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Abstract We present a model of decentralized growth and
development for artificial neural networks (ANNs), inspired
by developmental biology and the physiology of nervous
systems. In this model, each individual artificial neuron is an
autonomous unit whose behavior is determined only by the
genetic information it harbors and local concentrations of
substrates. The chemicals and substrates, in turn, are
modeled by a simple artificial chemistry. While the system is
designed to allow for the evolution of complex networks, we
demonstrate the power of the artificial chemistry by analyzing
engineered (handwritten) genomes that lead to the growth of
simple networks with behaviors known from physiology. To
evolve more complex structures, a Java-based, platform-
independent, asynchronous, distributed genetic algorithm
(GA) has been implemented that allows users to participate
in evolutionary experiments via the World Wide Web.

1 Introduction

Ever since the birth of computational neuroscience with the introduction of the ab-
stract neuron by McCulloch and Pitts in 1943 [19], a widening gap has separated the
mathematical modeling of neural processing—inspired by Turing’s notions of universal
computation—and the physiology of real biological neurons and the networks they
form. The McCulloch–Pitts neuron marked the beginning of over half a century of
research in the field of artificial neural networks (ANNs) and computational neuro-
science. Although the goals of mathematical modelers and neuroscientists roughly
coincide, the gap between the approaches is growing mainly because they differ in
focus. Whereas neuroscientists search for a complete understanding of neurophysio-
logical phenomena, the effort in the field of ANNs focuses mostly on finding better tools
to engineer more powerful ANNs. The current state of affairs reflects this dichotomy:
Neurophysiological simulation test beds [4] cannot solve engineering problems, and
sophisticated ANN models [7, 11] do not explain the miracle of biological information
processing.

Compared to real nervous systems, classical ANN models are seriously falling short
owing to the fact that they are engineered to solve particular classification problems
and analyzed according to standard theory based mainly on statistics and global error
reduction. As such, they can hardly be considered universal. Rather, such models
define the network architecture a priori, which is in most cases a fixed structure of
homogeneous computation units.
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Models that support problem-dependent network changes during simulation are few
and far between, but see [7, 9]. Other approaches try to shape networks for a particular
problem by evolving ANNs either directly [1], or indirectly via a growth process [10, 13].
The latter allows for more efficient—and adaptable—storage of structure information.
Indeed, the idea that development is the key to the generation of complex systems
slowly seems to be getting a hold [14].

Some research has [17, 21, 22] included a kind of artificial chemistry that allows
a more natural and realistic development. An important step was taken by Fleischer
[8], who recognized the importance of development and morphology in natural neural
networks and succeeded in growing networks with interesting topology, morphology,
and function within an artificial computational chemistry based on difference equations.
Still, in these models neurons are unevolvable homogeneous structures in a more or
less fixed architecture that appears to limit their relevance to natural nervous systems.
This situation is motivation enough to design, implement, and evaluate a more flexible
and evolvable ANN model, with the goal of shrinking the gap between models based on
neurophysiology and engineered ANNs. The approach we take here is rooted in the ar-
tificial life paradigm: to start with a low-level description inspired (if not directly copied)
from the biological archetype, and to design the system in such a way that the complex
higher-order structures can emerge without unduly constraining their evolution [2, 16].

The developmental aspect has often been ignored or considered half-heartedly. Also,
the heterogeneity of neurons was never taken into account in a flexible way. It is
therefore possible that more complex and universal information-processing structures
can be grown from a model that, at a minimum, follows the four basic principles of
molecular and evolutionary biology: coding, development, locality, and heterogeneity,
discussed below. While models for ANNs currently exist that implement a selection of
them, the inclusion of all four opens the possibility that, given enough evolutionary
time, novel and powerful ANN structures can emerge that are closer to the natural
nervous systems we endeavor to understand. The four principles thus are

• Coding. The model should encode networks in such way that evolutionary
principles can be applied.

• Development. The model should be capable of growing a network by a completely
decentralized growth process, based exclusively on the cell and its interactions.

• Locality. Each neuron must act autonomously and be determined only by its
genetic code and the state of its local environment.

• Heterogeneity. The model must have the capability to describe different,
heterogeneous neurons in the same network.

While eschewing the simulation of every aspect of cellular biochemistry (thus re-
taining a certain number of logical abstractions in the artificial neuron), the adherence
to the fundamental tenets of molecular and evolutionary principles—albeit in an ar-
tificial medium—represents the most promising unexplored avenue in the search for
intelligent information-processing structures. One of the key features of a model im-
plementing the above principles will be the absence of explicit activation functions,
learning rules, or connection structures. Rather, such characteristics should emerge in
the adaptive process.

The model presented here takes certain levels of our physical world into account and
is endowed with a kind of artificial physics and biochemistry. Applied to the substrates,
this allows the simulation of local gene expression in artificial neural cells that finally
results in information-processing structures.
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Plate 1. Hexagonal grid with boundary elements. Diffusion occurs from a local concentration peak at grid element N.

Gene expression is the main cause for the behavior of neurons in this model. With-
out gene expression, neurons do not become excited or inhibit; they do not split or
grow dendritic or axonal extensions, nor do they change synaptic weights. Thus, this
behavior must be encoded in the genome of the somatic cell from which the network
grows. While each neural cell has a genotype, we choose to have certain physiological
traits (like the continuous production of a cell-specific diffusive protein and the trans-
mission of cell stimulation) “hardwired” (i.e., implicit and not evolvable). Also, special
neurons called actuators and sensor cells are used as interface to the outside world,
which are static, unevolvable, and devoid of any genetic information.

In the following section we introduce the model, its artificial physics and biochem-
istry, as well as the genetic programming language that allows for growth, development,
gene regulation, and evolution. We present hand-written example genomes in Sec-
tion 3, discuss their structure, and analyze the physiology of the networks they give rise
to. Section 4 discusses the distributed genetic algorithm (GA), its genetic operators and
the client–server structure used to set up worldwide evolution experiments. We close
with a discussion of the present status of the system as well as future developments.

2 Model

2.1 Artificial Physics and Chemistry
The model is defined on a kind of “tissue” on which information-processing structures
can grow. The arrangement of spatial units in this world must meet the principle
of locality in an appropriate way, implying that neighboring locations always have
the same distance to each other. The simplest geometry that achieves this goal is a
hexagonal grid (Plate 1). Each hexagon harbors certain concentrations of substrates,
measured as a percentage value of saturation between 0.0 and 1.0. As all sites are
equidistant in the hexagonal lattice, the diffusion of substrate k in cell i can be modeled
discretely as

Cik(t + 1) = D

6

6∑
j=1

(
Cik(t)− CNi, j k(t)

)
, (1)
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where Cik(t) is the concentration of substrate k in site i, D is a diffusion coefficient
(D < 0.5 to avoid substrate oscillation), and Ni, j represents the j th neighbor of grid
element i. Accordingly, a local concentration of substrate will diffuse through the
tissue under conservation of mass. The tissue itself is surrounded by special boundary
elements that absorb substrates (Plate 1), thus modeling diffusion in infinite space. Note
that hexagons are sites that may harbor neuron cells but otherwise only represent a
convenient equidistant discretization of space to facilitate the distribution of chemicals
via diffusion.

Each hexagon of the discretized space—whether it harbors a neuron cell or not—
contains concentrations of substrates. Substrate has to be produced by (neuron) cells
and does not just exist a priori. The artificial biochemistry model distinguishes four dif-
ferent classes of substrates: external, internal, cell-type proteins, and neurotransmitters
(see below). Each substrate has an identification (e.g., EP0, IP0, eNT ) and belongs
to a particular class of substrates that defines its properties.

External proteins are not constrained by the confines of the cell in which they are
produced. They undergo diffusion and spread over the lattice according to Equa-
tion (1). As such, they can be used as indirect messenger substrates just like hormones
in biochemistry. At each grid element, the concentration of an external protein can
be measured. By comparing all concentration values of neighboring cells, a local gra-
dient can be calculated pointing in the direction from which the external protein is
emanating.

Internal proteins are non-diffusive and, as they cannot cross the cell membrane, stay
inside the cell in which they have been produced. Internal proteins can still play the
role of internal messengers, however. After production, they decay with a fixed rate at
every time step.

Cell-type proteins are external proteins produced by every neuron and are specific to
its type. The protein’s production is part of the implicit behavior of neurons. Cell-type
proteins are diffusive just like external proteins.

Neurotransmitters are a special type of internal protein that play an important role
in the direct information exchange between neurons.

2.2 Artificial Cell
The tissue shown in Figure 1 can harbor different cell types and connections. A neural
cell (neuron) is represented by the hexagon it occupies, including its connections (den-
dritic or axonic) to other cells. Each particular neuron belongs to one of three classes:
actuator cells, sensor cells, or common neurons. Actuator and sensor cells build the in-
terface to a simulated outside environment to which the network adapts and on which
it computes. Compared to classical ANN models, actuator and sensor cells replace the
input and output layer of the network, while the common neurons (subsequently just
called neurons) represent hidden neurons.

Neurons of all three types can be excited to a real-valued level between 0.0 and
1.0 and can take part in the information transfer via dendritic or axonal connections.
Each type of cell is also characterized by its own cell-type protein, which it produces
continuously at a certain rate. These cell-type proteins diffuse over the tissue (Figure 1)
and can signal cell existence to other cells. They can be compared to the role of
growth factors in the development of real nervous systems. Even though we know
from biology that not every cell type produces its own diffusive messenger substrate,
membrane proteins exist that make the different cell types “chemically” distinguishable.

2.2.1 Neurons
A neuron’s function is mostly determined by its hereditary information and the local
concentrations of substrates. This aspect will be explained in depth in Section 2.3. Even
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so, as mentioned before, a neuron’s artificial physiology is not completely malleable;
a certain number of features are hard-coded. For example, the aforementioned cell-
type protein production is fixed. Furthermore, a neuron produces at every time step
(i.e., simulation cycle) specific amounts of a particular neurotransmitter and “injects”
it via its axons into cells to which it is connected. Either each neuron can use its de-
fault neurotransmitter called eNT, or gene expression can define the usage of another
neurotransmitter. However, a particular neuron uses only one type of neurotransmit-
ter (Dale’s Law). The specific amount [NTx ]ij of neurotransmitter NTx injected at the
connection between neuron i and neuron j at time step t is

[NTx ]ij = ai, (2)

where ai is the current activation value (0.0 ≤ ai ≤ 1.0) of neuron i at time step t , and
NTx stands for the specific neurotransmitter chosen. Consequently, neuron j receives a
flux of neurotransmitter from one of its dendrites. Each dendrite has a neurotransmitter-
specific weight (an amplification factor) wij . As we shall see later, the manipulation of
weights is in response to gene expression only, rather than being defined a priori.

At each time step, thus, a neuron harbors certain amounts of (possibly different)
neurotransmitters received from weighted dendritic influx. This is comparable to the
weighted sum of inputs in classical ANNs. However, unlike in standard ANN models,
this does not imply an automatic activation stimulation (i.e., firing) of the neuron, unless
such behavior is explicitly encoded in the neuron’s genome. Thus, there is no implicit
activation function or learning rule. Weights remain always at the amplification value 1.0
(their initial value) if not modified through gene expression.

2.2.2 Actuators and Sensor Cells
Actuators and sensor cells do not carry genetic information; they are used solely as
interfaces to the environment (input–output units). They represent sources and sinks of
signal. Consequently, their behavior is hard-wired (i.e., implicit) and does not depend
on gene expression.

Sensor cells can simply be set to a certain activation level. This is usually done
every time step in accordance to the signal received from the environment. Sensor
cells provide information about their activation just like neurons do: They inject the
appropriate amounts of neurotransmitter in response to their activation into all neuron
cells to which they are connected. As sensor cells do not carry genes, they always use
the default neurotransmitter eNT.

At every time step, actuators receive a flux of neurotransmitters from their dendritic
synapses. The weights of their dendrites cannot be modified (again as they are not
subject to gene regulation) and remain always at 1.0 (the initial value). As neurotrans-
mitters cannot be produced through gene expression, the amount of neurotransmitter
a cell harbors at a particular time step must be due to injection by pre-synaptic neu-
rons, and therefore neurotransmitter concentration is an input signal. Each actuator k
becomes stimulated at time step t according to

ak(t) =
∑
j,x

[NTx ]j (t), (3)

where [NTx ]j (t) is the dendritic influx concentration of neurotransmitter NTx from neu-
ron j at time t . Of course, as the activation value always has to be in the range
[0.0;1.0] , ak(t) is taken modulo 1.

Table 1 summarizes the cell types and how they interact with other computational
elements used in the model.
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Table 1. Features of different cell types in an artificial tissue:
A: participates in diffusion; B: can be stimulated; C: behavior
depends on gene expression; D: can have axons; E: can have
dendrites; F: produces a diffusible cell-type protein.

Type A B C D E F
Neuron x x x x x x
Sensor x x x x
Actuator x x x x
Grid element x
Boundary element

2.3 Genetic Code and Gene Regulation
Perhaps the most important aspect of this neurogenesis model is not that form and
function are determined by genes, but that these genes are regulated and regulate
each other. One of the more profound insights in evolutionary biology seems to be
that starting with the late Phanerozoic, only few proteins and enzymes have been
created de novo while evolution has proceeded at a torrid pace [5, 6]. It can thus be
speculated that from a certain level of complexity on, evolution proceeds mainly by
adjusting the mechanisms of gene regulation. In order to tap this enormous potential,
the regulation of genes (by means of activation and repression of expression) is central
to this model.

Each neural cell carries a genome that encodes its behavior. Genomes consist of
genes that can be viewed as a genetic program that can either be executed (expressed)
or not. The genetic program is written in a customized genetic language that we begin
to describe below, that is designed to be both flexible and evolvable, and that permits
regulation. Regulation is achieved via gene conditions that determine the level of
expression of a gene (e.g., the rate of production of any type of protein or substrate).

2.3.1 Conditional Regulation
A gene condition is a combination of several condition atoms, usually related to local
concentrations of substrates. The expression of a gene (an ensemble of expression
commands) can result in different behaviors such as the production of a protein, cell
division, axon/dendrite growth, cell stimulation, and so forth. Thus, gene conditions
model the influence of external concentrations on the expression level of the gene, that
is, they model activation and suppression sites. Figure 1 illustrates the structure of this
genetic code.

C. Atom 3
Gene 1

Gene 4

Gene 3

Gene 2
N

Genome Gene 2

Expression 1      Expression 2

C. Atom 1 C. Atom 2

Figure 1. Genetic structure of neural cells. Gene conditions (consisting of condition atoms related to substrates)
trigger gene expression leading to cell division, axon/dendrite growth, substrate production, stimulation, and so
forth.
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Table 2. Condition atoms with veto power. Here,
CTPx stands for the cell-type protein CTPx, while
[PTx] is the current local concentration of protein
PTx. CTPx can be replaced by any kind of cell-type
protein, whereas PTx can be any type of protein (ei-
ther cell-type, internal, external, or neurotransmitter
protein).

Type Represses its gene if . . .
SUP[CTPx] cell is not of type CTPx

NSUP[CTPx] cell is of type CTPx

ANY[PTx] [PTx] = 0

NNY[PTx] [PTx] 6= 0

Table 3. Evaluative condition atoms calculate expression levels from an initial condi-
tion 2 and the current local concentration of assigned protein (here: PTx). [PTx]
can stand for any kind of protein (either cell-type, internal, external, or neurotrans-
mitter protein). To handle values outside the limits [0.0;1.0] , R1

0() takes the value
modulus 1, to keep it in the desired range.

Type Evaluation value 8
SUB[PTx] 8(2,SUB[PTx]) = R1

0 (2−[PTx] )

ADD[PTx] 8(2,ADD[PTx]) = R1
0 (2+[PTx] )

MUL[PTx] 8(2,MUL[PTx]) = 2∗[PTx]

AND[PTx] 8(2,AND[PTx]) = min(2,[PTx] )

NAND[PTx] 8(2,NAND[PTx]) = 1−min(2,[PTx] )

OR[PTx] 8(2,OR[PTx]) = max(2,[PTx] )

NOR[PTx] 8(2,NOR[PTx]) = 1−max(2,[PTx] )

NOC 8(2,NOC) = 2; the neutral condition

NNY[PTx] 8(2,NNY[PTx]) = 2, if [PTx] = 0

ANY[PTx] 8(2,ANY[PTx]) = 2, if [PTx] 6= 0

There are two different classes of condition atoms: repressive and evaluative atoms.
Repressive condition atoms. Members of this class can completely silence the expres-
sion of genes to which they are assigned by means of a Boolean condition that—if it
turns out to be false—vetoes the expression of the associated gene regardless of other
condition atoms in the same gene condition. Examples of repressive condition atoms
can be found in Table 2.
Evaluative condition atoms. Such condition atoms always lead to real-valued results
in the range of [0.0;1.0] . To evaluate a condition atom of this type, two parameters
are necessary: an initial condition1 and the local concentration of a particular protein,
both in the range [0.0;1.0] . An evaluative condition atom computes its result using
both parameters according to its type. Table 3 gives an overview of all such condition
atoms.

Let C be a vector of condition atoms of length n, and ai a particular condition atom
at position i, 1 < i ≤ n:

C = (a1,a2, . . . ,an). (4)

1 Initial conditions will be explained below.
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Suppose that m of the n atoms are evaluative condition atoms, and l of the n atoms
are repressive condition atoms.2 C can be written as two vectors:

C2 = (c1, c2, . . . , cn−m), (5)

C1 = (b1, b2, . . . , bm), (6)

where C2 contains all repressive condition atoms of C and C1 is the vector of all
evaluative condition atoms in C . Now, C can be evaluated in two steps:

1. Check if C2 contains an atom that exercises its veto. If so, stop the evaluation of
this gene condition and do not express its assigned gene at all. Otherwise,

2. Evaluate C1 and use the result as the overall condition value.

Assume that none of the repressive condition atoms exercised a veto during step 1.
Now we have to follow step 2 to evaluate the overall condition value of C . Consider
8(2, bi) as the evaluation function (Table 3) of condition atom bi under the assumption
that2 is an initial condition. As the condition is evaluated in the order of the evaluative
condition atoms b1, . . . , bm, the overall condition value 8C of C can be computed as

8C = 8(. . . 8(8(20, b1), b2), . . . , bm), (7)

where 20 is the initial condition of the first condition atom in C1. Thus, the evaluation
result of each condition atom is used as the initial condition for the evaluation function
of the following condition atom in the order of their appearance. This recursive rule
is obviously not applicable to the first condition atom b1, for which the initial operand
20 of its evaluation function is fixed as:

20 =
{
1, if b1 is of type MUL, AND, NAND, SUB, ANY, NNY

0, if b1 is of type ADD, OR, NOR
(8)

To further clarify gene conditioning, consider Figure 2. In this figure, let the local
concentrations of IP0, EP0, EP1, EP2, CPT be {0.3, 0.5, 0.6, 0.1, 0.9 }.
Furthermore, suppose that this example takes place in a cell characterized by the cell-
type protein CPT. Figure 2 then shows how the regulatory cascade gives rise to a final
expression level of 0.18: the final condition value.

It is obvious that gene conditions that use more than one different type of evalu-
ative condition atoms are not commutative: In Figure 2 the order of condition atoms
influences the evaluation result, whereas, for example, in a gene condition consisting
of repressive condition atoms only and the ADD condition atom, the order is of no
relevance.

2.3.2 Gene Expression
We now discuss the second element that makes up the gene: the assigned expression.
This is in fact a set of several independent expression commands in no particular order.
Evaluation of the condition leads to an overall condition value between 0.0 and 1.0.
This value can then be applied to each single expression command for which it has a
particular meaning.

2 Note: l+m > n, if C contains any condition atoms of type ANYor NNY. This is because ANYand NNYshare the functionality of
repressive and evaluative condition atoms (see Tables 2 and 3).
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Overall condition value:
Φ Φ

SUB

0.2

MUL

0.18

0.18
(0.3, 0.1) (0.2, 0.6)

SUB[EP2] MUL[EP1]

ANY

C :

C :

1

=> okay => okay

[EP0]=0.5

C :2

Cell is 

of Type CPT

SUP[CPT]ANY[EP0]

SUP[CPT]MUL[EP1]SUB[EP2]ANY[EP0]ADD[IP0]

Θ = 0
0

Φ

0.3

ANY[EP0]

(0.3, 0.5)Φ

0.3

ADD
(0, 0.3)

ADD[IP0]

Figure 2. A gene condition C can be represented as two chains of subconditions: C1 contains the repressive condition
atoms, C2 contains all evaluative condition atoms. First, C1 is checked for condition atoms leading to complete gene
repression. If there are none—like in this example—C2 is evaluated numerically and determines the overall condition
value.

In the following, we discuss every expression command in detail. An overview is
given in Table 4.

2.3.3 Developmental Commands
To encode the growth process, special processes are necessary. Developmental com-
mands control the construction of new connections between neurons, as well as cell
division.

Table 4. Overview of expression commands. Growing axons/dendrites follow the substrate gradient
until a local maximum is reached then connect to the cell if one exists at that location. Strengthen-
ing/weakening is a percentage increase/decrease of connection weights, determined by the product of
the last neurotransmitter (here NTx) influx at each connection and the value of the gene condition.
The cell-type protein assigned to a cell division command determines the type of the future offspring
cell. In this example, the offspring will be of type CTPx and therefore produce cell-type protein CTPx
continuously. “Relaxing” weights means bringing the specific weights for neurotransmitter NTx influx
slightly closer to the initial value 1.0.

Expression Command description Influence of
condition value

PRD[XY] produce substrate XY production quantity
GDR[XY] grow dendrite following gradient of XY probability to grow
GRA[XY] grow axon following gradient of XY probability to grow
SPL[CTPx] divide. Offspring is of type CTPx probability to split
EXT excitatory stimulus increase rate
INH inhibitory stimulus decrease rate
MOD+[NTx] increase connection weights strengthening factor
MOD-[NTx] decrease connection weights weakening factor
RLX[NTx] relax weights slightly multiplier
DFN[NTx] define the type of neurotransmitter none
NOP null action, neutrality
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The growth of axons and dendrites must be guided in some way to their target. In
vivo this is accomplished either by guidance via surface proteins or with the help of
diffusible growth factors. To implement the latter, two expression commands exist in
this model:

• GDR(grow dendrite), and

• GRA(grow axon).

In the genome, these commands are always used in conjunction with a diffusible sub-
strate, like external proteins or cell-type proteins (e.g., GDR[CTP0]). Once expressed,
a connection—either a dendrite or an axon—starts to grow following the local gradient
of the substrate (here the protein CTP0). If the growing connection reaches the location
with the highest local concentration of the particular substrate, it tries to connect to the
cell. If no cell is present at this location, or the cell is not of the right type (e.g., it
does not make sense to connect a dendrite to an actuator), the growing connection
dies. In all other cases, the connection will be established. Plate 2 shows an example
of dendritic growth.

Another important feature of development is cell division. In this model, a neuron
cell can create an offspring cell via the expression command SPL, which is always used
in combination with a cell-type protein. For example, the expression of the command
SPL[CPT0] gives rise to the following behavior: First, one of the surrounding free
grid elements (those locations that do not harbor a neuron cell) is chosen randomly.
It is subsequently transformed to a neuron under conservation of its current diffusible
substrates. Finally, after separation from the mother cell, the new offspring cell bears
the same genotype as its mother, except that it can be of a different type (indicated by
the cell-type protein). In vivo, differentiation through cell lineage is very common.

The role condition values play for the expression of developmental commands is
subject to the configuration of the simulation environment. The most important case
seems to be its interpretation as a probability for gene expression, leading to condi-
tioned development. For instance, a gene like ADD[EP0] -> GDR[CPT0] would lead
to dendritic growth as a function of the concentration of the diffusible substrate EP0,
just like growth factors do in vivo.

2.3.4 Learning
As is well known, the actual concentrations of neurotransmitter inside of a neuron
depend on the weighted influx. A specific weight for each type of neurotransmitter is
assigned to each dendritic connection. Initially, the weight of a new connection is set
to 1.0, which is considered the relaxed state. However, it can be manipulated by three
different expression commands:

• MOD+[NTx] strengthens dendritic connections,

• MOD-[NTx] weakens dendritic connections,

• RLX[NTx] relaxes dendritic connections.

Each command is specific to a neurotransmitter. In this example the commands in-
fluence weights used for influx of neurotransmitter NTx. The first two commands—if
expressed in neuron j—change each synaptic weight in accordance to

∀i: 1wij [NTx] = ±(wij [NTx] ∗ ai ∗ c) , (9)
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dendritic connection.
concentrations of SPT0, it starts to grow a

gradient of SPT0, ...

f) t=9    ... and establishes the dendritic connection.
the sensor cell ...

a) t=4. The sensor cell just started to produce SPT0. b) t=5. Once the neuron cell has detected non-zero

e) t=8. Finally, the growing dendrite approaches

c) t=6. The growing dendrite follows the d) t=7 ... while the sensor cell-type protein keeps
on diffusing.

Plate 2. A neuron cell starts to grow a dendritic connection following the gradient of the sensor cell-type protein
SPT0. Finally, a new dendrite becomes established. The gene that was responsible for this behavior is of the
form . . . , ANY[SPT0] -> GDR[SPTO], . . . . Note that due to the coarse-grained coloring scheme white grid
elements do not imply 0.0 concentrations of SPT0 at this location.

where wij [NTx] is the current specific weight of type NTx between neuron i and neu-
ron j , ai is the activation of neuron i, and c is the overall condition value of the gene
that expresses the MOD+(respectively MOD-) command. As the multipliers ai and c are
ranged in [0.0;1.0] and furthermore all weights wij [NTx] are set to 1.0 initially, it can
be concluded that

∀i, j : wij [NTx] ≥ 0 . (10)

Non-negative weights may appear to be a limitation, because they do not allow real
inhibitive influence. The usage of several types of neurotransmitter, however, makes
inhibitive stimulation possible anyway (Figure 3).
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w   =   0.4

eNT

NTx

eNT

w   =   0.1

34

14

expression
24

w   =   0.3

neuron 

neuron 

a   =  0.8
2

SUB[NTx]ADD[eNT]

EXT

Genome

neuron 

neuron 1

4

2

3

a   =  0.7

a   =  1.0
3

1

Gene
gene

condition

gene

Figure 3. Simple inhibitive connection. The dendritic input from neuron1 and neuron2 produces an eNT concentra-
tion of 0.31. Neuron4, however, does not become excited because the NTx concentration represses the gene.

Unlike MOD+and MOD-, the RLX expression command relaxes weights. In lieu of
shaping them, RLX changes individual weight characteristics towards their initial value
1.0. Applying RLX to the specific neurotransmitter NTx in neuron j has the following
effect:

RLX[NTx] H⇒ ∀i 1wij [NTx] =

+wij [NTx] ∗ Cp ∗ Cc, if wij [NTx] > 1.0
−wij [NTx] ∗ Cp ∗ Cc, if wij [NTx] < 1.0
0.0, otherwise ,

(11)

where wij [NTx] is the specific weight controlling the flux of neurotransmitter NTx be-
tween neuron i and neuron j , Cp is a fixed percentage constant and Cc is the overall
condition value of the gene that expresses the RLX[NTx] command. An internal mech-
anism avoids oscillation around 1.0, by ensuring that if a weight is currently greater than
1.0 then its future value will be ≥ 1.0 also (and vice versa for weights less than 1.0).

2.3.5 Stimulation
Two commands influence cell stimulation in a simple and direct way. Depending
on the value of the gene condition, EXT increases the activation level, while INH
command decreases it. Both commands do this with respect to the activation range
[0.0;1.0] . If during the same time step EXT or INH are expressed more than once,
then the effective change of activation is just the sum of all single increases (respec-
tively, decreases). Thus, a gene like ADD[IP0] MUL[EP1] -> EXT EXT where the
current concentrations of IP0 and EP1 are 0.4 and 0.3 would lead to an activation
increase of 0.24. Unless it is already completely inactive, the cell activation normally
decreases at each time step with an adjustable rate if no stimulation command is ex-
pressed.

Obviously, cell stimulation does not necessarily depend on the weighted sum of in-
puts. Influences of every kind can manipulate the degree of activation of a cell. Of
course, if the modeling of a neuron cell in accordance to classical ANN models is
necessary, this can still be achieved by using neurotransmitter-related condition atoms
only in gene conditions. For example, a gene like ADD[eNT] -> EXT stimulates the
neuron according to the weighted sum of inputs (of the default neurotransmitter), just
as standard ANN models do. Keep in mind, however, that in vivo, hormones, neuro-
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modulators, and other substrates can have a tremendous influence on cell stimulation.
This can be easily modeled with, for example, a gene like: ADD[eNT] MUL[EP0] ->
EXT. Here, the neuron becomes stimulated according to the weighted sum of inputs
and the current concentration of a “neuromodulator” EP0.

2.3.6 Other Commands
Command PRD, when expressed, produces new substrate (i.e., increases the concentra-
tion of a particular substrate). By definition, only the synthesis of external and internal
proteins is allowed, as neurotransmitters and cell-type proteins have an implicit role in
the model.

For the expression command PRD, the overall condition value simply determines
how much of the assigned substrate has to be produced. For example, if the current
concentrations of IP2 and eNT are 0.6 and 0.1, the gene ADD[IP2] AND[eNT] ->
PRD[EP2] produces 0.1 of EP2.

Another command is DFN[NT] where NT stands for any neurotransmitter. Once
expressed, it changes the defined neurotransmitter used for dendritic-axonal injection.
The condition value is of no importance for this expression command, as long as it is not
equal to 0.0. This command is added because it is known that in vivo, some neurons
change the type of neurotransmitter used at their synapses. Starting with several types,
the maturation process of each neuron eventually defines the right type.

Finally, the last expression command to mention is NOP—the neutral command—
which takes the role of a placeholder for future genetic changes (i.e., mutations).

2.4 Simulation of the Organism
The tissue of cells produced by gene expression and cell growth is termed an artificial
organism. It receives input from the environment (the outside world) and can act on
it by signaling to the environment via its actuators. In the simplest case, the organism
receives and generates patterns of activation.

A simulation always starts by creating sensor and actuator cells. Their number is
determined only by the complexity of the outside world and is not coded for in the
genome. In other words, these cells really represent possible signals and actuations in
the world, not actual signals and actuations performed by the organism. An organism
chooses to receive input or perform an actuation by connecting to these cells. If
needed, an additional reinforcement cell can be created. This is a special sensor cell
(with its own cell-type protein) used to provide a reinforcement signal from the world
about the behavior of the organism. Whether or not this signal is used depends on the
genome.

At the start of simulation for each new artificial organism, one initial neuron is placed
in the center of the grid. After initialization, the simulation begins. Input from the
world is provided to the sensor cells, cell-type proteins and external proteins diffuse,
and neurons execute their genetic code. This is done synchronously to guarantee
consistency in the artificial chemistry.

Depending on its gene expression, a neuron starts growing axons and dendrites,
produces offspring cells, and might initiate cell differentiation. Gene expressions may
lead to protein production cascades, stimulation, and ultimately information exchange
between neurons. After every simulation cycle the network’s “fitness” is determined
by comparing any inputs and outputs to what is expected in this particular world, pro-
ducing a real-valued reinforcement signal between 0.0 (punishment) and 1.0 (reward).
This signal can be used by the organism if a reinforcement sensor is present and if the
organism chooses to connect to it.
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3 Examples: Genes and Networks

The best way to validate and evaluate this model would be to let the system evolve
ANNs for specific environments. This, however, is not done yet for reasons discussed
later on. Except for some experiments in which simple logical functions were evolved
from scratch [3], most genomes were handwritten. To show that the model is able to
give rise to networks that perform some key behaviors known from biology, examples
of handwritten genotypes and the resulting phenotypes are given in the following,
performing self-limiting growth, networks that perform logical functions, and classical
conditioning. Other examples of physiologically important structures that have been
reproduced are the regeneration of injured networks, pacemaker behavior, as well as
sensitization and habituation behavior [3].

3.1 Self-limiting Growth
The development of natural systems is based on a decentralized growth process that
arises from local gene expression in each single cell. This, combined with the fact
that inhibition is necessary to avoid unbounded growth, means that self-inhibition is an
essential property the model has to encompass. For example, self-limitation is essential
to avoid cancerous growth. The following genome shows how self-limited growth can
be achieved in a simple way in a completely local manner. In the genome below, C
refers to the regulatory (conditional) part of the gene, and E is the code to be expressed:

Gene 1 C: SUP[cpt] NNY[ip0]
E: PRD[ep0] PRD[ip0]

Gene 2 C: ADD[ep0]
E: SPL[acpt0]

Gene 3 C: NNY[ip0]
E: GRA[acpt0] PRD[ip0]

Gene 4 C: ANY[ip0]
E: PRD[ip0]

The first gene is expressed initially by the stem cell that produces cell-type protein
cpt . As no internal protein ip0 is present initially, gene 1 is expressed and leads to
the production of the external protein ep0 and the internal protein ip0 . Just like every
external protein, ep0 diffuses within the tissue so that the initial peak concentration
in the stem cell becomes weaker while surrounding cells receive concentrations of
ep0 . Gene 4 guarantees that once a cell harbors any ip0 it is going to produce ip0
constantly from then on. This, however, suppresses gene 1, which consequently will
never produce ep0 again. The internal protein ip0 also suppresses gene 3, whose
expression leads to axon growth and ip0 production. Thus, a cell in which initially no
ip0 is present starts growing an axon and then suppresses itself continuously via gene 4.

Gene 2 can lead to cell division. Every executed split command creates a new
offspring cell of type acpt0 . However, cell division occurs only with a probability that
is proportional to the current concentration of ep0 . Thus, as ep0 diffuses away over
time, cell division becomes less and less probable. Consequently the growth process
remains limited. This effect can be observed in Plate 3, which shows snapshots taken
from a simulation of the genome above.

3.2 Logical Functions
Research in neurobiology has shown [15] that some neural structures essentially im-
plement fixed logical functions. Using two different kinds of neurotransmitter, logical
gates can be simulated easily within the present model (Figure 4).
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Plate 3. Self-limiting growth. An initially high peak of a diffusible substrate facilitates cell division. As the substrate
vanishes over time, fewer cell divisions occur.

The basic logic operations AND, OR, NOT are sufficient for the construction of
any logical function. For example, the genome shown below constructs the function
D = (A → B) ∨ C , where A, B, C are sensor signals and D is the resulting actuator
signal. To model this logical function, one has to combine an implication gate (i.e.,
¬A ∨ B) with an OR gate.

Using both the genetic fragments of Figure 5, a genotype can be constructed that
grows the appropriate ANN structure and describes the stimulation behavior:

Gene 1 C: SUP[cpt] NNY[ip0] ANY[spt0] ANY[apt0]
E: SPL[acpt0] GRA[apt0] GDR[spt0] PRD[ip0]
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ANY[NT1] -> EXT

Genes:

NT0

NT1

OR

ANY[NT0] -> EXT

Gene:

Simple binary-logic gates:

Simple fuzzy-logic gates:

NT0

NT1

NT0

NT1

OR
NT0

NT1

AND

ANY[NT0] ANY[NT1] -> EXT

ADD[NT0] OR[NT1] -> EXT

AND

ADD[NT0] AND[NT1] -> EXT

NOTNT0

NAND[NT0] -> EXT

Gene:

NOTNT0

NNY[NT0] -> EXT

Gene:

Gene: Gene:

Figure 4. Logical gates and the genomes that perform them. Any logical gate can be simulated easily in the model
as long as the incoming signals use two different types of neurotransmitter.

NT1

from A:

from B:

A->B D

from C:

NT1

Genes:

ANY[NT1] -> EXT

Genes:

eNT

eNT

ANY[eNT] ANY[NT1] -> EXT

NNY[eNT] -> EXT

ANY[eNT] -> EXT

Figure 5. The stimulation model for an ANN structure performing D = (A→ B) ∨ C.

Gene 2 C: SUP[acpt0] NNY[ip0] ANY[spt2] ANY[cpt]
E: GRA[cpt] SPL[acpt1] GDR[spt2] DFN[NT1] PRD[ip0]

Gene 3 C: SUP[acpt1] ANY[spt1] NNY[ip0] ANY[acpt0]
E: DFN[NT1] GRA[acpt0] PRD[ip0] GDR[spt1]

Gene 4 C: ANY[ip0]
E: PRD[ip0]

Gene 5 C: SUP[cpt] ANY[NT1]
E: EXT

Gene 6 C: ANY[eNT] NSUP[acpt0]
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Figure 6. Schematic representation of the ANN realization of D = (A→ B) ∨ C. The type of neurotransmitter is
marked next to the axon if a nondefault neurotransmitter is used. Cells are named by the cell-type protein they
produce. The cell of type acpt1 is used as “neurotransmitter-switch.”

E: EXT
Gene 7 C: SUP[acpt0] ANY[eNT] ANY[NT1]

E: EXT
Gene 8 C: SUP[acpt0] NNY[eNT]

E: EXT

Genes 1–3 lead to the morphological structure of the network. The neuron of cell-
type protein cpt produces an offspring cell of type acpt0 that models A→ B, while
the cpt cell represents the OR gate. Three different cell types are needed because the
logical function requires different kinds of neurotransmitter whereas the sensors use
only eNT. Thus, an intermediate cell is necessary to overcome this problem. Gene 4
is the usual suppression gene that becomes active once one of the first three genes is
expressed. Genes 5 through 8 encode the stimulation behavior in accordance to the
different types of cells.

The genome for this task might, at first sight, appear rather long. However, one
should keep in mind that it describes the construction of a fully deterministic struc-
ture, which is more difficult for a growth model than for an approach based on di-
rect encoding. Furthermore, simpler genomes can be built that model the same log-
ical function. This example is intended to show that every logical function can be
constructed by connecting simple gates leading to hierarchical structures not unlike
those found in real networks. A schematic representation of the resulting structure is
shown in Figure 6. As the paths of the input signals from the sensors to the com-
putation units are of different lengths, a particular input has to be present at the
sensors for several subsequent time steps before a stable output signal will be pro-
duced.

3.3 Classical Conditioning
Plate 4 documents the development of a simple ANN that displays conditioned re-
flex behavior as in Pavlov’s classical experiment [18]. Suppose the sensor on the
lower left side in Plate 4 is stimulated at the sound of a bell. Further, suppose the
upper left sensor is an optical stimulus representing the presence (or absence) of
food. Finally, let us imagine that the actuator on the right side triggers a salivary
gland if food is present. This behavior is the unconditioned reflex. The above net-
work can learn to associate this reflex with a condition: the sound of the bell. If

Artificial Life Volume 6, Number 3 205



J. C. Astor and C. Adami Evolution of Artificial Neural Networks
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Plate 4. Development of the network for classical conditioning.

presence of food and the ringing of the bell are associated repeatedly, the network
will learn to trigger the gland even if only the bell rings. If after the conditioning
the bell rings without presence of food, the association will gradually, but steadily,
weaken.

Such a behavior can be modeled using different kinds of cell types. One cell (“C” cell)
is activated if the network is in the conditioned state, which means that the acousti-
cal and optical stimulus have been present together before. Another cell (“E” cell) is
activated if the acoustical stimulus is currently present and the network is in the con-
ditioned state at the same time. If so, a cell (“G” cell) representing the trigger of the
salivary gland is activated. Of course, the “G” cell also has to be activated if only food
is present. This is the unconditioned reflex. A schematic drawing of the network is
shown in Figure 7.

The genome that encodes the development and behavior of this network is shown
below.

Gene 1 C: NNY[ip0] SUP[cpt] ANY[spt0]
E: SPL[acpt0] PRD[ip0] SPL[acpt2] GDR[spt0] DFN[NT1]

Gene 2 C: NNY[ip0] SUP[acpt0] ANY[spt1] ANY[cpt]
E: PRD[ip0] GDR[spt1] GRA[cpt] DFN[NT1]

Gene 3 C: ANY[spt1] SUP[acpt2] NNY[ip0] ANY[apt0]
E: SPL[acpt1] GDR[spt1] PRD[ip0] GRA[apt0]

Gene 4 C: ANY[acpt2] SUP[acpt1] ANY[spt0] NNY[ip0]
E: GRA[acpt2] GDR[spt0] GDR[cpt] PRD[ip0]

Gene 5 C: ANY[ip0]
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Figure 7. A schematic representation of the network for classical conditioning. The types of neurotransmitter used
are marked next to the axons. The cell-type protein used by each cell is indicated near the cell body.

E: PRD[ip0]
Gene 6 C: NSUP[cpt] NSUP[acpt1] ADD[eNT]

E: EXT
Gene 7 C: SUP[acpt1] ADD[NT1] MUL[eNT]

E: EXT
Gene 8 C: ADD[eNT]

E: PRD[ip1]
Gene 9 C: ADD[ip1]

E: PRD[ip2]
Gene 10 C: SUP[cpt] ADD[NT1] MUL[ip2]

E: PRD[ep0]
Gene 11 C: SUP[cpt] ADD[ep0]

E: EXT

Genes 1 to 4 control cell division into the different types that are needed, as well
as the growth of axons and dendrites. Gene 5 is the usual stop gene. To be able to
distinguish between two different kinds of signals, two types of neurotransmitter have
to be used. The “C” cell, for example, uses NT1 as neurotransmitter so that the “E” cell
can check for inputs from the acoustical sensor and from the “C” cell at the same time.
The manifestation of this can be seen in the genotype: The cells of type acpt0 and
cpt use NT1 instead of the default neurotransmitter eNT (note the expression command
DNF[NT1] ).

The “C” cell also has to make the distinction between two signals: the acoustical and
the food sensor input. As sensor cells use by definition only the default neurotransmit-
ter, a kind of neurotransmitter-switch cell is needed between the food sensor and the
“C” cell. This is why an additional cell of type acpt0 is needed (gene 2).

While gene 6 takes care of the unconditioned reflex stimulation, genes 7–11 con-
trol the conditioning. If food is present and the bell rings, gene 10 produces certain
amounts of external protein ep0 (through a time-delay cascade via genes 8 and 9).
The concentration of ep0 influences cell stimulation (gene 11). Due to diffusion, ep0
diminishes over time, so the conditioning decreases accordingly.

The time delay of eNT inputs via genes 8 and 9 and finally 10 is necessary because
the dendritic paths from both sensors (food and sound) to the “C” cell are not equally
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Figure 8. Conditioning. First, only food is present. This triggers the gland because of the unconditioned reflex,
while both the “C” cell and “E” cell remain inactive. Later, only the bell signal is present. Due to the fact that the
network is not yet conditioned, none of the cells become active.

long. While the sound signal inputs directly to the “C” cell, signals of the food sensor
have to pass through the neurotransmitter-switch cell. Both signals, however, must be
processed at the same time in the “C” cell. Thus the sound signal has to be delayed via
a production cascade.

The behavior of the resulting phenotype network is documented in Figures 8–10.

4 Evolution of Networks

While the neurogenesis model uses a predefined genetic code for the description of
growth and behavior of ANNs, this code is not designed to be convenient for humans.
However, it was designed in such a manner that evolutionary pressure can be used
to find efficient genotypes. To apply principles of artificial evolution we designed a
genetic algorithm to find novel neural circuits and architectures.

First of all we have to be aware of the fact that the genetic search space the model
creates can be gigantic. Not only the number of different substrates simulated in the
artificial chemistry but also the length of gene conditions have an immense influence
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Figure 9. Conditioning. Both sensors, food and sound, are stimulated. Consequently, the ANN becomes conditioned
(“C” cell) and the gland is triggered because of the presence of food.

208 Artificial Life Volume 6, Number 3



J. C. Astor and C. Adami Evolution of Artificial Neural Networks

t=50..64

t

1.0

0.0

t

1.0

0.0

t

0.0

1.0

t

1.0

0.0

t

1.0

0.0

Food

Bell

C

E

G

Sensor cells

Actuator

Food

Bell

E-Cell

C-Cell

Gland

Figure 10. Conditioning. Being in the conditioned state, the food sensor suddenly becomes inactive while the bell
keeps on ringing. Thus, the activation of the “C” cell becomes weaker. This implies a decrease of activation of the
“E” cell that eventually results in a decline of gland activity.

on the number of possible different genotypes. The size of the genetic space is an
important issue for the design of a GA. The bigger it is, the more computation has to be
spent on evolutionary search in order to find genotypes that code for interesting ANNs.
To compound matters, unlike in usual ANN models, a computational overhead arises
due to the simulated biological world. In a neurogenesis model such as this, the map
from genotype to phenotype is highly implicit as the networks are grown from single
stem cells in a developmental process that involves an enormous computational effort:
Substrates are created through gene expression; they undergo diffusion within the
tissue; gene conditions have to be evaluated; and so on. Thus, extensive computation
is necessary until the fitness of a particular genotype can be determined, and even more
to apply evolutionary search. An increase in computational power can be achieved by
a distributed GA that allows a massively parallel search. Details of the implementation
of the GA are relegated to Section 5.

4.1 Fitness Evaluation
The fitness of a particular genotype can only be assessed through the fitness of the
phenotype it gives rise to in a particular environment. The phenotype’s fitness itself
is defined as the average reinforcement signal received from its environment (see Sec-
tion 2.4).

Three levels of assessment determine if an organism passes or fails the evaluation
request:

1. Knockout criteria: It seems to be reasonable to assign an organism a zero fitness if
it does not fulfill some minimal criteria. For example, organisms in which the
actuator and sensor cells are not connected (no dendrite/axon grew to them) are
assigned zero fitness by default. Furthermore, organisms in which the actuators are
constantly activated or inactivated are not considered fit either, as no computation
can be achieved. Such organisms are replaced immediately.

2. Organisms that passed the first level are compared with each other on the second
level: All organisms occupy a particular position on a ranked list of decreasing
fitness. If the relative fitness of the organism that sent the evaluation request is
below a fixed percentage threshold rank (i.e., it is better than most), then it passes
automatically (Figure 11).
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Figure 11. Organisms belonging to the elite (defined by a percentage threshold) always survive their evaluation
request. In this case, organism ζ does not pass the comparison test (i.e., the second level of assessment).

3. As the threshold-based assessment is rather rough, organisms that do not pass this
step get a second chance: They survive by chance with a probability

P(X < e−c∗prel) (12)

where X is taken from a uniform probability distribution over range [0.0;1.0] , c
is a constant, and prel is the relative position (based on fitness) in the ranked list of
all genotypes.

Obviously, the size of the population does not matter in applying these criteria and can
therefore vary over time.

4.2 Genetic Operators
Selection, recombination and mutation are the genetic operations that are used to build
new genotypes from a genetic pool. As new genotypes can be constructed in many
different ways (by combining the aforementioned operations together with replica-
tion), the genetic operations will be presented first before the description of the actual
construction mechanism follows (Section 4.3).

4.2.1 Selection
Occasionally, the GA-server has to select genotypes from its database. According to the
principles of artificial evolution, selection has to be based on the fitness of genotypes.
As genotype fitness cannot be measured objectively, usually a selection mechanism
is applied that chooses genotypes with a probability proportional to their phenotype
fitness. Accordingly, the GA server uses a roulette wheel selection.

4.2.2 Recombination
To recombine two genotypes they have to be aligned. Subsequently, one or more
crossing points have to be chosen at which the hereditary information is exchanged.
However, crossover points can only be chosen within genes, so that each gene is
protected and cannot be torn apart across two genotypes. In other words, different
genes do not swap code fragments. This principle is also found in nature: Only whole
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genes undergo recombinational exchange and never parts of genes. The number of
crossovers is chosen from a binomial probability distribution with an expectation value
close to one.

Due to mutation (see below) genotypes can differ in length. Naturally, in the case
of crossover of genotypes of different length, the crossover points are chosen inside of
the overlapping area of the two genotypes.

4.2.3 Mutation
Mutation is necessary to produce diversity in the genetic population. It is applied by the
GA-server as a genetic operation and changes a randomly chosen genotype “slightly”
(as explained below). In this model, mutation can take place in two ways:

• Point mutations: These are restricted to one gene. A randomly chosen condition
atom or expression command of a randomly chosen gene changes to its nearest
neighbor in genetic space. This means that if, for example, the condition atom
ADD[IP2] has been chosen, mutation changes either the substrate (e.g., to
ADD[IP1] ) or the operation (e.g., to MUL[IP2] ) but never both.

• Genome mutation: Another important kind of mutation that is found in nature as
well is mutation on the genome level: deletion, insertion, and doubling of entire
genes. For example, successful genes (e.g., structure genes that build a layer of
neurons) can be doubled while other useless genes may vanish entirely. Gene
doubling has become a success story in evolution. Indeed, it was shown recently
[20] that initially simple morphological genes (sometimes even entire genomes)
often doubled during evolution, only to subsequently specialize.

4.3 Construction of Genotypes
When a genotype has to be replaced because of low fitness or if the size of the popu-
lation grows, a new genotype must be constructed. This can be done in several ways:
from a random genome, by recombination, by pure “asexual” reproduction (i.e., repli-
cation), with or without point mutation, gene insertion, doubling, or deletion. There
is no way to determine a priori which of them plays the most important role. For
example, we do not know if recombination of two fit genotypes is in principle better
than constructing new genotypes with asexual copies of fit organisms. In nature, both
principles are applied. Therefore, the different possibilities should all be integrated
using tunable probabilities. Figure 12 describes the algorithm used to construct new
genotypes in this GA as a probability tree.

5 Implementation

A distributed GA can be implemented in two ways: either by using a massively parallel
machine, or by distributing the system over a network of computers. For our purpose,
the latter seems to be the better choice, especially if the GA is not limited to a local area
network (LAN) and allows platform-independent use. The importance of heterogeneous
computer networks has been increasing enormously during the last decade and will
most probably be the architecture of the future. Designing the distributed GA as an
open system on a wide area network (WAN, e.g., the Internet) enables us to tap the
unused CPU power of a very large number of computers, bringing an extraordinarily
computationally expensive task into the realm of possibility.

The basic design can be described as follows: Using Sun’s Java technology, an
asynchronous, distributed GA system was built that allows a massively parallel search
for genomes based on evolutionary principles. It consists mainly of a central server
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Figure 12. Starting from the top, the diagram describes the different ways to construct a new genotype. While
unlabeled arrows carry the probability one, constants are assigned to others describing the probability of the arrow to
be chosen. The genetic operations selection (“choose from population”), recombination, and mutation are defined
as described in the previous sections.

application and many clients, each of which hosts one individual of the current GA
population. While the central server drives the evolution via genetic operations (i.e.,
recombination, selection, and mutation), the clients represent the population, which is
changing continuously in size and location. By starting a client locally, it can latch onto
the server, and by being a host for one genotype it becomes part of the evolutionary
process. It can, of course, detach itself from the evolutionary process at any time. In
this case, data about the hosted genotype (and the phenotype it has grown) are sent
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Plate 5. Genotype evaluation in clients of different architecture, using TCP for communication with the asyn-
chronous GA.

back to the server where they will be stored until another client receives the data on
its registration request.

In the following, we will use both the terms organism and phenotype synonymously
for the cell structure that has been grown from one stem cell of a particular genotype.
We use the term new organism for a newly created stem cell that has yet to perform any
gene expression. Note that each organism is distinguished by its particular genotype
and contains it as its genome inside. Thus, an organism always contains the hereditary
information from which it was grown. Consequently, the server only has to maintain a
database of organisms.

As Java is supposed to be platform independent, clients can be started from every
computer for which an accurate Java virtual machine or browser exists and can then
communicate via the Transport Control Protocol (TCP) with the central server (Plate 5).

To make the system as flexible as possible the clients can be designed as hybrids,
which means that they can be started either as a Java Applet by choosing a specific
HTML (Hypertext Markup Language) page from a particular WWW server, or as a Java
application with the help of a bootloader program that dynamically downloads the
client and starts it as a Java application; in the latter case, no browser is necessary.

This dynamical and platform-independent design balances Java’s disadvantage in
being a slow, interpreted language. Increasing computer performance and faster exe-
cution of Java byte code via just-in-time (JIT) compilation will make Java even better
suited for this purpose in the future.

5.1 Communication Between Clients and GA Server
A client automatically sends a request-to-register to the central GA server after it is
started and receives from the server a (new) organism ζ . The client then starts up a

Artificial Life Volume 6, Number 3 213



J. C. Astor and C. Adami Evolution of Artificial Neural Networks

often

S

S suspended

Database of

organisms

A A✕ all

Database of

organismsarbitrarily

2.) ... otherwise, construct a new organism

new client central GA-server

register request

evaluation request

STOP

o.k.

{ Comparison

1.) Take a suspended one if any, or ...

(new) organism reply

new organism or ’go on’ reply

check-out request (organism)

Figure 13. Communication between GA server and client hosting an organism.

simulation as described in Section 2.4. After a certain number of simulation cycles, it
sends the organism’s fitness 8(ζ) to the server. By comparing 8(ζ) to the fitness of
other phenotypes in the database (as described in Section 4.1), the server decides if
it is worthwhile to keep this organism or if the client should be assigned a different
one. If the server has to send a different organism, it either takes a suspended one out
of its database, or constructs one through the processes of recombination or asexual
copying from genotypes of known fitness already present in the population (Figure 13).
Fitter genotypes are more likely to be selected for recombination or asexual copying
than genotypes of lower fitness. This leads to an increase of the average fitness of
phenotypes over time.

A particular client repeats its evaluation request arbitrarily often and always either
obtains the permission to go on with the same organism or receives a different organism
to evaluate. If the client (or better: the human who started the local client) decides to
end its participation, it just sends the phenotype back to the GA server, which stores it
in its database of currently suspended organisms.

5.2 Participating in Evolution Experiments
To facilitate the participation in evolutionary experiments across the Internet, site
http://norgev.alife.org has been created, from which the Java application can
be downloaded. This site also offers instructions and more detailed system require-
ments.

5.3 Performance and System Limitations
Up to now, only very simple ANNs for logical basic functions have been evolved de
novo [3]. The system was able to accomplish this in a short amount of time with a
population of about 40 genotypes running on about 10 Sun SPARC Stations 2. While
this experiment showed that the genetic algorithm works for small populations, it has
never had to deal with populations of a large size.

If the system is to be opened to the whole Internet community, a more appropriate
database organization may be necessary. While the implementation with Java hash
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tables might be good enough for small populations, it is surely restrictive for large
populations. Instead, the system ought to be connected to a professional database
system in order to be able to deal with high rates of server requests and large amounts
of data.

The current implementation uses Java on both sides: Clients (Java Applets) and server
are fully based on Java technology aided by the remote method invocation technique.
However, in principle there is no need for the server to be implemented in JAVA. A
better approach would be to implement the GA server as a plain CORBA server in a
native language such as C++. This would provide a significant performance boost on
the server side and, furthermore, would allow easier access for other applications due
to the open CORBA standard.

The system has been implemented with the help of Java Development Kit (JDK)
1.1.5. It has been tested on three different kinds of operating systems: MS-Windows
95, Solaris 2.5.1, and FreeBSD 2.2.2. Using the Java virtual machines included in the
JDK 1.1.5 (FreeBSD and Win95) and JDK 1.1.3 (Solaris) the system appears to work
fine. However, no tests have been done on any versions newer than JDK 1.1.5. To
take advantage of the new system improvements of Java 2 (such as the aforementioned
CORBA architecture), the entire system would have to be migrated.

Although computer performance increases continuously, Java—as an interpreted
language—is still slow and its computational power therefore very limited compared
to compiled program code. As a consequence, we chose to fix the size of the artificial
tissue to 12 × 12, even if any arbitrary size can be chosen. Even if the emergence
of the JIT compilation techniques by themselves improved the system’s performance,
more computational power on the client side seems to be necessary to overcome the
limitations mentioned. Increasing the size of the tissue would have several advantages
and allow the growth and evolution of larger networks. Also, artifacts caused by the
boundary elements and the rough granulation (which affects the smooth diffusion of
substrates) might be avoided in such larger tissues.

6 Conclusions

There are many steps that remain to be taken in the future. First of all, the system
has to be evaluated in more depth. Experiments should be performed that attempt to
evolve simple ANNs for a given world, rather than the simple examples presented here
that were largely world independent. Finally, evolution experiments should be started
in earnest to validate the central premise of this work, namely that complex networks
with novel characteristics can emerge within the present setting.

Apart from this, there is no doubt that the genetic language (the artificial chemistry),
invented rather spontaneously and without much rigorous and quantitative testing, can
be optimized. For example, it would be interesting to see if the set of condition atoms
can be reduced to a minimum. Simple considerations about the size of genetic space
and the fitness landscape it gives rise to [3] show that reducing the number of different
condition atoms would make the computational overhead much less daunting.

Further, certain enhancements might be suitable for future versions of the model.
Fleischer [8] showed the importance of a dynamic morphology for the development of
natural-like systems. At present, our model does not feature morphology. Cells are
located at the same place from their birth on. Cell death does not exist. Additional
expression commands that allow, for example, cells to move along a chemical gradient
would be a good way to incorporate morphology into the model. Cell death could be
another interesting issue that would bring the model closer to real neural development.

One of the driving principles of this model is that of locality. First and fore-
most, the behavior of each neuron is determined by local concentrations. A more
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sophisticated model would take other local structures (besides neurons) into account
as well. Dendrites and axons exist in the current model only as shortcuts between
neurons. They do not, at present, have any local structural features. For future ver-
sions maybe a separate part of the genome could describe the behavior and structure
of dendrites and axons. If so, synaptic changes could be coded and based on lo-
cal conditions rather than cell-global conditions. For instance, external proteins could
then directly affect synapses at the site of the synapse just like neuromodulators do in
vivo.

During natural cell division, cellular substrates are not divided equally between pre-
cursor and progeny cell. Differences in both cells can lead to different gene expressions
that are important for development based on cell lineage. Currently, this is not the way
cell division takes place in the model. Even more unrealistically, the progeny cell sim-
ply inherits all substrates of the grid element that it replaces. This could be refined in
future versions.

To bring the model closer to biology, a possible consideration is to consider including
cell membranes in the model. At the moment, a cell membrane exists only in the sense
that internal proteins and neurotransmitters cannot diffuse out of the cell. All other types
of substrate can go into and out of the cell plasma. Natural cell membranes are known
to be functional (they trigger cell-internal events) and highly selective, and therefore
they influence the cell’s information processing to a high degree. It is, however, difficult
to tell if including this would improve the model or if computational performance would
only suffer even more from the increase of complexity.

This work introduced a developmental and behavioral model based on artificial gene
expression that shares key properties with natural neural development. The heart of the
model is the coding scheme of genotypes. The genetic code allows for the description
of information-processing structures that show behavior similar to certain natural sys-
tems, within a coding scheme that borrows heavily from the gene-regulation paradigm.
Without undue effort, genotypes for ANNs can be constructed that are believed to be es-
sential [12, 15] for higher self-organizing information-processing systems, such as deter-
ministic structure development, self-limiting cell growth, regenerative structures, growth
following gradients of diffusive substrates, computation of logical functions, pacemaker
behavior, and simple adaptation (sensitization, habituation, associative classical condi-
tioning). Assuming that these phenomena are essential for natural intelligence, it may
be surmised that the model allows—in principle—the description of more complex
information-processing structures.

Our primary thrust in reducing the gap between the physiology of neurons and
the abstract models that are supposed to model them was to reduce the mathemati-
cal abstraction of neurons by reverting to more low-level structures, in the hope that
abstract neurons would emerge. This is the classical artificial life approach that has
served well in many other applications. Unfortunately (but predictably) the freedom
gained is associated with large genotypes (noncompact descriptions) and an expo-
nentially large genetic search space. We described how an evolutionary search for
genomes coding for information-processing network structures can be distributed in
a platform-independent manner such that the unused CPU power of the Internet can
be tapped to search for ANNs that reduce the gap between the abstract models and
neurophysiology.

Experiments on a large scale remain to be done and the model needs to become
more sophisticated. However, this approach shows that physiology and architecture
can be encoded in one genotype, such that it gives rise to the development of ANNs
based on local interactions only. Further, the platform-independent and fully WWW-
distributed system is a new and sophisticated strategy to approach problems based on
evolutionary search.
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