measure for intuition-

istic f-sets, the notion initiated by Zhang et al. [21] an

axiomatic definition of ENT for IVFS and relationship

between ENT and similarity measure of IVFSS set, Majum-

dar et al. [43] based on ENT of a single-valued neutro-

sophic set, and the idea founded by Ye et al. [44] based

on the ENT measures of interval-valued NSS, and the idea

founded by Aydodu et al. [45] based on ENT and similarity

measure of interval-valued neutrosophic sets, and the idea

established by Athira et al. [46] based on ENT and dis-

tance measures of Pythagorean fs-sets and their applications,

and the idea presented by Lvqing et al. [47] based on two

classes of ENT measures for complex f-sets, and the idea

built by Kumar et al. [48] based on complex intuitionistic

fs-sets with distance Measures and Entropies, and the idea

endowed by Selvachandran et al. [49] based on vague ENT

measure for complex, vague soft sets. However, when the

attributes are further sub-divided into attribute values and

the issues that include complex (two-dimensional) informa-

tion/date (the degree of the influence and the total time of

the influence) then all current disadvantages are failed to

manage. This need is fulfilled in the proposed ENT-based

CMFHSS.

For more detailed see table 2, fig 2.

FIGURE 2. Comparison of the proposed ENT based CMFHSS with existing
entropies.

VI. SIMILARITY MEASURE BETWEEN CMFHS-SETS

SM evaluates the degree in which various patterns, images,

or sets are alike. Such kind of measures are utilized broadly

in the use of fs-sets. We present a definition of a SM for

CMFHSS as following.

Definition 22: A function S : CM kFHSS(Y ) ×

CM kFHSS(Y ) → [0, 1] is said to be SM between two

CM kFHSS (J ,D) and (̟,D), if S satisfies the following

axiomatic requirements

1) S((J ,D), (̟,D)) = S((̟,D), (J ,D)),

2) S((J ,D), (̟,D)) = 1 ⇔ (J ,D) = (̟,D),

3) S((J ,D), (̟,D)) = 0 ⇔ ∀ e ∈ D, x ∈ Y , s =

1, 2, 3 . . . ,K , the following restrictions are fulfilled

ρs
J (e)

= 1, ρs̟ (e) = 0 or ρs
J (e)

= 0, ρs̟ (e) = 1 and

ωs
J (e)

= 2π, ωs
̟ (e) = 0 or ωs

J (e)
= 0, ωs

̟ (e) = 2π,

4) ∀ (J ,D), (̟,D) and (⊕,D) ∈ CM kFHSS,

if (J ,D) ⊆ (̟,D) ⊆ (⊕,D), then S((J ,D),

(⊕,D)) ≤ S((J ,D), (̟,D)) and S((J ,D), (⊕,D)) ≤

S((̟,D), (⊕,D)). Now, we develop the formula to

find the SM between two CM kFHSS as follows.

Theorem 5: Let Y = {y1, y2, . . . , yp} be the universal set

of elements and D be the universal set of parameters.
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(J ,D) = {D(e) = ρs
J (e)

(y).e
iωs

J (e) (y)|l = 1, 2, 3, . . . ,m},

and (̟,D) = {D(e) = ρs̟ (e)(y).e
iωs

̟ (e)(y)|l =

1, 2, 3, . . . ,m}, are two families of CM kFHSS.

Define S((J ,D), (̟,D)) as follows, S((J ,D), (̟,D))

= 1
2m

6m
l=1[S

r
l ((J ,D), (̟,D)) +

Sω
l ((J ,D),(̟,D))

2π
],

where,

Srl=1((J ,D), (̟,D))

= 1 −
1

n
6n
l=1max{(|ρ

s
J (e)(yp) − rs̟ (e)(yp)|)s∈k},

and

Sω
l=1((J ,D), (̟,D))

= 2π −
1

n
6n
l=1max{(|ω

s
J (e)(yp) − ωs

̟ (e)(yp)|)s∈k},

then S((J ,D), (̟,D)) is a SM between two CM kFHSS

(J ,D) and (̟,D).

Proof: It is sufficient to prove that S((J ,D), (̟,D))

fulfill the properties listed in Definition 23.

1) For Srl=1((J ,D), (̟,D)) = 1 − 1
n
6n
p=1max

{(|ρs
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k},

= 1 −
1

n
6n
p=1max{(|ρ

s
̟ (el )

(yp) − ρs
J (el )

(yp)|)s∈k}

= Srl=1((̟,D), (J ,D)),

and

Sω
l=1((J ,D), (̟,D))

= 2π −
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k},

= 2π −
1

n
6n
p=1max{(|ω

s
̟ (el )

(yp) − ωs
J (el )

(yp)|)s∈k}

= Sω
l=1((̟,D), (J ,D)),

So we have

S((J ,D), (̟,D)) =
1

2m
6m
l=1[S

r
l ((J ,D), (̟,D))

+
Sω
l ((J ,D), (̟,D))

2π
],

=
1

2m
6m
l=1[S

r
l ((̟,D), (J ,D))

+
Sω
l ((̟,D), (J ,D))

2π
]

= S((̟,D), (J ,D)).

2) S((J ,D), (̟,D)) = 1

⇔
1

2m
6m
l=1[S

r
l ((J ,D), (̟,D))

+
Sω
l ((J ,D), (̟,D))

2π
] = 1,

⇔ Srl ((J ,D), (̟,D)) = 1,

⇔ Sω
l ((J ,D), (̟,D)) = 2π,

⇔ Srl=1((J ,D), (̟,D)) = 1 − 1
n
6n
p=1max{(|ρ

s
J (el )

(yp)−ρs̟ (el )
(yp)|)s∈k}, 2π − 1

n
6n
p=1max{(|ω

s
J (el )

(yp)−

ωs
̟ (el )

(yp)|)s∈k} = 2π , ∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ 1
n
6n
p=1max{(|ρ

s
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k = 0,

and

⇔
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k = 0,

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ 6n
p=1max{(|ρ

s
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k = 0,

⇔ 6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k = 0,

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ ρs
J (el )

(yp) = ρs̟ (el )
(yp),

⇔ ωs
J (el )

(yp) = ωs
̟ (el )

(yp),

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ (J ,D) = (̟,D).

3) S((J ,D), (̟,D)) = 0,

1

2m
6m
l=1[S

r
l ((J ,D), (̟,D))

+
Sω
l ((J ,D), (̟,D))

2π
] = 0,

⇔ Srl ((J ,D), (̟,D)) = 0,

and

⇔ Sω
l ((J ,D), (̟,D)) = 0,

⇔ 1−
1

n
6n
p=1max{(|ρ

s
J (el )

(yp)−ρs̟ (el )
(yp)|)s∈k}=0,

and

⇔ 2π −
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k}

= 0,

∀ el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔
1

n
6n
p=1max{(|ρ

s
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k} = 1,

⇔
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k} = 2π,

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ max{(|ρs
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k} = 1,

and

⇔ max{(|ωs
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k} = 2π,

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ ρs
J (el )

= 0, ρs̟ (el )
= 1, ρs

J (el )
= 1, ρs̟ (el )

= 0 and

ωs
J (el )

= 0, ωs
̟ (el )

= 2π or ωs
J (el )

= 2π, ωs
̟ (el )

= 0.

4) (J ,D) ⊆ (̟,D) ⊆ (⊕,D),

⇒ ρs
J (el )

(yp) ≤ ρs̟ (el )
(yp) ≤ ρs⊕(el )

(yp)

and

ωs
J (el )

(yp) ≤ ωs
̟ (el )

(yp) ≤ ωs
⊕(el )

(yp),

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇒ |ρs
J (el )

(yp) − ρs⊕(el )
(yp)|

≤ |ρs
J (el )

(yp) − rs̟ (el )
(yp)|,
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and

⇒ |ωs
J (el )

(yp) − ωs
⊕(el )

(yp)|

≤ |ωs
J (el )

(yp) − ωs
̟ (el )

(yp)|,

∀el ∈ D, y ∈ Y , s = 1, 2, . . . k,

⇔ 1 −
1

n
6n
p=1max{(|ρ

s
J (el )

(yp) − ρs⊕(el )
(yp)|)s∈k}

≤ 1 −
1

n
6n
p=1max{(|ρ

s
J (el )

(yp) − ρs̟ (el )
(yp)|)s∈k},

⇔ 2π −
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
⊕(el )

(yp)|)s∈k}

≤ 2π −
1

n
6n
p=1max{(|ω

s
J (el )

(yp) − ωs
̟ (el )

(yp)|)s∈k},

⇒ Srl=1((J ,D), (⊕,D)) ≤ Srl=1((J ,D), (̟,D)),

and

⇒ Sω
l=1((J ,D), (⊕,D)) ≤ Sω

l=1((J ,D), (̟,D)),

⇒ Srl=1((J ,D), (⊕,D)) + Sω
l=1((J ,D), (⊕,D))

≤ Srl=1((J ,D), (̟,D)) + Sω
l=1((J ,D), (̟,D)),

⇒
1

2m
6m
l=1[S

r
l ((J ,D), (⊕,D))

+
Sω
l ((J ,D), (⊕,D))

2π
]

≤
1

2m
6m
l=1[S

r
l ((J ,D), (̟,D))

+
Sω
l ((J ,D), (̟,D))

2π
],

S((J ,D), (⊕,D))

≤ S((J ,D), (̟,D)).

A. THE PROPOSED SM-BASED CMFHSS WITH

APPLICATION

In this section, we utilize the idea of CMFHSS to build a

novel algorithm and strategy, called SM-based CMFHSS,

in which we expand SM depending on CMFHSS under a

fuzzy environment. Besides, a car selection decision issue is

built to utilize the recently created ENT-based CMFHSS to

demonstrate its validity and importance.

1) THE PROPOSED SIMILARITY BASED CMFHSS WITH

APPLICATION

Suppose Y 6= 8 universal set, and let Y ⊂ A alternatives

under discussion, represented by X = {y1, y2, ..., ym}. Let

D = A1 × A2 × ... × An, where n ≥ 1 and Ai is the set of all

attribute values of the attribute ai, i = 1, 2, 3, ..., n. The con-

struction steps for the proposed CMFHSS-based Similarity

or see fig 6 are as per the following:

1) Input each of the CMFHSS.

2) Calculate similarity measure for each CMFHSS using

the formula

S((J ,D), (̟,D)) =
1

2m
6m
l=1[S

r
l ((J ,D), (̟,D))

+
Sω
l ((J ,D), (̟,D))

2π
],

where Srl=1((J ,D), (̟,D))

= 1 −
1

n
6n
l=1max{(|ρ

s
J (e)(yp) − rs̟ (e)(yp)|)s∈k},

and

Sω
l=1((J ,D), (̟,D)) = 2π −

1

n
6n
l=1max{(|ω

s
J (e)(yp)

− ωs
̟ (e)(yp)|)s∈k}.

3) Find such CMFHSS which has maximum similarity

and chose it for best optimal.

4) Choose any one, if it received more than one optimal.

Example 4: A country with an administration that shows

the falling tendency. To overcome this issue, the adminis-

tration authorities need to put a rescue package into action.

Four panels which are free of one another and an assessment

board are set up by the government. Every one of these panels

has arranged four unique ventures and submitted them to the

administration.

Let X = {a = 1st package, b = 2nd package, c = third

package} be the set of levels. Let a1 = tax collection, a2 =

Higher global growth, a3 = Lower interest rates, be distinct

attributes whose corresponding attribute values belong to the

sets F1,F2,F3. Let F1 = {f1 = fairness, f2 = Convenience

of payment}, F2 = {f3 = increased export spending. }, F3 =

{f4 = reduce the cost of borrowing, f5 = increase consumer

spending and investment}.

1) Here, our point is to choose the ideal rescue package

according to parameters given

Model for CMFHSS are encoded in the followings

tables

(̟,D) =

{

̟ (f1, f3, f4)

=

{

(0.2ei0.7π , 0.2ei0.8π , 0.9ei0.2π )

a
,

(0.7ei0.5π , 0.2ei0.6π , 0.3ei0.8π )

b
,

(0.4ei0.3π , 0.8ei0.9π , 0.5ei0.3π )

c

}

,

̟ (f1, f3, f5) =

{

(0.6ei0.9π , 0.2ei0.8π , 0.2ei0.9π )

a
,

(0.2ei0.8π , 0.6ei0.1π , 0.7ei0.3π )

b
,

(0.3ei0.6π , 0.2ei0.7π , 0.7ei0.3π )

c

}

,

̟ (f2, f3, f4) =

{

(0.3ei0.7π , 0.5ei0.0.5π , 0.7ei0.1π )

a
,

(0.9ei0.2π , 0.6ei0.1π , 0.7ei0.3π )

b
,

(0.3ei0.6π , 0.3ei0.4π , 0.2ei0.4π )

c

}

,
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̟ (f2, f3, f5) =

{

(0.6ei0.9π , 0.8ei0.6π , 0.9ei0.2π )

a
,

(0.6ei0.8π , 0.2ei0.3π , 0.6ei0.3π )

b
,

(0.4ei0.7π , 0.1ei0.9π , 0.3ei0.2π )

c

}

,

}

,

(⊕,D) =

{

⊕ (f1, f3, f4)

=

{

(0.2ei0.7π , 0.6ei0.1π , 0.7ei0.4π )

a
,

(0.3ei0.9π , 0.4ei0.8π , 0.1ei0.9π )

b
,

(0.2ei0.5π , 0.3ei0.8π , 0.9ei0.4π )

c

}

,

⊕(f1, f3, f5) =

{

(0.7ei0.9π , 0.7ei0.2π , 0.8ei0.6π )

a
,

(0.1ei0.7π , 0.6ei0.3π , 0.6ei0.3π )

b
,

(0.1ei0.6π , 0.2ei0.7π , 0.7ei0.3π )

c

}

,

⊕(f2, f3, f4) =

{

(0.8ei0.9π , 0.9ei0.4π , 0.1ei0.7π )

a
,

(0.8ei0.8π , 0.6ei0.1π , 0.5ei0.3π )

b
,

(0.2ei0.6π , 0.5ei0.9π , 0.6ei0.3π )

c

}

,

⊕(f2, f3, f5) =

{

(0.6ei0.9π , 0.2ei0.8π , 0.2ei0.9π )

a
,

(0.2ei0.8π , 0.2ei0.1π , 0.7ei0.7π )

b
,

(0.3ei0.6π , 0.2ei0.7π , 0.7ei0.9π )

c

}

,

}

,

(⊗,D) =

{

⊗ (f1, f3, f4)

=

{

(0.2ei0.7π , 0.5ei0.7π , 0.2ei0.4π )

a
,

(0.2ei0.6π , 0.5ei0.8π , 0.3ei0.6π )

b
,

(0.7ei0.6π , 0.3ei0.7π , 0.2ei0.9π )

c

}

,

⊗(f1, f3, f5) =

{

(0.6ei0.9π , 0.2ei0.8π , 0.2ei0.9π )

a
,

(0.2ei0.8π , 0.6ei0.1π , 0.6ei0.9π )

b
,

(0.2ei0.6π , 0.2ei0.7π , 0.9ei0.7π )

c

}

,

⊗(f2, f3, f4) =

{

(0.6ei0.9π , 0.2ei0.8π , 0.3ei0.3π )

a
,

(0.2ei0.8π , 0.9ei0.1π , 0.7ei0.8π )

b
,

(0.3ei0.6π , 0.2ei0.7π , 0.6ei0.3π )

c

}

,

⊗(f2, f3, f5) =

{

(0.3ei0.4π , 0.2ei0.8π , 0.2ei0.9π )

a
,

(0.2ei0.8π , 0.6ei0.1π , 0.7ei0.2π )

b
,

(0.3ei0.6π , 0.1ei0.9π , 0.5ei0.6π )

c

}

,

}

,

and ideal CMFHSS are

(J ,D) =

{

J (f1, f3, f4)

=

{

(0.3ei0.4π , 0.4ei0.3π , 0.7ei0.1π )

a
,

(0.8ei0.2π , 0.4ei0.8π , 0.1ei0.6π )

b
,

(0.8ei0.2π , 0.7ei0.2π , 0.8ei0.5π )

c

}

,

J (f1, f3, f5) =

{

(0.3ei0.3π , 0.1ei0.2π , 0.7ei0.4π )

a
,

(0.8ei0.2π , 0.6ei0.8π , 0.7ei0.9π )

b
,

(0.2ei0.9π , 0.2ei0.4π , 0.4ei0.3π )

c

}

,

J (f2, f3, f4) =

{

(0.4ei0.8π , 0.3ei0.4π , 0.6ei0.4π )

a
,

(0.2ei0.4π , 0.6ei0.1π , 0.7ei0.9π )

b
,

(0.6ei0.9π , 0.2ei0.4π , 0.8ei0.3π )

c

}

,

J (f2, f3, f5) =

{

(0.3ei0.3π , 0.3ei0.4π , 0.6ei0.4π )

a
,

(0.8ei0.2π , 0.6ei0.1π , 0.7ei0.9π )

b
,

(0.7ei0.3π , 0.8ei0.3π , 0.6ei0.3π )

c

}

,

}

,

2) Calculate the SM of (J ,D), (̟,D) and (⊕,D) using

the formula mention in algorithm in Step (2), see

Table 3.

Hence the degree of similarity between (J ,D) and

(̟,D), (⊕,D), (⊗,D) respectively is given by

S1 = S((J ,D), (̟,D)) = 0.6519, S2 =

S((J ,D), (⊕,D)) = 0.6143, S3 = S((J ,D),

(⊗,D)) = 0.6260.

3) Thus, the government officials should select the rescue

package (̟,D) with highest score. Hence, they will

select (̟,D).

The table 4, fig 3 and 4 depict the correlation of the proposed

measures with existing measures given by Li et al. [30],
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TABLE 3. Similarity measures.

FIGURE 3. Ranking of alternative by SM based CMFHSS.

Chen [31], Chen et al. [32], Hung et al. [50], Hong et al. [33],

Dengfeng [34], Li et al. [35], Liang et al. [36], Mitchell [37],

Ye [44], Wei [51], Zhang [38], Peng et al. [39],

Boran et al. [40] and Begam et al. [41].

B. ADVANTAGES AND COMPARATIVE ANALYSIS

OF THE CMFHSS

In the following, few comparisons of the initiated techniques

with shortcomings are presented to inspect the proposed

strategies’ validity and prevalence. Moreover, the proposed

SM is compared with other existing measures and gets the

following disadvantages to comprehend with an example,

including the idea presented in the previous section. However,

all existing shortcomings fail to manage issues that involve

FIGURE 4. Comparison of the proposed SM based CMFHSS with existing
similarity measure.

2D information/date i.e., two unique sorts of data/information

relating to the problem parameters. The comparability of

proposed techniques is shown with the help of example 4,

see the outcomes in table 5 and fig 7.

Example 5: For example 4, if we have one-dimensional

information likewise

(̟,D) =

{

̟ (f1, f3, f4)

=

{

(0.2ei2π (0.0), 0.2ei2π (0.0), 0.9ei2π (0.0)

a
,

(0.7ei2π (0.0), 0.2ei2π (0.0), 0.3ei2π (0.0))

b
,

(0.4ei2π (0.0), 0.8ei2π (0.0), 0.5ei2π (0.0))

c

}

,

̟ (f1, f3, f5) =

{

(0.6ei2π (0.0), 0.2ei2π (0.0), 0.2ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.6ei2π (0.0), 0.7ei2π (0.0))

b
,

(0.3ei2π (0.0), 0.2ei2π (0.0), 0.7ei2π (0.0))

c

}

,

̟ (f2, f3, f4) =

{

(0.3ei2π (0.0), 0.5ei2π (0.0), 0.7ei2π (0.0))

a
,

(0.9ei2π (0.0), 0.6ei2π (0.0), 0.7ei2π (0.0))

b
,

(0.3ei2π (0.0), 0.3ei2π (0.0), 0.2ei2π (0.0))

c

}

,

̟ (f2, f3, f5) =

{

(0.6ei2π (0.0), 0.8ei2π (0.0), 0.9ei2π (0.0))

a
,

(0.6ei2π (0.0), 0.2ei2π (0.0), 0.6i2π (0.0))

b
,

(0.4ei2π (0.0), 0.1ei2π (0.0), 0.3ei2π (0.0))

c

}

,

}

,

(⊕,D) =

{

⊕ (f1, f3, f4)

=

{

(0.2ei2π (0.0), 0.6ei2π (0.0), 0.7ei2π (0.0))

a
,
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TABLE 4. Comparison of the proposed similarity measure based CMFHSS with existing SM.

(0.3ei2π (0.0), 0.4ei2π (0.0), 0.1ei2π(0.0))

b
,

(0.2ei2π (0.0), 0.3ei2π(0.0), 0.9ei2π(0.0))

c

}

,

⊕(f1, f3, f5) =

{

(0.7ei2π (0.0), 0.7ei2π (0.0), 0.8ei2π (0.0))

a
,

(0.1ei2π (0.0), 0.6ei2π (0.0), 0.6ei2π(0.0))

b
,

(0.1ei2π (0.0), 0.2ei2π(0.0), 0.7ei2π(0.0))

c

}

,

⊕(f2, f3, f4) =

{

(0.8ei2π (0.0), 0.9ei2π (0.0), 0.1ei2π (0.0))

a
,

(0.8ei2π (0.0), 0.6ei2π (0.0), 0.5ei2π(0.0))

b
,

(0.2ei2π (0.0), 0.5ei2π(0.0), 0.6ei2π(0.0))

c

}

,

⊕(f2, f3, f5) =

{

(0.6ei2π (0.0), 0.2ei2π (0.0), 0.2ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.2ei2π (0.0), 0.7ei2π(0.0))

b
,

(0.3ei2π (0.0), 0.2ei2π(0.0), 0.7ei2π(0.0))

c

}

,

}

,

(⊗,D) =

{

⊗ (f1, f3, f4)

=

{

(0.2ei2π (0.0), 0.5ei2π (0.0), 0.2ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.5ei2π (0.0), 0.3ei2π (0.0))

b
,

(0.7ei2π (0.0), 0.3ei2π (0.0), 0.2ei2π (0.0))

c

}

,

⊗(f1, f3, f5) =

{

(0.6ei2π (0.0), 0.2ei2π (0.0), 0.2ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.6ei2π (0.0), 0.6ei2π (0.0))

b
,

(0.2ei2π (0.0), 0.2ei2π (0.0), 0.9ei2π (0.0))

c

}

,

⊗(f2, f3, f4) =

{

(0.6ei2π (0.0), 0.2ei2π (0.0), 0.3ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.9ei2π (0.0), 0.7ei2π (0.0))

b
,

(0.3ei2π (0.0), 0.2ei2π (0.0), 0.6ei2π (0.0))

c

}

,

⊗(f2, f3, f5) =

{

(0.3ei2π (0.0), 0.2ei2π (0.0), 0.2ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.6ei2π (0.0), 0.7ei2π (0.0))

b
,

(0.3ei2π (0.0), 0.1ei2π (0.0), 0.5ei2π (0.0))

c

}

,

}

,

and ideal CMFHSS are

(J ,D) =

{

J (f1, f3, f4)
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TABLE 5. Comparison of the proposed similarity measure based CMFHSS with existing SM.

FIGURE 5. Construction steps for the proposed CMFHSS-based ENT.

=

{

(0.3ei2π (0.0), 0.4ei2π(0.0), 0.7ei2π (0.0))

a
,

(0.8ei2π (0.0), 0.4ei2π(0.0), 0.1ei2π (0.0))

b
,

(0.8ei2π (0.0), 0.7ei2π(0.0), 0.8ei2π (0.0))

c

}

,

J (f1, f3, f5) =

{

(0.3ei2π (0.0), 0.1ei2π(0.0), 0.7ei2π (0.0))

a
,

(0.8ei2π (0.0), 0.6ei2π(0.0), 0.7ei2π (0.0))

b
,

(0.2ei2π (0.0), 0.2ei2π(0.0), 0.4ei2π (0.0))

c

}

,

J (f2, f3, f4) =

{

(0.4ei2π (0.0), 0.3ei2π(0.0), 0.6ei2π (0.0))

a
,

(0.2ei2π (0.0), 0.6ei2π(0.0))

b
,

(0.6ei2π (0.0), 0.2ei2π(0.0), 0.8ei2π (0.0))

c

}

,

FIGURE 6. Construction steps for the proposed CMFHSS-based SM.

J (f2, f3, f5) =

{

(0.3ei2π (0.0), 0.3ei2π(0.0), 0.6ei2π (0.0))

a
,

(0.8ei2π (0.0), 0.6ei2π(0.0), 0.7ei2π (0.0))

b
,

(0.7ei2π (0.0), 0.8ei2π(0.0), 0.6ei2π(0.0))

c

}

,

}

,

S1 = S((J ,D), (̟,D)) = 0.279,

S2 = S((J ,D), (⊕,D)) = 0.245,

S3 = S((J ,D), (⊗,D)) = 0.255.

C. SENSITIVITY ANALYSIS

1) By ignoring the imaginary parts and n = 1 s.t A1 =

A2 = A3 . . . = An, then the proposed CMFHSS

reduced to Multi fuzzy soft set [14].

2) k = 1 and n = 1 s.t A1 = A2 = A3 . . . = An, then the

proposed CMFHSS reduced to CMFSS [25].
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FIGURE 7. Comparison of the proposed SM based CMFHSS with
existing SM.

The proposed measures dependent on CMFHSS are more

remarkable and more general than existing strategies are

examined in [14], [25]. We are presently dealing with build-

ing up a more top to bottom theoretical structure concerning

the comparability gauges and have plans to broaden this to

different sorts of SM in the future. We are inspired by [25],

and anticipate broadening our work to other generalizations

of CMFHSS, for example, Intuitionistic CMFHSS, Neutro-

sophic CMFHSS, Plithogenic CMFHSS, Plithogenic Intu-

itionistic CMFHSS, Plithogenic Intuitionistic CMFHSS, and

Plithogenic Neutrosophic CMFHSS and apply the work in

clinical imaging issues, pattern recognition, recommender

frameworks, social, the economic system, approximate rea-

soning, image processing and game theory.

VII. CONCLUSION

A new scientific device to demonstrate the data or informa-

tion seen repeatedly throughout some time is established.

The CMFHSS set is developed by combining a MFS and

HSS characterized in a complex system. This framework is

more flexible in twoways; firstly, it broadens themembership

function through their translation in a unit circle with phase

and amplitude parts. Secondly, in CMFHSS the attributes can

be further sub-partitioned into attribute values for a better

understanding. We characterized its fundamental operations

as a complement, union, and intersection and supported them

with examples. This study will dispense a theoretical basis

to address vagueness and periodicity in designing, clinical,

material science, autos, and many others. This new com-

prehension of the P-terms opens new zones for some appli-

cations in the field of physical science and other natural

sciences, where P-terms may also present the temperature,

pressure, distance, or any factor that affects and cooperates

with its correspondingA-terms in the choice cycle.Moreover,

we presented the proverbial meaning of ENT and SM of

CMFHSS and studied the fundamental relations. Addition-

ally, mathematical models are given to analyze the reliability

and predominance of the setup methodologies. Furthermore,

the advantages and comparative analysis of the proposed

measures with existing measures are also depicted in detail.

Lastly, the mathematical models are given to represent the

validity and applicability of the proposed methodologies.
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