
A Diagenesis Model for Geomechanical Simulations:
Formulation and Implications for Pore Pressure
and Development of Geological Structures

J. Obradors-Prats1, M. Rouainia1 , A. C. Aplin2 , and A. J. L. Crook3

1School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK, 2Department of Earth

Sciences, Durham University, Durham, UK, 3Three Cliffs Geomechanical Analysis, Swansea, UK

Abstract Forward basin modeling is routinely used in many geological applications, with the critical

limitation that chemical diagenetic reactions are often neglected or poorly represented. Here, a

new, temperature-dependent, kinetic diagenesis model is formulated and implemented within a

hydromechanical framework. The model simulates the macroscopic effects of diagenesis on (1) porosity

loss, (2) sediment strength, (3) sediment stiffness and compressibility, (4) change in elastic properties, (5)

increase in tensile strength due to cementation, and (6) overpressure generation. A brief overview of the

main diagenetic reactions relevant to basin modeling is presented and the model calibration procedure is

demonstrated using published data for the Kimmeridge Clay Formation. The calibrated model is used to

show the implications of diagenesis on prediction of overpressure development and structural deformation.

The incorporation of diagenesis in a uniaxial burial model results in an increase in overpressure of up

to 9 MPa due to both stress-independent porosity loss and overpressure generated by disequilibrium

compaction caused by a reduction in permeability. Finally, a compressional model is used to show that

the incorporation of diagenesis within geomechanical models allows the transition from ductile to brittle

behavior to be captured due to the increase in strength that results in an overconsolidated stress state.

This is illustrated by comparison of the present-day structures predicted by a geomechanical-only model,

where a ductile fold forms, and a geomechanical model accounting for diagenesis in which a brittle thrust

structure is predicted.

1. Introduction
Forward basinmodeling is awidely used technique capable of capturing the evolution of sediment properties

through basin histories, providing useful insights into present-day distributions of stresses, porosity, perme-

ability, pore pressure, and temperature and identifying likely flow pathways which are useful for economic

geological applications (e.g., Allwardt et al., 2009; Bekele et al., 2001; Flemings&Lupa, 2004; Kjeldstad et al.,

2003; Neumaier et al., 2014; Schneider et al., 2000).

One subtype of basinmodel is the forward geomechanical model, which has the advantage of simulating lat-

eral deformation and compaction due to tectonic events (e.g., Albertz & Lingrey, 2012; Albertz & Sanz, 2012;

Gao et al., 2018; Nikolinakou et al., 2014; Obradors-Prats et al., 2016, 2017a; Smart et al., 2012; Thornton

& Crook, 2014). A key limitation of present models is that they only account for the mechanical aspects of

compaction, with diagenetic processes generally neglected. In this paper, we refer to diagenesis as all non-

mechanical processes that change mineralogy and texture and lead to sediment lithification in relatively

low pressure and temperature regimes (i.e., before metamorphism). Diagenesis is critically important since

it results in major changes in (a) sediment porosity and permeability (e.g., Bjørlykke & Høeg, 1997; Keller

& Isaacs, 1985; Mallon & Swarbrick, 2002; Tada & Siever, 1989), (b) sediment microfabric, cement volume,

and geomechanical properties (e.g., Aplin et al., 2006; Day-Stirrat et al., 2008; Ho et al., 1999; Mallon &

Swarbrick, 2002; Nygård et al., 2004a, 2004b; Peltonen et al., 2009; Tada, 1991; Walderhaug, 1996), and (c)

pore pressure (e.g., Lahann&Swarbrick, 2011;Osborne&Swarbrick, 1997). It is thus essential to incorporate

diagenetic reactions (which we call here nonmechanical compaction) into simulations of basin evolution

and fluid flow (e.g., Broichhausen et al., 2005; Schneider et al., 1996; Schneider & Hay, 2001). For exam-

ple, since stiffness and strength exert a first-order control in structural development and stress evolution

(Albertz & Lingrey, 2012; Albertz & Sanz, 2012), the incorporation of such diagenetic effects within forward
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geomechanical basin models is of great importance for realistic predictions of both fluid flow and structural

development.

Previous work in simulating diagenesis within forward basin models has focused mainly on accounting

for porosity (and permeability) decrease to predict the resulting increase in pore pressure (e.g. Bolås et al.,

2004; Schneider et al., 1996; Schneider & Hay, 2001). Roberts et al. (2015) incorporated a diagenesis model

in forward geomechanical simulations which captured the change in sediment properties during opal-A to

opal-CT transformation by accounting for both porosity decrease and strength increase due to diagenesis.

Nonetheless, in this model the elastic properties and sediment compressibility were considered to remain

unchanged after diagenesis, which does not agree with experimental observations on the Kimmeridge Clay

(Nygård et al., 2004a, 2004b) and Opalinus Clay (Favero et al., 2016). In contrast, themodel presented in this

paper captures the compressibility decrease and stiffness increase due to diagenesis.

In this paper,we first present a brief reviewof the quantitativelymost important diagenetic reactions in order

to provide a background on the factors controlling their occurrence, the temperature ranges over which they

occur and the overprint that these reactions leave on sediment properties. The range and complexity of these

reactions are such that it is currently impossible to incorporate their details into a singlemodel.Here,we take

a first step by summarizing the findings of a published geomechanical study of the Kimmeridge Clay Forma-

tion andhighlighting the key observations that serve as the basis for building ourmodel.We then formulate a

new, temperature-dependent, kinetic diagenesismodel that enables the simulation of nonmechanical poros-

ity loss and its impact on permeability and pore pressure development. Furthermore, the incorporation of

diagenetic effects allows the prediction of changes in sediment geomechanical properties such as the over-

consolidation state (change in the preconsolidation pressure), the stiffness increase and change in elastic

properties. We then demonstrate the workflow for the model calibration using the published Kimmeridge

Clay data. Finally, we apply the calibrated diagenesismodel in geomechanical basin simulations and discuss

its implications for overpressure generation and the predicted structural deformation style.

2. Overview of theMain Diagenetic Reactions Relevant to BasinModeling

During burial diagenesis, a wide range of chemical reactions cause very significant physical and chemical

changes in sediments, generally reducing porosity and permeability, increasing strength, and generating

pore pressure. The quantitatively most important of these are the transformations of smectite to illite and

opal-A to opal-CT, and quartz and carbonate cementation.

2.1. Smectite to Illite

In mudstones between approximately 70 and 100 ◦C (ca. 1.7 to 3.5 km depending on surface temperature

and geothermal gradient), smectite, ormixed layer illite-smectite (I-S), is converted to illite ormore illitic I-S,

releasing silica which precipitates as quartz (Berger et al., 1999; Day-Stirrat et al., 2010; Eberl &Hower, 1976;

Elliott &Matisoff, 1996; Freed & Peacor, 1989; Hower et al., 1976; Kamp, 2008; Peltonen et al., 2009; Thyberg

& Jahren, 2011; Velde & Vasseur, 1992). This process is a dissolution-reprecipation reaction which results

in a clay mineral fabric which is increasingly aligned normal to maximum compressive stress (Aplin et al.,

2006; Colton-Bradley, 1987; Ho et al., 1999; Swarbrick et al., 2002) and which likely stiffens the mudstone

framework (Thyberg & Jahren, 2011).

Because it is a dehydration reaction, water released from the transformation can result in an increase in pore

pressure, themagnitude ofwhich depends on the relative rates atwhichwater is (a) generated and (b) lost via

fluid flow (e.g., Audet, 1995; Osborne & Swarbrick, 1997; Swarbrick et al., 2002). For a fully drained case (all

excess pore pressure is dissipated), porosity loss due to the smectite to illite transformation, attributed to pore

collapse due to framework weakening during smectite dissolution (Katahara, 2006; Lahann & Swarbrick,

2011), can be as great as 15 porosity units (Lahann, 2002). During framework weakening, if the pore water

cannot escape fast enough, some load previously carried by the framework will be transferred to the fluid,

increasing pore pressure (Goulty et al., 2016; Lahann, 2002; Lahann & Swarbrick, 2011).

2.2. Opal-A/Opal-CT

The dissolution of the amorphous phase of opal (opal-A) and reprecipitation as microcrystalline opal-CT

occurs at burial depths of 0.1 to 1 km and at temperatures between ∼25 and 55 ◦C (Ishii et al., 2011; Spinelli

et al., 2007). In opal-rich sediments, the transition can result in a porosity reduction of up to 15–35% in a

reaction zone which may be only 10-m thick (Isaacs, 1981; Meadows & Davies, 2009). At the same time,
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the geomechanical properties of the sediments change markedly; for example, Ishii et al. (2011) showed an

increase in unconfined compressive strength from 10 to 35 MPa, an increase in tensile strength from ∼1

to 4.5 MPa and an increase in cohesion from 3 to 10 MPa. These changes result in sediments which are

overconsolidated and with relatively high brittleness.

2.3. Quartz Cementation

Quartz cementation is the primary chemical process route by which porosity is lost in sandstones (Taylor

et al., 2010;Worden&Morad, 2000). Silica for quartz cement can come from several sources but ismost com-

monly sourced internally within sands, from intergranular pressure dissolution at styolites or at individual

grain contacts (Oye et al., 2018;Walderhaug, 1996). The rate-controlling step for quartz cementation of sand-

stones ismost commonly assumed to be the precipitation of silica (Ajdukiewicz&Lander, 2010;Walderhaug,

1994, 1996), although others have suggested that effective stress plays an important role (Osborne &

Swarbrick, 1999; Oye et al., 2018). In this scenario, the kinetic barriers which inhibit quartz precipitation are

overcome, on geological timescales, at temperatures around 70 to 80 ◦C (McBride, 1989; Walderhaug, 1994;

Worden & Morad, 2000), above which rates of precipitation increase exponentially with temperature (e.g.,

Walderhaug, 1996). In addition to reductions in porosity and permeability, quartz cementation increases

shear strength due to grain locking, resulting in an increased brittleness of the sediments (Bjørlykke &

Høeg, 1997).

2.4. Carbonate Cementation

Although carbonate is a locally important cement in sandstones, we focus here on fine-grained carbon-

ates (chalks and “marls”), which are highly susceptible to intergranular pressure dissolution and chemical

compaction. Comparison of porosity-depth trends for experimentally compacted carbonate ooze and natu-

ral oozes and chalks shows that below 100 to 200 m, the porosities of natural oozes are much lower than

experimentally compacted oozes (Hamilton, 1959; Mallon & Swarbrick, 2002; Scholle, 1977), suggesting the

importance of nonmechanical compaction. Solution seams and stylolites are common in calcareous sedi-

ments, becoming common in pelagic limestones at depths of 700 to 800 m (Hill, 1987; Tada & Siever, 1989).

Carbonate resulting from pressure solution precipitates locally, reducing porosity. Within a stiffer frame-

work, compaction at greater depth is driven by chemical processes, with uncertainty about the extent to

which reaction kinetics are controlled by temperature and/or effective stress (Mallon & Swarbrick, 2002).

Sediment rheology will be altered because of a cement-related increase in peak strength and cohesion, so

that particulate flow is no longer a viable deformation mechanism. This process has been suggested to exert

a first-order control on the type of deformation structures formed in some active margins (Sample, 1990).

3. Effects of Diagenesis onMudrock Properties: The Kimmeridge Clay

One of the best documented examples regarding the effects of diagenesis on the geomechanical properties

of clays and shales is the Kimmeridge Clay. Nygård et al. (2004a, 2004b, 2006) performed laboratory exper-

iments, including geotechnical tests, on two sample sets of Kimmeridge Clay collected from two different

locations. It was assumed that the two sample sets originated from the same parent materials but had dif-

ferent burial histories prior to uplift. These data are an excellent benchmark for identifying the diagenetic

overprint on the geomechanical properties of sediments. This section summarizes the most relevant fea-

tures of the Kimmeridge Clay in order to serve as a basis for the calibration of the diagenesis model that is

presented in section 4.2.

Kimmeridge Clay is an organic-rich, Upper Jurassic sediment deposited in a low-energy intrashelf marine

environment. The tested samples in Nygård et al. (2004a, 2004b, 2006) were obtained from two outcrop

locations within the Wessex Basin, UK. Kimmeridge Clays from those two locations have been subjected to

different burial depths during the Mesozoic and uplifted and exposed during Tertiary inversion. The details

about the history and structural evolution of the Wessex Basin are beyond the scope of this paper and the

reader is referred to Chadwick (1985), Penn et al. (1987), Selley and Stoneley (1987), Stoneley (1982), and

Underhill and Stoneley (1998) for more discussion.

The shallow set of samples were obtained from an open pit in the Westbury Quarry in Wiltshire, UK and

will be referred as Kimmeridge Westbury Clay (KWC). The maximum burial depth for KWC is estimated to

be about 0.5 km prior to uplift. KWC is dark gray, fissile, uncemented, and rich in fossils. It has a porosity of

0.53 and a grain density of 2.65 g/cm3 (Kvilhaug, 1995; Nygård et al., 2004a, 2004b).

ROUAINIA ET AL. 3



Journal of Geophysical Research: Solid Earth 10.1029/2018JB016673

Figure 1. Experimental data for Kimmeridge Westbury Clay (KWC) and Kimmeridge Bay Clay (KBC). The figures
were obtained from Nygård et al. (2004a). (a) Compaction curves for undisturbed KWC and KBC samples obtained
from an oedometer and a K0 triaxial test. (b) Compaction and unloading curves for remolded samples of KWC and
KBC and compaction curve of an undisturbed sample of KBC.

The deep set of samples were obtained from Kimmeridge Bay, Isle of Purbeck, Dorset, UK, and will be

referred to as Kimmeridge Bay Clay (KBC). This area was buried about 1.7–2 km before being uplifted, with

a maximum vertical effective stress of about 20 MPa and a maximum temperature around 80 ◦C. KBC is

black, laminated, lithified/cemented, and splits easily along its lamination. The initial porosity for KBC is

0.22, substantially lower than KWC, but its grain density of 2.64 g/cm3 is similar to that of KWC.

The geotechnical investigation comprises a set of uniaxial strain compaction tests on undisturbed and

remolded samples at different water contents for both KWC and KBC performed using oedometer and

advanced triaxial apparatus. The tests were carried out up to amaximum vertical effective stress of 120MPa.

The permeability normal to the bedding plane was also measured as a function of porosity. In addition, a

set of undrained shear tests were undertaken at different confining pressures on both KWC and KBC. For a

complete description of materials and test procedures the reader is referred to the original papers by Nygård

et al. (2004a, 2004b, 2006).

Figure 1a shows the compaction curves in a logarithmic vertical effective stress-void ratio plot for undis-

turbed samples of KWC and KBC. Both samples have very different initial porosities due to their different

void ratios at 0.1 MPa. Another trivial observation from the plot is that the compressibility index (decrease

in void ratio for a given increase in stress) of the two clay materials is significantly different, with the slopes

of the best fitting straight lines being 0.221 and 0.060 for KWC and KBC, respectively. This shows that KBC

exhibits a stiffer behavior compared to KWC. This difference has been attributed to the deeper burial and

lithification of KBC, which facilitated the formation of a stiffer matrix. It is interesting to note that even at

stresses above the maximum that KBC has experienced during its burial history (estimated to be around 20

MPa), the porosity for KWC is about 15 porosity units higher than that for KBC, which would suggest that

nonmechanical compaction processes have contributed to the decrease of porosity in KBC. In addition, the

unloading/reloading curves on remolded KWC and KBC samples (which correspond to the mechanically

overconsolidated compaction curves), shown in Figure 1b, are significantly steeper than the compaction

curve of undisturbed KBC. Nonmechanical processes must therefore have contributed to the increased stiff-

ness (reduced compressibility) of KBC. The diagenesis model presented in this work aims to capture and

simulate all these reported observations.

4. Modeling Strategy

The diagenesismodel presented in this paper has been implementedwithin the finite element code ParaGeo

(Crook, 2013). The code encompasses procedures for both fully implicit and quasistatic explicit simulations

for computational viscoplasticity at finite strains and localization. In coupled geomechanical/porous flow

problems, the solid phase has a Lagrangian reference frame, whereas the fluid phase has an Eulerian ref-

erence frame (i.e., the fluid flows through the mesh of the solid phase). The code models sedimentation by

generating new elements to represent the sedimented material and includes robust remeshing procedures

for handling pinch-out of stratigraphy and excessive mesh distortion due to large strains. In addition, the

framework includes a procedure for energy regularization during softening based on fracture mechanics

principles.
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4.1. ConstitutiveModel

The diagenesis model presented in this paper is modular and could be coupled to any modified Cam-clay

constitutive model. Here we adopt the so-called Soft Rock 4 (SR4) critical state model, and themost relevant

aspects of the critical state constitutive model for this paper will be summarized. For more details on the

formulation of SR4 the reader is referred to Obradors-Prats et al. (2016, 2017a, 2017b).

First, we start by considering the decomposition of the effective stress tensor, �
′

, into deviatoric and

volumetric parts (Terzaghi, 1923):

�′ = s + p′I with p′ =
1

3
tr[�′] (1)

where p
′

denotes the effective mean stress, s is the deviatoric stress tensor, I is the second-rank iden-

tity tensor, and tr[·] is the trace operator of [·]. In addition to the effective mean stress, the deviatoric

stress q =
√

2

3
(s ∶ s) is needed in the constitutive formulation of the yield surface and flow potential.

The deviatoric stress can be written in terms of the three principal effective stresses �1′, �2′, and �3′ as

q =
√

1

2

[
(�′

1 − �′
2
)2 + (�′

1 − �′
3
)2 + (�′

2
− �′

3
)2
]
.

It may be noted that for sediments buried under uniaxial strain conditions (i.e., �′
2
= �′

3
) the definition of

deviatoric stress, widely adopted in critical state soil mechanics (e.g., Muir Wood, 1990; Rouainia & Muir

Wood, 2006), coincides with the definition of differential stress used in geophysics and structural geology

literature (q = �′
1 − �′

3
).

The yield surface for a sediment as described in critical state soil mechanics bounds the region of elastically

accessible stress states in the p
′

-q plane characterized by elastic strains (stress paths moving inside the yield

surface). The critical state line divides the yield surface in two parts; the cap side (compression part) and the

shear side. Yielding on the cap side results in shear-enhanced compaction and sediment hardening, which

macroscopically results in ductile diffuse plastic strain. On the other hand, yielding on the shear side leads to

dilative sediment softening and strain localization. Yielding on the critical state results in continuous shear

at both constant effective stress and constant volume. The yield surface is defined with two functions that

intersect at the maximum deviatoric stress in the p
′

-q plane as

� (p′, �p
v
) =

⎧
⎪⎨⎪⎩

g(�, p′)q + (p′ − pt) tan �
[
(p′−pc)

(pt−pc)

]1∕n
, if p′ ≥ p�peak

[
g(�, p′)

]2
q2 −M2

�
p2
�peak

[
1 −

(p�peak
−p′)2

(p�peak
−pc)

2

]
, if p′ < p�peak

(2)

where p
′

is the mean effective stress, q is the deviatoric stress, pt is the tensile intercept of the yield surface

with the hydrostatic axis, pc is the preconsolidation pressure or compressive intercept of the yield surface

with the hydrostatic axis, p�peak is the effective mean stress at q peak value, �
p
v is the plastic volumetric strain,

M� is the slope of the line that intersects both the origin of the p
′

-q space and the yield surface in q peak

value, � and n arematerial constants which define the shape of the yield surface in the p
′

-q plane, g(�, p
′

) is a

function that describes the shape of the yield surface in the deviatoric plane (plane normal to the hydrostatic

axis), and � is the Lode's angle, which can be related to �1′, �2′, and �3′ as

−
�

6
≤ � = tan−1

[
1√
3

(
2�′

3
− �′

1 − �′
2

�′
1 − �′

2

)]
≤

�

6
(3)

The shape of the plastic potential is defined by a function similar to the yield surface but with two different

shape parameters causing the flow rule to be nonassociative:

	(p′, �p
v
) =

⎧
⎪⎨⎪⎩

q + (p′ − pt) tan	
[
(p′−pc)

(pt−pc)

](1∕m)

p′ ≥ p	peak

q2 −M2p2
	peak

[
1 −

(p	peak
−p′)2

(p	peak
−pc)

2

]
p′ < p	peak

(4)

whereM is the slope of the critical state line, p	peak is the effective mean stress at q peak value for the flow

potential, 	 and m are two material constants, which define the shape of the flow potential surface in p
′

-q

plane. Note that for n = m, p�peak coincides with p	peak so that the critical state is located at the peak strength.

In contrast to the yield function, the flow potential surface has a circular shape in the deviatoric plane for

all values of pc since it does not depend on the Lode's angle or include any deviatoric correction term.
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Thehardening law,which describes the evolution of the yield surface as a function of plastic strain, is defined

as

pc = pc0 exp

[
−


�
p
v

(� − �)

]
(5)

and

pt = pt0 exp

[
−

(�

p
v )max

(� − �)

]
(6)

where 
 = 1 + e is the specific volume with e being the void ratio, � and � are the slopes of the normal

compression line and unloading-reloading line in a 
-ln p′ compression plane and (�
p
v )max is the maximum

dilatational volumetric plastic strain.

The poroelastic strains resulting from stress pathsmoving inside the yield surface are described by the stress

and bulk modulus, Kb defined by a non-linear porosity and stress dependent function as:

Kb = Kb0 + (1 − Aun)
pc
�

+ Aun

p′

(1 − �)�
(7)

where Kb is the bulk modulus, Kb0 is the bulk modulus at deposition (i.e., when pc → 0 and pm′
→ 0), � is

the porosity, and Aun is the dependence factor which has values 0 ≤ Aun ≤ 1.

4.2. Diagenesis Model

Numerous factors control the occurrence and intensity of diagenetic processes, including temperature, min-

eralogy, fabric, geochemistry of the pore fluids, etc. To simplify the representation of these processes, the

diagenesismodel adopts a phenomenological approach that captures the first-ordermacroscopic effects that

diagenetic processes have on sediments. The specific components are as follows:

• Reaction model, defining the rate of volume reduction and total potential volume reduction.

• Compaction model, defining the changes of the hardening moduli and preconsolidation pressure.

• Cementation model, for example, defining change in bond strength.

• Flow rule, defining whether the volume change is predominantly uniaxial or hydrostatic.

These processes are dependent on temperature and time and also an assumed maximum porosity change

for the model, which is called here nonmechanical compaction.

At a given time the current porosity, �, is expressed as

�= �0 + (Δ�)mech + (Δ�)diag (8)

where �0 is the reference or initial porosity, (Δ�)
mech and (Δ�)diag are the porosity changes due to mechan-

ical and diagenetic processes, respectively. Several chemical reactions taking place at different depths may

contribute to the total diagenetic porosity change. Consequently, the total diagenetic porosity change is

evaluated as the sum of the diagenetic porosity change for all reactions:

Δ�diag =

N∑
i=1

(Δ�)
diag

i
(9)

where (Δ�)
diag

i
is the diagenetic porosity change for the ith reaction and N is the total number of chemical

reactions. The rate of porosity loss for a given reaction i is then defined by the following power law:

d�
diag

i

dt
= −A

(
T − Tini
Tini

)md⎡⎢⎢⎣
(Δ�)

diag

i,max
− (Δ�)

diag

i

(Δ�)
diag

i,max

⎤⎥⎥⎦

nd

(10)

where T is the current temperature, Tini is the threshold temperature above which the reaction begins to

occur, m is an exponent for the temperature-dependent term, (Δ�)
diag

i,max
is the maximum porosity loss due

to the ith chemical reaction, n is an exponent for the porosity change-dependent term and A (1/Ma) is a

constant. The diagenetic porosity loss may be either isotropic or orthotropic (e.g., uniaxial in the direction

of the maximum compressive stress). This allows us to represent the behavior of specific reactions (e.g.,

volume loss as a result of pressure solution might be better represented by an orthotropic law).
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Table 1
Material Parameters for the SR4 Model for Clay (Syntectonic Sediments) and Shale (Preexisting Sediment Wedge)
Lithologies

Modelling feature Parameter Symbol Value

Yield surface p
′
-q Preconsolidation pressure at deposition pc0 0.1 MPa

plane Tensile intercept at deposition pt −0.01 MPa

Friction parameter � 52◦

Yield surface exponent n 1.6

Yield surface shape Deviatoric plane exponent N� 0.25

in the deviatoric plane Deviatoric plane parameter ��0 0.6

Deviatoric plane parameter ��1 0.6

Flow potential surface Dilation parameter 	 45◦

Flow potential exponent m 1.6

Hardening law and Poisson ratio  0.3

elasticity Bulk modulus at deposition K0 10 MPa

Depositional porosity �0 51.05%

Hardening modulus � 0.11

Slope of the unloading/reloading line � 0.05

Porosity-dependence factor Aun 0.5

Grain properties Grain density �s 2,650 kg/m3

Grain stiffness ks 20,000 MPa

Fluid properties Fluid density �f 1,000 kg/m3

Fluid stiffness kf 2,000 MPa

Fluid viscosity f 3.171 × 10−23 (MPa-Ma)

In addition to the porosity loss, the diagenetic processes induce changes in the rock fabric, mineralogy, and

texture due to the dissolution and precipitation of minerals. These changes may in turn affect the geome-

chanical properties, such as rock strength and compaction behavior. This is accounted for by updating the

hardening parameter and the slope of the elastic unloading/reloading line, in the 
-ln p′ plane, according to

the following expressions:

� = �mech + (Δ�)
diag
max

[
Δ�diag

Δ�
diag
max

]
(11)

� = �mech + (Δ�)
diag
max

[
Δ�diag

Δ�
diag
max

]
(12)

where �mech and �mech are the slopes of the normal compression and unloading-reloading lines in a 
-ln p′

plane without the diagenesis contribution, respectively, and (Δ�)
diag
max and (Δ�)

diag
max are themaximum changes

in � and � due to diagenesis. The increase in sediment strength (increase in the preconsolidation pressure)

due to diagenesis is accounted for by including the diagenetic volumetric plastic strain,Δ�
p(diag)

v(mech)
to the total

volumetric strain; that is, the volumetric plastic strain used to compute the preconsolidation pressure in

equation (5) is now defined as

Δ�p(hard)
v

= Δ�p
v
+ Δ�

p(diag)

v(mech)
(13)

where Δ�
p(hard)
v is the volumetric plastic strain that is used to evaluate strength, Δ�

p
v is the mechanical

volumetric plastic strain and

Δ�
p(diag)

v(mech)
=

Δt

1 − �

N∑
i=1

Fpci

d�
diag

i

dt
(14)

where Δt is the time increment and Fpci is a nondimensional scaling parameter which controls the

proportion of the diagenetic volumetric plastic strain that contributes toward the increase in strength.
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Figure 2. Effective stress paths for undrained shearing of Kimmeridge Westbury Clay (KWC) (a) and Kimmeridge Bay
Clay (KBC) (b) samples. The data have been obtained from Nygård et al. (2006) and the C1, C2,… M5 stand for their
original labels. The shown yield surfaces are the best fit shape after calibration obtained under the following
assumptions: (1) the same yield surface shape parameters should be used for KWC and KBC (the diagenesis has not
changed the yield surface shape), (2) KWC samples are all normally consolidated, so the stress paths should
approximately follow the cap side of their respective yield surfaces, and (3) KBC samples are all overconsolidated, so
the peak stress of the stress paths should be approximately located on the shear side of the common yield surface.

Cementation of minerals within the pore spaces of sediments creates bonds between particles. Macroscopi-

cally, the effect of cementation is an increase of the tensile intercept of the yield surface with the hydrostatic

axis, that is,

pt = pmech
t

+ (Δpt)
diag
max

[
Δ�diag

Δ�
diag
max

]
(15)

where pmech
t

is the tensile intercept without the contribution of diagenesis and (Δpt)
diag
max is the maximum

increase in the tensile intercept due to diagenesis. Note that the increase in the tensile intercept due to

cementation may be reversed due to mechanically induced destructuration and bond breakage.

5. Model Calibration

The new constitutivemodel has been specifically calibrated to reproduce the experimental results of samples

from KWC and KBC to ensure that the diagenesis model is able to capture the transition from KWC to KBC

mechanical properties. This procedure is performed in two steps: first, amechanical compaction-onlymodel

Figure 3. Results of an oedometer test model for Kimmeridge Westbury
Clay (KWC) after material calibration. The data for compaction and
unloading have been obtained from Nygård et al. (2004a).

is calibrated for the KWC and second, a diagenesis reaction is calibrated

for amodel that can simulate thewholeKimmeridgeClay history, starting

with KWC mechanical properties and simulating its transition to KBC.

The set of material parameters, which has been used for matching all the

KWC data is shown in Table 1.

The shape of the yield surface for KWC and KBC is assumed to be the

same (i.e., the change of yield surface due to nonmechanical compaction

is via expansion due to diagenetic-induced strengthening). Consequently,

the yield surface is calibrated to provide a best fit to individual undrained

shear stress paths of KWC and KBC (Nygård et al., 2006). It has been

assumed that all KWC samples were in a normally consolidated state.

Consequently, the yield surface for each test increases in size during the

isotropic consolidation stage prior to the shearing stage. Subsequently,

the stress paths have followed approximately the cap side of the yield sur-

face in each test until they reached the peak stress (see Figure 2a). In

addition, it has been assumed that all the KBC samples were overcon-

solidated. As a result, we assume that the peak stress reached during the

shear test in all the samples is approximately located on the shear side of

a common yield surface (see Figure 2b).
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Figure 4. Burial history for Kimmeridge Bay Clay. Data derived from
Nygård et al. (2004a, 2004b).

In addition to defining the shape of the yield surface, calibration of the

model is carried out by simulating the mechanical compaction behavior

for KWC using K0 experimental data from (Nygård et al., 2004a). To this

end, we have defined an axisymmetric single elementmodel with bound-

ary conditions representative of an oedometer test. A linearly increasing

axial stress of up to 150 MPa followed by an unloading to 25 MPa has

been imposed. The results after calibration are shown in Figure 3. Dur-

ing the experimental unloading path the axial stress decreased by up to

2 MPa; however, the simulation reaches softening conditions during the

unloading when the stresses are decreased below ∼25 MPa (not shown).

Therefore, only the unloading path up to 25 MPa is considered. Note that

the simulation is in good agreement with the experimental data. How-

ever, at a stress of 25 MPa, there is a mismatch of 0.04 units in void ratio

between the experimental and modeled unloading paths. It should be

noted that a better fit of the unloading path might be obtained using the

original Cam Clay poroelasticity model (i.e., Aun = 1 in equation (7)

as the void ratio would experience a higher increase during unloading.

However, we consider that the chosen model is more appropriate for

field simulations (e.g., we do not expect a large porosity increase during

unloading, when a sample is collected from its original depth).

After calibration of theKWCmechanical properties we calibrated a diagenesis law to be representative of the

transition fromKWC toKBC. To this endwe defined a single-elementmodel that simulates the burial history

of KBC for a small volume of sediment (the simulation tracks a material point during burial). The imposed

stress and temperature conditions are shown in Figure 4. In order to calibrate the diagenetic processes from

KWC/KBC transition we have assumed the following: (1) the change from KWC to KBC properties is a

consequence of a single reaction (i.e., N = 1 in equation (9)) and (2) the reaction at the end of KBC burial

history was completed (i.e., the diagenetic porosity loss at the end of the burial history equals the maximum

diagenetic porosity loss. Note that we might obtain the same diagenetic porosity loss at the end of the burial

Figure 5. Simulated KBC history using a single-element model. The data
have been obtained from Nygård et al. (2004a). The simulated compaction
path corresponding to the KBC burial history stops at the point number 6,
indicated with a yellow square, but the simulation is carried forward with
further unloading and a subsequent reloading to high stresses beyond the
yielding point (black discontinuous line). Points 1–6 correspond to stress
states at the top surface, 1.4-km depth, 1.87-km depth, 1.87-km depth,
1.6-km depth, and 0.7-km depth, respectively, from the burial history in
Figure 4. Point 7 is the minimum stress after unloading in the extended
simulation; Point 8 is the chemically enhanced yield stress, and Point 9 is
the maximum stress after reloading in the extended simulation. KBC =
Kimmeridge Bay Clay; KWC = Kimmeridge Westbury Clay.

history using a reaction defined with a higher maximum porosity loss

if the time of exposure to temperatures above the threshold tempera-

ture is not enough to complete the reaction). In Figure 5 the simulation

results are compared to KWC and KBC experimental compaction data.

It can be seen that the simulated compaction path initially follows the

KWC compaction curve until the sediment is compacted to a void ratio

of 0.51 at a stress of ∼15 MPa. Then, with ongoing burial the threshold

temperature is reached and the chemical reaction starts to take place,

resulting in a relatively large porosity loss until the sediment reaches its

maximum burial depth (i.e., void ratio decreases from 0.51 to 0.24 for an

effective stress increase of 5MPa). Subsequently, there is an uplift and the

unloading path follows the KBC overconsolidated compaction data until

it reaches the current depth. We have subsequently simulated further

unloading and reloading beyond the chemically enhanced yield stress at a

temperature of 20 ◦C (mechanical compaction only) to test that the com-

paction path is representative of the KBC behavior (discontinuous line in

Figure 5). It can be seen that the model agrees very well with the KBC

data with a near to perfect match in the unloading path section.

The stress path for the burial history of the Kimmeridge Clay is shown in

Figure 6. During initial burial from the top surface to 1.4-km depth the

stress state moves from points 1 to 2 following a K0 path, during which

the Kimmeridge Clay is compacted mechanically. With further burial

from 1.4- to 1.87-km depth, the Kimmeridge Clay reaches the threshold

temperature for the diagenetic processes to take place. The yield surface

increases in size more rapidly than it would occur for a sediment com-

pacting mechanically and so the stress path moves elastically inside the

ROUAINIA ET AL. 9
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Figure 6. Stress path of the burial history of the Kimmeridge Clay. (a) Stress path until the end of burial history
(present day). (b) Additional stress path during unloading and reloading at laboratory conditions (20 ◦C). The
numbered points (from 1 to 9) on this figure correspond to those in Figure 5.

yield surface from the stress states indicated by points 2 to 3. Then from 50 to 30 Ma BP there is a hiatus

period in which the sediment remains at 1.87-km depth and the yield surface increases slightly in size with

negligible changes in stress (stress points 3 and 4). Subsequently, there is an uplift and erosion period from

30 to 14 Ma BP, which causes an uplift of the sediment to a depth of 1.6 km with the stress path unloading

elastically from point 4 to point 5. From 14 Ma BP to present the sediment is uplifted to a depth of 0.7 km

with the stress path going from point 5 to point 6. The latter represents the state in which the sample was

retrieved. As previously described, we extended the simulation of the retrieved sample with further stress

unloading and reloading at a constant temperature of 20 ◦C, with the aim of stopping any further diagene-

sis effects and to test the geomechanical behavior at laboratory conditions. With unloading, the stress path

moves from point 6 to point 7, approaching the yield surface on the shear side. We stopped unloading at

point 7 to prevent any softening and then reloaded the sample to a stress higher than 100 MPa. The stress

pathmoves elastically from point 7 to point 6 and then to point 8, where the stress pathmet the yield surface

on the cap side. At this point the stress state overcomes the diagenetic enhanced yield stress and the stress

path causes plastic strains and hardening (yield surface size increase) moving from point 8 to point 9.

6. Effect of Nonmechanical Processes on Overpressure

Nonmechanical processes might have an effect on overpressure generation and evolution via two mecha-

nisms: (1) the nonmechanical processes considered here decrease the pore volume (so either, the pore fluid

flows out of the pore volume or pore pressure increases, or both) and (2) the reduction in porosity leads

to a reduction in permeability, which will reduce the rate of overpressure dissipation generated by other

mechanisms (e.g., increase in load by further sedimentation). In order to show the effects of nonmechanical

processes on overpressurewe simulate theUKCentral Graben uniaxial strain scenario, previously presented

by Gutierrez and Wangen (2005). The rationale of choosing this scenario is as follows: (1) their simulation

accounted for a single lithology with KWC material properties, which facilitates our model build and (2)

Table 2
KWC to KBC Diagenesis Reaction Parameters

Parameter Symbol Value

Maximum diagenetic porosity loss (Δ�)
diag
imax

0.147

Porosity loss direction — Isotropic

Reaction constant A 0.12 1/Ma

Temperature exponent md 1.0

Initiation temperature Tini 70.0 ◦C

Porosity exponent nd 1.0

Maximum increase in tensile intercept (Δpt)
diag
max 6.0 MPa

Strength factor Fpc 0.135

Maximum change in � (Δ�)
diag
max −0.075

Maximum change in � (Δ�)
diag
max −0.024
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Figure 7. Results from the one-dimensional simulations of the UK Central Graben scenario described in Gutierrez and
Wangen (2005). (a) Pore pressure. The two simulation curves correspond to cases with and without taking into account
for diagenetic compaction processes and (b) diagenetic porosity loss.

they underpredicted overpressure relative to available well data and attributed that to the fact that they used

a purely mechanical compactionmodel, whereas other nonmechanical processes might be involved in over-

pressure generation in that region. Thus, the scenario is a perfect benchmark to test if the incorporation of

diagenesis can improve pore pressure predictions.

The model is defined to be one dimensional, consisting of an initial single KWC layer of 300-m height and

accounting for 160 Ma of KWC deposition at a gross sedimentation rate (including the volume of voids at

reference porosity) of 51.07 m/Ma (which is equivalent to the fully compacted sedimentation rate value

of 25 m/Ma). For the KWC permeability-porosity law we use the KWC data for an undisturbed sample

presented in Nygård et al. (2004a), which is the same as the following expression adopted by Gutierrez and

Wangen (2005):

k = 4.8 × 10−4 exp [8.5(e − 1.06)] (16)

where k is the permeability in mD and e is the void ratio.

We performed two simulations: a case accounting formechanical compaction only and a case accounting for

mechanical and nonmechanical compaction processes (with the diagenetic reaction data shown in Table 2.

The results are presented in Figure 7. It can be observed that there is a good agreement between ourmechan-

ical compaction simulation and the one by Gutierrez and Wangen (2005) with no required calibration on

permeability. It is evident that the incorporation of the diagenetic processes into the simulation lead to a

pore pressure increase (Figure 7a). The simulation accounting for diagenetic processes predicts overpres-

sures that are up to 9.2 MPa higher than the prediction by the mechanical compaction simulation at 2.6-km

depth, where the diagenesis reaction is completed (Figure 7b). At greater depths the overpressure difference

decreases as the generation of overpressure by diagenetic processes ceases. The difference in overpressure

at 6-km depth is 6.0 MPa.

Despite the increase in overpressure predictions, the incorporation of diagenetic processes is not enough

to explain the pore pressures observed in the region. The differences between the overpressure predicted

Figure 8. Thrust geometry after complete sedimentation and boundary conditions. The initial model geometry
consisted of just the bottom-most shale layer. The initial thrust length is 30 km and the basal discontinuity is located at
14 km from the left-hand boundary.
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Figure 9. Experimental mechanical compaction curve of a lithic sand
derived from Figure 4 in Chuhan et al. (2003) assuming a constant
lithostatic gradient of 0.022 MPa/m and a constant hydrostatic gradient of
0.010 MPa/m compared to porosity data for a Berea Sandstone sample
obtained from Wong et al. (1997) placed at its estimated maximum burial
depth (neglecting elastic porosity recovery).

by the model that accounts for mechanical and nonmechanical com-

paction processes, and observed pore pressures, ranges from 7.0 to

17.6 MPa at 4.6 and 5.0 km, respectively, suggesting that additional

overpressure generation processes need to be considered.

7. Effect of Nonmechanical Processes on
Structural Style

As discussed previously, nonmechanical compaction processes result in

a change in the geomechanical properties of sediments such as stiffness

and strength. Thus, they might have an important impact on the struc-

tural deformation style resulting from tectonic activity; for example, the

diagenetic overprint might result in an increased brittleness of the sedi-

ments, which might increase the likelihood of faulting. This hypothesis

has been used previously by Roberts et al. (2015) to explain the forma-

tion of polygonal fault systems in passive settings. Thus, in the present

section we define a model in order to show the effect of diagenesis on the

predicted structural style in shortening environments. We will consider

two cases: (1) a model that accounts for the mechanical compaction pro-

cesses only and (2) a model that accounts for both the mechanical and

nonmechanical compaction processes.

7.1. Model Definition

The model will consider three time stages: (1) a period of sedimenta-

tion, (2) a period of hiatus, and (3) a period of tectonic deformation. The

simulations will be performed under hydrostatic conditions. The initial

geometry consists of a 30-km-long and 0.6-km-high shale layer which is initialized under geostatic condi-

tions with a ratio of the horizontal effective stress, �h′, to the vertical effective stress, �v′, equal to 0.8. The

sedimentation stage captures the deposition of an alternating succession of five shale and four sand layers

with initial thicknesses at depositional porosity of 0.3 and 0.6 km, respectively. The sedimentation rate is kept

constant at 25 m/Ma. The complete sedimentation process ends after 156 Ma and the resulting geometry is

shown in Figure 8. A hiatus of 50 Ma follows.

A discontinuity in the basal boundary conditions is prescribed at 14 km from the left boundary. The basal

boundary to the left of the discontinuity is fully fixed in both horizontal and vertical directions. On the

other hand, the basal boundary to the right of the discontinuity is fixed in the vertical direction whereas

Figure 10. Burial history for Mississippian/Upper Devonian sediments in the Central Michigan Basin. The curve
was obtained from Figure 7 in Charpentier (1987). Berea Sandstone is estimated to be of that age (e.g., see Figure 6 in
Charpentier (1987). The temperature values result from assuming a surface temperature of 20 ÂžC and a temperature
gradient of 35 ÂžC/km, and the vertical effective stress values result from the overlaying rock column with the
calculated porosity values.
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Figure 11. Berea Sandstone yield data from Wong et al. (1997) and
calibrated yield surface shape.

free motion is allowed in the horizontal direction (the material has free-

dom to slide). Horizontal motion is prevented at the left-side boundary.

The top surface will move freely as a consequence of the deformation.

A prescribed displacement of 6 km on the right-side boundary will drive

the compressive deformation during the 10 Ma of the tectonic stage. The

temperature is 20 ◦C at the surface with a constant thermal gradient of

33 ◦C/km. The simulation is run under drained assumptions (i.e., pore

pressures are kept hydrostatic).

The domain is discretized with an unstructured mesh of triangular ele-

ments with an average element size of 150 m. The mesh is adaptive,

following an element size refinement law as a function of plastic strain

that decreases the element length up to a value of 50 m for plastic strain

values of 0.5 or more. This ensures enough resolution in active zones

(in terms of strain) to capture fault initiation and propagation properly,

whereas it keeps relatively coarse elements in inactive areas of the domain

for the sake of the optimization of computational cost. The mechanical

time step sizes have been defined so that each layer deposited is solved

with 1 × 104 steps, the hiatus period is solved with 1 × 104 steps and the

deformation period is solved with 2 × 105 steps.

The shale layers are modeled with the KWC/KBC material properties discussed in section 5 whereas the

sand properties are discussed in the next section.

7.2. SandstoneMaterial Characterization

The material properties for sandstone layers have been calibrated using Berea Sandstone data as a bench-

mark. Berea Sandstone has a present-day porosity of 0.21 (Wong et al., 1997) with an estimated maximum

burial depth of ∼1.7 km (Charpentier, 1987). If these data are compared with the experimental mechanical

compaction trend for a lithic sand with a similar grain size to that of Berea Sandstone (Chuhan et al., 2003),

it becomes evident that processes other than pure mechanical compaction have played a role in the porosity

loss of Berea Sandstone (see Figure 9). Therefore, the target has been to calibrate the sandstone mechanical

compaction according to the experimental data from Chuhan et al. (2003) and then calibrate a single diage-

nesis reaction that will result in the sediment acquiring the Berea sandstone properties after simulation of

Berea Sandstone burial history (Figure 10). The yield surface shape and target size are calibrated according

to data fromWong et al. (1997; see Figure 11). The results after calibration are shown in Figure 12, and the

constitutive model and diagenetic properties are shown in Tables 3 and 4, respectively.

Figure 12. Results after calibration of Berea Sandstone properties. (a) Mechanical compaction calibration using
experimental data from Chuhan et al. (2003). (b) Calibration of the diagenesis reaction by simulating the Berea
Sandstone burial history shown in Figure 8 and targeting the Berea Sandstone sample porosity data from Wong
et al. (1997).
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Table 3
Calibrated Constitutive Model Properties for Berea Sandstone

Modeling feature Parameter Symbol Value

Yield surface p
′
-q Preconsolidation pressure at deposition pc0 6.9 MPa

plane Tensile intercept at deposition pt −0.3 MPa

Friction parameter � 67.5◦

Yield surface exponent n 0.95

Yield surface shape Deviatoric plane exponent N� 0.25

in the deviatoric plane Deviatoric plane parameter ��0 0.6

Deviatoric plane parameter ��1 0.6

Flow potential surface Dilation parameter 	 62.5◦

Flow potential exponent m 0.95

Hardening law and Poisson ratio  0.25

elasticity Bulk modulus at deposition Kb0 10 MPa

Depositional porosity �0 46.5%

Hardening modulus � 0.18

Slope of the unloading/reloading line � 0.08

Porosity dependence factor Aun 0.5

Grain properties Grain density �s 2,650 kg/m3

Grain stiffness ks 20,000 MPa

Fluid properties Fluid density �f 1,000 kg/m3

Fluid stiffness kf 2,000 MPa

Fluid viscosity f 3.171 × 10−23 (MPa-Ma)

7.3. Results

The material grid for both cases is shown in Figure 13. It is evident that the diagenetic processes have had a

significant effect on the predicted structural style. The case that accounts only for mechanical compaction

has predicted a ductile structure, consisting of an anticlinal fold that developed above the basal boundary

discontinuity (Figure 13a). The plastic strain contours show distributed strain with the maximum values

concentrated near the basal discontinuity (Figure 14a). The shale layers show higher values of plastic strain

than the more competent sand layers. On the other hand, the case that accounts for both mechanical and

nonmechanical compaction has predicted a brittle structure consisting of a thrust fault that dips in the direc-

tion contrary to the shortening, with three conjugate back thrusts that were uplifted as the sediments were

slipping above the thrust ramp. A small box-type-fold bounded by two kink bands is apparent to the right of

Table 4
Calibrated Diagenetic Reaction for Berea Sandstone

Parameter Symbol Value

Maximum diagenetic porosity loss (Δ�)
diag
imax

0.179

Porosity loss direction — Isotropic

Reaction constant A 0.24 1/Ma

Temperature exponent md 1.0

Initiation temperature Tini 70.0 ◦C

Porosity exponent nd 1.0

Maximum increase in tensile intercept (Δpt)
diag
max 6.7 MPa

Strength factor Fpc 0.95

Maximum change in � (Δ�)
diag
max 0.0

Maximum change in � (Δ�)
diag
max 0.0

Note. We do not consider any change in � and � as data for the calibration of
the constitutive model are not available.
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Figure 13.Model material grid after complete displacement. (a) Case considering mechanical compaction, (b) case
considering mechanical and nonmechanical compaction. Brown layers consist of shale whereas yellow layers consist of
sandstones.

the principal thrust. Brittle deformation is also evident near the moving boundary (Figure 13b). The plastic

strain contours show strain localization on the fault planes (Figure 14b). Also it can be noted that the shale

layers to the right of the thrust show lower values of plastic strain compared to the case that accounted for

mechanical compaction only. This is because in the case with diagenesis, most of the shortening is accom-

modated by sliding over the thrust fault plane, whereas in the case that neglected diagenesis there is a greater

amount of tectonic compaction. In Figure 15 the stress paths for a material point located within the oldest

sandstone layer (see the final location the point in Figure 14) provide additional information on the reason

behind the difference in the predicted structural style in both cases. In the case that accounts for mechanical

compaction only (Figure 15a) there is an initial period of mechanical compaction because of the increased

load due to burial (stress path from 1 to 2). At the end of burial the stress state lies on the yield surface.

Then, the shortening stage starts and initially q decreases by 2.2MPawith an increase in p
′

of 3MPa because

of an increase in the maximum horizontal (�H′) and minimum horizontal (�h′) effective stresses, whereas

the vertical effective stress (�v′) remains practically constant (stress path from 2 to 3). Subsequently, after

the magnitude of �H′ exceeds that of �v′, there is an increase in both p
′

and q (stress path from 3 to 4). As

the stress path moves from 2 to 3 and then from 3 to 4 there is mechanical compaction resulting from the

tectonic load. In the case that accounts for both mechanical and nonmechanical compaction (Figure 15b),

during burial there is an initial period of mechanical compaction followed by a period of nonmechanical

compaction once the temperature exceeds the threshold temperature (stress path from 1 to 2). During non-

mechanical compaction the yield surface increases considerably in size leaving the stress state inside the

yield surface (stress state 2 and dotted yield surface). Due to this diagenetically induced overconsolidation,

the stress state is situated on the shear side of the yield surface. Then, shortening starts, resulting in an

increase in both p
′

and q. The stress path moves elastically until it meets the yield surface on the shear side

(stress path from 2 to 3). Then, with ongoing shortening there is softening (decrease in the yield surface size

and, therefore, decrease in strength) characterized by strain localization forming a plane of weakness, which

is the continuum equivalent of a fault (stress path from 3 to 4). Therefore, the shortening is accommodated

by displacement over the fault.

Figure 14. Plastic strain contours after complete displacement. (a) Case considering mechanical compaction, (b) case
considering mechanical and nonmechanical compaction. P1 indicates the position of a material point tracked within
the oldest sandstone layer to plot the stress paths in Figure 14. Note that the initial position of P1 was identical for both
cases.
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Figure 15. Stress paths for point P1 shown in Figure 13. (a) Case considering mechanical compaction, (b) case
considering mechanical and nonmechanical compaction. The numbers indicate the chronological order of the
representative stress states that plot the stress path. The dotted black line corresponds to the yield surface before the
onset of shortening, whereas the continuous black line corresponds to the final yield surface after shortening. The
critical state line is also plotted for reference. Note that the case considering mechanical compaction is always in
hardening conditions (stress path yielding to the right of the critical state line), and the final yield surface is greater
than the yield surface before the onset of the shortening. On the other hand, the case accounting for mechanical and
nonmechanical compaction shows softening behavior from stress state 3 to stress state 4 (stress path yielding to the left
of the critical state line), and the final yield surface is smaller than the yield surface before the onset of shortening.

8. Discussion

Wehave presented a temperature-dependent diagenesismodel that incorporates within geomechanical sim-

ulations: diagenetic porosity loss, diagenetic-induced change in geomechanical properties, and overpressure

generation due to both the reduction in void volume and the consequent decrease in permeability. We have

used experimental data for Kimmeridge Clay fromNygård et al. (2004a, 2004b, 2006) to calibrate a clay/shale

model and data for Berea Sandstone (Wong et al., 1997) and a lithic sand (Chuhan et al., 2003) to cali-

brate a sand/sandstone model. The burial histories for Kimmeridge Clay (Nygård et al., 2004a) and Berea

Sandstone (Charpentier, 1987) were used to estimate the temperature histories for both sediments and to

calibrate the kinetics of the corresponding diagenetic reactions. The maximum temperatures for both sed-

iments is estimated to be about 80 ◦C, assuming reasonable thermal gradients. Previous researchers have

established 70 ◦C as the threshold temperature in conceptual chemical compaction models (Bjørlykke &

Høeg, 1997; Bjørlykke, 1998; Dutta, 2002). Other researchers, however, suggested that at temperatures of

about 65 ◦C smectite might already start to transform to illite in mudstones (Goulty et al., 2016) but that

chemical compaction (porosity loss due to chemical reactions) does not start until temperatures of about

100 ◦C depending on the mineralogical composition and thermal histories of the sediments (Goulty et al.,

2012). On the other hand, quartz cementation and chemical compaction in sandstones are often estimated

to occur at temperatures above 80 ◦C (Bjørlykke et al., 2008; Walderhaug & Bjørkum, 2003) although it has

recently been suggested that quartz cementation might start at 60 to 70 ◦C (Harwood et al., 2013). Regard-

less of the established temperature range for the occurrence of the individual chemical reactions, the data

analyzed suggest that nonmechanical processes have contributed substantially to porosity loss and strength

development in Kimmeridge Clay mudstone and Berea sandstone, both of which experienced a maximum

estimated temperature of 80 ◦C. Therefore, we believe that our assumption of a threshold temperature of

70 ◦C for nonmechanical compaction is reasonable given the assumption of a single chemical reaction to

lead the process. Reality, however, might be more complex and several reactions at different depths and

temperature ranges might have contributed to the development of the sediments' present-day properties

(e.g., shallow carbonate cementation). Furthermore, other rate-dependent processes such as deviatoric creep

might also have played a role.

We have shown the effect of diagenesis on overpressure development by modeling the UK Central Graben

scenario. We have validated the mechanical compaction model by direct comparison with Gutierrez and

Wangen's (2005) results, obtaining a good agreement. Extending the model to incorporate the previously

calibrated diagenesis model for Kimmeridge Clay resulted in an increase in overpressure of up to 9.2 MPa.
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Despite the contribution of diagenesis to overpressure, the model is still insufficient to match the pressure

data in the UK Central Graben. Several reasons could explain this. First, the model considers a single lithol-

ogy, whichmight be an oversimplification of the true stratigraphy. For example, if there is a low-permeability

shale layer at depths shallower than the pore pressure measurements, including this in the model would

result in a further increase in pore pressure due to disequilibrium compaction. Second, we have considered

that the change in permeability for a given diagenetic porosity loss is the same as the change that would pro-

duce an equivalent mechanical-induced porosity loss (we assume preservation of the porosity-permeability

relationship). In reality, however, this might not be the case, as diagenetic processes might enhance grain

orientation and involve textural changes in sediments that could change the porosity-permeability rela-

tionships (Bjørlykke, 1998; Goulty et al., 2012). Finally, other processes in addition to mechanical and

nonmechanical compaction, which are not taken into account in our models, might have contributed to the

overpressure observed in theUKCentral Graben (e.g., fluid expansionmechanisms, buoyancy due to oil/gas

column, gas generation, and lateral transfer).

Pore pressure predictionmethods often rely on effective stress-porosity relationships (or porosity-dependent

parameters such as sonic velocity or resistivity) and comparison of field observations with a normal com-

paction trend (NCT). If porosity at a given depth is higher than the NCT porosity, it is assumed that

overpressure generated by disequilibrium compaction (pore fluid flow out of the pore spaces is slow com-

pared to the loading rate) has helped to preserve porosity by decreasing the effective stress. Thus, knowing

the effective stress that corresponds to such porosity, the depth and the hydrostatic and lithostatic pres-

sures, overpressure can be estimated. While these assumptions may be valid for sediments at shallower

depths above 2 km and temperatures below 65 ◦C, deeper and hotter sediments may not follow stan-

dard porosity-effective stress relationships due to both nonmechanical porosity reduction and overpressure

generation by mechanisms other than disequilibrium compaction (Goulty, 1998; Hermanrud et al., 1998;

Swarbrick et al., 2002). Some researchers have implemented alternative methods to predict overpressures in

such scenarios by proposing either a diagenetic correction to the NCT (e.g., Lahann, 2002) or by attempting

to capture pore pressure generation unloading mechanisms in their predictions (e.g., Bowers, 1995; Hart

et al., 1995). The model presented in this paper can account for diagenetic porosity loss and overpressure

generation and so is able to improve pore pressure predictions in diagenetic regimes.

Evidence for diagenetically induced overpressure is available in the literature. For example, Helset et al.

(2002) concluded that up to 25% of the total overpressure in Halten Terrace and 80% in Gulf of Mexicomight

have been generated by chemical compaction, and Bolås et al. (2008) demonstrated that stress-insensitive

chemical compaction needed to be invoked in basin models to obtain reasonable geological histories for

the deeply buried North Sea Chalk sequences and match the low-porosity/high-overpressure data. Nguyen

et al. (2016) showed that mechanical compaction alone cannot explain the high pore pressures measured

at depths of about 3,000 m below seafloor in the Joetsu Basin and that the incorporation of chemical com-

paction in their models provides a plausible explanation for the measured magnitudes, and Goulty and

Sargent (2016) showed that up to 20 MPa of overpressure are generated by unloading mechanisms (such

as diagenesis) in Cretaceous mudstones in Haltenbanken. However, there is some debate concerning the

mechanisms that lead to such overpressure generation. For example, whereas some researchers attribute

the generation of overpressure to the volume changes involved in the smectite to illite transformation (e.g.,

Helset et al., 2002), others (e.g., Swarbrick et al., 2002) argued that such volume changes are too low to

contribute significantly to overpressure generation and attribute the occurrence of overpressure to a load

transfer from the grain framework to the pore fluid as the former is weakened during illitization, leading

to pore collapse (Lahann, 2002; Lahann & Swarbrick, 2011; Swarbrick et al., 2002). The diagenesis model

presented here allows the simulation of the macroscopic effects of diagenesis such as porosity loss and

overpressure increase, regardless of the processes involved, if the model is adequately calibrated.

The data from Nygård et al. (2004a, 2004b) have shown that diagenesis increases the stiffness of the Kim-

meridge Clay relative to an unaltered specimen mechanically compacted to the same porosity. Similar

conclusions were obtained by Favero et al. (2016) in an experimental study on natural and remolded sam-

ples of Opalinus Clay. On the other hand, the diagenetically induced high porosity loss in Berea Sandstone

resulted in a high preconsolidation pressure (Wong et al., 1997). Such chemically induced geomechanical

changes have an important impact on the deformation behavior of sediments as they are expected to increase

sediment brittleness (Bjørlykke & Høeg, 1997). This could explain the transition from ductile to brittle sed-

iments as they are buried and exposed to relatively high temperatures (e.g., Roberts et al., 2015). We have
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shown the impact that the calibrated diagenetic models have on the deformation style in a compressional

setting. Whereas a purely mechanical model predicted a ductile structure, the model that accounted for the

diagenetic effects has been able to predict faulting (brittle deformation). The key factor that changed the

deformation style from ductile to brittle was the diagenesis-induced overconsolidation due to a more com-

pacted structure. The yield surface increased in size with negligible changes in stress, causing the stress

state to be located on the shear side of the yield surface before the onset of shortening. Thus, when com-

pressive deformation started the stress path moved to meet the yield surface on the shear side resulting in

strain localization and softening.

There are two ways to predict brittle deformation (without seeding the faults) with mechanical-only geome-

chanical models in compression: (1) Initialize the model with all or most of the sediments in place (zero

or a minimum amount of deposition) and set the initial overconsolidation ratio to be high enough for the

stress path to meet the yield surface on the shear side and (2) deposit the layers in a highly overconsolidated

state, which would lead to unrealistic geological histories (i.e., too high initial strength and the omission of

mechanical compaction with increasing burial). Thus, the diagenesis model presented here could be very

beneficial in the geomechanical modeling of deposition and the evolution of sedimentary basins, helping to

predict reasonable deformation structures relying on realistic sedimentation and burial histories. However,

the data in the literature concerning the diagenetic effects on sediment geomechanical properties are scarce

andmore research is needed to help calibrate themodels. For example we point out the following questions:

How does diagenesis affect the yield surface shape? Does it have any effect on the residual friction? At what

point might diagenesis increase the preconsolidation pressure in shales? What impact does diagenesis have

on permeability? How can different diagenetic processes be adequately captured?

9. Conclusions

The first-order macroscopic effects of diagenetic processes on mudstone formations have been captured

through a new phenomenological approach. To this end, the critical state-based SR4 constitutive model

for mudstone rheology has been extended to include temperature-dependent, kinetic diagenesis processes

within a hydromechanical framework. Themain conclusions drawn on the ability of themodel to reproduce

laboratory experimental data and to predict overpressure and structural deformation are as follows:

• Previous research provides evidence concerning the effect of diagenesis on porosity loss and changes in

sediment geomechanical properties (Nygård et al., 2004a, 2004b; Favero et al., 2016).

• We have presented a diagenesis model which accounts for nonmechanical compaction, diagenetically

induced changes in sediment geomechanical properties, and diagenetically induced overpressure genera-

tion due to the loss in pore volume and the associated reduction in permeability.

• The calibrated model successfully captures experimental observations of Kimmeridge Clay.

• We have demonstrated the influence of diagenesis on overpressure in a UK Central Graben scenario. The

incorporation of diagenesis leads to an increase in overpressure of 9.2 MPa. A greater effect is expected in

basins with higher sedimentation rates due to the diagenetically triggered reduction of permeability and

therefore higher degree of disequilibrium compaction.

• We have demonstrated the control of diagenesis on the predicted structural style using geomechanical

models. Models that neglected the diagenetic effects predicted ductile structures, whereas the incorpora-

tion of diagenesis led to the prediction of a thrust fault and brittle deformation.
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