LEARNING RESEARCH AMD DEVELOPMENT CENTER

A DEVELOPMENTAL THEORY OF NUMBER UNDERSTANDING

Lauren B. Resnick
Leaming Research and Development Center
University of Pittsburgh

The research reported herein was supported by grants from the National Science Foundation and the National Institute of Education, U.S. Department of Education. The opinions expressed do not necessarily reflect the position or pulicy of the granting agencies, and no official endorsement should be inferred.

Reprinted by permission from Ginsburg, H. (Ed.). The devekopment of mathematical thinking. Copyright 1783 by Academic Press, Inc., Orlandu. FL.

A Developmental Theety of Number Understanding ${ }^{1}$

Research on the psychological processes involved in early school arithmetic has now cumulated sufficiently to make it possible to construct a coherent account of the changing nature of the child's understanding of number during the early school years. Earlier work, concemed largely with preschool children's informal arithmetic (e.g.. Fuson \& Hall, Chaprer 2; Gelman \& Gallisel, 1978; Ginsburg. 1977). has estrblished the strength and the limits of the number understanding that children typically bring with them to scbool. My concern in this chapter will be to develop a plausible account of how number concepts are excended and claborated as a result of formal instruction. The chapter will ourtine a theory of number represenfation for three brond periods of developanent: (a) the preschool period. during which coumting and quantity comperison compenencies of young children provide the main basis for inferring number represemtation: (b) the early primary period. during which children's invention of sophisticated mental computational procedures and the mastery of certain forms of atory problems point to two important expansions of the number concept; and (c) the lamer

The research reported here was supponed by grants from the National Science Foumataion and the Nastonal Institure of Educraion. Unued Sures Departuent of Educution. The opinions expresed in this chapper do mot necessenty reflect the position or policy of the graming agencies. sed no officiel endorsemen should be saferred.
primary period. during which the representation of number is modified to reflect knowledge of the decimal structure of the counung and nerational system.

My account of developing number understanding is based heavily on recent work-some reported in this volume-that is providing a series of formal models of the knowledge underlying various observed arithmetic performances by children of different ages. Each of these models has been constructed to account for a particular set of performances, but there has been no systematic effort to link them into a developmental sequence. Nevertheless. an examination of the existing models strongly suggests a sequential development of mathematics competence that is characterized by (a) an expanding and successively elaborthed set of schemata that organizes number knowledge, and (b) the linking of these schemata to increasingly complex procedural knowledge. In the course of the cthapter I will clarify exactly what is to be understood by the terms schematic and procedural knowledge. It is important to note, however. that in stressing both procedural and schematic knowledge and their links. current theories of mathematical understanding offer promise of joining two hitherto separate and largely competing strands of research on mathematical development. These are (a) the behavioral, which has concentrated on number performance skills and has viewed growth in mathematical ability as the addition of successive performance skills: and (b) the cognitive-developmental. which has focused on changing concepts of number but has often paid little attention to the manifestation of these concepts in actual number performances.

NUMBER REPRESENTATION IN THE PRESCHOOLER: THE MENTAL NUMBER LINE

This account begins by considering what understanding of number can be assumed as the typical child enters school. Several lines of evidence point to the probability that by the time they enter school most children have already constructed a representation of number that can be appropriately characterized as a

Flasere 3.1 The mental number line.
mental number line. That is, numbers correspond to positions in a string, with the individual positions linked by a "successor" or "next" relationsthip and a directional marker on the string sp sifying that laver positions on the string are larger (see Figure 3.1). This mental number line can be used both to establish quanuties by the operations of counting and to directly compare quantities. By combining counting aad comparison operations, a considerable amoum of arithmetic problem solving can also be accomplished.

Counting

Several extensive studies of counting in preschool children provide the basis for inferring the number knowledge typical of children as they enter school. These include Gelman and Gallistel's (1978) study of counting and number concepts in 2. through 5 -year-olds. and Fuson and Briars' (Fuson \& Mierkiewicz. 1980) work on counting (see also Siegler \& Robinson. 1982: Steffe. Thompson. \& Richards. 1982). These investigators have shown that from a very early age. children can reliably count sets of objects and thus establish their cardinality. Greeno. Riley, and Gelman (1978) have developed a computational program that simulates the counting performances observed by Gelman and Gallistel and that is in good accord with the data reported by the other major investigators as well. This model provides the basis for my characterization of the mental number line.

At the core of the Greeno et al. model of children's counting is an ordered list of numeriogs linked by a successor (Next) relationship as shown in Figure 3.1. The program establishes the quantity of a set by a procedure that uniquely links each object in the set with one of the numerlogs and then designates the last numerlog named as the number in the set. The figure shows direct links berween the smallest numerlogs and patterned set displays. These links represent the kind of knowledge that would allow chikdren to subitize very small sets-cthat is, to quickly provide the appropriate number name withour actually countingthrough direct pattem recognition. This ability has been attributed to children as young as 3 or 4 by Kiahr and Wallace (1976), although Greeno et al. argue thas the appearance of subitizing may be a function of the rapid perceptual grouping of small sets as part of the counting process rather than as a separate means of quansifying an array. Without antempting to decide between these two accounts of rapid quantification of small sets, it seems reasonable to propose that it is through extensive practice with coumting as a method of establishing quantity that the numerlog list is gradually transformed from a string of words into a representation of quaminy in which each position (number name) in the list comes to stand for a quantity. Recent wort by Comiti (1980) has shown than the counting list and its use in determining quantiry is established only for relatively
small numbers by the time a child enters school. For quantities in the teens and twenties, many 6 -year-olds are unreliable counters and are nor able to use counting to establish equivalence of sets-something they can do at a much younger age for smaller set sizes. In addition. children have difficuly for some time in starting a count at a number other than I. indicating that individual successor links are not fully established for some parts of the string iFuson. Ruchards. \& Briars. 1982). It is thus clear that the number representation shown in Figure 3.1 is still developing for larger quantities once sheol begins.

Quantity Comparisons

A smaller but still signtificant body of work on magnitude comparion by children allows us to further specify the characteristics of the mental number line as the chuld enters school. Typically in magnitude companison tasks. Iwo "target" numbers are named and the subject asked to decide which im larger or "shows more." Variations of this task have been extensively used with adults (e.g. Potts. Banks. Kosslyn. Moyer. Riley. \& Smith. 1979). Inventigators studying children (Schaeffer. Eggleston. \& Scort. 1974: Sekuler \& Mierkewicz. 1977: Siegler \& Robinson. 1982) have established that children zan pertiorm this task accurately by the age of 5 or earlier-at least for small numbers.

What additions to the mental number line are necessary to account for this ability? If we were to add to the quantity representation already dexrribed a directional coding that specitied that later numbers in the string represented laryer quantities. a child could compare (wo named numbers by starung up the string from 1. noting when the first of the two target numbers was reached and then labeling the other number as "more" or "larger."

Although this is logically possible. It seems paychologically unlikely for at least two reasons. First. inforces the child to treat more as if it were the marked item in the "more-less" pair. A number of investigators, beginning with Donaldson and Balfour (1968), have demonstrated that more is unmarked-that is. it is more easily leamed and more quickly accessed than less. Second and even more compelling, 5 -year-old children. like adults, show a characteristic pattern of reaction times for these comparision tasks: They take longer to make comparson judgments the closer the two target numbers are. If a child were using the counting-up strategy to make comparisons. the time to make a mental magnitude companson should be a function of the size of the smaller number and not of the size of the split between the two numbers. The existence of the split effect suggests that the child's number representation has important analog features that allow direct comparison of number positions. It is as if perceptual compansons of positions on a measuring stick were being made: when positions are ctoser togerher, it takes longer to discriminate between them than when they are further apart.

Because of the split effect for number comparisons, we can atribute to children entering school two other features of the mental number line: (a) a directional marker on the line that interprets positions further along the line as "larger" (as shown in Figure 3.1). and (b) an ability to directly enter the positional representation for a number upon hearing its name (i.e., without counting up to it). Both of these features play a rose in various kinds of informal anthmetic performances that have been observed in preschool children.

Informal Arithmetic

As just noted. the mental number line can be used both to establish quaruties by the operations of counting and to directly compare quantities. By combining counting and comparison operations, the child can also accomplish a considerable amount of anthmetic problem solving. For example. Gelman (1972). in her "magic" experiments, showed that young children could recognize when the number of items in a small set had been changed while the set was hidden from view. This would involve counting the sel iwice, before and after the change. and then comparing the two numbers by entering them on the mental number line. Gelman and Gallistel (1978) also document some young children's ability to " fu " a set so that it has a named quantity. A child with only the number knowledge sketched thus far could build a larger set (e.g." "fix" a set of three so it has five) by counting the three objects in the presented set and then adding in more objects by "counting on" up to five. To reduce a set (e.g. . "fix" a set of five 50 it has three). the child would have to count the objects of the set up to three and then discard the remainder. The more efficient procedure of determining in advance that two items must be added to or deleted from the set would not yet be available to the child at this stage in the development of quantity representation.

This is not to say that the child bas no resources for solving addition and subtraction problems. Ginsburg (1977) has reported a variety of successful arithmetic calculation procedures employed by preschool children. all apparently invented by the children and virtually all based on comming. An example is addition by constructing sets (on fingers or with objects) to match each addend, then counting up the combined sets. A typical procedure for subtraction-one that requires no more complicated quantity representation than the one considered thus far-is to (a) count oun a set to match the larger number (the minuend), (h) count out from this set the number of objects specified in the smatier number (the subtrahend). and then (c) count the objects remaining in the original ser.

Several investigators (e.g. Cerpenter \& Moset, 1982: Lindvall \& GibbonsIbarta. 1980) have shown that young children are able to solve certain clasces of story problems using counting procedures. Typically in these solutions they use only forward counting. by ones, of scrual countable objects. However, some

Flogure 3.2 The mental number line with baikward makers.
children apparendy acquire the ability to use decrementing (counting backward) procedures before they enter school. This means that "backward-next" links must have been attacted to adjacent numbers in their mental number line and a "smalier" (less) directional marker attached to the line as a whole (see Figure 3.2). Performances that call on backward counting include doing suberaction by counting down from the larger number. Although these performances are often used to argue that children already know important concepts of mathematics before school begins. in fact such perfopmances require only a primitive representation of number compared to what will develop subsequently.

EARLY SCHOOL ARITHMETIC: THE PART-WHOLE SCHEMA

As long as the number line alone is used. there is no way to relate quantites to one another except as larger of smaller. further along or further back in the line. Although quantities can be compared for relasive size. no precision in the relative size relationship is possible except as a specification of the number of numerlogs that must be traversed between positions in the line. Probably the major conceprual achievement of the early school years is the interpretation of numbers in terms of part and whole relationships. With the application of a Part-Whole schema to quantity. it becomes possible for children to think about numbers as compositions of other numbers. This enrictument of number understanding permits forms of machemarical problem solving and interprectation that are not available to younger children.

Figure 3.3 sketches a Part-Whole schema that plays a role in several models of children's developing number understanding (Briars \& Larkin. 1981: Resnick, Greeno. \& Rowland, 1980; Riley. Greeno. \& Heller, Chapter 4). The schema specifies that any quantity (the whote) can be partitioned (imo the parts) as long as the combined parts neither exceed nor fall short of the whole. By implication, the parts make up or are included in the whole. The Parr-Whole schema thus provides an interpretation of number that is quite similar to Piaget's (1941/1965) cefinition of an operational number concepp. To function as a tool in problem solving, the part-whole knowiedge structure must be tied to procedures

Frawe 3.3 The Peri-Whole schema
for constructing or evaluating quantities. The Maximum Exceeded and Minimum Needed nodes in Figure 3.3 are connected to procedures by which delecions or additions can be made to satisfy the constrime that the sum of the parts is equivalen to the whote. For example. if the numbers in the Whole and Part A slots are known. a counting-up procedure (accessed trough the Minimum Needed node) can be used to fill Part B with the number needed to keep the combined parts equal to the whole.

Story Problemas

The Par-Whole schema specifies relationships among triples of numbers. In the triple 2-5-7, for example, 7 is always the whole; 5 and 2 are always the parts. Together, 5 and 2 satisfy the equivalence construint for the whole: 7 . The relationship among 2.5, and 7 holds whether the problem is given as $5+2=$?, 7-5=?.7-2=?.2+?=7. or? $+5=7$. Ench of these number sentences expressing the relations among the rriple $2-5-7$ has one or more conresponding expressions in real-world relationships or in story problems. Figure 3.4 shows how the fundamental part-whole relationstip underties several classes of story problems as well as number sentences. In each problem the whole is coded as a dot-filled ber, whether it is a given quantity or the unknown. Similenty, each pent is uniquely coded. The relationship between parts and whole for all the problems. including the number sentences, is shown in the center display. Aay bar can be omitred and thus become the unknown. Although pumber sentences and the given words of story problems cannot be mapped directly onto one mothor (Nesher \& Teubul, 1975), each can be mapped directly onvo a more shatrict part-whole representation, such as the bars shown here. The Part-Whote sche-

> Pown had tame mentios.
> Dinid trangit hin 8 meve moreins for thour gerve.
> Now Powar nie 7 merbion.
> How many mavites did Arow how of the suri?

Sem had 8 applen.
Serat med 2.
How many did they nime stic. the"
Cerol belved 7 doem cookien Jotw bates 5 doven cophrima Hew many move did Cood bate then Sofn?

Fipure 3.4 Mapping of spories and number senemces to a concrete model of Pun-Whote.
ma thes provides an interpretive structure than can permit the child to either solve certain more difficult problems directly by the methods of informal arithmetic. or to convert them into number sentences that can then be solved through procedures taught in school.

Riley, Greeno, and Heller (Chapter 4) have developed a family of compurational models that account for the devetopmemt of competence in solving onestep addition and subrraction story problems of the kind studied by a number of investigators (e.g., Carpenter \& Moser. 1982; Nesher, 1982; Vergnaud, 1982). These modeis suggest that it is application of the Part-Whote schema that makes it possible to solve difficult classes of story problems that children usually camnot solve until the second or third school year. There include set-change problems with the starting ser unknown (e.g. John had some marbles. Michoel gave him 4 more. Now he has 7. How many did he have to Marr?') and various kinds of comparison problems (e.g., John has 4 marbles. Michael has 7. How many more does Michael have than John?). An ahternative story problem model by Briass and Larkin (1981) solves some of the more difficult problems by constructing a mental script that reflects real-workd knowledge about combining and seperating
objects. rather than abstract part-whole relationships. The script describes the actions in the story and allows the system to keep track of the sets and subsets involved. Yet in Briars and Larkin's model. too, it proves possible to solve unknown-first problems only by instantiating a Part-Whole schema. Both theories. then. assume that story problem solution-at least for the most difficult problems-proceeds by mapping the statements in the problem into the slots of the Part-Whole schema. This allows the numbers in the problem to be assigned to etther "parr" or "whole" status and permits a clear identification of whether the unknown is a part or a whole. This in tum allows flexible computational stralegies, including euther direct counting solutions (for example. by counting up from Part A if Pant B must be found) or the construction of an appropriate number sentence and then solution of the arithmetic problem specified in the number sentence.

Mental Addition and Subtraction

We have seen that preschool children using mainly forward counting procedures are capable of solving a surprising variety of arithmetic problems as long as they have actual countable objects to aid in the calculation. During the early years of school, children come to be able to solve many of the simpler arithmetic problems "in their heads"-that is, without any overt counting. It had long been assumed that when children ceased overt counting. they had switched to an adultlike performance in which the number facts (e.g.. single-digit addition or subtraction problems) were simply associations, memorized and then recalled on demand. Presumably, no reasoning went on in arriving at an answer. Recent work, however. has established quite clearly that there is an intermediate period of several years during which arithmetic problems are solved by mental counting processes. These procedures appear to be children's own inventions. There is reason to believe that the Part-Whole schems plays a role in establishing these procedures. although there is no formal theory nor very direct evidence yet avarlable to specify that roie.

Research by Groen and Parkman (1972) is the point of reference for work on imple mental calculation. Working with simple addition (two addends with sums less than 10). Groen and Parkman tested a family of process models for single-digit addition. Figure 3.5 shows the general model schematically. All of the models assumed a "counter in the head" that could be set initially at any number, then incremented a given number of times and finally "read out." The specific models differed in where the counter was set initially and in the number of increments-by-one required to calculate the sum. For example, the counter can be set initially at zero. the first addend added in by increments of one, and then the second addend added by increments of one. If we assume that each incremens

Fhare 3.5 Countug model ior simple addition. (From Groen \& Parkman. 1972 Cupynght 1472 by the Amerncan Psychoh gical Association. Reprnited by permusston.)
needs about the same amount of time to count. then someone doing mental calculation this way ought to show a pattern of reaction times in which time vanes as a function of the sum of the two addends. This has become known as the sum model of mental addition. A somewhat more efficient procedure begins by setting the counter at the firss addend and then counting in the second addend by increments of one. In this case-assuming that the time for setting the counter is the same regardless of where it is set-reaction times would be a function of the quantity of t 'se sei.ond addend. A still more efficient procedure starts by setting the counte. $::: e$ larger of the two addends, regardless of whether it is the first or the second, and then incrementing by the smaller. Obviously, this would require fewer increments. Such a procedure would produce reaction times as a function of the size of the minimum addend and has thus become known as the min model.

Groen and Parkman evaluated these (along with some other logically possible but psychologically implausible) models by regressing observed on predicted pattems of reaction times for each model. The finding was that children as young as first-graders used the min procedure. Subsequently, the min model has been confirmed in studies that have extended the range of problems up to sums of 18 . and the ages of children from 41た or so up to 9 or 10 (Groen \& Remick. 1977. Svenson \& Broquist. 1975: Svenson \& Hedenborg. 1979: Svenson. Hedenburg. \& Lingman. 1976). Figure 3.6 shows a characteristic data plot. Note that problems with a minimum addend of 4 cluster together and take longer than problems with a minimum addend of 3 , and so on. It is also typical that doubles re.g.. $2+2)$ do not fall on the regression line but instead are solved particularly fun. We can infer that some process other than counting is used in responding to doubles froblems, a point I shall return to later.

Councing models have also been applied to other simple arithmetic tasks. especially subiraction (Svenson er al. , 1976; Woods, Resnick. \& Groen, 1975). and addition with one of the addends unknown (Groen \& Poll. 1973). In the case
of subtraction. at least three mental counting procedures are mathematically correct. One procedure would involve initializing the counter in the head at the larger number (the minuend) and then decrementing by one as many times as indicated by the' smaller number (the subtrahend). In this decrementing model. reaction times would be a function of the smalier number. A second procedure would involve initializing the counter at the smaller of the two numbers and incrementing it until the larger number is reached. The number of increments then would be read as the answer. Reaction times for this incrementing model would be a function of the remainder-the number representing the difference between the minuend and subtrabend. A particularly efficien procedure would involve using either the decrementing or the incrementing process for subtraction. depending upon which required fewer steps on the counter. Reaction times would be a function of the smaller of the subtrabend and the remainder. This chorce model is what most primary schoot children use, although a few secondgraders use the straight decrementing model (See Figure 3.7). Here again, note how the doubles fall below the regression line, suggesting a faster, noncounting solution method

Figure 3.6 Reaction simes for first graders solving addition problems. Pains of numbers listed above or belom dors sumd for smple-digit addinoon problems (e.g.. $0+0.0+1.1+0)$. Doss indicses de average reaction sumes for adding cach paur of numbers. FFron Groen \& Purkmas. 1972. Copyrighn 1972 by the Anmercan Psychotogical Associution. Reprimed by permiscion.)

Flyare 3.7 Mean reaction time petterns for hanee groups of chuldren usung a decrementing model or a chowe model of subsraction. Adapted from Woods ef al. 1975. Copynght 1975 by the Amencan Pychological Association Reproted by permussion.I

It is risky to attribute complex processes such as min and choice to people enturely on the basis of reaction time patterns. For this reason, it is important to ask what converging evidence exists that points to the reality of mental counting procedures. Observations of overt counting-on strategies for addition by several investigators (Carpenter. Hiebert, \& Moser, 1981: Fuson. 1982; Houlihan \& Ginsburg. 1981: Steffe ef al. 1982) suggest that the counting presumed in these models is real. Furthermore. Svenson and Broqiaist (1975) interviewed their subjects after each timed trial and found that on about half of the problems, children reported counting up from the larger number (by ones or in larger units). Finally. evidence comes from comparing children's reaction-time patterns for addition with those of adults, whom we can assume retrieve elementary addition and suberaction facts by some kind of direct "look-up" procedure. Adults show much faster reaction times and a far shallower slope (20 msec) when their data are fit to min than do children (Groen \& Parkman. 1972). Their slope, which is presumably the time needed for each count, seems to0 fast to represent anything like a real counting procedure. Groen and Parkman suggested that this shallow slope might be an artifact of averaging over many trials in which the answers were looked up (presumably producing a flat slope) and a few trials in which they were counted. More recently, Ashcraft and Battaglia (1978) have suggested that adults do not produce a linear increase in time as the minimum addend grows. but instead produce a positively accelerating curve that is best fit by square of the sum. Ashcraft and Fierman (1982) tried to fit children's data to sum². but not until fourth grade did sum² provide the best fit. Younger children thus do appear to solve addition problems by counting. The converging evidence for subtraction is less rich, although some of Svenson's (Svenson \& Hedenborg, 1979; Svenson el al. 1976) subjects described the choice strategy in interviews.

It is important to note, rowever, that while min and choice appear to be the dominant procedures during the early school years, they are not the only ones used. Several investigators have noted the use of special shortcut mental addition strategies by children during this period. These have been documented in some detail by investigators (Carpenter \& M.oser, 1982; Houlihan \& Ginsburg. 1981: Svenson \& Hedenborg. 1979; Svenson \& Sjoberg, in press) who used vertal protocols and reaction times to document strategies that made special use of addition and subtraction facts that children had commitred to memory and could retrieve directly. Most common were the use of solutions with tie references (e.g.. $3+4$ is solved by saying 3 plus 3 is 6 , plus 1 more makes 7 ; or $13-6$ is solved by saying 12 minus 6 is 6 . plus 1 is 7). Saxe and Posner (Chapler 7) found similar strategies among illiterate Africans. Less frequent, but of considerable interest because they signal a developing appreciation of the decimal number system, are solutions thas depend on knowledge of tens complements. For example. $6+5$ is converted to $6+4(=10)$, plas 1 more. Or, fo. subtraction. $11-4$ is converted to $10-3+1$. These shoncut procedures provide evidence that
children understand the compositional structure of numbers and are able to partition and recombine quantities with some flexiblity.

The Origins of Invented Arithmetic Procedures

What must be added to the mental number line representation to account for the predominance of min and choice and for the occurrence of special tie- and complements-referenced strategies during the earliest school years? In considering this question, we should keep in mind that these strategies are not directly taught in most school programss. Extensive practice in addition and suberaction is given, some of it organized to highlight commurative pairs in addition and the complementarity of addition and subtraction. Bue the actual counting procedures and the conversions to make use of tie and complements facts must usually be invented by the children themselves-sometumes is the face of strictures against overt counting. Indeed, the invented character of min has been demonstrated directly (Groen \& Resnick, 1977). We taught preschool and kindergarten children a procedure for addition that involved counting out both sets. Half of the childrea switched to min without further instruction after about 12 weeks of practice sessions.

The invented character of min and choice poses an interpretive challenge. for neither of these procedures appears to derive in a straighforward, mechanical way from the overt counting procedures observed among younger children. That is, they are not simply shoricuts. in the sense of dropping redundant steps. ladeed, in each case a new seep-deciding which number to start counting from-is added. Furthermore, min seems to depend upon the mathematical principle of commutativity, the recognition that the sum of two numbers is the same regardless of the order in which they are added, and choice appears to depend upon recognition of the complementarity of addition and subtraction. Yet neither of these principles is directly mught to children in the eariest grades of school any more than the accual min and choice procedures are taught, and no study has suggested that children who use them have any vertal awareness of the general principles involved. Our interpretive task, then, is to account for the emergence of min and choice as procedures that accord with mathematical principles of commutativity and complementarity but are nor systematically derived from those principles. There are several possible explanations to consider.

A "Pair-EQUTVALENCE" account

The simplest accoum of the discovery of min would assert that the special relationships between certain pairs of problems (e.g., $3+4$ and $4+3: 2+7$ and
$7+2$) are noriced after extensive practice on the individual pairs. through a general learning process that looks for regularities and shortcuts after a procedure becomes at least partially automated (cf. Anderson. 1981: Klahr \& Wallace, 1976). In this view. the child would notice that specific pairs of problems yielded the same answer and would infer that they could be substituted for one another. A preference for efficiency would then lead to the strategy of always starting the count at the larger number.

This seems plausible until we consider that if the child is to notice the equivalence of two problems. the result of borh pairs must be present in shoriterm memory simultaneously so that they can be compared. This could happen in two ways. First. if commuted pairs (e.g. $7+3$ and $3+7$) were presensed successively. the result of the first calculation might still be present when the second calculation was completed. However, in our experiment (Groen \& Resnick. 1977) the children invented min under controlled practice conditions in which these pairings of problems did nor occur. Practice on paired problems. then. cannor be a general explanation for the development of min. although it may play a mle in some cases. A second possibility is that the result of $7+3$ can be quickly retrieved when $3+7$ is computed. But this would mean that $7+3$ was already known as a retrevable addition fact. If such retrievable facts were available, however. children would not need to use counting procedures to compute the answers to simple addition and subraction problems. It therefore appears implausible to arribute the discovery of min to simply noticing the common outcome of different orders of performing addition.

A modified version of the pair-equivalence account may survive, however. This version would assume that the equivalence was noticed first for very easily tomputable pairs (e.g., those involving an sddend of 1). It seems plausible dhat the sum of $7+1$ could be retrieved (or constructed) fast enough to be simultaneously present in short-term memory with the sum of $1+7$. Having noted equivalence for a subset of the addition pairs, a child might plausibly construct a more general commutativity rute that could be applied to other pairs.

A "DEFALLT' ACCOLNT

Another possibility is that children begin by assuming that aritumetic operations are commutative and only gradually learn that some (for example, suberactuon) are not. This would lead them to try min procedures in the search for lesseffor processes. Since min "works" (i.e., the answer turms out to be correct when checked by counting the whole joint set, and adults do not comment on the result as wrong). they would retain it as the preferred procedure. In support of this possibility is the observation that children frequently antempt to commase subrraction problems. Thas is, when given the problem $2-5$, they respond with

3 rather than -3.0. or "you can't do it"- any of which would indicate recognition of the noncommutativity of subiraction. Another common attempt to commute in subrraction is shown by giving solutions such as:

$$
\begin{array}{r}
348 \\
-\quad 169 \\
\hline 221
\end{array}
$$

A child would arrive at this incorrect answer by "subrracting within columns" (Brown \& Burton, 1978)-that is, by taking the smaller number from the larger in cach column regardless of which is on top.

The Gelman and Gallistel (1978) analysis of young children's counting makes it clear that they proceed in accord with an "order-invariance" princi-ple-that is. they recognize that objects can be counted in any order, although the numeriogs must be assigned in their standard sequence. A natural extension of order-invariance would allow subsets as well as individual objects to be enumersted in any order. This would allow min to emerge as part of a general search for low-effort solutions without requiring that the child construct any kind of commutativity rule.

Neches (1981, and personal communication) has provided a formal account of how min might be discovered on such a "default" basis. His computer model of addition begins by performing a sum solution in which both subsets are counted out and the combined set recounted. After a mumber of practice trials. the system notices thas a portion of the counting process for finding the total is redundant with the original counting process for each of the subsets. In recounting for the problem $2+5$. for example, the first two counts are redundant with counting out the first subset, and the first five counts are redundant with the original count for the second subset. The system has some general redundancy elimination mechanisms that lead it to reuse existing computations rather than cuplicate them. This means that two counting-on solutions are constructed, one for each addend. The system eventually comes to count on from the larger addend (thus performing the min procedure) because it can detect a redundancy when the smaller-addend alternative is tried.

A 'PART-WHOLE' ACCOUNT

Still another possibility for the emergence of min is that children apply a simple Part-Whole schema to addition. For example, a child could solve addition problems by binding the given addends to the Part slots of the schima. Since the stots contain no onder information, the addends can now be used in either order to discover the value of the Whole. This is an atrractive explanation of min because it also accounss economically for che discovery of choice. Part-Whole puts the three terms of a complementary addition-subtraction pair into a stable
relationship with one another. For the problem 9 - 7. for ezample, 9 would fill the Whole slot and 7 one of the Part stots. For $9-2.9$ would fill the Whole slox and 2 one of the Part sloos. In finding the missing part (using the procedures anached to the Minimum Needed and Maximum Exceeded nodes of the sctrema), the child would become aware of the complemenenry relationships berween $9-2=7$ and $7+2=9$. This complementary relationship could then be used to generate least-effort solution rules. Part-Whole also provides a convenient account of the basis for complement- and tie-besed shortcut procedures.

Application of Part-Whole seems to be a plausible sccoum for the emergence of min and choice, at least to the extent that it is plausible to amribute the Part-Whote sctiems to children an an early enough age so than it precedes min and choice as part of the knowledge structure. We have mixed evidence here. On the one hand. a fully general Part-Whole schemm does nox seem to be reliable until the age of 7 or 8 . This is when children master Piagetian class inchasion problems (Inhelder \& Piager. 1964/1969), which are part-whole problems without a requirement of specific numerical quantificmion. It is also the age ne which children can reliably solve those story problems that clearly depend on the part-whote structure (e.g., set-change problems with the starting see unknown). This age would be too lete to sccount for min, ahthough it is possibly sin acceptable age for choice, which as far as we know develops lamer.

Still. several investigations point to an earlier understanding of certain cless relationships than the Piagetian stucies have sugemed. For example, Markman and Siebert (1976) have shown that if the class character of the Whole see is emphasized by the wording of the problem. children can perform ciass inclusion problems quite early, and Smith and Kemler (1978) have shown that kindergarten children use componen dimensions in cerrain kinds of classification tasks. Furthermore, children as early as firsa grade can solve comparison esory problems when they are worded so as 80 make the pert-whole relations evident (see Riky et al., Chapter 4). Thus, it seems plausible that childea may possess at least a simple version of the Part-Whole schems at a quite young age but may nor yet have learned all of the situations where it is approprime so apply it. Addition and subtraction of small numbers, unencumbered by story contemp, may be one of the easy-fo-recognize siturations. Indeed, application of a primitive Par-Whole schema to simple number problems may be an important step in developing a more elaborate version. including many procedural connections. that will play a roie in subsequent development of number knowledge.

DEVELOPMENT OF DECIMAL NUMBER KNOWLEDGE

All of the research discussed so far has focused on small mumbers-quaptities up to about 20. From this work we are able to trace a probable course of
development of number representation in which the fundamental relationships between numbers are units. Yet the introduction of decimal numbers, which form an important part of the primary school mathematics curriculum, demands that a new relationship among numbers be leamed. This relationship is based on tens rather than units. The initial introduction of the decimal system and the positional notation system based on it is, by common agreement of educators, the most difficult and important instructional task in mathematics in the early school years. Scarting in about second grade, most schools begin to teach children abour the structure of two-digit numbers. Toward the end of second grade. addition (and in sompe schools, subtraction) with regrouping is introduced. What is known about the developmens of knowledge of the base ten system-its representation in writen form, and the calculation algorithms that are based on it? How does the quantity represensation change is skill in the posititional notation system develops? These questions are addressed below.

Numbers as Compositions of Tens and Units: Restriction and Elaboration of the Part-Whote Schema

We have already seen that an important aspect of the development of number during the early school years is the interpretacion of numbers as compositions of other numbers-that is, the application of the Part-Whole schema to numbers previously defined solely in terms of position in a linear string. In story problems and simple mental arithmetic. the Part-Whole schema is applied with few restrictions and little elaboration. I will now try to show that the development of decimal number knowledge can be understood as the successive elaboration of the Part-Whote schema for numbers, so that numbers come to be interpreted by children as compositions of units and tens (and later of hundreds, thousands. etc.) and are seen as subject to special regroupings under control of the Part-Whole schema.

There is far less research to draw on in making this characterization of developing place value knowledge than there is for early number concepts. story problems, and simple arithmetic. In addition to ongoing work in our own laboratory. I will refer to empirical and theoretical work by several others in building this account of stages of development in decimal number understanding. The account must be viewed as tentative and subject to modification as further evidence on the development of understunding of the decimal number system accumalates. In particular, the later stages of this account are based on data from a small number of children who were receiving remedial instruction in our laboratory. We need to extend this data base to include more children-especially those childen who acquire place value understanding without the special intervention included in our studies.

We can idenify three main stages in the developmens of decimal knowl. edge. First. there is an initial stage in which a unique partitioning inco units and tens (e.g. 47 is 4 tens plus 7 units) is recognized. Next, in stage nwo, children recognize the possibility of multiple partitionings of a quancity. This second stage occurs in two phases: Multiple partitionings are (a) arived at empirically (c.g. the equivalence of 30 teas plus 17 units to 40 tens plus 7 uaits is extablished by counting), and (b) established directly by application of exchanges that mainain equivalence of the whole (e.g. $40+7=30+17$, because 1 ten can be exchanged for 10 units). Third, a formal arithmetic stage appears in which exchange principles are applied to writuen numbers to produce a rationale for algorithms involving carrying and borrowing.

Stage One: Unique Partitioning of Multidigh Numbers

The earliest stage of decimal knowledge can be thought of as an elaboration of the number line representation so that, rather than a single mental number line linked by the simpic "next" relationship. there are now two coordinated lines, as skerched in Figure 3.8. Along the rows a "next-by-ane" relationship links the numbers. This can be extended indefinitely, as shown in the top row, indicating that a units representation of number coexists with a decimal representation. Along the columns a "nexs-by-ten" relationstip links the numbers. In a fully developed number representation this "next-by-ien" link might bold for the numbers inside the matrix as well as for those along the edges, perminting more efficiens addition or subtraction of the quantity 10 than of other quantities. Earlicr. and perhaps indefinitely, the "iaside" links (e.g., $37+10=47$) might be constructed on each occasion of use by a procedure the decompones the iwo-digit number into a sens and a units portion $(37=30+7)$, then adds 10 to the tens portion $(30+10=40)$, and finally adda back the units $(40+7=47)$. In either case, the most important feature of this new stage of number understanding is that each of the mumbers is represented as a composivion of a tens value and a units value. This means, in effect, that two-digit numbers are inrerpreted in terms of the Part-Whole schema, with the special restriction that one of the parts be a muitiple of 10 .

There is some evidence that this compositional structure of the numbers anses first in the context of oral counting-that is, that it is not at first tightly linked to quantification of large sets of objects or to grouping of units by tems. Several investigators (Fuson et al. . 1982; Siegler \& Robinsom, 1982) fornd that many 4- and 5-year-olds could count orally well inno the decsdes above 20 and that their counting showed evidence of being organized around the decade struc. ture. For example. the most common stopping points in the children's counting were at a number ending in 9 or 0 (e.g., 29 or 40); and their onnissions in the

number string tended to be omissions of entire decades (e.g., ". . . 27, $28,29$. 50 . . ."). They also sometimes repeated entire decades (e.g., ". . . 38. 39. 20. $21 . \therefore$ ") and sometimes made up sonstandard number names reflecting a concatenation of the tens and the uits counting strings (e.g., ". . swentynine. twenty-ten, twenty-eleven . . " ${ }^{\prime}$. Finally, these children could usually succeed in counting on within a decade higher than their own highest stopping point when asked by the experimenter to start counting from a particular number, such as 51 or 71 .

In our own work on place value, we have collected many observations of primary school children's methods of establishing the quantity shows in displays of blocks or other objects coded for decimal value (see Figure 3.9 for examples of such displays). The typical mecthod that children use in this kind of tusk is to begin with the largest denomination and enumerate the blocks of that denomination using the appropriate counting sering (e.g., 100, 200, 300. etc., for hundreds blocks), then add in successive denominations by counting on using the appropioate counting string. A successful quantification of the display in Figure 3.9a, for example, would produce the counting string: 100. 200, 300, 400, 410, 420, 430.

440, 450, 460, 461, 462. 463. A few children. mainly those who show the most sophisficated knowledge of other aspects of place value, count all denominations by ones and then "multiply" by the appropriate value (e.g., for Figure 3.9a: 1. 2, 3, 4, 400: 1, 2. 3, 4, 5, 6, 460, 1, 2, 3, 463). However, counting using the decimally structured number strings seems to be the earliest application of decimal knowledge to the task of quantifying sets. Furthermore, between simpic ord counting competence and the successful use of the decimal-structured coumaing strings for quantification, there seems to be a period duning which the child knows the individual strings well enough to use them separately for quantifica-

Figure 3.9 Exemples of displays used in mexerch on decinal trowledge
cion but cannot coordinate the use of several strings within a single quantification task. In one of our studies. for example, all of the third-grade children we interviewed could count any single block denomination, but more than half of the children became confused when two or more denominations were to be quantified. Examples from the protocols of two such children appear in Figure 3.10.

Other performances characteristic of children in this early stage of decimal number knowledge suggest that chiddren typically recognize the relative values

	Alige S. E S E S 1 E. \mathbf{S} E. 0 E 200 E. $S 20$	Shows: (Toucting the mundredal 100,200,300.400.500.600 frouching the remi 7.8.9. 10.11 ... 611. Let's in one more like then How Hour then one? (Towetimg the mundrads) 100, 200 . (Exoucting the remal 201. 202. 203, 204. 205. 205. 207 .. (trouching the onsil 208, 209. 210.211 Mmm Ler's coume than agein. This then, why don't vou court them itens and onesal. (Towateng the ramel 10, 20, 30, 40, 50, 60. 70 (roucting ithe ones) 71, 72, 73, 14. How much is the (tumaroctal? 200. Onev. Mow much is that allogeriter? 200 and I neve 200, and i add this much ia ten biock: more Now much is thet morth? 201.
		Good So how muct do you thime thin mould be: ITouctuag the mundreds plockil 100.200.300, 400,500.600 trouching the cems bleckel 700. 800 . 800 , ten hundrea, deven thundrod Are there (temal worth 100? 1 coums them all topertiver. But theme lement arerit hurdoncte. 1 an cownting theow like twis. OK. Ave fow muct would thew frems be worth ithen? On. 10.20.30.40.50 . 50 dowess. 600 . . . ment in's 5 and 6. Elown hundrod.

Frave 3.10 Examples of confustons in mulmdenomioational counisge
of the different parts that make up the whole number. For example, most secondthrough fourth-graders we have interviewed compareci numbers on the basis of the higher-value digits without reference to the lower-value positions. For example. when comparing written numerals or block displays for the numbers 472 and 427. a chuld would typically say 472 was larger '" . . because it has 7 tens (or 701 and the oxher only has 2 rens." It is interesting to note that these judgments assume that the block displays are canomicat-that is, that they contain no more than 9 blocks of a given denomination. The assumption of canonicity disappears in the second stage of decimal knowledge. as we shall see next.

ME.NTAL ARITHMETIC

The most stunning displays of a compositional representation of number are in chuldren', invented mental calculation methods. Consider the following performance by an 8 -year-old. Amanda:

1. Can wo subtract 27 from 53°
A. id
E. Hon did vou figure is our?

A: Well. 50 minus 20 is 30. Then take away 3 is 27 and plus 7 is 34.
Amanda came up with the wrong answer, but by a method thas clearly displayed her understanding of the compositional structure of two-digit numbers. She first decomposed each of the numbers in the probiem into tens and units. and then performed the appropriate subtraction operation on the tens components. Next she proceeded to add in and subtract out the units components. She should have subtracted 7 and added 3. but instead reversed the digits. Amanda performed on other problems without this difficulty. yielding correct answers. Other children have shown similar strategies.

We have also mgun to explore decimal-based mental arithmetic using the reaction-time methods that yielded initial evidence for the min and choice procedures for smaller numbers. We now have reaction-time data from 12 secondand third-grade children on a set of problems of the form $23+9.35+2$. $48+5$ In each problem the rwo-digit number was presensed first and fell within the 20 s . 30 s . or 40 s decade. Each child responded to three sets of 100 such problems; the sets consisted of all possible pairings of the units digits, with the tens digits allowed to vary randomly. The problems were presented horizontally on a videoscope. and the child responded on the digit keys of a computer terminal. Time from presentation to resporise was reconded.

Assuming that one is going to use a mental counting procedure for solving the:- problems, there are two plausible possibilities that distinguish clearly beiween use and non-use of the deceade structure:

1. Set the counter to the two-digit number, then add in the one-digit number in increments of one. Reaction time would be a function of the single-digit number (in this case, always the second number). We call this the min of the addends procedure. No understanding of the decade structure' of the numbers is required for this procedure. However, the child does have to know how to coumt over the decade barrier (e.g.. " . . 29, 30, 31 . . ") and must have a units number string that extends up through several decades.
2. Decompose the two-digit numper inte a tens component and a ones component, then recombine the tens c mponent with whichever of the two units quanrities is larger. Ser the counter ir. his reconstituted number and then add in the smaller units digit in increments of one. For example. far $23+9$, the counter would be set at 29 and then incremented three times to a sum of 32. Reaction cime would be a function of the smaller of the rwo uniss digits, so the procedure is called min of the urits. This procedure is a simple version of the one Amanda used. It not only uses the decade structure of the numbers but behaves in accord with principles of commutativity and associativity (e.g. $23+9=\{20+3 \mid+9$ $=20+[3+9]=20+[9+3]=[20+9]+3=29+3)$.

We fit each of these models (along with several ochers that are plausible but whose use would not ciearly illuminate decimal structure knowledge) to the reaction times (correct solutions only) of each of our subjects. We predicted the patterm of reaction times for a "pure" model, for a model with very fast times for doubles in the units digits, and for a model with very fast times for tens complements (i.e., pairs that add to 10 , such as $3+7.6+4$, etc.). We also interviewed each child on a set of similar problems in a think-aloud format. Finally, we had reaction-time data on each child's performance on a set of single-digit addition problems. Because a purely mathematical discrimination berween models is so difficult (the models themselves are highly intercorrelated), we used a combinstion of model fits, plausibility of the slopes (presumed counting speeds), children's think-aloud protocols, and the match berween lower decade (single digts) and upper decade (two digits plus one digit) performances to rease out a story about each child's performance.

Two children. Ken and Alan, provide particularly clear illustrations of the differences berween children who are in a predecimal stage of number representation and those who are clearly using a decimal representation in their mental arithmetic. Ken's reaction times on the upper decade problems were best fil by min of the adidends ($r^{2}=, .761$). On the single-digit problems his data cleanly fit the min model. with doubles ($r^{2}=.695$). The slope of the regression lines for the upper and lower decades (1.164 and .960, respectively) indicated a mental counting time of about one second per increment for both kinds of problems. This suggests that Ken was using the same basic units-counting strategy for both the single- and the two-digit problems. Ken also described the min of the addends counting-up procedure as his method in the think-aloud protocols.

Alan provides a contrast case. His reaction times on the upper decade problems fit best the min of the units model ($r^{2}=.847$). He also showed a nextbest fit for min of the units with complements. the only child to show a good fit to any complements model; and he showed a reassuringly poor fit to the min of the addends model. On the single-digit problems. his data best fit min. with doubles ($r^{2}=.831$). His slopes for upper and lower decade problems were also similar (. 346 for the single-digit problems; . 441 for the rwo-digit problems), indicating a similar mental counting speed for both kinds of problems. Although this story seems very straightforward, it is also incomplete. for Alan's data also fit (although with less variance explained) other models. It seems quite likely that he was using a variety of strategies on different problems. This impression is confirmed by his interview data. He clearly described himself as using the min of the units strategy for some problems. but on others he described various other methods that relied on knowledge of doubles and complements. It seems reasonable to conclude that Alan was using complex representations of number relationships to generate strategies that included but were not limited to min of the units.

GTHER STACE ONE TASKS

There are a number of tasks that an individual with the compositional representation of number shown in Figure 3.8 ought to be able to perform, but on which we have only impressionistic data at the presemt time. These include:

1. adding or subtracting 10 from any quantity more quickly than adding or subtracting other numbers (except 0 or 1. and possibly 2). To subtract 10 from 47. for example, an individual could enter the representation at 47 and move one step on the "tens-backward-next" link directly to 37.
2. counting up (or down) by tens from any starting number.
3. constructing mental addition and subtraction algonithms that use the ability to count by 10 from any number. For 72 - 47, for example, enter the number representation at 72: move down the 10 string four positions to 32. Move down the ones string (crossing the tens position) seven positions to 25. This strategy is related to those (such as min of the units and Amanda's strategies) that partition numbers and operate separately on the rens and units, but it reflects a somewhat differens use of the decimal structure.

A HORMAL THEORY OF STAGE ONE KNOWLEDGE

We are able to benefit in our analysis of the development of decimal number knowledge from a computer program that simulates the performances of a 9 -year-old girl, Molly, on a number of the tasks that provide the basis for inferring place-value knowledge. The program, MOLLY, matches Molly's performance
at several points before, during, and after remedial tutorial instruction aimed at establishing an understanding of the rationale for the standard, school-taught wriwen suberaction algorithm. Prior to our instruction, Molly demonstrated the ability to perform casks such as constructing, interpreting, and comparing block displays of two-and three-digit numbers. The knowledge structure included in the program that was used in performance of all of these tasks is shown schemmaically in Figure 3.11. This structure orgmaizes conventional information abour matridigit wrimen numbers. The structure identifies columas according to their positional relationship to each other. The rightmost column is tageed as the units column, the tens column is the ore that is mext to the units, the hundreds is next to the teas, and so forth. Which columan is being maended to can be devermined by starting at the rightmost position and running through the succession of Next links. Actached to each coltman is a block shape (the block names are those used by Dienes, 1966, in referring to blocks such as those in Figure 3.9), a couming string, and a coivina value. The value specifies the amount by which a digit must be mulkiplied to yield the quantity represented by the digit (e.g., in the teas column, maltiply by 10).

Someone who possessed this knowledge structure should be able to associate block shapes with column positions, block shapes with column values, and so on. Table 3.1 gives the number of chird-grade children in one of our studies who showed reliable knowledge of each type of ascociation a each of two inserview points during the year. Since the knowledge was inferred from the method by which childrea solved the various problems presented, racher than by direct questioniag, it was not possible to observe each child on each association in each interview. For this reason the data are given as proportions-the number of children who showed knowledge of the association over the number observed.

As can be seen, all of the children had the position-name association from the outser. That is, they could read two- and three-digit numbers aloud using the pruper conventions. A position-shape association was inferred when the children constructed displays in a manner them directly macthed each block shape to a digit. The ctrikdren using a column-by-column match strategy typically worked on the leftmost column first and pointed to each column in succession. saying. " n of these." Three of our subjects worked this way successfully in their firss interview, more in the second interview. All of the children we observed could apply the appropriate counting strings to block shapes as long as there was only a single block shape to be counted. When they had to switch denominations (humdreds to tens, or tens to ones), however. they had difficulty: Less than balf of those observed succeeded (ef. Figure 3.10). To be counted as knowing the value of a column position. the child had to either tell us that, for example, a 9 in the rens column was "worth" 90 , or selk at 9 tens blocks to represent that quantity. Only one child demonstrated this knowledge. Nevertheless. the children demonstrated fairly stroag tnowiedge of the value of block shapes. as is shown in the final row of Table 3.1.

Trole 3.1

	Noveruber	Fecoruary
Columa positionColuman mone	1010	1010
Colvana pasitiow Blact stape	33	67
	66	717
Two or move demomimmioms	27	36
Columen papriou/vilas	1110	17
Bloct shapervine	7110	\$10

Stage Two: Mindate Portholoming of Muloidytin Numbers

As long as the Next saructuse alone is used to interpret numbers, each writuen mumber cen have oaly ore block representation: a "canonical" represenmaion, with mo more than 9 blocks per column. In this camonical display there exists a onc-10-0ne mach between the mumber of blocks of a pericular denomination and the digit in a colvmn in stamdend writen motation. Lnsistence on the cmonical form, however, meass that there is no besis for carrying and borrowing-or, in block diaplays, for exchanges and mulkiple representations of a qumpiry. During the next stage in development, the Put-Whole schems is applied to multidigit numbers in a manner that allows multiple partitionings and thereby a variery of noncaponical representations of quantiry.

mULTPLE PARTITIONDGG ARRIVED AT EMPHRICALLY

At first. aldhough children recogaize that multiple representations are possible. they can construct them only through an empirical counting process. Molly's performance during the preimstructional phase of her work with us illustrates this method. Molly was asked to use Dienes blocks to subaract 29 from 47. She began by constructing the block display thet matched the larger number-than is. 4 tens and 7 units. She then ried to remove 9 uniss and, of course. could mor. The experimenter asked if she could find any way to get more uniss. Molly responded by putting aside all of the units blocks and ooe of the tens in her display. keaving just 3 tens. She counted these by teas (${ }^{\prime 1} 10,20,30^{\circ}$) and then continued counting by ones, adding in a uniss block with each count. up to 47. On the nexs subtraction problem. 54 - 37, Molly began with a moncanonical display of the 10 p number. That is, she put out 4 teas and counted in units blocks until she reached 54 , yielding a final display of 4 tens and 14 unirs. Molly thus appeared to have learned that certain problems will require noncanonical displays: she had
incorporated into her plan for doing block suberaction a check for whether there were more units to be removed than the canonical display would provide. However. at this stage she was able to establish the equivalence of the canonical and noncanonical displays only by the counting process that yielded the same final number in each case.

The MOLLY program provides a formally stated theory of whar Molly knew and how she used her knowledge at each of several stages. To simulate the stage of performance just described, MOLLY-1 uses several procedures that call upon the Part-Whole schema described earlier for story probiems. In MOL-LY-I. the schema is elaborated to include a special restriction, applied to twodigit numbers, that one of the parts be a multipte of 10 . To "show 47 with more ones." MOLLY-1 first applies Part-Whole in a global fashion, concluding that if the Whole is to stay the same but more ones are to be shown, there must be fewer tens. MOLLY-I then reduces the tens pite by a single block, the smallest possible amount to remove. Next. the schema is instantiated with 47 filling the Whole slor. and 30 in one of the Part slots. The Minimum Needed node of the schema is then used to access a procedure for finding the remaining Part by adding ones blocks and counting up until 47 is reached.

Two important concepts have been added to the number representation at this stage. Firss. the equivalence of several partitionings has been recognized. Second. the possibility of having more than 9 of a particular block size has been admined. This is crucial for an eventual understanding of borrowing, where-temporarily-more than 9 of a given denomination must be understood to be present. without changing the cotal value of the quantity. Interviews with a number of children in addition to Molly make it clear that prior to this stage the possibility of borrowing or trading to get more blocks is rejected because it will produce an "iillegal" (i.e., noncanonical) display.

PRESERVATION OF QUANTITY
 BY EXCHANGES THAT MAINTAIN EOUTVALENCE

A complere understanding of the possibilities for muttiple representation can be attributed to children only when they are no longer dependens upon counting to establish the equivalence of displays-that is, when they recognize a class of legal exchanges that will automatically preserve equivalence. Although Molly received po explicit instruction from us on this point, it was clear that after a certain amount of practice with the counting-up method of creating noncanonical displays, she came to recognize that 10 -for- 1 exchanges would recain the Whole quantity while changing the specific amounts in the Parts. At this poins she stopped counting up and began simply to trade-cthat is, discard a tens block and couns in 10 units, or discard a hundreds block and coum in 10 tens. We have observed the same kind of performance in other children as well. Some children

Fryere 3.12 Tie Trade schersin.
who engage in trades raber then counting up even become annoyed or amused with an experimenter who keeps anking how they know tha the display will shows the same mumber. They indicate in various ways that they believe than if a wea-for-ase unde has been made, the total quantiny could nor have changed.

The MOLLY-2 program provides a formal theory of Molly's hoowledfe at this sange. In what con be viewed as a further claboration of the Part-Whole schema, MOLLY-2 adds to the reprenemation for mulitidigit numbers an explicir 10 -for-1 relmionstip for adjecent block sizes. This knowledfec is represemed by a Trade schems (Figure 3.12), which specifien a clase of legal exchanges anong blocks. The schema specifies that there is a "from" pile of blocks from which blocks are removed. This pile becomes smaller by ose block. There is also an "inseo" pite of blocks thar becomes larger by 10 blocks. The velue of the blocks in the From and lato pites is essablished by matioplying the aumber of blocks removed or added by the valse of the block shape (as specified in the Next structure and a separate Value scheme that is aloo part of the programi). Thes. when urades are made between adjecens block sizess, the schema specifies that the Into ane the From values will be the sempe, even though the mamber of playsical objects -'sena has chenged. Applied as sa claboration of the Parn-Whole sctema, the Irade schema allows MOLLY-2 wo cosstruct albemative pertitionings of a qumatity withour having to count up from one of the parts.

Stage Three: Application of Purt-Whale to Writtea Arithmetic

I turn now so children's writuen arithmetic-ia particular, to how the chaborated Part-Whole schems is eventually applied to the interpretation of the con-
ventions of wrimen calculation. There is abundans evidence now available that many children leam rules for the written algorithms of subraction and addition without linking these rules to the kind of knowledge about place value and number that I have described here. What they seem to leam is a procedure for identifying columns. operating on them. making marks (writing in lituk 1's. crossing out and rewriting numbers. etc. I. but not a rationale that makes the procedure sensible. Brown and Burnon (1978) have demonstrated that when children make errors in written arithmetic-particularly subtraction-the errors are often the result nox of random mistakes. but of the systematic application of wrong (${ }^{\prime}$ bugg $"$) algorithms. Figure 3.13 describes and illustrates some of the most common suberaction bugs. Elsewhere (Resnick. 1981) I have analyzed a number of the Brown and Burion bugs to show thas they typically foliow rules of syntax. or procedure. while ignoring or contravening the "semantics" of ex-change-that is. the principles embodied in the Part-Whole. Trade. and Value schemata described here. For example. in the bug called Borrow-Across-Zero the chuld follow's a rule specifying the need for a written-in littie I and a crossedout and decremented number to uts left. The syntax of subtraction is largely respected. However. the semantics of exchange is violated, for the uild has in fact borrowed 100 but added back only 10 --thus failing to conserve the original quantity.

Brown and VanLehn (1980. 1982: VanLehn. Chapeer 5) have developed a theory intended to account for the process by which buggy algorithms are invented. The theory assumes that the correct algoritimn has been lemned but is incomplete for certain problems. cither because an incomplete algorithm was taught or because certain steps have been forgotten. When these problemswhich most often contain zeros in the top mumber-are encountered, the attempt to apply the leamed algorithm creates an impasse. The child altempts to cope with the impasse by "repaining" the learned algorithm. The repairs proceed in a "generate-and-test" mode that is shared with many other problem-solving process theories (e.g. Newell \& Simon. 1972). First, a repair is generated from a very limited list of potential repairs. The list includes moving into the next column to perform an action (this would produce the Borrow-Across-Zero bug). skipping an action. copying a number. and the like. Once generated, a repair is tested against a set of "critics" that specify certain constraints that a subtraction algorithm muss obey. These include rules such as acting at least once on each column, showing decrement and increment marks, and not writing more than one digit in each answer column. There is nothing in either the critic list or the repair generation list that refers to what I have been developing in this chapter as the "meaning" of decimal numbers. There is no critic that specifies that the original Whole quantity must be preserved, nor is there anything in the repair or critic lists that even identifies the value of the borrow and increment makk. The theory thus describes an almost wholly syntectic set of bug-generating processes.

Given this characterization of the origin of buggy arithmetic, it can be

$$
\begin{array}{rr}
328 \\
-117 & -342 \\
\hline 11 & 244
\end{array}
$$

$$
\begin{array}{rr}
622 \\
-45 & -39 \\
-185
\end{array}
$$

$$
\begin{array}{rr}
302 \\
-327 \\
\hline 23
\end{array}
$$

 dutur buy 8 or bay 0 .

$$
\begin{array}{rr}
703 \\
-87 \\
\hline 175 & 60, \\
-187 \\
307
\end{array}
$$

 numer.

$$
\begin{array}{r}
705 \\
-382 \\
\hline 417
\end{array} \quad-3087
$$

$$
\begin{array}{rr}
604 \\
-482 \\
402 & -805 \\
\hline
\end{array}
$$

$$
\begin{array}{rr}
676 \\
-108 & -109 \\
\hline 60 \% & -107
\end{array}
$$

 the cetwe cohtivis.

$$
\begin{array}{r}
302 \\
-385 \\
-3406 \\
\hline 1106
\end{array}
$$

 the bottom digit is forye man the tope.

$$
\begin{array}{rr}
326 & 542 \\
-117 & -389 \\
\hline 210 & 200
\end{array}
$$

 frow is 0, the sudens borrows from the bonow digit inutid (Note: this buy murd be comelinad wim oither beag or tuyg 51.

$$
\begin{aligned}
302 \\
-379
\end{aligned} \quad \begin{array}{r}
598 \\
454
\end{array}
$$

Frare 3.13 Deacripionas and exarnples of Brow and Burtan's (1978) common subtraction bups. (Adnqued frow Rewnck. 1982. Copynght 1982 by Lawnence Erlbatm Asuociacts. Reprined by permincion.)
argued that one of the important tasks of primary school arishnetic learning is the development of knowledge structures that provide a "semantic juscification" for procedures of written borrowing and carrying. As we have seen cartier in this discussion, there is evidence that children have or can relatively easily acruire substantial semantic knowledge-in the form of Part-Whole and Trude schemam and associsted procedures-applied to concrete representations of number. It
therefore seems likely that a useful method for assisting children in the development of a semantic interpretation of written arithmetic would be to call their attention to correspondences berween the steps in written arithmetic and the performance of addition and subtraction with concrete materials (ef. Dienes. 1966). In an earlier work (Resnick, 1981) I described one method for doing this, via what was termed mapping instruction. In this instruction the child is required to perform the same problem in blocks and in writing, altemating steps between the two. Under these conditions the writen notations can be construed as a

Figure 3.14 Oudime of mapping instruction for subbraction. (From Resmick, 1982. Copyright 1982 by Lawrence Erlbaum Ascociatex. Reprinted by permiscion.)
"record" of actions on the blocks. Figure 3.14 summarizes the process for a siberaction problem.

Mapping instruction has been successfully used with several childrea who had buggy subtraction algorimhons. Nox oaly did their bugs disappear, but the children demonsaramed that they had acquired an understanding of the semantics of the wrimea algorithm. Once again, Molly's performance and our simulation of it provide both a clear example of typical behavior and a theoretical accoumt of the mental processes involved.

value of carry and borrow marks

We have seen that rather early in their developanem children can recognize the values of digits in various columas of standerd noctation, using the Nexs strucume only. There is evideuce in our deta, however, that this ability to ssign value does not extend to the notations made in the course of carrying and bonowing. In one of our studies, third-grade children were asked to sell us the value of the carry and bonsow digiss in writuen addition and subtraction. In virtually every case they simply mamed the digit ruther than its actual value. For example, when they were shown the solved problem in Figure 3.15. the litule is a was assigned a value of 1 instead of 10 . and the litric 1 a b was assigned a value of 1 instead of 100 . When asked so select the biock(s) that would represenn these 1 marks, the childrea typically selected a single units block. By conarast. after insuruction Molly and ochers who had been taugha via mapping assigned a value of 10 to the I at a and 100 to the I at b. and selected blocks accordingly.

EXRLANING THE WRTTEN DOMNOWING ALCORTHM

Molly's most stunning display of understanding wnitten borrowing came in a follow-up interview about four weeks after instruction. During this time she had had no direct instruction on suberaction. When asked to do problems in writing in this follow-up interview. Molly did nor use exactly the procedure she had leamed from us. That is, on problems with 0 in the top number, she did not begin by decrementing in the humdreds column and changing the 0 in the tens

Pipure 3.15 Solved problerd showng carry and boriow marks

Fipure 3.16 Two exirects of Molly's explamanons
column to 10 . then decrementing this 10 to produce 9 as par of the exchange ino the units column. Instead, she used the "school algorithm." going righs to left and changing each 0 directly to 9 .

This algonthm cannot be directly mapped onto blocks. and thus one cannot explain why it works by simply describing exchanges as if they had been done with blocks. Thus. any justification Molly was able to offer for her written work would have to depend on her schematic knowledge. Figure 3.16 gives two extracts of Molly's explanations. In the first case Molly was asked to check another child's work. She knew the 10 in the tens column should be changed to 9. but she did not justify this as the outcome of a trade. Instead, she gave an explanation in terms of the values of the decrement and increment marks (9 cens in the tens column plus iten in the units column), with the clear implication that a whole-preserving exchange had been made (otherwise she would nor have sought the "other ten"). In the second extract. Molly shows even more clearly that she was searching for parts to make up the 1000 thas she recognized had been borrowed in the course of decrementing the thousands columa.

MOLIY-3 provides a theory of how these explanations were constructed. To construct analogous explanations, MOLLY-3 uses an Exchange schema (Figure 3.17) that develops by interpreting borowing as an analog of trading. The Trade and the Borrow portions of the Exchange schema have analogous elements. As a result, for writen borrowing there is a From column that gets smalier by 1 and an Into column that gets langer by 10. The values of these

Fipere 3.17 The Encharge scheme.
decrerments and increments are, as in the case of trading. determined by multiplying by the columan value. In the units column, the increase of 10 in the lmo column is multipliod by 1 : burt in the teas column it is multiplied by 10 to yield a value of 100 . As a resuk, when ineeppesed uader conatrol of the Exchage schema, the increment marks would be represented by teas or hundreds blocks. never by unit cubes. The effect of having the Exchange schema is to allow MOLLY-3 to inverpret borrowing as it had trading: as an exchange among parts that maintains the value of the whole.

MOLLY-3 uses its newly constructed Exchange schema to construct explavations for the standard school borrowing algorithm tham paralici those of Moty. For example, for the probtem 403 - 275, MOLLY-3 handles several questions abour increments and decrements as follows: It keeps track of its actions by building a temporary Changes structure that specifies old and new values in particular columas. The Changes structure also records whether the new value is larger or smaller than the original. Faced with the question, Where did the 13 in the unirs coluonn come from?. the program examines its currem Changes struccure, searching for a 13 as a new value in the units column. Finding this. it can determine than the 13 is larger than the original value for that column. Now it looks for a place in its knowledge where larger is linked with a column into which somecthing is added. It finds the Bonow schema. It instantiates this schema, with the units column as the Into column. It can then "read our" the answer from the instantiated schema as: It comes from borrowing I ten from the tens column for the units column.

Now given the question. Where is the 100 you borrowed from the hundreds column?. MOLLY-3 uses its Changes structure to determine that the hundreds column is smaller. As a result. it searches for a structure in its own knowledge base in which a column is made smaller by taking something from it. This leads It to the Borrow schema, which it activates and tries to instantiate. It fills the From column with the hundreds column. and it knows this column has goten smaller by one times the column value (of 1000). It must now fill the slots on the Into side. To do this it tries at first to find a column made larger by 10 times a column value of 10 . bur it cannor find such a column in the written notation. Instead. it finds a value of 90 shown in the sens column. Al this point it calls on the Parr-Whole schema, sets the Whole equal to 100 and Part A equal to 90. From this it can detemmine thas Part B must equal 10. Now it inspects the written notation again. looking for a column that shows an increment with a value of 10 . If is able to find this in the units column of the written notation. As a result it can conclude that: The 100 from the hundreds column has been made into the 90 in the tens column plus the 10 in the writs column. MOLLY- 3 cm answer the analogous question for borrowing across two zeros (for example, when 2003 is the top number in a problem) by iterating through the Part-Whole schema swice. first setting the Whole stot equal to 1000 and Part A to 900 , then setting the Whole to 100 and Pan A to 90 . It then answers: The 1000 from the thousands column has been made into the 900 in the humdreds column, plus the 90 in the tens column. plus the 10 in the units column.

CONCLUSION

Other topics in mathematics (muluplication, division, fractions), of course, will have been introduced by the end of the early school years and will have induced changes in representation not considered here. Nor can it be expected that all children by the end of primary school will have achieved the level of understanding represented by Molly. Yet such understanding is certainly an important goal of carly instruction in place value. Thus, it seems a suitable point at which to conclude this account of the cognitive development than accompanies carly school arithmetic leaming. What general conclusions abow the nature of number understanding and its development cas be drawn from this accoum?

The Centrality of the Part-Whole Scirema in Number Understanding

Firss. it seems clear that a reasonable account of the knowledge anderlying changing mathematics competence can be given in terms of a few schemate and
their successive elaborations. As we have seen, the Part-Whole schema piays a central role. Although I have not antempted bere to explain the origin of he Part-Whole schema, it seems hikely that it arises in connection with various reallife situations in which partitions must be made but no exact quantification is required. Such situations are easy to imagine in the life of the young child. For example, a hole in an otherwise complete puzzle means that a part is missing: food is shared with the recognition that the individual portions together represent all (the whole) that is available; or a child gives some (but not all) of her candy to ber brother.

I have pointed to evidence that Part-Whole in this primitive form is available to children before school begins. I have also suggested that its systematic application to quantiny characterizes the early years of school. A first elaboration of the basic Part-Whole schema, in this view, is its anachment to procedures for counting up (the procedures attached to the Minimum Needed node) and taking away (the procedures attached to the Maximum Exceeded node). These procedures, which are based on the units number string, produce a quantitative interpretarion of Part-Whole. The schema in turn allows numbers to be incerpreted both as positions on the mental number line and. simultaneously. as compositions of other numbers. This interpretation of number appears to underlic both story-problem solution and the invented mental arithmetic procedures for small numbers that characterize the carliest school years.

Further elaboration of the Part-Whole schems appears so characierize subsequent development of an understanding of the place-value system of notation and the calculation procedures based on it. Children apparently find it easy to place a special restriction on Part-Whole such that one of the parts must always be a multiple of 10 . This initial claboration generates an interpretation of multidigit numbers as compositions of units, tens, hundreds. and so on. This in tum permits invention of several quite elegant mental calculation shortcuts. However. further elaborations-those specified in the Trade and later the more abstrac! Exchange schemata-are required before multiple partitionings of quantity can be recognized and the rules of written arithmetic interpreted. Since Trade and Exchange are always called upon by Part-Whole. it seems reasonable to view them as elaborations of the more general schema for partitioning quantity.

Microstages in Development

Many readers will have noted parallels between the analysis offered here and interpretations of the number concept proposed by Piaget and others working in the Genevan tradition. Indeed, this analysis shares two central emphases with the Piagetian view: (a) an emphasis on part-whole (class inclusion. for Piagen) relationships as a defining characteristic of number understanding. and (b) the
proposal that ordinal (counting) and cardinal (class inclusion or pan-whole) relationship, must tee combined in the correie of constructing the concept of number

If in copectall! pleaving to have amved at this convergence because the present analy wh us wonducted quite independently of Paget's work. I did not net out to either support or disconfirm Piaget's theory of number understanding nus rather to build a plausitile account. from a current cognitive science point of weu. (if what number hnowledge must underlie the various anthmetic performances ohserved in young shool children In doing this. I drew on formal theoretical analyse that worked trom task performances to the kind of knowledge children "must hate" in order to engage in the performances observed. This effor to huild a theor: of understanding on the basis of detailed analyses of procedurn used in performing whs is quite different from the Piagetian method of hypothevting a mental structure and then seeking tasks that might reveal its prevence of absence (One might well characterize the methods used here as more thotum ap than those of Praget

One result of these more boutom-up task- and performance-dnven methods W that we are athe to deter indeed. are forced to recogrize-relatively small thangev in connitive structures In a sense, we have been able to produce a mic rentage theory tor number understanding. a theory that specifies many small changes in number representation and schematic interpretation of number in a perixi of developinent for which the Piagetian analysis recognized only the macrostuges of preoperativity and concrete uperativity. This ennched theory of thanges in number knowledge is of clear importance to those concemed with instructoon, for it specties "what to teach" at successive stages of learning or de velopment The microstages of understanding developed bere also permit us to give a more precise pivchological interpretation to certan key mathematical conceps than has heretofore been possible

An Interpretation of Cardinality

One example of such interpretation w the one that is now possible for the development of an understanding of cardinality. Gelman and Gallistei (1978) included wheir pronciples of counting a cardinality principle. which specifies that the final count word reached when a set of objects is being enumerated is the lotal number in the set-that is. the set's cardinality. For the preschool child. who has not yet come to merpret quantity in terms of a fully developed Part-Whole schema. this is the only meaning of cardinality available. This criterion of understanding cardinality has been criticized (e.g. . Bessot \& Comiti. 1951) as too weak and in particular as not reflecting the Piagetian definition of cardinality We can now see that a hugher stage of cardinality understanding can
be recognized in the child's subsequent application of the Part-Whole schema to number. Although a primitive form of partitioning is clearly present in early counting behavior (this is what is required to keep counted and nos-yet-counted objects separate). the Part-Whole schema used later in solving story probiems yields the understanding that a total (whole)quantity remans the same even under variant partitionings.

The meaning of cardinality is further elaborated when the place-value schemata outlined here are acquired. When the Part-Whole schema with the multi-ple-of- 10 restriction is applied to two-digit numbers, the amount represented by the number becomes subject to multiple partitioning without a change in quantity. This is exactly paralle! to the new understanding of cardinality for smaller numbers that was achieved when the Parr-Whole schema was applied to them. Without application of the Part-Whole schema, the cardinality of a number resides in the specific display set and the number attached to it through legal counting procedures. With Par-Whole, cardinality resides in the toral quantity. no matter how it is displayed or partitioned.

The Trade and Exchange stages of multidigit number representation show vet a higher level of understanding of cardinality. At these stages it is recognized that cardinality is not altered by a specified set of legal exchanges. An analogy can be drawn with the earlier recognition of quantity as unchanged under vanious physical transformations (such as spreading out a display of objects-the classis Piagetian test of conservation). However, the transformations produced under control of the Trade schema do in fact involve a change in the actual number of objects presens. Thus. recognition that the value of the total quanuty remains unchanged requires a level of abstraction concerming the nature of cardinality that was not required for earlier stages of understanding

Procedural Kinowledge and Cinderstanding

An important characterntic of the account of number development offered here is the close link between procedural ,kill and understanding. It has been characteristic of many past eftorss to promote understanding of mathematics to speak as if understanding and procedural wail were somehow incompaubie. Werthemer (1945:1959). for example. in pressing tor structural undervanding as the goal of education. attacked the teaching of algonthms and other aspects of "mandles drill " Piaget. too, was largely disinterested in procedural ihits. despite the role that "reflective abstracion"-the process of reflecting on one", own procedures o draw out pnociples-plays in his theory of development (Plaget. 1967/1971). Many educators inspired by Plaget's emphass on understanding have actively argued against any kind of procedural emphassis in mathematics instruction.

The present analyses. by contrast. suggest that procedural skill often underhev understanding. For example, the account proposed here for the invention of the min and choice calcuiation procedures suggests that inventions reflecting an understanding of number can come about only when procedures become well enough established that their results can be inspected and compared. Similarly. shildren apparently learn about the decade structure of the number system through what musi toc. at first, rather "mindless" repetition of conventional ctunting vering:

We do not yet have a full theon to propose about exactly how practice in counting and other arthmetic procedures interacts with existing schematic knowledge ou produce neu levels of understanding. Neventheless, it already ceems clear that a detaled theory of hou new levels of number understanding are whesed will reveal actute interplay between schematic and procedural anouledye

REFEREMCES

 Aimntales $\mid 4 \times 1$

Ashoraft M H A fieman B A Mental adducen in thord. fourth. and sixth graders Journal of E, uerimentat Child Pswhalogi. 1982. 33121, 216-234
Herwi A d Comm. C Fiuke du tonctomnement de cenanes propnetes de la sute des nombres dan le domaine numenque $\mid 1.3$) chen des cieves de fin de premere amate de I' tcole
 Pruholign of Mothematics Eduration Grenoble. France July, 1981 Available from Dean Rithen Karplu, Coliege of Eduraton. University of Califorma. Berketey. CA 94720.
Bias D J. Ax Larhin. J H An iniegraved model of shill in wiving elemernan word problems. Paper presented al the annual meeting of the Socrety for Research in Chitd Developmen. Boston. Apoll 1961
Brimn \mathcal{S} \& Burtom. R Diagnostic models for procedural bugs in basic mathematical skills Cifnime Surnce. 1978. 2 (21. 155-192
Krrown; S. Vanletin K Repair theory A gencraive theory of bags in procedurlals. skills. (ugntise Science 1980414), 379-426
Brown. J S \& VanLetin. K Toward a gencrative theory of bugs in procedaral ixills in T Cappenter. J Moser. \& T Romberg (Eds). Addivion and subtraction: A cogmume perspecfive Hillsdate. N J Lawrence Erlbaus Assocines. 1982
Carpenter. T. \& Moser. J The devetapment of addetion and suberaction problem-solving skills is T Carpenter. I Moser. \& T Romberg (Eds.), Addaion and subracmon: A cognitive perspec. uve Killsdalc. N.J. Lawrence Ertbaum Assocnates. 1982.
Cimpenter. T P. Hiehert. J. \& Moser. J. M The effect of problem structure on first graters' matisil whution prucesses for sumple addition and subteracton problems Jowinal for Research in Mathemalucs Educanow. 1981. 1211), 27-39

Comidi. C. Les promieres acquisitioss de la notion de nombre per l'enfam. Educanonal Sndies in Mashemmics. 1981. 11. 301-318.
Dienes. 2. P. Mastematics in atr primary school. Loadoa: MacMillan. 1966.
 Jowral of Psyctology, 1968, 59, 461-471.
 Mover. \& T. Romberg (Edm.), Addition and suberacnom: A cognitive perspectuve. Hillsdale. N.J.: Liwnesce Entbmin, Asoocimes, 1982.

Fruon, K. C. \& Minaliewicz, D. B. A decmiled amelysis of athe act of cownting. Paper presented of the mapel meeting of the Asmericen Educetion Research Ascocistion, Boston, April 1980.
Fusoa. K. C., Richards. J., \& Brians. D. J. The nequisioion and elmbonation of the aumber word soquence, In C. Brsieend (ES.), Progress in logicat drvelopwirnt: Children's logical and mentramancal cognition (Vol. 1). New Yok: Sprimeor-Vertag. 1982.
Getman. R. Lopical capacity of very youas childrear: Number invariance rules. Child Deveiapmenr. 1972. 43. 75-90.

Cetmen, R. Gallisted. C. R. The child's waderstanding of neomber. Cambridge Mass: Hervimd University Press, 1978.
Ginsburg. H. Children's arutimeric: The leweing process. New York: D. Vas Nostrand, 1977
Greeno. J. G. Rikey, M. S.. Gelmasa R. Young children's camating and mandersmanding Puper

Groen. G. I. \& Partman. J. M. A chroponetric malysis of smple addition. Pswhological Review. 1972. 79(4). 329-343.

Groes. G. J. \& Poll. M. Seboraction and the solution of open senvence problems. Journal of Exprimemen Child Psychology. 1973. 16. 292-302.
Groes. G. J., \& Ressick. L. B. Cas preschool children invent sddreon algonthms? Jownal of Edmastional Psychology, 1977. 59, 645-652.
Houlihen, D. M. \& Ciseburg. H. P. The addition methodk of firss-and second-grade ctuldren. Jownad for Resparch in Mashemarics Edwcation. 1911. 1212). 93-106.
Inbeider, B., A Pigger, J. The early growith of logic in the ctuld. New York: Norton. 1969. TOngunal Engich smasiasion (904).
 N.J.: Lawresce Eribaum Assocines. 1976.

Lundvall. C. M., \& Gibbons-Iberra. C. G A clinical investigatuon of the difficulties evidenced bv tunderganten childres in developing "models" for the solution of arithmerte surn probtems. Paper presented at he anmual meetung of the Amencan Educational Research Association. Boston. April 1989.
Markman. E. M. \& Sietern. J. Classes and collections: Ineemal orgamzation and resultug hodisac oroperties. Cognulive Psychology. 1976. 8. $561-577$
Neches. R. Madels of hewnsrac procedure modification. Unpubished doctoral dusservarion. CamegreMeilon Univensiry. Depertnem of Pyychology. Pinsburgh. Pz. 1981
Nesher. P Levels of descrpticn in the andysis of addivion and swbracuon word problems in T Carpenter. I. Moser, \&T Romberg (Eds.) Addition and subrraction: A cognuluve perspective Hillodate. N J.: Lawrence Eribaum Aseocrates. 1982.
 Smaties in Mashematics. 1975. 6. 41-51
Newell. A. \& Simon. H A. Human problem solving. Englewood Cliffs. NJ Prentice-Hall. 1972
Piaget. I. The chuld's concepnion of number New Yort: Norton. 1965 tOnginally publisthed 19011
Praget. J. Biology and knowledge Chacago: Universury of Chicago Press. 1971 1Onginally published 1967)

Pots. G P. Banks. W' P. Kosslya. S. M. Moyer. R. S. . Riley. C. A. . Emath. K. H. Enooding and retreval in comparative judgments in 1 . N. Castellan (Ed.). Cognirive theory (Vof. 3) Millsdalc. NJ. Lawrence Eribaum Assocyates. 1979
Resuich. L. B Syntax and semantics in learning to suberact In T. Capenmer. J Moser. \& T Romberg (Eds I. Addition and subvraction. A cognurive perspectuce. Hilisdake. NJ. Extomum. 19\%2
Kesnch. L B. Ginetw. J G., \& Rowland. J MOLLY A model of learming from mappugs instrac. nom Lapublished manuscriph. Cinversy of Pinsburgh. Lcarning Resemch and Development Center. Pitushurgh. PA. 1980
Schacfter. B . Egglenton. V H. \& Scont. I L. Number developmem in young children Cognitave Pivhenorv, 1974. 6. 357-374
Sexutet. R A Mierhiewicz. D Chuldren's judgmen of numerical inequaliy Chid Development. 147*. 4*. 6.30-633.
Stegler. R S. \& Robmson, M The development of numencal understanding in H. W Recse \& L. P Lipuiti IEds I. Adunces in child developmens and behavor (Vol 161 New Yott. Acmdemc Press. 1982.
Smith. 1. B. A Kemier. D G Levels of expenenced dimensomality in children and aduis Cognilise Psichatogi. 1978. 10. 502-532
Siettr. L. Thmpom. P. A Richerds. I Children's countiag and anthmetical problem solving. In T Cuprentet. I Moser. \& T Romberg (Eds I, Addituon and subrraction: A cognume peryper. we Hilludale. NJ Erlhaum. 1982
Sienwm. O. \& Broquist. S Strasegies for solving sumple adiution problems. A comparison of normal and subnormal children Scandmavian Journol of Psuchologv. 1975. 16. 143-151
Sicawon. O., A Medenborg. M L. Strateges used by chuldrep when solving sample subtractaons. Ailu Pstrhohopica. 1979. 43. 1-13
Svenwon. O. Hedenborg, M L. \& Lumgmen. L On chuidren's beunstics for solviag ample addiInvo Scandinarian Journat of Edncannonal Research. 1976. 20. 161-173.
Sverimm. O. \& Spoberg. K. Solving sumple subtractions daring the first thee scbooi yean Journal of Experimental Eduration. an press
Vergnaud. G A ciasmfication of cognanve lasks and operations of thoughe unvolved in addimen apd shonraction probtems In T Carpenter. I. Mower. \& T. Rombere (Eds.I, Aditition and subrracuom A cognufive perspertive Hillsdale. N.I.. Lawrence Erlbamm Associases. 1982.
Werthemer. M Productive thinking (Eniarged ed) New York. Happer \& Row. 1959. (Ongmally pubished in 1945)
Wouds. S S.Resnick. L. B. \&roen. G J An expernmental sest of five procest models for subraction Jowrnal of Edacofionel Pswhotogy. 1975. 67(1). 17-21

46

AUTHOR
 TITLE
 INSTITUTION

SPONS AGENCY
REPORT NO
PUB DATE
NOTE
PUB TYPE

EDRS PRICE

 DESCRIPTORSResnick, Lauran B.
A Developmental Theory of Number Understanding. Pittsburgh Univ., Pa. Learning Research and Development Center.
Nat - nal Inst. of Education (ED), Washington, DC.;
Na. :al Science Foundation, Washington, D.C.
LRL $.984 / 38$
84
46p.
Reports - Research/Technical (143)
MF01/PC02 Plus Postage.
Arithmetic; *Cognitive Processes; Computation;
Educational Research; Elementary Education;
*Elementary School Mathematics; Error Patterns;
*Learning Theories; Mathematical Models; *Mathematics Instruction; *Number Concepts; Primary Education; Problem Solving; *Psychological Studies
IDENTIFIERS *Mathematics Education Research

ABSTRACT

Research on the psychological processes involved in early school arithmetic has now accumulated sufficiently to make it possible to construct a coherent account of the changing nature of the child's understanding of number during the early school years. This monograph presents an account of how number concepts are extended and elaborated as a result of formal instruction. A theory of number representation is outlined for three broad periods of development: (I) the preschool period, during which counting and quantity comparison competencies of young children provide the main basis for inferring number representation; (?) the early primary period, during which children's invention of sophisticated mental computational procedures and the mastery of certain forms of story problems point to two important expansions of the number concept; and (3) the later primary period, during which the representation of number is modified to reflect knowledge of the decimal structure of the counting and notational systems. (MNS)
***)

* Reproductions supplied by EDRS are the best that can be made

