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Abstract— In this paper, for the first time, we define a general
notion for proxy re-encryption (PRE), which we call determin-
istic finite automata-based functional PRE (DFA-based FPRE).
Meanwhile, we propose the first and concrete DFA-based FPRE
system, which adapts to our new notion. In our scheme, a message
is encrypted in a ciphertext associated with an arbitrary length
index string, and a decryptor is legitimate if and only if a DFA
associated with his/her secret key accepts the string. Furthermore,
the above encryption is allowed to be transformed to another
ciphertext associated with a new string by a semitrusted proxy
to whom a re-encryption key is given. Nevertheless, the proxy
cannot gain access to the underlying plaintext. This new primitive
can increase the flexibility of users to delegate their decryption
rights to others. We also prove it as fully chosen-ciphertext secure
in the standard model.

Index Terms— Functional encryption, functional proxy
re-encryption, chosen-ciphertext security.

I. INTRODUCTION

FUNCTIONAL Encryption (FE) is a useful cryptographic

primitive that not only guarantees the confidentiality

of data but also enhances the flexibility of data sharing.

It is a general extension of Public Key Encryption (PKE).

In traditional PKE, a data is encrypted to a particular receiver

whose public key has registered to a trusted Certificate Author-

ity. FE, however, provides more flexibility that the data can

be encrypted under a description a, and the encryption can

be decrypted if and only if there is a secret key whose

description b matches a. As stated in [17] and [32], a classic
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example of FE is Attribute-Based Encryption (ABE) [11], [30]

which comes to two flavors: Key-Policy ABE (KPABE) and

Ciphertext-Policy ABE (CPABE). The former associates a

secret key with an access policy such that the key can decrypt

a ciphertext associated with attributes satisfying the policy.

The latter, however, is complementary.

Although FE has many applications (e.g. audit-log [11]),

it might not be flexible enough in some practical settings.

For example, a social network user (e.g. LinkedIn1), say

Alice, might choose to share her profile (e.g. educational

details) with others under a policy, say P1 = (“Region:

United State” and “Occupation: student” and “Age:

from 20 to 30”). Suppose Alice’s profile is encrypted

under P1 and stored in the cloud so that the users

satisfying P1 can access the profile. However, when trying

to link herself with some companies for job applications,

she might modify the access policy, e.g. P2 = (“Region:

all countries” and “Location: Local/overseas” and “Field:

Finance”). To guarantee the companies matching P2 can

access her profile, a new encryption under P2 is required.

A naive solution for Alice to generate the encryption is to

first download the ciphertext under P1 from the cloud, and

next re-encrypt the profile under P2 before uploading to the

cloud. But the workload of Alice here is increased. If Alice

is using some resource-limited devices which cannot afford

the cost of encryption and decryption, she cannot share the

profile unless some powerful computational devices (e.g. PC)

are available. Besides, if the bandwidth is charged (by bit or

megabit), the download and upload operations might yield a

great amount of money.

Defined by Blaze, Bleumer and Strauss [5], Proxy

Re-Encryption (PRE) is proposed to tackle the above problem.

PRE is a useful extension of PKE, in which an honest-but-

curious proxy is given a re-encryption key that allows it to

transform ciphertexts intended for Alice into the ones intended

for Bob without revealing either the plaintexts or the secret

keys. PRE has many practical network applications, such as

digital rights management [7] and secure email forwarding [5].

To achieve more flexibility on re-encryption, many vari-

ants of PRE have been proposed, such as Conditional

PRE (CPRE) [33], Identity-Based PRE (IBPRE) [12] and

Attribute-Based PRE (ABPRE) [23]. CPRE allows an encryp-

tion associated with a condition to be converted to a new

ciphertext tagged with a new condition. The technologies of

1http://www.linkedin.com/
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IBPRE and ABPRE are somewhat similar, and a main differ-

ence between them is ABPRE enjoys more expressiveness in

data sharing.

We might choose to employ ABPRE to solve the previous

problem. Suppose Alice’s profile is encrypted under P1. When

sharing her profile with some companies, she only needs

to generate a re-encryption key from some descriptions and

upload the key to the cloud. The cloud then will re-encrypt

the encryption under P1 to the one under P2 such that the

companies satisfying P2 can access the profile. The cloud,

nevertheless, cannot read the underlying plaintext.

A. Motivation

Although ABPRE can solve practical network problems,

it leaves interesting open problems in terms of security and

functionality. All existing ABPRE schemes [23], [26], [28]

are only proved to be secure against chosen-plaintext attacks

(CPA) in the selective model. Nonetheless, the selective CPA

security is not sufficient enough in practice as it only achieves

the secrecy against “passive” adversary (i.e. eavesdroppers).

To guarantee a higher level of confidentiality for sensitive data,

a stronger security notion is desirable, i.e. adaptive security

against chosen-ciphertext attacks (CCA).

The functionality of an ABPRE system is another practical

factor. Nonetheless, all existing ABPRE schemes only support

access policy assembling with AN D gates and fixed size

inputs. Practically, an access policy might be required to

assemble with AN D, O R gates and N OT. Besides, in some

particular applications, the access policy might be expressed

by regular languages with arbitrary size. Thus it is desirable

to propose an ABPRE system with expressive access policy

supporting unlimited input size.

B. Our Contribution

1) This paper introduces a new notion, Deterministic Finite

Automata based functional PRE (DFA-based FPRE).

2) A concrete scheme is proposed to adapt to the new

notion. The scheme allows a data sender to encrypt a

message in an encryption associated with an arbitrary

length index string such that a secret key can be used to

recover the underlying plaintext if and only if the DFA

tagged with the key accepts the string. Furthermore, it

permits a semi-trusted proxy to transform an encryp-

tion associated with an arbitrary length index string to

another encryption associated with a new index string

without leaking any useful message information to the

proxy.

3) Our DFA-based FPRE can be seen as a type of

Key-Policy ABPRE (KP-ABPRE). It is worth mention-

ing that our scheme is the first KP-ABPRE in the

literature.

4) The present paper proves the scheme adaptively CCA

secure in the standard model. To the best of our

knowledge, it is the first of its type to achieve the

adaptive CCA security in the standard model, but also

to provide unlimited size input for access policy without

degrading the functionality of proxy re-encryption.

C. Related Work

The concept of ABE is introduced by Sahai and Waters [30].

Goyal et al. [11] proposed the first KPABE system. The

decryption is successful if the attributes tagged with ciphertext

satisfy the access policy of the secret key. Reversely,

Bethencourt, Sahai and Waters [4] defined Later on,

Cheung and Newport [8] proposed a provably secure CPABE

scheme supporting AND gates over attributes. Ostrovsky,

Sahai and Waters [29] embedded negative attributes in access

policy without increasing the size of ciphertext by employing

the revocation technique in [11]. Goyal et al. [10] presented a

construction in the standard model, but its large key size makes

the scheme insufficient. More efficient and expressive CPABE

systems were put forth by Waters [31]. Attrapadung et al. [2]

proposed efficient ABE schemes with constant-size

ciphertexts including a CPABE for threshold access policy,

and two KPABE (with monotonic/non-monotonic access

structures). Waters [32] proposed the first DFA-based FE

system that supports the most expressive functionality for

access policy.

The aforementioned schemes are proved selectively secure

except that [4] is secure in the generic group model. To achieve

CCA security, Yamada et al. [34] introduced a generic

approach that works for both KPABE and CPABE. Using dual

system encryption technology, Lewko et al. [16] converted [31]

to achieve fully security. But the conversion leads to some loss

of efficiency as it built on the composite order bilinear group.

Lewko and Waters [17] then introduced a new proof method

for converting a selective secure ABE to capture fully security

by integrating the selective technique into the dual encryp-

tion system. Inspired by this, this paper proposes the first

DFA-based FPRE with adaptive security in the standard model.

Following the introduction of decryption rights delega-

tion [27], Ivan and Dodis [15] proposed a generic construction

for proxy cryptography via sequential multi-encryption.

Blaze, Bleumer and Strauss [5] defined PRE, and proposed

a seminal PRE scheme. After that PRE comes to different

flavors: unidirectional and bidirectional PRE, and single-hop

and multi-hop PRE2. This work deals with the single-hop

unidirectional PRE. Since its introduction there are many

PRE systems (see [1], [7], [13], [14], [19]–[22], [24], [25]).

To implement PRE in the context of ABE, Liang et al. [23]

defined CP-ABPRE, and proposed a construction on top of [8].

Mizuno and Doi [28] proposed a hybrid scheme where it can

bridge ABE and IBE in the sense that ciphertexts generated

in the context of ABE can be converted to the ones which can

be decrypted in the IBE setting. Luo et al. [26] proposed a

CP-ABPRE scheme supporting AND gates on multi-valued

and negative attributes which can be viewed as a general exten-

sion of [23]. The schemes, however, are secure against selec-

tively CPA, and their policies only operate over a fixed number

of variables by AND gates only. Later on, Liang et al. [18]

proposed a solution to tackle the above limitation. But their

paper only considers limited input size for access policy. This

paper deals with this issue without degrading security level.

2The definitions are defined in [1].
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II. DEFINITION AND SECURITY MODEL

By a DFA-based FPRE we mean a unidirectional single-hop

DFA-based FPRE. Due to limited space we refer the reader

to [32] for the definition of DFA and DFA-based FE.

Definition 1: A DFA-based functional proxy re-encryption

(DFA-based FPRE) scheme includes the following algorithms:

1) (P P, M SK ) ← Setup(1n,
∑

): intakes a security para-

meter n and the description of a finite alphabet
∑

, and

outputs the public parameters P P and a master key

M SK , where n ∈ N. Note P P implicitly includes
∑

.

2) SKM ← K eyGen(M SK , M = (Q,T , q0, F)): intakes

M SK and the description of a DFA M , and outputs a

private key SKM , where Q is a set of states, T is a set

of transitions, q0 is a start state, and F is a set of accept

states.

3) rkM→w ← ReK eyGen(SKM , w): intakes SKM for

a DFA description M and an arbitrary length string

w ∈
∑

, and outputs a re-encryption key rkM→w,

where RE J ECT (M, w). This re-encryption key is used

to convert any ciphertext under a string w′ (in which

ACC E PT (M, w′)) to be another ciphertext under w.

4) C ← Encrypt (P P, w, m): intakes P P , a w ∈
∑

and

a message m ∈ GT , and outputs a ciphertext CT under

w (which can be further re-encrypted).

5) C R ← ReEnc(rkM→w, CT ): intakes rkM→w and CT

(under w′). If ACC E PT (M, w′), CT is converted to a

re-encrypted ciphertext C R under w (which cannot be

further converted); otherwise, output an error symbol ⊥.

6) m/ ⊥← Dec(SKM , CT ): intakes SKM and CT

(under w). If ACC E PT (M, w), output a message m;

otherwise, output an error symbol ⊥.

7) m/ ⊥← DecR(SKM , C R): intakes SKM and C R

(under w). If ACC E PT (M, w), output a message m;

otherwise, output an error symbol ⊥.

Security: The IND-CCA security for DFA-based FPRE sys-

tems is as follows. Here we make the knowledge of secret

key assumption where users will use their public keys when

they know knowledge of the corresponding private keys.

Definition 2: A DFA-based FPRE scheme is IND-CCA

secure at original ciphertext if no probabilistic polynomial

time (PPT) adversary A can win the game below with non-

negligible advantage. Let B be the game challenger.

Setup. B runs the algorithm Setup, and returns P P to A.

Phase 1. A makes the following queries.

1) OS K (M): on input a DFA description M , B runs

SKM ← K eyGen(M SK , M) and returns SKM to A.

Note the description M is based on
∑

, i.e. each symbol

used in M belongs to
∑

.

2) Ork(M, w): on input M and an arbitrary string w, B

returns rkM→w ← ReK eyGen(skM , w) to A, where

SKM ← K eyGen(M SK , M). Note w must be chosen

from
∑

, and RE J ECT (M, w).

3) Ore(M, w′, CT ): on input M , a string w′ and a CT

(under w), B returns a re-encrypted ciphertext C R ←

ReEnc(rkM→w′ , CT ) under w′ to A, where rkM→w′ ←

ReK eyGen(SKM , w′), SKM ← K eyGen(M SK , M),

ACC E PT (M , w) and RE J ECT (M , w′).

4) Odec(M, CT ): on input M and CT (under w),

B returns m ← Dec(SKM , CT ), where SKM ←

K eyGen(M SK , M) and ACC E PT (M, w).

5) OdecR (M, C R): on input M and C R (under w),

B returns m ← Dec(SKM , C R), where SKM ←

K eyGen(M SK , M) and ACC E PT (M, w).

Note if the ciphertexts issued by A are ill-form, output ⊥.

Challenge. A outputs two equal-length messages m0, m1

and a challenge string w∗ ∈
∑

. If the queries: OS K (M∗);

Ork(M∗, w′) and OS K (M ′) are never made, B returns the

challenge original ciphertext CT ∗ = Encrypt (P P, w∗, mb)

to A, where b ∈R {0, 1}, ACC E PT (M∗, w∗),

ACC E PT (M ′, w′) and RE J ECT (M∗, w′).

Phase 2. The following queries are forbidden:

1) OS K (M∗) for all M∗ requested ACC E PT (M∗, w∗);

2) Ork(M∗, w′) and OS K (M ′) for all M∗ and M ′

requested ACC E PT (M∗, w∗), ACC E PT (M ′, w′) and

RE J ECT (M∗, w′).

3) Odec(M∗, CT ∗) for all M∗ requested ACC E PT (M∗,

w∗);

4) Ore(M∗, w′, CT ∗) and OS K (M ′) for all M∗ and M ′

requested ACC E PT (M∗, w∗), ACC E PT (M ′, w′) and

RE J ECT (M∗, w′); and

5) OdecR (M, C R) for any M , C R , where (w′, C R) is a

derivative of (w∗, CT ∗). As of [7], the derivative of

(w∗, CT ∗) is defined as follows.

i. (w∗, CT ∗) is a derivative of itself.

ii. If A has issued (M∗, w′) to Ork to obtain rkM∗→w′

such that it can run C R ← ReEnc(rkM∗→w′ ,

CT ∗) under w′, then (w′, C R) is a derivative

of (w∗, CT ∗) if DecR(SKM ′ , C R) ∈ {m0, m1},

where ACC E PT (M ′, w′), ACC E PT (M∗, w∗)

and RE J ECT (M∗, w′).

iii. If A has issued (M∗, w′, CT ∗) to Ore to obtain

C R under w′, then (w′, C R) is a derivative

of (w∗, CT ∗), where ACC E PT (M∗, w∗) and

RE J ECT (M∗, w′).

Guess. A outputs a guess bit b′ ∈ {0, 1}.

The advantage of A is defined as ǫ1 = |Pr [b′ = b] − 1
2
|.

Definition 3: A DFA-based FPRE scheme is IND-CCA

secure at re-encrypted ciphertext if the advantage ǫ2 is negli-

gible for any PPT adversary A in the following experiment.

Set O = {OS K , Ork , Odec, OdecR }.

ǫ2 =

∣

∣

∣

∣

Pr

[

b′ = b : (P P, M SK ) ← Setup(1n,
∑

);

(m0, m1, w
∗, w′) ← AO (P P); b ∈R {0, 1};

C R∗ ← ReEnc(rkM ′→w∗, CT ); b′ ← AO(C R∗)

]

−
1

2

∣

∣

∣

∣

,

where w∗ and w′ are two “distinct” strings (chosen from
∑

)

so that if there is a SKM in which ACC E PT (M, w∗),

then RE J ECT (M, w′) holds, CT ← Encrypt (P P , w′,

mb), rkM ′→w∗ ← ReK eyGen(SKM ′ , w∗), SKM ′ ←

K eyGen(M SK , M ′). OS K , Ork , Odec, OdecR are the ora-

cles defined in Definition 2 but limited to the following

constraints. For OS K , A is forbidden to issue M∗ where
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ACC E PT (M∗, w∗). If A queries to OdecR on (M∗, C R∗),

the oracle outputs ⊥. There is no restriction for Ork and Odec.

III. FULLY CCA-SECURE DFA-BASED FPRE

A. Preliminaries

1) Composite Order Bilinear Groups: Composite order

bilinear groups were introduced in [6]. Let G and GT be

the two multiplicative cyclic groups of order N = p1 p2 p3,

where p1, p2, p3 are distinct primes. We say that GT has an

admissible bilinear map e : G × G → GT if the following

properties hold: (1) Bilinearity: ∀g, h ∈ G and a, b ∈R Z
∗
N ,

e(ga, hb) = e(g, h)ab; (2) Non-degeneracy: ∃g ∈ G so that

e(g, g) has order N in GT . Assume that the group operations

in G and GT as well as the bilinear map e are computable in

polynomial time with respect to a security parameter n, and

that the group description of G and GT include the generators

of the respective cyclic groups. We denote by G p1 , G p2 , G p3

the subgroups of order p1, p2, p3 in G respectively.

2) Complexity Assumptions: Due to limited space, we refer

the readers to [16] for the details of the 3 assumptions. Below

two new assumptions are defined.

The Source Group l-Expanded Bilinear Diffie-Hellman

Exponent (l-Expanded BDHE) Assumption in a Subgroup.

It is closely relative to the Expanded l-BDHE assumption

introduced in [32], but this requires the challenge term to lie

in the source group.

3) The Source Group l-Expanded Bilinear Diffie-Hellman

Exponent (l-Expanded BDHE) Assumption in a Subgroup:

Given a group generator G and a positive integer l, we define

(N = p1 p2 p3, G, GT , e) ← G, g1 ∈R Gp1, g2 ∈R Gp2,

g3 ∈R Gp3, a, b, d, m, n, x, c0, . . . , cl+1 ∈R ZN ,

D =
(

N, G, GT , e, g1, g3, g2, ga
2 , gb

2, g
ab/dx
2 , g

b/dx
2 , g

ab/x
2 , gn

2 ,

∀i ∈ [0, 2l + 1], i 
= l + 1, j ∈ [0, l + 1] gai mn
2 , g

ai bmn/c j x

2 ,

∀i ∈ [0, l + 1] g
ci

2 , gai d
2 , g

abci/dx
2 , g

bci/dx
2 ,

∀i ∈ [0, 2l + 1], j ∈ [0, l + 1] g
ai bd/c j x

2 ,

∀i, j ∈ [0, l + 1], i 
= j g
ai bc j /ci x

2

)

, T0 =gal+1bm
2 , T1 ∈R Gp2 .

The advantage of an algorithm A in breaking the

assumption is defined as Advl-B D H E
A

(1n) = |Pr [A(D, T0) =

1]− Pr [A(D, T1) = 1]|. Using the same approach of proving

q-based assumption [17], we can give the proof of the assump-

tion in the generic group model. We hence omit the details.

Definition 4: The l-Expanded BDHE Assumption holds if

Advl-B D H E
A

(1n) is negligible for any PPT algorithm A.

The Source Group Modified q-Parallel Bilinear Diffie-

Hellman Exponent (q-BDHE) Assumption in a Subgroup.

It is a variant of the source group q-BDHE assumption [17].

4) The Source Group Modified q Bilinear Diffie-Hellman

Exponent (q-BDHE) Assumption in a Subgroup: Given a

group generator G, we define the following distribution:

(N = p1 p2 p3, G, GT , e) ← G, g ∈R Gp1, g2 ∈R Gp2,

g3 ∈R Gp3, c, a, e, f ∈R ZN ,

D = (N, G, GT , e, g, g2, g3, ge
2, ga

2 , g
aef
2 , g

c+ f/c
2 , gc2

2 , . . . ,

gcq

2 , g
1/acq

2 ), T0 = gaecq+1

2 , T1 ∈R Gp2 .

The advantage of an algorithm A in breaking the assumption

is defined as Adv
q-B D H E

A
(1n) = |Pr [A(D, T0) = 1] −

Pr [A(D, T1) = 1]|.

Definition 5: The Source Group Modified q-BDHE

Assumption holds if Adv
q-B D H E

A
(1n) is negligible for any

PPT algorithm A.

Note we can prove the source group modified q-BDHE

assumption in the generic group model in the identical

approach as that of the previous assumption, we hence omit

the details.

B. Our Approach

It is challenging to propose a DFA-based FPRE system

when considering adaptive CCA security in the standard

model. The approach of achieving fully CCA security without

jeopardizing the expressiveness of DFA is as follows.

Our system is built on top of Waters-FE system [32].

Accordingly, it is unavoidable that the system inherits the

selective CPA security from Waters-FE scheme. To achieve

fully security, we might choose to employ the dual encryption

technology [16]. However, as stated in [17], the technique

of [16] degrades the expressiveness of policy so that a single

attribute can be used only once (in a policy) or a limited repe-

tition with the cost of enlarging the size of system parameters

and secret keys. This limitation for the policy (and efficiency)

is incurred by information theoretic argument. Our system

cannot get rid of this restriction by following the technology

of [16]. In our system a symbol can be repeatedly used in DFA

and index strings. Thus, the semi-functional parameters related

to this symbol might leak information to adversary such that

the nominality of secret key will not be hidden anymore.

To solve the problem, we leverage the proof idea of [17] by

integrating the dual encryption technology with the selective

proof technique. But we cannot trivially adapt the proof

technique of [17] to our system as two systems are based on

different primitives in which [17] is based on [31], and ours

is built on [32]. Like [17], the most crucial part of our proof

is to show that the nominality is hidden computationally from

the view of adversary. This reflects on the indistinguishability

from GameN
j to GameT

j . Due to limited space, we refer the

reader to Section III-D for the details. We let the challenger

respectively simulate the queries of Phase 1 and Phase 2 (in the

above indistinguishability simulation) as follows. In Phase 1,

the challenger will receive the queries of secret keys asso-

ciated with DFA before defining the delayed semi-functional

parameters. Thus this phase is closely analogous to the context

of selective security for a CPABE system. In Phase 2, the

challenger will obtain a string first that is closely relative to the

context of selective security for a KPABE system. We accord-

ingly leverage the selective proof techniques of [31] and [32].

To adapt the techniques to our system, we need two new

complexity assumptions (defined in Section III) which are

closely relative to the l expanded bilinear Diffie-Hellman expo-

nent assumption [32] and q-parallel bilinear Diffie-Hellman

exponent assumption [31]. For the rest of the games defined

in Section III-D, we prove their indistinguishability under the

3 assumptions [16].
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We employ target collision resistant (TCR) hash func-

tion [9], strongly existential unforgeable one-time signature [3]

and one-time symmetric encryption [9] to achieve CCA

security. In the proof we offer decryption oracle to the

adversary. This does not hinder the above framework as the

challenger can construct any secret key. One might con-

cern that in Gameq (resp. Game f inal ) the challenger only

generating semi-functional keys cannot respond decryption

queries correctly. Actually, a semi-functional key can decrypt

any normal ciphertext (issued by an adversary); and when

the challenge ciphertext is issued for decryption query, the

challenger will reject it.

To achieve adaptive security we let the elements of Gp1

represent all original components of our DFA-based FPRE

scheme, and additionally use the elements of Gp3 to randomize

the private key. The randomization will not hinder the func-

tionality of the scheme due to the orthogonality property of

subgroups Gp1 , Gp2 and Gp3 . Besides, the elements of Gp2

will not be used in the real scheme but in the security proof.

C. Construction

Our DFA-based FPRE scheme works as follows.

• Setup(1n,
∑

): Choose g, g0, z, h0 ∈R Gp1 , and α, k, a,

b, αend , αstart ∈R Z
∗
N . Set hstart = gαstart ,

hend = gαend and hk = gk . For each sym-

bol σ ∈
∑

, choose a ασ ∈R Z
∗
N , and set

hσ = gασ . Choose a one-time signature scheme OT S,

a one-time symmetric encryption scheme SY M =

(SY M.Enc, SY M.Dec), and two hash functions: H1 :

GT → Z∗
N and H2 : GT → {0, 1}poly(n). The P P

is
{

e(g, g)α, g, gab, g0, z, h0, hstart , hend , hk,∀σ∈
∑hσ ,

OT S, SY M, H1, H2

}

along with the descriptions of

G and the alphabet
∑

. The M SK is (g−α, X3), where

X3 is a generator of Gp3 .

• KeyGen(M SK , M = (Q,T , q0, F)): The description of

M includes a set Q of states q0, . . . , q|Q|−1 and a set

of transitions T where each transition t ∈ T is a triple

(x, y, σ ) ∈ Q× Q×
∑

. q0 is designated as a unique start

state and F ⊆ Q is the set of accept states. The algorithm

chooses D0, D1, . . . , D|Q|−1 ∈R Gp1 (associating Di

with qi ), for each t ∈ T it chooses rt ∈R Z
∗
N , ∀qx ∈ F

it chooses rendx ∈R Z∗
N , and chooses a u ∈R Z∗

N . It also

chooses Rstart1, Rstart2, Rstart3, Rt,1, Rt,2, Rt,3, Rendx,1 ,

Rendx,2 ∈R Gp3 and a rstart ∈R Z∗
N . The algorithm

constructs the key as follows. First it sets:

Kstart1 = D0 · (hstart)
rstart · Rstart1,

Kstart2 = grstart · Rstart2, Kstart3 = gu · Rstart3.

For each t = (x, y, σ ) ∈ T the algorithm sets:

Kt,1 = D−1
x · zrt · Rt,1, Kt,2 = grt · Rt,2,

Kt,3 = Dy · (hσ )rt · Rt,3,

For each qx ∈ F it computes:

Kendx,1 = g−α · Dx · (hend · gab)rendx · gku · Rendx,1 ,

Kendx,2 = grendx · Rendx,2 .

Finally, the key is

SK =
(

M, Kstart1, Kstart2, Kstart3,

∀t ∈ T (Kt,1, Kt,2, Kt,3),∀qx ∈ F(Kendx,1 , Kendx,2)
)

.

• ReKeyGen(SKM , w):

1) Choose a y ∈R GT and vx ∈R Z∗
N (for ∀qx ∈ F),

and set rk1 = K
H1(y)
start1, rk2 = K

H1(y)
start2, rk3 = K

H1(y)
start3,

∀t ∈ T (rkt,1 = K
H1(y)
t,1 , rkt,2 = K

H1(y)
t,2 , rkt,3 =

K
H1(y)
t,3 ), ∀qx ∈ F(rkendx,1 = K

H1(y)
endx,1

· h
vx

end ,

rkendx,2 = K
H1(y)
endx,2

· gvx ).

2) Run rk4 ← Encrypt (P P, w, y), and finally output

rkM→w = (M , rk1, rk2, rk3, rk4, ∀t ∈

T (rkt,1, rkt,2, rkt,3), ∀qx ∈ F(rkendx,1, rkendx,2)).

• Encrypt(P P, w, m): Choose s0, s1, . . . , sl ∈R Z
∗
N , run

(ssk, svk) ← K eyGen(1n) and constructs CT as

First set: Cm = m · e(g, g)α·sl , Cstart1 = C0,1 = gs0 ,

Cstart2 = (hstart)
s0, Cstart3 = (gsvk

0 h0)
s0 ,

for i = 1 to l, set: Ci,1 = gsi , Ci,2 = (hwi )
si · zsi−1,

finally, set:

Cend1 =Cl,1 =gsl , Cend2 =(hend ·gab)sl , Cend3 =(hk)
sl ,

Cend4 = Sign
(

ssk, (w, Cm , Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), . . . , (Cend1, Cl,2), Cend2, Cend3)
)

.

The original ciphertext is

CT =
(

svk, w, Cm , Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), . . . , (Cl,1, Cl,2), Cend2, Cend3, Cend4

)

.

• ReEnc(rkM→w′ , CT ):

1) If V eri f y(svk, (Cend4, (w, Cm , Cstart1, Cstart2,

Cstart3, (C1,1, C1,2), . . ., (Cend1, Cl,2), Cend2,

Cend3))) = 1 and e(Cstart1, gsvk
0 h0)=e(g, Cstart3),

proceed; otherwise, output ⊥.

2) CT is associated with a string w = (w1, . . . , wl)

and the re-encryption key rkM→w′ is associ-

ated with a DFA M = (Q,T , q0, F) where

ACC E PT (M, w). There must exist a sequence of

l +1 states u0, u1, . . . , ul and l transitions t1, . . . , tl
where u0 = q0 and ul ∈ F and for i = 1, . . . , l, we

have ti = (ui−1, ui , wi ) ∈ T . The proxy re-encrypts

CT as follows.

a) It first computes: A0 = e(Cstart1, rk1) ·

e(Cstart2, rk2)
−1 = e(g, D0)

s0·H1(y).

b) For i = 1 to l, it computes:

Ai = Ai−1 · e(C(i−1),1, rkti ,1)

·e(Ci,2, rkti ,2)
−1 · e(Ci,1, rkti ,3)

= e(g, Dui )
si ·H1(y).

Since M accepts w, we have that ul = qx for

some qx ∈ F and Al = e(g, Dx )
sl ·H1(y).

c) It sets:

Aend = Al · e(Cendx,1 , rkendx,1)
−1

·e(Cendx,2 , rkendx,2) · e(Cendx,3, rk3)

= e(g, g)α·sl·H1(y).



1672 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 10, OCTOBER 2014

d) The proxy sets C1 = SY M.Enc(H2(δ), ξ),

C2 = Encrypt (P P, w′, δ), where δ ∈R GT

and ξ = (CT ||Aend ||rk4). It finally outputs the

re-encrypted ciphertext C R = (C1, C2).

• Dec(SKM , CT ): If V eri f y(svk, (Cend4, (w, Cm , Cstart1,

Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cend1, Cl,2), Cend2,

Cend3))) = 1 and e(Cstart1, gsvk
0 h0)=e(g, Cstart3), pro-

ceed; otherwise, output ⊥.

First compute:

B0 = e(Cstart1, Kstart1) · e(Cstart2, Kstart2)
−1

= e(g, D0)
s0 .

For i = 1 to l, compute:

Bi = Bi−1 · e(C(i−1),1, Kti ,1) · e(Ci,2, Kti ,2)
−1

·e(Ci,1, Kti ,3) = e(g, Dui )
si .

Since M accepts w, we have that ul =qx for some qx ∈ F

and Bl = e(g, Dx)
sl . Finally compute

Bend = Bl · e(Cendx,1 , Kendx,1)
−1

·e(Cendx,2 , Kendx,2) · e(Cendx,3 , Kstart3)

= e(g, g)α·sl ,

and output the message m = Cm/Bend .

• DecR(SKM , C R):

1) Run δ← Decrypt (SKM , C2), compute ξ ← SY M.

Dec(H2(δ), C1), where ξ = (CT ||Aend ||rk4).

2) Run y ← Decrypt (SKM , rk4), then compute

K ey = A
H1(y)−1

end .

3) Verify

e(Cstart1, gsvk
0 h0)

?
= e(g, Cstart3),

V eri f y
(

svk,
(

Cend4, (w, Cm , Cstart1, Cstart2,

Cstart3, (C1,1, C1,2), . . . , (Cl,1, Cl,2),

Cend2, Cend3)
)

)

?
= 1.

If the equations hold, proceed; otherwise, output ⊥.

4) Output the message m = Cm/K ey.

D. Security Analysis

Theorem 1: Suppose Assumption 1, 2 and 3, the source

group modified q-BDHE assumption in a subgroup, and

the source group l-BDHE assumption in a subgroup hold,

SY M is a CCA-secure symmetric encryption, OT S is a

strongly existential unforgeable one-time signature and H1, H2

are TCR hash functions, our DFA-based FPRE system is

IND-CCA secure in the standard model.

Before proceeding, we define the semi-functional cipher-

texts and the semi-functional keys as follows.

1) Semi-Functional Ciphertexts: We let g2 be a generator

of subgroup Gp2 , choose γ0, γ1, . . ., γl ∈R Z
∗
N , α′

σ ∈R

Z
∗
N associated to each symbol σ belonging to

∑

, and

β ′, β ′
0, β

′
1, α

′
start , α

′
end , k ′, a′, b′ ∈R Z∗

N . We run (ssk, svk) ←

K eyGen(1n), and set the ciphertext as (svk, w, C ′
m , C ′

start1,

C ′
start2, C ′

start3, (C ′
1,1, C ′

1,2), . . ., (C ′
end1, C ′

l,2), C ′
end2, C ′

end3,

C ′
end4) in which

C ′
start1 = C ′

0,1 = gs0 g
γ0

2 , C ′
start2 = (hstart)

s0 g
α′

start γ0

2 ,

C ′
start3 = (gsvk

0 h0)
s0(g

β ′
0svk

2 · g
β ′

1

2 )γ0, C ′
end1 = C ′

l,1 = gsl g
γl

2 ,

C ′
end2 = (hend gab)sl g

(α′
end+a′b′)γl

2 , C ′
end3 = gksl g

k′γl

2 ,

for i = 1 to l: C ′
i,1 = gsi g

γi

2 , C ′
i,2 = (hwi )

si zsi−1 g
α′

wi
γi +β ′γi−1

2 ,

C ′
m and C ′

end4 are the normal ciphertext components generated

by the encryption algorithm except that C ′
end4 is the signature

for the above components. Note k ′, β ′, α′
end , α′

start and (some

of) α′
wi

will be shared in the nominal and temporary semi-

functional keys.

We define three types of semi-functional keys as follows.

Below we choose Rstart1, Rstart2, Rstart3 ∈R Gp3 , an R ∈R

Gp2 , d0, . . . , d|Q|−1 ∈R Z
∗
N associated to the states in Q, for

each t ∈ T choose ǫt , rt ∈R Z∗
N and Rt,1, Rt,2, Rt,3 ∈R Gp3 ,

for each qx ∈ F choose ǫendx , rendx ∈R Z
∗
N and Rendx,2 ∈R

Gp3 , and finally choose ǫstart , rstart , u′ ∈R Z∗
N .

2) Semi-functional Keys: We set the keys as

K ′
start1 = D0(hstart)

rstart Rstart1,

K ′
start2 = grstart Rstart2, K ′

start3 = gu Rstart3,

for each t = (x, y, σ ) ∈ T :

K ′
t,1 = D−1

x zrt Rt,1, K ′
t,2 = grt Rt,2, K ′

t,3 = Dy(hσ )rt Rt,3,

for each qx ∈ F :

K ′
endx,1

= g−α Dx (hend gab)rendx gku Rendx,1 R,

K ′
endx,2

= grendx Rendx,2 .

3) Nominal Semi-Functional Keys: We set the keys

as (K ′
start1, K ′

start2,∀t ∈ T (K ′
t,1, K ′

t,2, K ′
t,3),∀qx ∈

F(K ′
endx,1

, K ′
endx,2

)) in which

K ′
start1 = D0(hstart)

rstart Rstart1(g
α′

start

2 )ǫstart g
d0
2 ,

K ′
start2 = grstart Rstart2g

ǫstart

2 , K ′
start3 = gu Rstart3gu′

2 ,

for each t = (x, y, σ ) ∈ T :

K ′
t,1 = D−1

x zrt Rt,1(g
β ′

2 )ǫt g
−dx

2 ,

K ′
t,2 = grt Rt,2g

ǫt

2 , K ′
t,3 = Dy(hσ )rt Rt,3(g

α′
σ

2 )ǫt g
dy

2 ,

for each qx ∈ F :

K ′
endx,1

= g−α Dx (hend gab)rendx gku ·

Rendx,1 g
dx

2 g
(α′

end+a′b′)ǫendx

2 gk′u′

2 ,

K ′
endx,2

= grendx Rendx,2 g
ǫendx

2 .

4) Temporary Semi-Functional Keys: We set the keys as

K ′
start1 = D0(hstart)

rstart Rstart1(g
α′

start

2 )ǫstart g
d0
2 ,

K ′
start2 = grstart Rstart2g

ǫstart

2 , K ′
start3 = gu Rstart3gu′

2 ,

for each t = (x, y, σ ) ∈ T :

K ′
t,1 = D−1

x zrt Rt,1(g
β ′

2 )ǫt g
−dx

2 ,

K ′
t,2 = grt Rt,2g

ǫt

2 , K ′
t,3 = Dy(hσ )rt Rt,3(g

α′
σ

2 )ǫt g
dy

2 ,
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for each qx ∈ F :

K ′
endx,1

= g−α Dx (hend gab)rendx gku Rendx,1 R,

K ′
endx,2

= grendx Rendx,2 g
ǫendx

2 .

We will prove Theorem 1 in a hybrid argument over a

sequence of games. The total number of queries is q = qsk +

qrk + qre + qdec, where qsk, qrk, qre, qdec denote the number

of the secret key extraction, re-encryption key extraction,

re-encryption and decryption queries, respectively. We define

Gamereal to be the first game. It is the IND-CCA security

game for DFA-based FPRE systems in which the challenge

ciphertext (for original ciphertext security and re-encrypted

ciphertext security) is normal. In this game, B will use normal

secret keys as knowledge to respond secret key extraction,

re-encryption key extraction, re-encryption and decryption

queries. We define Game0 to be the second game which is

identical to Gamereal except that the challenge ciphertext is

semi-functional. Hereafter by “keys” (resp. “key”) we mean

the secret key(s) (constructed by B) used to respond the secret

key extraction, re-encryption key extraction, re-encryption and

decryption queries. In the following games, we will convert

the “keys” to be semi-functional one by one. But for clarity we

first turn the “keys” for the secret key extraction queries, and

then convert the “keys” for the re-encryption key extraction

queries, the re-encryption queries and the decryption queries

in sequence. Besides, A is only allowed to issue one corre-

sponding query in each of the following games. We further

define Gamei as follows, where i ∈ [1, q]. We let jι ∈ [1, qι],

where ι ∈ {sk, rk, re, dec}. For each game Game jι we define

two sub-games GameN
jι

and GameT
jι

in which the challenge

ciphertext is semi-functional. In GameN
jι

the first ( j − 1)ι
“keys” are semi-functional, the jι-th “key” is nominal semi-

functional, and the rest of “keys” are normal. In GameT
jι

the first ( j − 1)ι “keys” are semi-functional, the jι-th

“key” is temporary semi-functional, and the remaining “keys”

are normal. To transform Game( j−1)ι (where jι-th “key” is

normal) to Game jι (where jι-th “key” is semi-functional),

we start from converting Game( j−1)ι to GameN
jι

, then to

GameT
jι
, and finally to Game jι. Note to get from GameN

jι

to GameT
jι
, we deal with the simulations for the queries

of Phase 1 and that of Phase 2 differently: the former is

based on the source group modified q-BDHE assumption

in a subgroup, and the latter is based on the source group

l-expanded BDHE assumption in a Subgroup. In Gameq =

Gameqdec all “keys” are semi-functional, and the challenge

ciphertext is semi-functional for one of the given messages.

We define Game f inal to be the final game in which all

“keys” are semi-functional and the challenge ciphertext is

semi-functional for a random message, independent of the

two message given by A. We will prove the above games

to be indistinguishable by the following lemmas. Below we

assume SY M is a CCA-secure, OT S is a strongly existential

unforgeable and H1, H2 are TCR hash functions, and it is hard

to find a non-trivial factor of N .

Lemma 1: If there is an algorithm A such that

Gamereal Adv DF A-F P RE
A

− Game0 Adv DF A-F P RE
A

= δ,

we can build an algorithm B breaking Assumption 1 with

advantage δ.

Proof: For simplicity, we combine the security proof

of original and re-encrypted ciphertexts into one simulation.

Below by original/re-encrypted game we mean the security

game for original/re-encrypted ciphertext.

Setup. B is given an instance (D, T ) of Assumption 1, and

simulates either Gamereal or Game0 with A. B chooses

a, b, α, β, β0, β1, αstart , αend , k ∈R Z∗
N , ασ ∈R Z∗

N for all

symbols in
∑

, two TCR hush functions H1, H2, a one-time

signature system OT S and a one-time symmetric encryption

scheme SY M , and outputs P P:

e(g, g)α, g, gab, g0 = gβ0, z = gβ , h0 = gβ1, hstart = gαstart ,

hend = gαend , hk = gk,∀σ∈
∑hσ = gασ , H1, H2, OT S, SY M.

B keeps α and X3 secretly.

Phase 1. A makes the following queries:

1) OS K (M): If ACC E PT (M, w∗), B output ⊥. Other-

wise, B returns SKM to A by running the algorithm

K eyGen as it has knowledge of M SK .

2) Ork(M, w):

• For original game: if ACC E PT (M, w∗) and SKM ′

(for any DFA M ′ so that ACC E PT (M ′, w)) is

obtained by A, B outputs ⊥. Otherwise, B con-

structs SKM as in OS K , and next generates rkM→w

for A by running the algorithm ReK eyGen.

• For re-encrypted game: B can construct generates

any re-encryption key rkM→w with knowledge of

M SK .

3) Ore(M, w′, CT ):

• For original game: if ACC E PT (M, w∗), CT is the

challenge ciphertext, and SKM ′ (for any DFA M ′

so that ACC E PT (M ′, w′)) is obtained by A, B

outputs ⊥. Otherwise, B constructs rkM→w′ as in

Ork , and next generates the re-encrypted ciphertext

C R by running the algorithm ReEnc.

• For re-encrypted game: Ore is not offered to A.

4) Odec(M, CT ):

• For original game: if ACC E PT (M, w∗), and CT

is the challenge ciphertext, B outputs ⊥. Otherwise,

B constructs SKM with knowledge of M SK , and

next recovers m by running the algorithm Dec.

• For re-encrypted game: B recovers the private key

with knowledge of M SK and recovers m.

5) OdecR (M, C R):

• For original game: B constructs SKM with

knowledge of M SK , and next recovers m by

running DecR . If (w′, C R ) is a derivative, B out-

puts ⊥. To distinguish the derivatives from the

submitted ciphertexts, B can use the following

approaches. If the re-encrypted ciphertext is output

by Ore(M, w′, CT ), then the ciphertext is indeed a

derivative, where CT is the challenge ciphertext and

SKM ′ (for any DFA M ′ so that ACC E PT (M ′, w′))

is not obtained by A. Otherwise, it indicates that

the re-encrypted ciphertext is constructed by A with
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a re-encryption key given by B. B then recovers

the underlying CT from the re-encrypted cipher-

text (by using the corresponding private key), and

re-constructs Aend as in the real scheme. If the

value (of Aend ) is equal to the one hidden in the

symmetric encryption, and CT is the challenge

ciphertext, it knows that the re-encrypted ciphertext

is a derivative.

• For re-encrypted game: B uses SKM to decrypt

C R as in the real scheme. If C R is the challenge

ciphertext, B outputs ⊥.

Challenge. B implicitly sets gs0 to be the Gp1 part of T , runs

(ssk, svk) ← K eyGen(1n), chooses a random b ∈ {0, 1} and

generates the challenge ciphertext as follows.

• For original game: A outputs m0, m1, and w∗ (with

length l). B sets the challenge original ciphertext as

svk, w∗, Cm = mb · e(gα, T )s ′
l , Cstart1 = T,

Cstart2 = T αstart , Cstart3 = T β0·svk · T β1,

Cend1 = T s ′
l , Cend2 = T αend ·s ′

l , Cend3 = T k·s ′
l ,

for i = 1 to l: Ci,1 = T s ′
i , Ci,2 = T s ′

i ·αwi · T s ′
i−1·β , and

Cend4 = Sign
(

ssk, (w∗, Cm , Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), . . ., (Cl,1, Cl,2), Cend2, Cend3)
)

, where

s′
1, . . . , s′

l ∈R Z
∗
N . B outputs CT = (svk, w∗, Cm ,

Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cl,1, Cl,2),

Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0, m1, a string w′

and a challenge string w∗ (both with length l).

B runs CT = Encrypt (P P , w′, mb), generates

the re-encryption key rkM→w∗ and constructs Aend

as in the real scheme. It further sets C2 in the

identical approach described above. B finally sets

C1 = SY M.Enc(H2(δ), ξ), and outputs the challenge

re-encrypted ciphertext C R = (C1, C2) to A, where

ξ = (CT ||Aend ||rk4).

Phase 2. Same as Phase 1.

Guess. B outputs whatever A outputs.

If T ∈ Gp1 , the challenge ciphertext is a properly distributed

normal ciphertext so that this is in Gamereal . If T ∈ Gp1 p2 ,

we let gs0 be the Gp1 part of T and g
γ0

2 be the Gp2 part

of T , i.e. T = gs0 g
γ0

2 . We will have the semi-functional

ciphertext with γi = γ0s′
i , si = s0s′

i . In addition, the

values of a, b, αstart, αend , ασ , β, k, s′
1, . . . , s′

l modulo p2 are

uncorrelated from their values modulo p1 by the Chinese

Remainder Theorem (assume finding a nontrivial factor of N is

hard). Thus the challenge ciphertext is a properly distributed

semi-functional ciphertext so that this is in Game0. Note it

can be easily seen that all private keys and re-encryption keys

generated in the simulation are normal. Therefore B can use

the output of A to break Assumption 1 with advantage δ.

Lemma 2: If there is an algorithm A such that

Game( j−1)ι Adv DF A-F P RE
A

− GameN
jι

Adv DF A-F P RE
A

= δ,

we can construct an algorithm B breaking Assumption 2 with

advantage δ.

Proof: Setup. B is given an instance (D, T ) of

Assumption 2, and simulates either Game( j−1)ι or GameN
jι

with A. B generates P P and M SK as in the proof of

Lemma 1.

Phase 1. A makes the following queries:

1) OS K (M): B constructs the keys for A as follows.

• For the first ( j − 1)sk key queries, B generates

the semi-functional keys for A. B chooses

Rstart1, Rstart2, Rstart3, (∀t ∈ T ) Rt,1, Rt,2,

Rt,3, (∀qx ∈ F) Rendx,1 , Rendx,2 ∈R Gp3 . For each

t ∈ T it chooses rt ∈R Z
∗
N , and ∀qx ∈ F it chooses

rendx , τx ∈R Z∗
N . It also chooses rstart , u, k ∈R

Z
∗
N , D0, D1, . . . , D|Q|−1 ∈R Gp1 , where Di is

associated with qi . It sets

K ′
start1 = D0(hstart)

rstart Rstart1,

K ′
start2 = grstart Rstart2, K ′

start3 = gu Rstart3,

for each t = (x, y, σ ) ∈ T :

K ′
t,1 = D−1

x zrt Rt,1,

K ′
t,2 = grt Rt,2, K ′

t,3 = Dy(hσ )rt Rt,3,

for each qx ∈ F :

K ′
endx,1

= g−α Dx (hend gab)rendx gku Rendx,1(Y2Y3)
τx ,

K ′
endx,2

= grendx Rendx,2 .

The value of τx modulo p2 is uncorrelated from

its values modulo p3 by the Chinese Remainder

Theorem. Thus the above key is properly distributed.

• For the > jsk key queries, B runs the algorithm

K eyGen to generate keys.

• For the jsk-th key query, B implicitly lets grstart be

the Gp1 part of T . B chooses d ′
0, d ′

1, . . . , d ′
|Q|−1 ∈R

Z∗
N , for each t ∈ T chooses r ′

t ∈R Z∗
N , ∀qx ∈

F chooses r ′
endx

∈R Z
∗
N , a u′ ∈R Z

∗
N , Rstart1,

Rstart2, Rstart3, Rt,1, Rt,2, Rt,3, Rendx,1 , Rendx,2 ∈R

Gp3 (here B can simply set Rstart1 = X
ϕstart1

3 ,

Rstart2 = X
ϕstart2

3 , Rstart3 = X
ϕstart3

3 , Rt,1 = X
ϕt,1

3 ,

Rt,2 = X
ϕt,2

3 , Rt,3 = X
ϕt,3

3 , Rendx,1 = X
ϕendx,1

3 ,

Rendx,2 = X
ϕendx,2

3 , where ϕstart1, ϕstart2, ϕstart3,

ϕt,1, ϕt,2, ϕt,3, ϕendx,1 , ϕendx,2 ∈R Z
∗
N ). It sets the

semi-functional key as

Kstart1 = Rstart1T d ′
0+αstart ,

Kstart2 = Rstart2Tstart3 = Rstart3T u′
,

for each t = (x, y, σ ) ∈ T :

Kt,1 = Rt,1T −d ′
x +βr ′

t ,

Kt,2 = Rt,2T r ′
t , Kt,3 = Rt,3T d ′

y+ασ r ′
t ,

for each qx ∈ F :

Kendx,1 = g−α Rendx,1 T
d ′

x +(αend+ab)r ′
endx

+ku′

,

Kendx,2 = Rendx,2 T
r ′

endx .

Note this implicitly sets rt = rstartr
′
t , Dx = grstart d ′

x

and rendx = rstartr
′
endx

. If T ∈ Gp1 p3 , the key is

a properly distributed normal key so that B has

properly simulated Game( j−1)ι. Otherwise, B has

properly simulated GameN
jι

. We implicitly let g
ǫstart

2

be the Gp2 part of T , set ǫt = ǫstartr
′
t ,ǫendx =
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ǫstartr
′
endx

and dx = ǫstartd
′
x . Besides, u′rstart

and u′ǫstart are the exponents of the Gp1 part

and Gp2 part (of Kstart3), and the Gp2 parts

of Kstart1, Kstart2, Kstart3, Kt,1, Kt,2, Kt,3, Kendx,1

and Kendx,2 are g
αstart ǫstart +d0

2 , g
ǫstart

2 , gu
2 , g

βǫt−dx

2 ,

g
ǫt

2 , g
ασ ǫt+dy

2 , g
(αend+ab)ǫendx +dx +ku

2 and g
ǫendx

2 ,

respectively.

2) Ork(M, w):

• For original game: since B can construct normal

private keys, it first constructs SKM with knowledge

of M SK and next generates the re-encryption

key rkM→w by running the algorithm ReK eyGen.

If ACC E PT (M, w∗) and SKM ′ (for any DFA

M ′ so that ACC E PT (M ′, w)) is given to A, B

outputs ⊥.

• For re-encrypted game: B generates any

re-encryption key for A.

3) Ore(M, w′, CT ):

• For original game: B constructs the re-encryption

key rkM→w′ as in Ork , next generates C R via the

algorithm ReEnc. If ACC E PT (M, w∗), CT is the

challenge ciphertext, and SKM ′ is obtained by A,

B outputs ⊥, where ACC E PT (M ′, w′).

• For re-encrypted game: no need to issue Ore.

4) Odec(M, CT ):

• For original game: if ACC E PT (M, w∗), and CT is

the challenge ciphertext, B outputs ⊥. Otherwise B

constructs SKM to recover m.

• For re-encrypted game: B constructs the private key

to decrypt the ciphertext as in the real scheme.

5) OdecR (M, C R):

• For original game: if (M , C R) is a derivative,

B outputs ⊥. Otherwise B constructs the private key

to recover the message m via the algorithm DecR .

• For re-encrypted game: if C R is the challenge

ciphertext, B outputs ⊥. Otherwise B constructs

SKM as in OS K to decrypt the ciphertext.

Challenge. B implicitly sets gs0 = X1 and g
γ0

2 = X2, runs

(ssk, svk) ← K eyGen(1n), chooses a random b ∈ {0, 1} and

constructs the challenge ciphertext as follows.

• For original game: A outputs m0, m1, and w∗. B then

sets the challenge original ciphertext CT as

svk, w∗,

Cm = mbe(gα, X1 X2)
s ′
l , Cstart1 = X1 X2,

Cstart2 = (X1 X2)
αstart , Cstart3 = (X1 X2)

β0svk(X1 X2)
β1,

Cend1 = (X1 X2)
s ′
l , Cend2 = (X1 X2)

(αend+ab)s ′
l ,

Cend3 = (X1 X2)
ks ′

l ,

for i = 1 to l: Ci,1 = (X1 X2)
s ′

i , Ci,2 =

(X1 X2)
s ′

iαwi (X1 X2)
s ′

i−1β , and Cend4 = Sign(ssk, (w∗,

Cm , Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cl,1,

Cl,2), Cend2, Cend3)), where s′
1, . . . , s′

l ∈R Z
∗
N . B outputs

CT = (svk, w∗, Cm , C0,1, Cstart2, Cstart3, (C1,1, C1,2),

. . ., (Cend1, Cl,2), Cend2, Cend3, Cend4) to A. Note we

have the semi-functional ciphertext with γi = γ0 · s′
i , and

si = s0 · s′
i , where i ∈ {1, . . . , l}, and the values of the

exponents of X1 X2 modulo p1 are uncorrelated from their

values modulo p2.

• For re-encrypted game: A outputs m0, m1, w′ and

w∗. B runs CT = Encrypt (P P, w′, mb), gener-

ates the re-encryption key rkM→w∗ and constructs

Aend as in the real scheme. It further sets C2 in

the identical method described above. B finally sets

C1 = SY M.Enc(H2(δ), ξ), and outputs the challenge

re-encrypted ciphertext C R = (C1, C2) to A, where

ξ = (CT ||Aend ||rk4).

Phase 2. Same as Phase 1.

Guess. B outputs whatever A outputs.

Therefore if T ∈ Gp1 p3 , the simulation is in Game( j−1)ι.

Otherwise, the simulation is in GameN
jι

. B can use the output

of A to break Assumption 2 with advantage δ.

Lemma 3: If there is an algorithm A such that

GameN
jι

Adv DF A-F P RE
A

− GameT
jι

Adv DF A-F P RE
A

= δ for a

j from Phase 1, we can build an algorithm B breaking the

source group modified q-BDHE assumption in a subgroup

with advantage δ.

Proof: Setup. B is given an instance (D, T ) of the

source group modified q-BDHE assumption in a subgroup,

and simulates either GameN
jι

or GameT
jι

with A. B generates

P P and M SK as in the proof of the previous lemma.

Phase 1. A makes the following queries:

1) OS K (M): B constructs the private keys for A as follows.

• For the first ( j − 1)sk and > jsk key queries,

B generates the semi-functional keys and the normal

keys for A as in the previous lemma.

• For the jsk-th key query, B runs the

algorithm K eyGen to generate a normal key

Kstart1, Kstart2, ∀t ∈ T (Kt,1, Kt,2, Kt,3),∀qx ∈

F(Kendx,1 , Kendx,2 ), and next sets

Kstart1g
d ′

0

2 g
α′

start ǫ
′
start

2 , Kstart2g
ǫ′

start

2 , Kstart3ga
2 ,

for each t = (x, y, σ ) ∈ T :

Kt,1g
−d ′

x

2 g
β ′ǫ′

t

2 , Kt,2g
ǫ′

t

2 , Kt,3g
d ′

y

2 g
α′

σ ǫ′
t

2 ,

for each qx ∈ F :

Kendx,1 g
d ′

x

2 T
r ′

endx g
a f er ′

endx

2 , Kendx,2 g
er ′

endx

2 ,

where d ′
0,∀ t = (x, y, σ ) ∈ T ǫ′

t , dx ,∀ x ∈

F r ′
endx

,∀ σ ∈
∑

α′
σ , α′

start , ǫ
′
start , β

′ ∈R Z
∗
N .

This implicitly sets (ab +αend ) · ǫendx = (aecq+1 +

a f e) · r ′
endx

, b = −cq − cq−1 − · · · − cq−n+2 + f ,

αend = ac · (cq + cq−1 + · · · + cq−n+1) and

ǫendx = e ·r ′
endx

, where q is the maximum allowable

number of distinct symbols in
∑

, and n is the

total number of the distinct symbols used in the

DFA. Note we here give a limitation to n such

that n ≤ q − 1. If T = gaecq+1

2 , the above key is

a properly distributed nominal semi-functional key.

If T ∈R Gp2 , B has properly simulated GameT
jsk

.

2) The responses of the queries to Ork ,Ore,Odec,OdecR

are the same as that of previous lemma.
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Challenge. B chooses random elements γ ′
0, . . . , γ

′
l ∈R Z∗

N .

It then runs (ssk, svk) ← K eyGen(1n), chooses a random

b ∈ {0, 1} and constructs the challenge ciphertext as follows.

• For original game: A outputs m0, m1, and w∗. B then

runs the algorithm Enc to generate a normal ciphertext

consisting of

Cm , Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . . ,

(Cl,1, Cl,2), Cend2, Cend3,

and sets the challenge semi-functional ciphertext CT as

svk, w∗, Cm , Cstart1 = Cstart1g
1/acqγ ′

0

2 ,

Cstart2 = Cstart2g
1/acqγ ′

0α
′
start

2 ,

Cstart3 = Cstart3(g
1/acq

2 )γ
′
0β

′
0svk(g

1/acq

2 )γ
′
0β

′
1,

Cend1 = Cend1(g
1/acq

2 )γ
′
l , Cend2 = Cend2(g

1/acq

2 )γ
′
l α

′
end ,

Cend3 = Cend3(g
1/acq

2 )γ
′
l k′

,

for i = 1 to l: Ci,1 = Ci,1(g
1/acq

2 )γ
′
i , Ci,2 =

Ci,2g
1/acqα′

wi
γ ′

i +1/acqγ ′
i−1β ′

2 , and Cend4 = Sign(ssk, (w,

Cm , Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cl,1,

Cl,2), Cend2, Cend3)), where β ′
0, β

′
1 ∈R Z

∗
N . B outputs

CT = (svk, w, Cm , Cstart1, Cstart2, Cstart3, (C1,1, C1,2),

. . ., (Cend1, Cl,2), Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0, m1, a w′ and

a w∗. B runs CT = Encrypt (P P, w′, mb), generates

rkM→w∗ and constructs Aend as in the real scheme.

It sets C2 = (ssk, (w, Cδ , Cstart1, Cstart2, Cstart3, (C1,1,

C1,2), . . ., (Cend1, Cl,2), Cend2, Cend3, Cend4)) as above.

B finally sets C1 = SY M.Enc(H2(δ), ξ), and outputs

C R∗ = (C1, C2) to A, where ξ = (CT ||Aend ||rk4).

Guess. B outputs whatever A outputs.

Therefore if T ∈R Gp2 , the simulation is in GameT
jι
.

Otherwise, the simulation is in GameN
jι

. Thus B can use the

output of A to break the source group q-BDHE assumption

in a subgroup with advantage δ.

Lemma 4: If there is an algorithm A such that

GameN
jι

Adv DF A-F P RE
A

− GameT
jι

Adv DF A-F P RE
A

= δ for a

j from Phase 2, we can build an algorithm B breaking the

source group l-Expanded BDHE assumption in a subgroup

with advantage δ.

Proof: Setup. B is given an instance (D, T ) of the source

group l-Expanded BDHE assumption, and simulates either

GameN
jι

or GameT
jι

for some j from Phase 2 with A. B

generates P P and M SK as in the proof of Lemma 1.

Challenge. B chooses a random b ∈ {0, 1}, runs (ssk, svk) ←

K eyGen(1n) and generates the challenge ciphertext.

• For original game: A outputs m0, m1, and w∗.

B first generates the normal components of the

challenge ciphertext as in Encrypt , and obtains

the normal components consisting of (w, Cm ,

Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cl,1, Cl,2),

Cend1, Cend2). B chooses vz, vstart , vend , k ′ ∈R Z∗
N

and ∀σ ∈
∑

, vσ ∈R Z
∗
N . It implicitly sets

β ′ = vz+ab/dx, α′
start = vstart−

∑

j∈[1,l∗]

a j b/c j x , α′
end =

vend −
∑

j∈[2,l∗+1]

a j b/c j x , ∀σ ∈
∑

, α′
wi

= vσ −b/dx −

∑

j∈[0,l∗+1]s.t .w∗
j 
=σ

a(l∗+1− j )b/c(l∗+1− j )x , and γi = mnai ,

and next constructs the challenge ciphertext by adding

the parts in Gp2 to the normal components as follows.

Cstart1 = Cstart1gmna0

2 = Cstart1g
γ0

2 ,

Cstart2 = Cstart2(gmna0

2 )vstart
∏

j∈[1,l∗]

g
−a j bmna0/c j x

2

= Cstart2g
γ0vstart

2

∏

j∈[1,l∗]

g
−a j bγ0/c j x

2 ,

Cstart3 = Cstart3(gmna0

2 )β
′
0svk(gmna0

2 )β
′
1

= Cstart3g
γ0β

′
0svk

2 g
γ0β

′
1

2 ,

Cend1 = Cend1gmnal∗

2 = Cend1g
γl∗

2 ,

Cend2 = Cend2(gmnal∗

2 )vend+âb̂
∏

j∈[2,l∗+1]

g
−al∗+ j bmn/c j x

2

= Cend2g
γl∗ (vend+âb̂)
2

∏

j∈[2,l∗+1]

g
−a j bγl∗ /c j x

2 ,

Cend3 = Cend3(gmnal∗

2 )k′
= Cend3g

k′γl∗

2 ,

for i = 1 to l

Ci,1 = Ci,1gmnai

2 = Ci,1g
γi

2 ,

Ci,2 = Ci,2(gmnai

2 )
vw∗

i (gmnai−1

2 )vz ·
∏

j∈[0,l∗+1]s.t .w∗
j 
=w∗

i

g
−al∗+1− j+i bmn/c j x

2

= Ci,2g
γivw∗

i

2 g
γi−1vz

2 ·
∏

j∈[0,l∗+1]s.t .w∗
j 
=w∗

i

g
−al∗+1− j bγi/c j

2 ,

where vz, vw∗
i
, β ′

1, β
′
0, â, b̂ ∈R Z∗

N chosen by B. Finally,

B sets Cend4 = Sign(ssk, (w, Cm , Cstart1, Cstart2,

Cstart3, (C1,1, C1,2), . . ., (Cl,1, Cl,2), Cend2, Cend3)), and

outputs the challenge original ciphertext CT ∗ = (svk,

w, Cm , Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cend1,

Cl,2), Cend2, Cend3, Cend4) to A. It is not difficult to see

that B can construct the challenge ciphertext using the

terms given in the problem instance.

• For re-encrypted game: A outputs m0, m1, a w′ and a

w∗. B then runs CT = Encrypt (P P, w′, mb), generates

rkM→w∗ (using the normal private key SKM ) and

constructs Aend as in the real scheme. It sets C2 as

above. B sets C1 = SY M.Enc(H2(δ), ξ), and outputs

C R = (C1, C2) to A, where ξ = (CT ||Aend ||rk4).

Phase 2. A makes the following queries:

1) OS K (M): A submits a DFA M to B where for any

M such that RE J ECT (M, w∗). For the first ( j − 1)sk

and > jsk key queries, B generates the semi-functional

keys and the normal keys for A as in the previous

lemma. Otherwise, B constructs the private key for

A as follows. Note we use w∗(i) denote the last i
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symbols of w∗, Mk denote a DFA Mk = (Q,T , qk, F),

where qk is the start state and k ∈ {0, . . . , |Q| − 1}.

For each qk ∈ Q we defined a set Sk including

indices in {0, 1, . . . , l∗}, we say i ∈ {0, 1 . . . , l∗} is

in Sk if and only if ACC E PT (Mk , w
∗(i)). We set

Dk = (
∏

i∈Sk
g

ai+1·b/x
2 )·gal∗+1bm

2 ·gn
2 . Actually, B cannot

directly compute Dk from the problem instance. Fortu-

nately the uncomputable components will be canceled

out so that the key components to be consistent with the

values.

a) B implicitly sets ǫstart =
∑

i∈S0
ci+1 and d0 =

∑

i∈S0
ai+1 · b/x + al∗+1bm. Thus we have

αstart · ǫstart + d0

= (vstart −
∑

j∈[1,l∗]

a j · b/c j x) ·
∑

i∈S0

ci+1 +

∑

i∈S0

ai+1 · b/x + al∗+1bm + n.

Thus B sets the Gp2 parts for Kstart1 and

Kstart2 as g

∑

i∈S0
ci+1

2 and g
vstart ·

∑

i∈S0
ci+1

2 ·

g
−

∑

j∈[1,l∗],i∈S0 , j 
=i+1 a j ·b·ci+1/c j x

2 · T · gn
2 respectively.

b) Similarly, B sets ǫendx =
∑

i∈Sx ,i 
=0 ci+1 and dx =
∑

i∈Sx
ai+1 · b/x + al∗+1bm such that

(αend + âb̂) · ǫendx + dx + k ′u′

=
(

vend −
∑

j∈[2,l∗+1]

a j · b/c j x + âb̂
)

·
∑

i∈Sx ,i 
=0

ci+1

+
∑

i∈Sx

ai+1 · b/x + al∗+1bm + n + k ′u′,

where â, b̂, u′ ∈R Z
∗
N . Here B can construct

the Gp2 parts for Kendx,1 and Kendx,2 using

the terms given in the problem instance

as g

∑

i∈Sx ,i 
=0 ci+1

2 , g
(vend+âb̂)·

∑

i∈Sx ,i 
=0 ci+1

2 ·

g
−

∑

j∈[2,l∗+1],i∈Sx ,i 
=0, j 
=i+1 a j ·b·ci+1/c j x

2 T g
ab/x
2 gn

2 gk′u′

2.

c) B constructs the key components Kt,1, Kt,2, Kt,3

for each transition t = (x, y, σ ) ∈ T . Like [32]

for i = 0 to l∗ + 1 we define (Kt,1,i , Kt,2,i , Kt,3,i )

such that Kt,1 =
∏

i∈[0,l∗+1] Kt,1,i , Kt,2 =
∏

i∈[0,l∗+1] Kt,2,i and Kt,3 =
∏

i∈[0,l∗+1] Kt,3,i .

B will generate these components through four

possible cases.

• Case 1: i /∈ Sx ∧ (i − 1) /∈ Sy , B sets

Kt,1,i , Kt,2,i , Kt,3,i to be 1.

• Case 2: i ∈ Sx ∧ (i − 1) ∈ Sy , B

sets Kt,2,i = gai d
2 so that Kt,1,i =

g
(vz+ab/dx)·aid−ai+1b/x+al∗+1bm+n
2 and Kt,3,i =

g
(vσ−b/dx−al∗+1− j b/cl∗+1− j x)·aid+ai b/x+al∗+1bm+n

2 .

B then sets Kt,1,i = g
ai dvz

2 · T · gn
2 =

K
vz

t,2,i · T · gn
2 , and Kt,3,i = K

vσ

t,2,i ·
∏

j∈[0,l∗+1]s.t .w∗
j 
=σ

g
−a(l∗+1− j+i)bd/c(l∗+1− j)x

2 · T · gn
2 .

• Case 3: i /∈ Sx ∧ (i − 1) ∈ Sy ∧

w∗
l∗+1−i 
= σ , B sets Kt,2,i = g

ci

2 so

that Kt,1,i = g
(vz+ab/dx)·ci

2 and Kt,3,i =

g
(vσ−b/dx−al∗+1− j b/cl∗+1− j x)·ci+ai b/x+al∗+1bm+n

2 .

It then sets Kt,1,i = g
vz ·ci+abci/dx

2 =

K
vz

t,2,i · g
abci/dx
2 , and Kt,3,i = K

vσ

t,2,i · g
−bci/dx
2 ·

∏

j∈[0,l∗+1]s.t . j 
=l∗+1−i∧w∗
j 
=σ

g
−a(l∗+1− j)bci /c(l∗+1− j)x

2 ·

T ·gn
2 .

• Case 4: i ∈ Sx ∧ (i − 1) /∈ Sy ∧ w∗
l∗+1−i 
= σ ,

B sets Kt,2,i = g
ai d−ci

2 so that Kt,1,i =

g
(vz+ab/dx)·(aid−ci )−ai+1b/x−al∗+1bm−n

2 and

Kt,3,i = g
(vσ−b/dx−al∗+1− j b/cl∗+1− j x)·(−ci+ai d)

2 .

It then sets Kt,1,i = K
vz

t,2,i · g
−abci/dx
2 ·

T −1 · g−n
2 , and Kt,3,i = K

vσ

t,2,i · g
bci/dx
2 ·

∏

j∈[0,l∗+1]s.t .w∗
j 
=σ

g
−a(l∗+1− j+i)bd/c(l∗+1− j)x

2 ·

∏

j∈[0,l∗+1]s.t . j 
=l∗+1−i∧w∗
j 
=σ

g
−a(l∗+1− j)bci /c(l∗+1− j)x

2 .

B can compute all the above components using the

terms given in the problem instance.

2) The responses of the queries to Ork ,Ore,Odec,OdecR

are the same as that of previous lemma.

Guess. B outputs whatever A outputs.

If T ∈R Gp2 , the jι-th private key constructed above

is a properly distributed temporary semi-functional key.

If T = gal∗+1bm
2 , we have the properly distributed nominal

semi-functional key. Thus B can use A to break the source

group l-BDHE assumption in a subgroup with advantage δ.

Lemma 5: If there is an algorithm A such that

GameT
jι

Adv DF A-F P RE
A

− Game jι Adv DF A-F P RE
A

= δ,

we can construct an algorithm B breaking Assumption 2 with

advantage δ.

Proof: This proof is identical to that of Lemma 2 except

that B will use Y2Y3 to construct random elements of Gp2

(∀qx ∈ F) such that all Kendx,1 parts of the i -th key will be

randomly masked, and the rest of key components will not

have Gp2 parts. Namely the jι-th key is semi-functional.

Lemma 6: If there is an algorithm A such that

Gameq Adv DF A-F P RE
A

− Game f inal Adv DF A-F P RE
A

= δ, we

can build an algorithm B breaking Assumption 3 with advan-

tage δ.

Proof: Setup. B is given an instance (D, T ) of Assump-

tion 3, and simulates either Gameq or Game f inal with A. B

chooses β, β0, β1, αstart , αend , a, b, k ∈R Z∗
N , and ασ ∈R Z∗

N

for all symbols in
∑

. It then chooses H1, H2, an OT S and

an SY M as in the real scheme, and outputs P P:

g, gab, g0 =gβ0, z =gβ , h0 = gβ1, hk = gk, hstart = gαstart ,

hend = gαend ,∀σ∈
∑hσ = gασ , e(g, gα X2),

H1, H2, OT S, SY M.

Note here α is unknown to B.
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Phase 1. A makes the following queries:

1) OS K (M): B chooses D0, D1, . . . , D|Q|−1 ∈R Gp1 . For

each t ∈ T it chooses rt , δt,1, δt,2, δt,3 ∈R Z
∗
N , and

∀qx ∈ F it chooses rendx , δendx,1, δendx,2 , kx ∈R Z∗
N .

It also chooses rstart , δstart1, δstart2, u′ ∈R Z
∗
N . It then

sets

Kstart1 = D0(hstart)
rstart X

δstart1

3 ,

Kstart2 = grstart X
δstart2

3 , Kstart3 = gu Xu′

3 ,

for each t = (x, y, σ ) ∈ T : Kt,1 =

D−1
x zrt X

δt,1

3 , Kt,2 = grt X
δt,2

3 , Kt,3 =

Dy(hσ )rt X
δt,3

3 , for each qx ∈ F : Kendx,1 =

(gα X2)
−1 Dx (hend gab)rendx gku X

δendx,1

3 Z
kx

2 , Kendx,2 =

grendx X
δendx,2

3 .

2) Ork(M, w): B can construct any re-encryption key as it

knows any semi-functional private key for a DFA M .

• For original game: if ACC E PT (M, w∗) and SKM ′

(for any DFA M ′ so that ACC E PT (M ′, w)) is

obtained by A, B outputs ⊥. Else, B constructs

SKM as in OS K , and next constructs rkM→w via

ReK eyGen.

• For re-encrypted game: B generates any

re-encryption key for A .

3) Ore(M, w′, CT ):

• For original game: if ACC E PT (M, w∗), CT is the

challenge ciphertext, and SKM ′ (for any DFA M ′

so that ACC E PT (M ′, w′)) is obtained by A, B

outputs ⊥. Otherwise, B constructs rkM→w′ as in

Ork , next generates C R via ReEnc.

• For re-encrypted game: no need to issue Ore.

4) Odec(M, CT ):

• For original game: B constructs the semi-functional

private key SKM as in OS K , and next recovers

m via Dec. If ACC E PT (M, w∗), and CT is the

challenge ciphertext, B outputs ⊥.

• For re-encrypted game: B decrypts the ciphertext by

using the corresponding semi-functional key.

5) OdecR (M, C R):

• For original game: B constructs the semi-functional

private key SKM , and next recovers m via DecR .

If (M , C R) is a derivative, B outputs ⊥.

• For re-encrypted game: B recovers m as above

except that B outputs ⊥ if C R is the challenge

ciphertext.

Challenge. B chooses a random b ∈ {0, 1}, runs (ssk, svk) ←

K eyGen(1n) and generates the challenge ciphertext.

• For original game: A commits to two equal-length mes-

sages m0, m1, and a challenge string w∗. B sets svk, w∗,

Cm = mb · T s ′
l , Cstart1 = gsY2, Cstart2 = (gsY2)

αstart ,

Cstart3 = (gsY2)
β0·svk · (gsY2)

β1, Cend1 = (gsY2)
s ′
l ,

Cend2 = (gsY2)
αend ·s ′

l , Cend3 = (gsY2)
k·s ′

l ,

for i = 1 to l:Ci,1 = (gsY2)
s ′

i , Ci,2 = (gsY2)
s ′

i ·αwi ·

(gsY2)
s ′

i−1·β , where s′
1, . . . , s′

l ∈R Z
∗
N . Finally, B sets

Cend4 = Sign(ssk, (w, Cm , Cstart1, Cstart2, Cstart3,

(C1,1, C1,2), . . ., (Cend1, Cl,2), Cend2, Cend3)), and out-

puts the challenge original ciphertext CT = (svk, w, Cm ,

Cstart1, Cstart2, Cstart3, (C1,1, C1,2), . . ., (Cend1, Cl,2),

Cend2, Cend3, Cend4) to A.

• For re-encrypted game: A outputs m0, m1, a w′ and

a w∗. B runs CT = Encrypt (P P, w′, mb), generates

rkM→w∗ (using the semi-functional private key SKM )

and constructs Aend as in the real scheme. It sets C2

to be an encryption of a random element δ ∈R Z
∗
N

as above, sets C1 = SY M.Enc(H2(δ), ξ), and outputs

C R = (C1, C2), where ξ = (CT ||Aend ||rk4).

Phase 2. Same as Phase 1.

Guess. B outputs whatever A outputs.

This implicitly sets Y2 = g
γ0

2 , s = s0, si = s · s′
i for each

i ∈ {1, . . . , l}. If T ∈ GT , the above ciphertext is a properly

distributed semi-functional ciphertext of a random message in

GT . If T = e(g, g)α·s, we have the semi-functional ciphertext

with γi = γ0 ·si . This is a properly distributed semi-functional

encryption of mb.

IV. CONCLUSION

In this paper for the first time we defined the notion of

DFA-based FPRE, and meanwhile proposed a concrete scheme

satisfying the new notion. Furthermore we proved the scheme,

which is the first of its type, to be adaptively CCA secure

in the standard model by employing Lewko et al.’s dual

encryption technology. This work motivates some interesting

open problems. One of them is how to convert our DFA-based

FPRE in the prime order bilinear group.
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