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11

* University of Cape Town, Cape Town, South Africa, and Laboratory of Heat Transfer and Environmental Engineering,

Aristotle University, Thessaloniki, Greece
1South African Weather Service, Pretoria, South Africa

#University of Cape Town, Cape Town, South Africa, and Centre de Recherches de Climatologie, Biog�eosciences CNRS,

Universit�e de Bourgogne, Dijon, France
@European Commission Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy

&Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrk€oping, Sweden

** Institut f€ur Meteorologie und Klimaforschung, Karlsruher Institut f€ur Technologie, Karlsruhe, Germany
11Potsdam Institute for Climate Impact Research, Potsdam, Germany

(Manuscript received 14 August 2012, in final form 1 May 2013)

ABSTRACT

The authors evaluate the ability of 10 regional climate models (RCMs) to simulate precipitation over

Southern Africa within the Coordinated Regional Climate Downscaling Experiment (CORDEX) frame-

work. An ensemble of 10 regional climate simulations and the ensemble average is analyzed to evaluate the

models’ ability to reproduce seasonal and interannual regional climatic features over regions of the subcontinent.

All the RCMs use a similar domain, have a spatial resolution of;50km, and are driven by the Interim ECMWF

Re-Analysis (ERA-Interim; 1989–2008). Results are compared against a number of observational datasets.

In general, the spatial and temporal nature of rainfall over the region is captured by all RCMs, although

individual models exhibit wet or dry biases over particular regions of the domain. Models generally pro-

duce lower seasonal variability of precipitation compared to observations and the magnitude of the vari-

ability varies in space and time. Model biases are related to model setup, simulated circulation anomalies,

and moisture transport. The multimodel ensemble mean generally outperforms individual models, with

bias magnitudes similar to differences across the observational datasets. In the northern parts of the do-

main, some of the RCMs and the ensemble average improve the precipitation climate compared to that of

ERA-Interim. The models are generally able to capture the dry (wet) precipitation anomaly associated

with El Ni~no (La Ni~na) events across the region. Based on this analysis, the authors suggest that the present

set of RCMs can be used to provide useful information on climate projections of rainfall over Southern

Africa.

1. Introduction

The aim of this paper to make use of the regional cli-

mate model (RCM) control simulations results produced

within the Coordinated Regional Climate Downscaling

Experiment (CORDEX; Giorgi et al. 2009; Jones et al.

2011) initiative to provide an evaluation of the models’

ability to reproduce the regional climatic features over

Southern Africa. Interannual variability patterns and

climatic means are examined, with focus on precipitation

biases and related large-scale circulation and sea level

pressure (SLP) fields.

As evidence of climate change and its impacts con-

tinue to emerge, Africa is found to be most vulnerable

because of the dependence of communities on natural

resources and low adaptive capacity due to limited ac-

cess to information, finances, technology, and capital

assets. Agricultural production (e.g., Lobell et al. 2008),

livestock (e.g., Thornton et al. 2009), food security

(Hertel et al. 2010), freshwater resources, and socio-

economic structures in many African countries are

particularly vulnerable to the effects of climate change

Corresponding author address: Evangelia-Anna Kalognomou,

Climate System Analysis Group, Department of Environmental

and Geographical Sciences, University of Cape Town, Cape Town,

South Africa.

E-mail: liana@csag.uct.ac.za

1 DECEMBER 2013 KALOGNOMOU ET AL . 9477

DOI: 10.1175/JCLI-D-12-00703.1

� 2013 American Meteorological Society
Unauthenticated | Downloaded 08/23/22 04:53 AM UTC

mailto:liana@csag.uct.ac.za


(Boko et al. 2007; Chevallier 2010). Africa is character-

ized by low adaptive capacity and high vulnerability so

a response to the threat of climate change requires both

mitigation and adaptation measures. The existing de-

velopment challenges from nonclimate factors faced by

most African countries reduce their capacity to adapt to

additional climate stresses. For example, the limited access

to markets, infrastructure, technology, data, and infor-

mation further reduce the adaptive potential and increase

the continent’s vulnerability (Washington et al. 2006).

Low-resolution global climate models (GCMs) show

that the twenty-first century warming rates over Africa

will outpace global warming in all seasons, with the dry

subtropics such as southwestern Africa warming faster

than the wet tropical regions (Christensen et al. 2007;

James and Washington 2013). Over Southern Africa a

higher frequency of extreme temperature events such as

heat waves is associated with the higher warming rates

(Seneviratne et al. 2012; Orlowsky and Seneviratne

2012). Southwestern Africa is projected to become drier

(reduction in soil moisture) and will experience an in-

crease in the frequency of consecutive dry days (Tebaldi

et al. 2006; Sillmann and Roeckner 2008; Orlowsky and

Seneviratne 2012), with the dry conditions and droughts

intensifying toward the end of the twenty-first century

(Hoerling et al. 2006; Shongwe et al. 2009). The eastern

part of Southern Africa is projected to become wetter,

although there are indications that the character of

precipitation will feature fewer intense rainfall events

separated by a high frequency of dry days, particularly in

convective regions (Tebaldi et al. 2006; Rocha et al.

2008). Confidence in future projections of precipitation-

related weather variables is however precluded by in-

ability of GCMs to include many important small-scale

processes and factors that underlie their occurrence

and variability in time and space (Randall et al. 2007).

To address these shortcomings and to support informed

decision making processes with climate information at

relevant spatial and temporal resolution, downscaling

procedures have been developed and applied to derive

regional- to local-scale information from coarse-

resolution GCMs.

Two downscaling techniques are used to produce re-

gional climate information. Statistical downscaling used

empirical relationships between large-scale atmospheric

variables and local climate variables and has demon-

strated the potential to produce useful and applicable

information over Southern Africa (e.g., Hewitson and

Crane 2006). Precipitation projections derived from

simulated synoptic-scale circulation changes using sta-

tistical downscaling show a consensus across GCMs, with

the eastern parts of South Africa projected to become

wetter toward the end of the twenty-first century

(Hewitson and Crane 2006). However, the application

of statistical downscaling methods is hampered in cer-

tain parts of Southern Africa (e.g., Angola and the

Democratic Republic of Congo) by the lack or dearth

of long-enough observational data required at point or

station scale to train and validate the statistical model.

An alternative but computationally intensive approach

that does not suffer from this restraint and captures

mesoscale nonlinear effects is dynamical downscaling

using high-resolution RCMs or global models with

variable spatial resolution (Giorgi 1990; Giorgi and

Mearns 1999).

RCMs are a widely used tool for producing regional

climate data that use boundary conditions from a forcing

coarse-scale global dataset such as a GCM or reanalysis

to simulate the climate of a particular region. Previous

studies demonstrate that RCMs, while showing some

improvements over the driving GCMs in simulating pre-

cipitation over Southern Africa, also show some persistent

biases (Arnell et al. 2003; Haensler et al. 2011) such as

having unrealistic rain day frequency and rainfall in-

tensity (Tadross et al. 2006). RCMperformance is found

to be dependent on the internal physics (e.g., hydrostatic

versus nonhydrostatic; Hewitson et al. 2004; Tadross

et al. 2006), dynamics, and atmosphere–land surface

feedbacks associated with soil moisture and vegetation

cover (Tadross et al. 2005;Williams andKniveton 2012).

Dependence of the simulated climate change on the

driving model, time slice, season, and location has been

apparent. In close agreement with precipitation changes

projected by GCMs (Shongwe et al. 2009) and statistical

downscaling (Hewitson and Crane 2006), RCMs give

indications of drying over southwestern Africa and

wetter conditions to the southeast of South Africa

(Tadross et al. 2006; Engelbrecht et al. 2009, Haensler

et al. 2011).

Downscaling techniques suffer from uncertainties

inherited from the driving GCMs and from those asso-

ciated with their internal workings. To systematically

explore uncertainties associated with dynamical down-

scaling, coordinated RCM simulations are necessary.

Such coordinated efforts are available in other regions,

such as Europe (e.g., Christensen andChristensen 2007),

NorthAmerica (Mearns et al. 2009), and SouthAmerica

(Men�endez et al. 2010). CORDEX is the first effort to

that focuses on the whole of Africa and furthermore treats

it as a priority domain (Giorgi et al. 2009). CORDEX

consists of two phases: in the first phase downscaling

centers are asked to downscale a reference/verification

period using InterimEuropeanCentre forMedium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-

Interim) data (Dee et al. 2011), and in the second phase

they use data from the Coupled Model Intercomparison
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Project phase 5 (CMIP5) GCMs from the period 1951–

2100.

The extent to which CORDEXRCMs can adequately

capture the important climate features and simulate key

variables such as precipitation in Africa is not yet fully

understood. However, this is an essential prerequisite as

climate information obtained from the high-resolution

CORDEX data will be used for climate change adap-

tation strategies and other applications. There is therefore

a need to objectively evaluate the ability of CORDEX

reference runs to simulate key climate variables, par-

ticularly precipitation, as an essential first step prior to

assessing downscaled climate change scenario results

over Africa.

African CORDEX results already published include

Nikulin et al. (2012) and Kim et al. (2013), who dem-

onstrate the models simulate the mean seasonal and

annual cycle adequately, although there are spatial

biases amongst the model ensemble. Their results show

that the multimodel average generally outperforms any

individual simulation and that the RCMs significantly

improve the precipitation climate compared to the

driving ERA-Interim. Nikulin et al. (2012) also note that

in the majority of the RCMs precipitation is triggered

too early during the diurnal cycle. Kim et al. (2013) also

assessed CORDEX models and show systematic biases

across all models for different regions (especially for

precipitation in drier regions such as South Africa).

They conclude that this poses difficulty in defining a

single representative index when validating models over

broad areas and suggest that regional-specific analyses

should be performed. In agreement with Nikulin et al.

(2012), Kim et al. (2013) also conclude that the multi-

model ensemble average generally outperforms individual

ensemble members. Hern�andez-D�ıaz et al. (2013) ana-

lyzed the CRCM5 (see Table 1 for model expansions)

and found it to adequately capture the seasonal pre-

cipitation climatology over much of Africa and the an-

nual cycle over southeastern Africa east of 208E. Slight

biases were found in simulating the diurnal precipitation

cycle.

In this paper, we apply statistical approaches to

evaluate rainfall simulation by 10 CORDEX RCMs

over Southern Africa. To the extent possible on the

basis of climate variables available in the current

CORDEX archive, the ability of the RCMs to simulate

known circulation patterns underlying Southern Afri-

can climate is also assessed. In section 2, the data used

in the study and the methods of data analyses are de-

scribed. Results from our analyses are presented in

section 3. Section 4 discusses potential sources of

model bias over the region, and section 5 summarizes

and concludes.

2. Data and methodology

Data for this analysis were produced by many differ-

ent downscaling groups across the globe (see Table 1).

Initially rainfall and temperature data were provided by

the downscaling groups to the Swedish Meteorological

and Hydrological Institute (SMHI), who postprocessed

these data so they had identical grids, domain sizes, and

data formats for direct comparison. These data were

provided at the monthly time scale to the regional groups

of the CORDEX-Africa analysis initiative, which star-

ted in 2011. However, as the analysis progressed addi-

tional prognostic variables were desired to understand

the downscaled results: for example, winds at particular

levels to examine the presence of jets and humidity at

multiple levels to understand moisture transport. Un-

fortunately, these variables could often not be made

available at a later stage by most centers (for reasons

such as space andmodel upgrades) and subsequentlymany

variables were not available for inclusion in this analysis.

However, through this experience CORDEX has evolved

very strict data standards and requirements as well as

distribution nodes, which will facilitate direct access to

CORDEX data in the future.

The evaluation of precipitation results in the refer-

ence climate simulations is restricted by the availability

of high quality observational datasets for the region

of study that are at the appropriate spatial resolution

and for the required time period. Several observational

datasets are available for model evaluation and have

been reviewed to some extent in Nikulin et al. (2012)

and Sylla et al. (2013). Nikulin et al. (2012) show large

differences between satellite- and gauge-based products

and highlight the lack of reporting station gauges over

large parts of Africa. Sylla et al. (2013) state that the

uncertainty in the observations is a key factor preventing

a rigorous and unambiguous evaluation of climate models

over Africa.

To obtain an estimate of the spread in the pre-

cipitation values between the individual observed fields

and provide a sense of observational uncertainty, model

results were compared against a number of different

observational datasets. Three gauge-based gridded ob-

servational datasets are used, which are available at 0.58

latitude–longitude grid and include the region of Southern

Africa and the time period 1990–2006: the Global Pre-

cipitation Climatology Centre (GPCC), version 5 (Rudolf

et al. 2010); the University of Delaware (UDEL), version

2.01 (Legates and Willmott 1990); and the Climatic

Research Unit (CRU) at the University of East Anglia,

version 3.0 (Mitchell and Jones 2005). For the limited

time period of 1998–2006, the results from the gauge-

based datasets are compared against the satellite-based
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dataset from the Tropical Rainfall Measuring Mission

(TRMM) 3B42, version 6 (Huffman et al. 2007) with a

0.258 spatial resolution and the satellite–gauge dataset

from the Global Precipitation Climatology Project

(GPCP), version 1.1 (Huffman et al. 2001), with a 18

spatial resolution. The different gridded products agree

quite well in terms of large-scale precipitation patterns

(Gruber et al. 2000; Fekete et al. 2004), though the

scarcity of station data in certain regions of Southern

Africa (Nikulin et al. 2012), compared to other regions

of the world, can lead to local deviations. In accordance

to other studies, the TRMMdataset is found to have a dry

precipitation bias in the entire north part of Southern

Africa during thewet season (e.g., Nikulin et al. 2012) and

a spatially confined dry bias in the southeastern part of

South Africa during the austral winter season. The

GPCC, UDEL, and GPCP data were compared against

mean monthly precipitation data available for 428 sta-

tions in South Africa and Mozambique for the period

1990–2006 and all three datasets were found to compare

well against point observations (appendix). Although

GPCC has an overall slightly better performance than

theUDEL andGPCP gridded datasets, local differences

can occur (see appendix). The GPCC dataset was cho-

sen as the reference observational dataset as it is of a

sufficiently long time series that it covers the CORDEX

TABLE 1. List of RCMs used and their setup details (source: Nikulin et al. 2012).

ARPEGE5.1 HIRHAM5 RegCM3 CCLM4.8 RACMO2.2b

Model

expansion

Action de Recherche

Petite Echelle

Grande Echelle,

version 5.1

HIRHAM, version 5 Regional Climate

Model, version 3

COSMO–CLM

(Consortium for

Small-scale

Modelling–Climate

mode), version 4.8

Regional

Atmospheric

Climate Model,

version 2.2b

Institute Centre National de

Recherches

M�et�eorologiques,

France

Danmarks

Meteorologiske

Institut, Danmark

Abdus Salam

International

Centre for

Theoretical

Physics, Italy

Climate Limited-Area

Modeling (CLM)

Community

(http://www.clm-

community.eu)

Royal Netherlands

Meteorological

Institute,

Netherlands

Projection

resolution

polar, stretching

factor 2 (TL179)

rotated pole 0.448 Mercator 50 km rotated pole 0.448 rotated pole 0.448

Vertical

coordinate/

levels

hybrid/31 hybrid/31 sigma/18 terrain following/35 hybrid/40

Advection semi-Lagrangian semi-Lagrangian Eulerian fifth-order upwind

(Baldauf 2008)

semi-Lagrangian

Time step (s) 1200 600 100 240 720

Convective

scheme

Bougeault 1985 Tiedtke 1989 Grell 1993; Fritsch

and Chappell

1980

Tiedtke 1989 Tiedtke 1989

Radiation

scheme

Morcrette 1990 Fouquart and

Bonnel 1980;

Mlawer et al. 1997

Kiehl et al. 1996 Ritter and Geleyn

1992

Fouquart and

Bonnel 1980

Turbulence

vertical

diffusion

Mellor and Yamada

1982

Louis 1979 Holtslag et al. 1990 Herzog et al. 2002;

Buzzi et al. 2011

eddy-diffusivity

(first-order K)

mass flux approach

Cloud

microphysics

scheme

Ricard and Royer

1993

Tiedtke 1989;

Tompkins 2002

subgrid explicit

moisture scheme

(SUBEX); Pal et al.

2000

Doms et al. 2007;

Baldauf and Schulz

2004

Tiedtke 1993

Land surface

scheme

Interactions between

Soil, Biosphere,

and Atmosphere

(ISBA); Douville

et al. 2000

Schulz et al. 1998;

Hagemann 2002

Biosphere–Atmosphere

Transfer Scheme 1e

(BATS1E);

Dickinson et al. 1993

TerraLib Modeling

Language

(TERRA-ML);

Doms et al. 2007

Tiled ECMWF

Scheme for Surface

Exchanges over

Land (TESSEL);

ECMWF 2006

Latest

reference and

comments

D�equ�e 2010 Christensen et al.

2006

Pal et al. 2007 Rockel et al. 2008;

Baldauf et al. 2011

van Meijgaard

et al. 2008;

based on ECMWF

cycle 31r1:

ECMWF 2006
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downscaling period (1989–2008), it has same resolution

as the RCM simulated data, and the regions used in the

analysis were classified based on GPCC data. Other

datasets are also compared against GPCC, and areas

where station data are scarce and larger deviations may

be expected are highlighted. Nevertheless, the primary

goal of the work presented in this paper, which is to

assess the models’ relative performance, is not found to

be affected by the choice of observational dataset.

We evaluate the downscaled atmospheric fields against

ERA-Interim, as this was also the reanalysis dataset

chosen by the CORDEX initiative to provide the lateral

boundary conditions for the RCM reference climate

simulations. The third-generation ERA-Interim includes

a number of improvements over the 40-yr ECMWF Re-

Analysis (ERA-40; Dee et al. 2011). It has been found to

agree well with gauge-based and combined gauge and

satellite products (Simmons et al. 2010) and is thus

considered an appropriate dataset for the assessment of

model performance for a number of climate variables.

Sea level pressure and wind fields at the 850-hPa level

were used to assess the models’ ability to reproduce a

physically consistent framework that captures the global

circulation patterns. ERA-Interim precipitation is also

used in the comparisons to provide a measure of un-

certainty between reanalysis data and observations. A

TABLE 1. (Extended)

MPI-REMO RCA3.5 PRECIS WRF3.1.1 CRCM5

Max Planck

Institute Regional

Model

Rossby Centre Regional

Atmospheric Climate

Model, version 3.5

Providing Regional

Climates for Impacts

Studies

Weather Research

and Forecasting

Model, version 3.1.1

fifth-generation

Canadian Regional

Climate Model

Max Planck

Institute, Germany

Sveriges Meteorologiska

och Hydrologiska institut,

Sweden

University of Cape

Town, South Africa

Universidad de

Cantabria, Spain

Universit�e du Qu�ebec �a

Montr�eal, Canada

rotated pole 0.448 rotated pole 0.448 rotated pole 0.448 Mercator 50 km rotated pole 0.448

hybrid/27 hybrid/40 hybrid/19 terrain following Eta/28 hybrid/56

semi-Lagrangian semi-Lagrangian Eulerian Eulerian semi-Lagrangian

240 1200 300 240 1200

Tiedtke 1989 Kain and Fritsch 1990, 1993 Gregory and Rowntree

1990; Gregory and

Allen 1991

Kain–Fritsch

(Kain 2004)

Kain and Fritsch 1990;

Kuo 1965

Morcrette et al. 1986;

Giorgetta and

Wild 1995

Savij€arvi 1990; Sass et al.

1994

Edwards and Slingo 1996 Dudhia 1989;

Mlawer

et al. 1997

Li and Barker 2005

Louis 1979 Cuxart et al. 2000 Wilson 1992 Hong et al. 2006 Benoit et al. 1989;

Delage 1997

Lohmann and

Roeckner 1996

Rasch and Kristj�ansson 1998 Smith et al. 1990 WRF single-moment

five-class microphysics

scheme (WSM5);

Hong et al. 2004

Sundqvist et al. 1989

Hagemann 2002;

Rechid et al. 2009

Samuelsson et al. 2006 Met Office Surface

Exchanges Scheme,

version 2 (MOSES2);

Essery et al. 2003

Smirnova et al. 2000 Canadian Land Surface

Scheme version 3.5

(CLASS 3.5);

Verseghy 2000

Jacob 2001;

Jacob et al. 2007

Samuelsson et al. 2011 Jones et al. 2004 Skamarock et al. 2008 Zadra et al. 2008
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detailed comparison of precipitation in reanalysis data

and observations over Southern Africa can be found in

Zhang et al. (2013).

The 10 different RCMs described in Table 1 were used

to simulate the African climate during the period 1990–

2008 (1989 was spinup). For the CORDEX reference

runs addressed in this paper, all the models have been

forced using ERA-Interim data as boundary conditions

and the models were not nudged over the domain. To

facilitate comparison against the different observational

datasets, the results presented focus on the period 1990–

2006. Despite that each model used its individual setup

(number of vertical levels, grid rotation, parameteriza-

tion schemes, etc.), a common horizontal resolution of

0.448 was required. In the results presented, this is used

as a reference grid and all datasets on other grids are

interpolated to this common resolution. The TRMM

dataset was aggregated from the native 0.258 grid onto

the reference grid by a first-order conservative remap-

ping (Jones 1999), while all other datasets with similar or

coarser resolution than 0.44 were remapped through

bilinear interpolation as in Nikulin et al. (2012). The

details of each model can be found in Table 1.

In addition to the overall circulation patterns over

Southern Africa, within the study area three specific

subregions were also examined to provide an overview

of model performance across regions with nominally

homogeneous rainfall annual cycle patterns (Liebmann

et al. 2012). The extent of each subregion is selected based

on GPCC-derived standardized annual precipitation

cycles over Africa, which are distinguished into nine

types (classes) using the k-means method. The location

of the subregions and their topography is shown in Fig. 1.

Subregion 1 experiences a mainly tropical to subtropical

rainfall regime which is largely convective in nature and

influenced by the position of the ITCZ. Rainfall results

frommesoscale convective systems, tropical storms, and

tropical cyclones that make landfall having come from

the Mozambique Channel. Rainfall is highly seasonal

and occurs in the austral summer with an annual peak in

precipitation on average recorded in January–February.

The southwestern part of this region is drier (Kalahari)

FIG. 1. Topography of the CORDEX domain and location of the three subregions.
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than the northern and eastern parts. Subregion 2 lies in

a subtropical rainfall regime and also experiences con-

vective rainfall through the action of a semipermanent

thermal low pressure system in the austral summer.

Rain-producing systems include mesoscale convective

systems, warm fronts, subtropical lows, mid- to upper-

tropospheric troughs, and cloud bands. Spatially, the

western part of the region is drier than the eastern part

as a result of the general central to westward location of

the thermal low in the summer (trade winds coming

from the Indian Ocean). Subregion 3 experiences a sub-

tropical climate with wet conditions in late autumn and

winter with the annual peak in precipitation in June–July.

Rainfall results primarily from transient midlatitude low

pressure systems like cold fronts and is largely stratiform

and orographic. The coastal regions are wetter than the

interior and there is less precipitation as one moves

northward. For more details on rainfall and weather

regimes in these regions, the reader is referred to Tyson

and Preston-Whyte (2000).

A seasonal analysis is performed on area-averaged

results, in order to assess the models’ ability to reproduce

the annual precipitation cycle. A quantitative evaluation

of model performance is carried out using Taylor dia-

grams (Taylor 2001), which have been widely used to

assess model results on the basis of the root-mean-square

error, Pearson’s correlation coefficient, and standard

deviation (Taylor 2001; Covey et al. 2003).

3. Results

a. Seasonal analysis for the three different climatic

regions

The differences between model simulated and ob-

served seasonal precipitation estimates are first assessed

using area-averaged results for each of the three sub-

regions shown in Fig. 1. Highlighting problematic sea-

sons and areas will guide further analysis on circulation

features that are likely responsible for precipitation

biases in the model results.

Taylor diagrams (Taylor 2001) were used to assess the

models’ ability to simulate precipitation in each sub-

region (Figs. 2–4) using seasonal means of December–

February (DJF), March–May (MAM), June–August

(JJA), and September–November (SON). The results

shown are based on the interannual variation of seasonal

mean precipitation for the period 1990–2006. Each

model is compared against GPCC observations using

root-mean-square error (RMSE), Pearson’s correlation

coefficient and standard deviation (SD). To provide an

overview of observational uncertainty, UDEL, CRU,

GPCP, TRMM, and ERA-Interim are also compared to

GPCC and plotted on the same diagram. Similar analysis

(Taylor diagrams) conducted using UDEL and CRU

datasets as reference (not shown) confirm that model

performance is largely independent of the reference da-

taset. Where possible, ERA-Interim-derived rainfall is

used to provide a measure of uncertainty between the

reanalysis data and observations. The seasonal cycle

results for each subregion area-averaged monthly mean

precipitation values are shown in Fig. 5.

For subregion 1 (Fig. 2) large differences are observed

inmodel performance across all seasons. Themodels are

able to capture the phase of interannual variability

better during the wet (DJF) and dry (JJA) seasons,

where more than half of the RCMs are found to have

correlation coefficients greater than 0.50 (statistical

significance at the 5% level). The correlation is weaker

for MAM and SON (Figs. 2b,d). In agreement with pre-

vious studies (e.g., Weigel et al. 2010; Nikulin et al. 2012),

the ensemble mean is generally found to outperform the

individual models. It performs better in terms of correla-

tion coefficient and RMSE, though it tends to systemati-

cally underestimate the magnitude of the interannual

variability relative to GPCC, except in SON. Further-

more, the correlation and RMSE between the ensemble

mean and GPCC is similar to or better than the correla-

tion and RMSE of the other observed datasets. Notable

is the poor correlation between the UDEL and CRU

observational datasets with the GPCC during SON and

JJA, which may be attributed to spatial differences within

the chosen subregion across the gridded datasets, dis-

cussed further in section 3b. Although the relative model

performance, both in terms of area-averaged results and in

terms of spatial precipitation patterns (discussed in section

3c) was found to be largely independent of the reference

dataset; for these two seasons in subregion 1 a much

weaker correlation coefficient between all model results

and the UDEL and CRU datasets was found. For JJA

a correlation below 0.1 was found for all models compared

to UDEL and below 0.5 compared to CRU, whereas the

correlation against GPCC is between 0.4 and 0.85.

On an individual model basis, theARPEGE5.1model

consistently outperforms all models as it captures the

interannual variation of seasonal precipitation very well

for all seasons and has a similar (in one case better)

correlation coefficient, RMSE and standard deviation

compared to the ensemble mean. ARPEGE5.1 achieves

a correlation with GPCC of above 0.82 for all seasons,

a similar standard deviation to GPCC (though lower for

all seasons except SON) and an RMSE of less than 0.4

across all seasons.

The reanalysis data compare well against GPCC with

a correlation coefficient above 0.85 for all seasons,

a standard deviation that is similar to that of GPCC, and

an RMSE less than 0.42 across all seasons.
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Subregion 2 (Fig. 3) shows large variation in model

performance across all seasons. The correlation coefficient

for all models compared to GPCC varies between 0.20

and 0.96, with individual values found to span the whole

continuum between these two extremes. Models appear

to perform slightly better for MAM, where eight models

are found to have a correlation with observation of above

0.6, the standard deviation is close to that of GPCC, and

the RMSE is less than 0.5 for all but two models. The

seasonal cycle results for this subregion shown in Fig. 5

(area-averaged monthly mean precipitation values)

confirm that the models have a realistic cessation of the

rainfall season over this area. Similarly to subregion 1

results, the ARPEGE5.1 model consistently outperforms

all models for all seasons and captures the interannual

variation of seasonal precipitation very well, with a cor-

relation coefficient of above 0.86 in all cases. It is found

to have a standard deviation which is generally very

close to or slightly less than that of GPCC, confirming

that it is also able to capture the amplitude of the in-

terannual variation. For all seasons the ARPEGE5.1

model is found to perform better than the multimodel

ensemble and also has similar statistics compared to the

other observational datasets.

There is generally good agreement between GPCC

and the other observational and reanalysis data, with

a correlation above 0.85 for all seasons and all datasets,

a low RMSE, and a similar standard deviation.

Subregion 3 (Fig. 4) is characterized by winter rainfall

as opposed to summer rainfall in the other two sub-

regions. Most models are able to adequately capture the

interannual variation of the winter season (JJA) rainfall

in this region and all but one model have a correlation

with the observations of greater than 0.60. The RMSE is

less than 0.3 in all cases, and the standard deviation is

found to be close to that of GPCC, implying that the

FIG. 2. Taylor diagrams per season for (a) DJF, (b) MAM, (c) JJA, and (d) SON, based on the interannual

variation of seasonal mean precipitation for the period 1990–2006 in subregion 1. Here, 10 model results, the

multimodel ensemble, four observational datasets (UDEL, CRU, GPCP, and TRMM), and one reanalysis dataset

(ERA-Interim) are compared against GPCC observational data. The radial coordinate gives themagnitude of total

SD (mmday21) (the solid radial highlights the SD of GPCC), the angular coordinate gives the correlation with

observations (GPCC), and the distance between the observed point on the x axis and any other point is proportional

to the RMSE (mmday21) (gray radials). Note the scales of the SD and RMSE radials are not constant in all the

images to allow for assessment of the correlation coefficient where SD and RMSE are small.
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models have a realistic amplitude over the western region

of South Africa. Large differences in the models’ per-

formance are found for the dry summer period (DJF),

where the correlation with observation ranges between

0 and 0.86 with individual values found to span the whole

continuum between these two extremes, though the

standard deviation is close to that of GPCC for all but

three models. Models also appear to have a difficulty in

capturing the interannual variation of seasonal precip-

itation for MAM, as only two models (ARPEGE5.1

and RACMO2.2b) have a correlation with observation

above 0.5.

ARPEGE5.1 is again found to perform better than

other models for subregion 3 and when compared to

GPCC it has a correlation coefficient of above 0.70 for

all seasons.However, although it performs better in terms

of the correlation coefficient, for the dry DJF season in

this region it has an unrealistically large standard de-

viation of 0.49mmday21 compared to 0.19mmday21

for GPCC. The multimodel ensemble is found to out-

perform individual models in DJF, despite the higher

precipitation simulated by most models for these months

(Fig. 5). This, as in other seasons and regions, is likely a

function of the cancellation of error of each model in the

ensemble mean. In other seasons the ensemble mean

generally performs better than most models, with some

models performing equally well (especially in JJA).

The correlation of the reanalysis precipitation with

GPCC is found to be similar to that of the multimodel

ensemble, the RMSE is found to be below 0.2 for all

seasons and the standard deviation is found to be very

close to that of the GPCC dataset with the exception of

JJA where an underestimation of 40% is noted. There is

generally good agreement betweenGPCC and the other

observational data, with a correlation above 0.85 for all

seasons and all datasets, though other datasets are found

to have a somewhat lower standard deviation.

The seasonal cycle results in Fig. 5 (area-averaged

monthly mean precipitation values) show that for sub-

regions 1 and 2 there is an overall good agreement be-

tween the different observational datasets and the

reanalysis data, and the models are able to capture the

pattern seen in the observations. For subregion 3 there is

good agreement between the CRU, UDEL, and GPCC

observational datasets in terms of both the seasonal

pattern and the magnitude of precipitation. The TRMM

and GPCP data (satellite and merged satellite–gauge

dataset, respectively) show lower precipitation compared

FIG. 3. As in Fig. 2, but for subregion 2.
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to the other observations for the wet winter months. The

characteristically lower precipitation for the month of

June is due to the shorter time period used for these two

datasets (1998–2006), with all the other datasets also

found to have similarly lower values during this shorter

time period for this subregion. Precipitation in the

reanalysis data for subregion 3 during the wet winter

months is also found to be slightly lower than in the

observations.

The individual model results for subregion 3 in Fig. 5

show that a number of models simulate a higher pre-

cipitation during the dry summer months, which leads

the ensemble mean pattern to display a 1-month lag in

the onset of the rainfall season in this subregion with

respect to the observations. A wet precipitation bias in

the southwest of South Africa is also noted for some

models in the spatial distribution of precipitation for

DJF, which is discussed in section 3d (Fig. 8). The dis-

cussion in that section concludes that for a number of

models the summer rainfall regime may penetrate too

far southwest into the winter rainfall region, perhaps

because of an overestimation of convective rainfall in

summer over the inland part of the region, leading to

higher precipitation estimates during these months. We

also note the models show a peak in rainfall in June and

not July as seen in the reference datasets (except

GPCP and TRMM), which is also discussed further in

section 3d.

b. Comparison of observational datasets: An estimate

of observational uncertainty

The comparison of GPCC and other observational

datasets in Figs. 2–4 shows that in all subregions there

are seasons for which the area-averaged interannual

variation of monthly mean precipitation across the dif-

ferent observational datasets can vary and in some cases

the differences are large (e.g., JJA season in subregion 1).

To study whether there are spatial differences within

each subregion that lead to these differences in the area

averages, the correlation between the variation of

monthly mean precipitation in GPCC and other datasets

is calculated and shown in Fig. 6 in the form of correlation

maps (only values which are found to be significant at

the 5% level are plotted). The limited time period of

1998–2006 is chosen so that comparison against the

TRMM satellite-based dataset can also be included.

Similar results are obtained using the period 1990–2006

(not shown).

FIG. 4. As in Fig. 2, but for subregion 3.
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FIG. 5. The seasonal cycle in (top) subregion 1, (middle) subregion 2, and (bottom) subregion 3 for the period 1990–2006 (left) for the

individual model performance and (right) for the multimodel ensemble mean, the intermodel range, the observational data (GPCC,

UDEL, CRU, TRMM, and GPCP), and ERA-Interim data. Note that for GPCP and TRMM the data refer to the shorter time period of

1998–2006.
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The results displayed in Fig. 6 show that there is overall

good correlation between the variation ofmonthlymean

precipitation of other observational datasets andGPCC,

though there are areas within the chosen subregions for

which the correlation is lower (albeit significant). Very

similar results are obtained using TRMM as reference

(not shown), confirming that GPCC does not show a

systematic departure from other datasets across the re-

gion studied. A comparison of the standard deviations

(Fig. 7) reveals differences of up to 1.5mmday21 in sub-

regions 1 and 2 depending on the dataset, with TRMM

having a systematically lower standard deviation in the

FIG. 6. GPCC annual mean precipitation (mmday21) over Southern Africa for the period 1998–2006 and corre-

lation maps showing the correlation between the variation of monthly mean precipitation in GPCC and the UDEL,

CRU, GPCP, TRMM, and ERA-Interim datasets. The location of the three subregions is shown, and the correlation

coefficients displayed are found to be statistically significant at the 5% level.

9488 JOURNAL OF CL IMATE VOLUME 26

Unauthenticated | Downloaded 08/23/22 04:53 AM UTC



northern part of the domain, as it is known to have a dry

bias in this area (Nikulin et al. 2012).

Within subregion 1, in the area of northern Mozambi-

que, most other datasets have a lower standard deviation

compared to GPCC. There is a high correlation between

the griddedGPCC,GPCP, andUDELdatasets and station

data available for this region (see appendix). However,

the GPCC data have a slightly lower RMSE compared

to GPCP, and UDEL is found to have a very small

RMSE. Precipitation biases between the observational

datasets for individual seasons (not shown) show lower

precipitation during DJF (and MAM) in the CRU,

FIG. 7. GPCC annual mean precipitation (mmday21) over Southern Africa for the period 1998–2006 and differ-

ences in the standard deviation (mmday21) between the variation of monthly mean precipitation in GPCC and the

UDEL, CRU, GPCP, TRMM, and ERA-Interim datasets.
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TRMM, and UDEL data compared to GPCC for this

region (northern Mozambique), with differences reach-

ing up to 3mmday21. Although TRMM is known to

have a dry bias in the area (Nikulin et al. 2012), it is likely

that GPCC slightly overestimates precipitation for this

particular region and the comparison against station

data would imply that UDEL is closer to observations.

However, it should be noted that this does not affect

the discussion of model performance for this area of the

domain (section 3c), as the precipitation biases in the

model results are greater than the differences between

the observed datasets and a number of models are found

to underestimate precipitation over northern Mozambi-

que for all seasons, irrespective of the gauge-based ref-

erence dataset used (CRU, UDEL, or GPCC; not shown

here). For other seasons the differences in precipitation

between GPCC and other gauge-based datasets across

most of Southern Africa are generally small and TRMM

is found to have a dry bias over the southwestern part of

the domain, especially during JJA, and the entire north-

ern part of the domain during most seasons.

It is not the aim of this paper to analyze these differ-

ences in detail, as this has been the subject of Simmons

et al. (2010), Cohen Liechti et al. (2012), Nikulin et al.

(2012), Parker et al. (2012), and Sylla et al. (2013).

However, it is important to note these spatial differences

and highlight that care needs to bemade when analyzing

area averages. For certain regions a number of factors,

such as the quantity and quality of available station data,

the different interpolation techniques, or (in the case

of satellite data) the gauge analysis products used in the

adjustments, can contribute to a higher uncertainty in

terms of the reliability and validity of the datasets (Yin

and Gruber 2010; Nikulin et al. 2012; Tapiador et al.

2012). The selection of reference data is becoming an

important factor in model assessment as more ground-,

space-, and reanalysis-based rainfall products become

available, which all use different methods to produce

precipitation data. For example, satellite-based rainfall

datasets include among others the Tropical Applications

ofMeteorology using Satellite Data (TAMSAT;Grimes

et al. 1999), Microwave/Infrared Rainfall Algorithm

(MIRA; Todd et al. 2001), Rainfall Estimation (RFE;

Laws et al. 2004), Tropical Applications of Meteorology

Using SatelliteData (TAMSAT)MetOfficeRainfall for

Africa (TAMORA; Chadwick et al. 2010), and Rainfall

Intensity Artificial Neural Network African Algorithm

(RIANNAA; Chadwick and Grimes 2012), which use

different algorithms to produce the respective rainfall

products. Other products merge station and satellite data

to produce precipitation data: for example, the Famine

Early Warning System (FEWS) dataset; the TRMM

3B42 dataset, which is based on satellite data; the CAMS

global gridded rain gauge data (Janowiak andXie 1999);

and the GHCN station data. The Water and Global

Change (WATCH) dataset is based on reanalysis and

station data (Weedon et al. 2011). It therefore becomes

theoretically possible to achieve a reduction in rainfall bias

of a particular regional model for a particular season over

particular regions by selecting the closest observed pre-

cipitation product. We suggest, along with Nikulin et al.

(2012), that downscaled rainfall data be validated against

an ensemble of observational data so that the variability

within these datasets can be taken into account.

c. Biases in seasonal precipitation patterns

Model results for precipitation across SouthernAfrica

(1990–2006) are compared to GPCC in Fig. 8 for DJF.

The intercomparison of model results shows that model

performance is similar across all seasons, so only DJF

is shown, which is the wet season for most of the region.

Model results were also compared against other observa-

tional datasets for the same timeperiod (CRUandUDEL;

not shown) and the results presented and discussed in this

section apply irrespective of the reference dataset used.

When compared to GPCC, most models are found to

undersimulate precipitation in the northeastern part of

the domain and to a lesser extent in the north and

northwestern parts (especially duringMAM) and higher

precipitation results are found in the southeastern part,

especially over the Lesotho highlands and Drakensburg

areas. TheWRF3.1.1 RCMand to a lesser extent PRECIS

have a wet bias over most of Southern Africa, though

WRF3.1.1 shows a slightly different pattern as it also has

a widespread dry bias in the northwestern part of the

domain. HIRHAM5 and CCLM4.8 have the driest bias

in the northeastern part of the domain. CRCM5 is found

to perform best and has a spatial precipitation pattern

which is largely consistent to that of GPCC for all sea-

sons and the differences seen in Fig. 8 are on the same

order or less than those seen in other models. An ex-

ception is JJA, where this model shows a slight wet bias

of ;2mmday21 in the northeastern part of the domain

when compared against any observational dataset, which

covers the entire period 1990–2006 (GPCC, UDEL, or

CRU). Overall, CRCM5 has results which are very close

to themultimodel ensemble and depending on the season

the model performs slightly better (DJF and SON) or

slightly worst (JJA) than the ensemble model results.

The actual precipitation values in Fig. 8 show that

ARPEGE5.1 has a similar performance to other models

across the entire Southern African region, though it does

not perform as well as the results in Figs. 2–4 would

suggest. This is most probably due to error compensa-

tions when computing the area average values. In sub-

region 1 theDJFdry bias over northernMozambique and
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eastern Zambia may be offset somewhat by the weak wet

bias over most of Botswana. Similarly, in subregion 2 the

dry bias over southern Mozambique and northern South

Africa may be offset by the wet bias over and around

Lesotho. In subregion 3 the wet precipitation bias in the

southwest of South Africa is likely to lead to the

unrealistically large standard deviation seen in Fig. 4

during the region’s dry season.

The comparison of the spatial distribution of simulated

precipitation between the models and the GPCC for JJA

(not shown) confirms the results of Fig. 5 and shows that

most models to a greater or lesser extent underestimate

FIG. 8. Precipitation over Southern Africa in DJF for the period 1990–2006 for GPCC and comparison against model results (biases).
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precipitation during the wet winter period in the south-

western tip of Africa. This finding is independent of the

comparison dataset used.

It is interesting to note certain regional details where,

in addition to the large-scale dynamics, local topography

is also expected to challenge the models. The under-

simulation of precipitation in the northeastern part of the

domain seen inmostmodel results duringDJF andMAM

is more pronounced over Lake Malawi, a key geomor-

phological feature that needs to be appropriately re-

solved. However, it is admittedly challenging to capture

the large-scale evaporation–condensation–precipitation

cycle taking place over Africa’s third largest lake at

the spatial resolution defined in CORDEX. An under-

estimation of precipitation over Lake Malawi for DJF

and MAM is also observed in ERA-Interim. In the

southeastern part of the domain, all models to a greater

or lesser extent have a wet bias over the Drakensburg

Mountains/Lesotho highlands, where the complex to-

pography associated with this geomorphological feature

clearly poses a modeling challenge. The relatively poor

results in subregion 3 will likely be influenced by the

small size of the region and the relatively coarse 0.448

CORDEX resolution. The region has complex orogra-

phy which is smoothed at this resolution and is also at a

land–sea boundary. Furthermore, the southwest corner

of the CORDEXAfrica domain is close to the region so

the models do not have enough domain space to freely

simulate transient midlatitude cyclones that bring rain-

fall to the region.

As already discussed, the comparison of the different

gauge-based observational datasets per season does not

show a systematic tendency toward lower or higher pre-

cipitation estimates in theGPCCdata for SouthernAfrica.

The only main difference is found in the northeastern

part of the domain, where precipitation in GPCC is

somewhat higher (not shown), as already discussed in

section 3b. Nevertheless, this does not affect the models’

relative performance and the discussion of Fig. 8. The

only difference is that in the multimodel ensemble re-

sults the dry bias over Mozambique is less pronounced

when comparing against CRU and UDEL data, as these

datasets indicate less precipitation in this area. Hence,

the tendency toward lower/higher precipitation estimates

in the model results is related to difficulties in modeling

the larger circulation patterns and for particular areas the

complex topography and its impact on the microclimate,

and it is not influenced by biases in the observations.

d. Circulation features and links to precipitation

In Fig. 9, SLP anomalies and 850-hPa wind anomalies

are used to examine the large-scale circulation over

Southern Africa, as simulated by the different models.

We also attempt to relate these to the precipitation

biases evident in some of the models.

The higher precipitation observed in the WRF3.1.1

and PRECIS results for DJF (Fig. 8) could be explained

by the very deep low pressure bias over the land and the

cyclonic circulation anomaly in the 850-hPa winds,

which indicates increased moisture transport from the

tropics andMozambique Channel into the region. These

factors, as well as well the creation of a generally more

unstable atmosphere, are likely to result in the wet bias

in these models.

In the northwestern part of the domain over Angola,

a deeper low pressure bias is observed in some models

compared to ERA-Interim. This enhanced Angola low

pressure system leads to less moisture being advected

into the Angola region (related to part of the cold

Benguela Current that continues flowing north along the

Namibian–Angolan coast), which leads to lower pre-

cipitation in the northwestern part of the domain.

In the southeastern part of the domain, the enhanced

precipitation observed over the Lesotho Mountains is

related to a stronger onshore flow than that observed in

the ERA-Interim data. This can be seen in the 850-hPa

wind anomalies in Fig. 9 for some models (WRF3.1.1,

MPI-REMO, PRECIS, andARPEGE5.1). For allmodels,

this can more clearly be seen in the actual 850-hPa wind

fields and streamline plots (not shown). The stronger

onshore flow transports more moisture inland, which

results in increased orographic precipitation over areas

with higher elevation.

The differences in the simulation of the large-scale

circulation that most likely lead to an underestimation

of precipitation in the southwestern tip of the domain

(winter rainfall region) during JJA compared to theGPCC

(seen to a greater or lesser degree in all models), are most

probably linked to a less pronounced northward shift of

the westerlies during winter and possibly also a weaker

magnitude of these overall. It is likely that this is also the

case in the ERA-Interim data (an underestimation of

precipitation is also noted in ERA-Interim compared to

the other reference datasets), and therefore the anomaly

maps for JJA cannot be used to confirm this. However,

from Fig. 5 it is evident that over this region the all

models place the rainfall maximum in June instead of July.

Sea level pressure for each model, as well as the model

ensemble average, was compared against ERA-Interim

SLP for June and July. We found that the subtropical

westerly belt has a maximum northward displacement

during June instead of July, which is also associated with

a large high pressure anomaly over the interior of the

country during July. The semipermanent high pressure

system over most of Southern Africa during winter is

caused by the descending limb of the Hadley circulation.
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This would suggest the models are oversimulating the

strength of the Hadley circulation during July, which

results in a descending limb inhibiting the northward

movement of the westerlies during this month, and there-

fore the maximum rainfall peak is produced in June,

when the descending limb is weaker. More investigation

will be dedicated to winter transient rainy systems, such

as cutoff lows (Favre et al. 2013) in theCORDEXoutputs

in future studies.

During DJF there is a wet precipitation bias in the

southwestern tip of the domain, which is likely a function

of an anomalously deep subcontinental low pressure

over the region being produced by the models. In Fig. 9

this is apparent in five of the models as well as the en-

semble mean, indicating that the extent of the sub-

tropical low is too far south. Wind anomalies at 850 hPa

in these models suggest that too much moisture is ad-

vected into the region either from the interior of the

country (northeast) or from the Agulhas Current (east).

The combination of a low pressure system intruding into

the region from the interior as well as moisture advec-

tion could introduce the wet rainfall bias through con-

vective precipitation. In further studies, moisture data

will be used to examine this hypothesis.

There is a dry bias noted in the model results over

Malawi and in the northern part of Mozambique during

FIG. 9. ERA-Interim fields for SLP (hPa) and wind at 850 hPa (m s21) inDJF for the period 1990–2006 are compared against model results

(anomaly maps). SLP data were not available for the ARPEGE5.1 and RegCM3 models.
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the rainy season. Two mechanisms for this are proposed

here; however, because of data constraints we were

unable to investigate these further. First, of the models

that show a strong dry bias (CCLM4.8, ARPEGE5.1,

HIRAM, RACMO2.2b, and MPI-REMO), there are

indications of a negative pressure bias at the surface

west of the dry bias in CCLM4.8, MPI-REMO, and to

some degree HIRAM as well as enhanced subtropical

easterlies (trades) at 850 hPa in the latter four models.

This may shift the ITCZ westward (during summer in

this region the ITCZ has a north–south orientation),

which is evident to some degree in the rainfall fields.

Second, models tend to overestimate precipitation north

of Madagascar over the sea and most models also

overestimate precipitation in the Mozambique Channel

(not shown). This would likely remove moisture from

the atmospheric column that is necessary for rainfall

over northern Mozambique. Unfortunately, because of

data constraints described above, we could not test the

model’s ability to capture stability, vorticity, and mois-

ture transport. It is interesting to note that similar pre-

cipitation bias patterns are found in the ERA-Interim

data compared to GPCC.

e. Interannual variability of summer precipitation

associated with the ENSO

A regional impact of El Ni~no–Southern Oscillation

(ENSO) on Southern African rainfall has been eluci-

dated in a number of studies. In particular, El Ni~no warm

events are found to favor seasonal droughts in South

Africa (Lindesay 1988; Van Heerden et al. 1988; Reason

et al. 2000), especially since the 1970s (Richard et al. 2000;

Richard et al. 2001), andLaNi~na cold events are linked to

a positive rainfall anomaly (Nicholson and Selato 2000).

The season where the ENSO influence is found to be

greatest varies across the region (Nicholson and Selato

2000), but since it is not themain aimof the paper to study

the influence in detail the results presented here focus on

DJF, the main rainfall season for most of Southern Africa.

El Ni~no composite plots and La Ni~na composite plots

are shown in Figs. 10 and 11, respectively. In Fig. 10,

there is overall good agreement across the different

observational datasets and ERA-Interim. In Fig. 11, the

agreement between ERA-Interim and observations is

still good, though in the reanalysis data the extent of the

wetter conditions during La Ni~na events in South Africa

is perhaps too large. The strength and extent of the

negative precipitation anomaly in the northwestern part

of the domain seen in the GPCC data, to a lesser extent

in the UDEL data, and only slightly in the CRUdata are

possibly due to a bias in the observations and the un-

certainty associated with the few station data available

in this area (see Nikulin et al. 2012).

To a greater or lesser extent, all models are found to

capture the drier conditions observed during El Ni~no in

central and eastern SouthernAfrica (Fig. 10). BothERA-

Interim and the model results however tend to show a

positive precipitation anomaly over southern Angola

(only slightly observed in the observations), which in the

model results is also found to extend farther south into

Namibia. All models capture the wet precipitation

anomaly during El Ni~no in northern Mozambique,

though in some cases the magnitude and the extent of

the anomaly in the model results shows a dryer bias (e.g.,

RegCM3 and RCA3.5). The strength of the wet precip-

itation anomaly over northern Mozambique is somewhat

reduced in the ensemble mean results and is similar to

that of ERA-Interim.

In Fig. 11, the models are found to capture the overall

positive precipitation anomaly in eastern Southern Af-

rica during the La Ni~na events, as seen in the observa-

tions. However, in certain areas some models do not

capture the magnitude or the sign of the wetter condi-

tions (e.g., MPI-REMO, PRECIS, and RCA3.5 over

Zimbabwe and in some cases Botswana). A number of

models also undersimulate the positive precipitation

anomaly in southern Mozambique and in some cases

even have an opposite sign. The negative precipitation

anomaly expected in the northeast of the domain is very

close to the domain’s boundaries and also extends be-

yond it; it is thus not possible to analyze it here. Further

south in the domain, the southward spatial extent of the

wetter conditions over South Africa during La Ni~na

events is found to be greater in all models compared to

the observations. The model MPI-REMO also shows a

dry bias over Zambia, which is not seen to such an extent

in the observations. The common differences in the

model results compared to the observations also reflect

in the multimodel ensemble mean, which compared to

GPCC shows a weaker wet precipitation anomaly over

southern Mozambique, a spatially extended wet pre-

cipitation anomaly over South Africa, and very small pre-

cipitation changes over Zimbabwe and northern South

Africa.

4. Discussion

a. Observation datasets

The GPCC rainfall dataset was used as the reference

dataset, although it is recognized that the area-averaged

interannual variation of monthly mean precipitation

across the different observational datasets varied and in

some cases this variation was large. In some regions the

observational differences were as large as themultimodel

ensemble mean bias. This highlights the challenge in
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Africa of the lack of high quality observation datasets at

suitable temporal and spatial resolution necessary for

evaluating RCM simulations. With the introduction of

many more satellite-based precipitation datasets as well

as satellite/reanalysis–stationmerged observed datasets,

the selection of observed datasets will likely play a role

in assessing model bias. We concur with the suggestion

of Nikulin et al. (2012) to consider an ensemble mean

approach to observational datasets to address this;

however, this may limit the observational period to

post-1998 to include the satellite-based TRMM and

GPCP data.

FIG. 10. Precipitation anomaly maps (mmday21) for DJF associated with El Ni~no events (composites using data for 1991/92, 1997/98,

and 2002/03 and average for 1990–2006) as simulated by CORDEX RCMs, compared against the observational datasets (GPCC,

UDEL, and CRU) and the reanalysis data (ERA-Interim). Negative anomalies are indicated in orange, and positive anomalies are

shown in blue.
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b. Model biases

Regional model studies often involve tuning a re-

gional model so that it has an optimal configuration over

particular spatial domain to produce the best results with

respect to some observed dataset. They can be tuned in

terms of domain size, lateral boundary condition (LBC)

forcing, horizontal and vertical resolution, and the at-

mospheric and surface physics (see Cr�etat et al. 2012).

Somemodel setups have even been found to be seasonally

sensitive (Ishak et al. 2012). Usually these types of

studies focus over a region of interest, or a country or

FIG. 11. Precipitation anomaly maps (mmday21) for DJF associated with La Ni~na events (composites using data for 1995/96, 1998/99,

and 1999/00 and average for 1990–2006) as simulated by CORDEX RCMs, compared against the observational datasets (GPCC,

UDEL, and CRU) and the reanalysis data (ERA-Interim). Negative anomalies are indicated in orange, and positive anomalies are

shown in blue.

9496 JOURNAL OF CL IMATE VOLUME 26

Unauthenticated | Downloaded 08/23/22 04:53 AM UTC



local area and the models are optimized to get the most

accurate results for this location and for a specific season.

In studies over Africa, the African Monsoon Multidisci-

plinary Analysis (AMMA) program has focused over

West Africa using models including RegCM3,WRF3.1.1,

and ARPEGE5.1 in its experiments (Hourdin et al. 2010;

Sylla et al. 2010; Flaounas et al. 2011;Mariotti et al. 2011;

Paeth et al. 2011; Ruti et al. 2011). Over Southern

Africa, models used include the Fifth-Generation

Pennsylvania State University–National Center for At-

mospheric Research Mesoscale Model (MM5; Tadross

et al. 2005, 2006); WRF3.1.1 (Cr�etat and Pohl 2012;

Cr�etat et al. 2012, Boulard et al. 2013); RegCM3

(Kgatuke et al. 2008; Sylla et al. 2012); and a stretch grid

global model configured to run at a regional scale, the

Conformal-Cubic Atmospheric Model (McGregor

2005a,b; Engelbrecht et al. 2009, 2011). Over East Af-

rica, models used to examine climate include RegCM2

(Song et al. 2004), RegCM3 (Anyaha and Semazzib 2007;

Davis et al. 2009), WRF3.1.1 (Zhang 2007; Pohl et al.

2011), and the CLM (Kaspar and Cubasch 2008).

However, within theCORDEX framework (seeGiorgi

et al. 2009; Jones et al. 2011), the domain size, LBC, and

horizontal resolution are prescribed so only vertical

resolution and model physics can be optimized. The

vertical resolution has been shown to not contribute to

rainfall biases as much as the cumulus scheme (Gianotti

et al. 2012); therefore, the model’s internal variability

and selected physics packages are the primary sources of

bias, of which the selection of cumulus scheme has been

shown to be ofmajor importance. The choice of cumulus

scheme can change the sign of the rainfall bias (Tadross

et al. 2005; Liang et al. 2007), spatial distribution of

rainfall (Liang et al. 2004b; Jankov et al. 2005; Zanis et al.

2009), and diurnal timing (Liang et al. 2004a; Wang et al.

2007; Nikulin et al. 2012).

The African continent is the second largest landmass

in the world and spans climate regimes from equatorial

toMediterranean andwhose climate controls aremainly

mesoscale and teleconnective. Models simulating the

CORDEX African domain are therefore required to

both propagate the large-scale teleconnective controls

into the domain and capture the finer-scale convective

controls. As convective activity is the dominant source

of rainfall overAfrica in the equatorial, tropical, and wet

summer subtropical regions, convective parameteriza-

tions are a significant source of variability within models

as well as between models. The challenge posed to the

regional models within the CORDEX framework then

is that they cannot be optimized for a particular region

or climate regime or time period.

In the 10models assessed in this paper, two convective

schemes were prevalent, the Tiedke (HIRAM, CCLM4.8,

RACMO2.2b, and MPI-REMO) and Kain–Fritsch

schemes (RCA3.5, WRF3.1.1, and CRCM5). Those

schemes were not used for the PRECIS (Gregory and

Roundtree), RegCM3 (Grell and Fritsch–Chappel clo-

sure scheme), and ARPEGE5.1 (Bougeault) simulations

(see Table 1). Nikulin et al. (2012) examined these

schemes using frequency and intensity of 3-hourly pre-

cipitation to verify the diurnality of rainfall over West

Africa. Observations show the highest frequency of

heavy rainfall to occur in the late afternoon and evening

with high frequencies of light rainfall either side of noon.

However, most of the models, regardless of the cumulus

scheme used, generally produce heavy rainfall too early

in the day (from late morning to late afternoon) and light

rainfall throughout the night. This was also true for the

ERA-Interim rainfall, which is produced by the ECMWF

model that uses the Tiedke scheme. Only two models,

which both used the Kain–Fritsch (KF) scheme, showed

results different to the others. CRCM5 produced rainfall

frequencies that resembled observed data, whereas the

RCA models had a very flat diurnal cycle implying light

rainfall all day. The WRF3.1.1 produced results similar

to the Tiedke family models.

Although these results were over west-central, and

East Africa it is not unreasonable to propose that a

similar phenomenon would be expected over Southern

Africa. There are major differences between the Tiedke

and KF schemes, which lie in their closure and trigger

functions. The Tiedke trigger function is based on an

environmental temperature threshold exceedance and

the closure function is based on moisture convergence.

The KF convection trigger is based on large-scale vertical

velocity and the closure function on the removal of con-

vective available potential energy (CAPE). These are

fundamentally different techniques used for parame-

terizing convection.

The different results between the three models using

the KF scheme may lie in the closure assumption and/or

in the PBL scheme. The PBL scheme helps set the sta-

bility of the environment and the closure scheme removes

CAPE from the air column. Nikulin et al. (2012) suggest

two reasons for models using the KF scheme to produce

relatively better results: namely, an advanced trigger

function and entrainment and detrainment processes

that are responsive to environmental conditions through

a buoyancy sorting approach (Kain and Fritsch 1990).

The WRF3.1.1 simulation, which had a wet bias, used

the Yonsei University (YSU) PBL scheme (Hong et al.

2006), which was found by Cr�etat et al. (2012) to be

a scheme suitable for use over this region. This scheme

has been found to producemore realistic boundary layer

characteristics in terms of vertical mixing and mois-

ture and heat entrainment (Hu et al. 2010). The latest
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version of the KF scheme was used in which the closure

method rearranges mass in the column using the updraft,

downdraft, and environmental mass fluxes until at least

90% of the convective available potential energy is re-

moved. In this latest version, the calculation of CAPE is

based on the path of an entraining parcel in the column, so

the parcel can be diluted as it ascends. The RCA3.5 simu-

lation used an earlier version of the KF scheme where the

parcel ascends without entrainment (dilution) so more

CAPE would have to be removed in the closure. The

CRCM5 simulation (Hern�andez-D�ıaz et al. 2013) uses a

modifiedKFschemecalled theBechtold–KF scheme,which

adjusts the trigger function and closure function of shallow

convection (Bechtold et al. 2001; Yanjun and Jones 2008).

There is much literature that shows wet rainfall biases

introduced by the cumulus parameterization have been

result from an overestimation of low intensity rainfall (e.g.,

Dai and Trenberth 2004; Wang et al. 2007; Im et al. 2008;

Neelin et al. 2008; Gianotti et al. 2012). Gianotti et al.

(2012) have suggested that the oversimulation of drizzle is

the result of convection rainfall being initiated too fre-

quently in the model, which is a function of the threshold

criteria for triggering convection and the creation of en-

vironmental conditions to meet these criteria. In the lat-

ter, the PBL scheme plays a critical role in setting up the

unstable environment to trigger convection. They also

suggest that convection triggers have been formulated for

coarser space and time resolutions and the uniform

threshold criteria that trigger convection at these spatial

scalesmay not be appropriate at higher resolutions. Neelin

et al. (2008) suggest that some form of stochasticity be

incorporated into the triggering of convective activity as

one method of introducing the necessary variability.

The general wet bias over the central and southeast-

ern parts of the domain is not large (with the exception

of WRF3.1.1 and perhaps PRECIS), and the ensemble

average bias is small, except over the south and south-

west parts (South Africa, Namibia, and the south part

of Botswana), where the ensemble annual mean over-

estimates rainfall amounts at about 50% of the observed

annual mean (also see Kim et al. 2013). The WRF3.1.1

used the KF cumulus scheme and the YSU PBL scheme,

which have been tested over the region with good re-

sults by Tadross et al. (2005) usingMM5 and Cr�etat et al.

(2012) using WRF3.1.1. Solman and Pessacg (2012)

show the KF scheme to be most suitable in subtropical

regions, so it is unclear to the authors why WRF3.1.1

should introduce such a wet bias to the region. With the

exception of WRF3.1.1, the models produce a dry bias

over the northeast of the domain more specifically

over Mozambique and the south part of Malawi (Nikulin

et al. 2012; Kim et al. 2013), which is more likely related

to circulation anomalies that shift the south Indian

convergence zone west (Cook 2000) than directly to

the cumulus parameterization.

However, it must be noted that cumulus schemes are

not the only source of rainfall bias in region. Tchotchou

and Kamga (2010) caution in their study of the West

African monsoon using RegCM3 that unrealistic soil

moisture resulting from the way albedo has been pa-

rameterized was a leading cause of an excessive north-

ward penetration of monsoon flow. Solman and Pessacg

(2012) attributed the underestimation of precipitation

over the La Plata Basin by the MM5 to be largely due to

a misrepresentation of the moisture flux convergence.

New et al. (2003), Steiner et al. (2009), Wu et al. (2009),

Alo and Wang (2010), Xue et al. (2010), and Ruti et al.

(2011) draw attention to the importance of the land sur-

face scheme in simulating the West African monsoon.

Furthermore, the driving boundary conditions can

also affect model bias if these constrain the model

physics. We tested the potential influence of the ERA-

Interim driving data on the bias through correlating each

models output and the ensemble average with the ERA-

Interim rainfall for each season. For MAM, JJA, and

SON, the ensemble average correlation was high (be-

tween 0.6 and 0.9) acrossmost of the domain except over

parts of Namibia, where there was very low correlation.

On a model by model basis, however, correlations were

spatially heterogeneous and ranged between 20.6 and

0.9 so the ensemble result is likely an error cancelation

feature. During DJF, correlations were low in both the

ensemble average (from 20.4 to 0.6) and the individual

models (20.8 to 0.6). This suggests that the in the non-

peak rainfall seasons the boundary conditions could be a

nonnegligible driver of the rainfall biases over the region.

In the core rainfall season, however, the model physics

are likely be a dominant source of the bias through the

convective schemes.

There are thus many potential sources of bias in each

of the CORDEX models: the internal solvers of the

models themselves, the physics packages like the PBL,

and cumulus schemes as well as their subschemes like

trigger, closure, and entrainment functions. Addition-

ally, the representation of the land surface processes and

circulations will also have an influence on the model

rainfall bias. However, the ensemble average smoothes

out these biases and is generally outperforms any par-

ticular ensemble member. We suggest here, along with

others, that an ensemble of differently set up models

with different parameterization schemes usually pro-

vides superior performance over the best of each because

distinct regions exist where one scheme outperforms the

other so that the ensemble becomes complementary

in capturing the observed climate (Liang et al. 2007;

Liu et al. 2009; Liu et al. 2010).
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5. Summary and conclusions

In this study, the CORDEX RCMs were analyzed for

their ability to capture and characterize rainfall patterns

over Southern Africa region during the period 1990–

2006. The ensemble consists of 10 different RCMs all

run at;50-km resolution, on a common grid and driven

by ERA-Interim for the period 1989–2008. Data were

provided on monthly time scale. Performance of the

individual models and the ensemble average is evalu-

ated seasonally in terms of correlation, variability, and

root-mean-square error in three subregions that spanned

tropical, subtropical, and midlatitude rainfall regimes.

Model precipitation biases were examined spatially, and

an attempt was made to relate these biases to circulation

biases. We also investigate the rainfall response to the

ENSO signal.

We used the GPCC data as the reference dataset for

an assessment using Taylor diagrams in three area-

averaged regions defined by rainfall regime. This showed

that in all three regions the ensemble average out-

performed individual model results in all seasons for

correlation, standard deviation andRMSE. In subregion

1, which primarily experiences tropical and subtropical

rainfall, during thewet season (DJF) themodels are able

to capture the phase of interannual variability well and

the ensemble mean is generally more closely correlated

with the GPCC than the other observational datasets.

However, most models tend to systematically under-

estimate the magnitude of the interannual variability

relative to GPCC. In subregion 2, a primarily subtropical

rainfall regime, the spread between the observational

datasets is smaller in all seasons. As seen in subregion 1,

there is also a systematic underestimation in the mag-

nitude of the interannual variability relative toGPCCby

most models in the wet season; however, here the en-

semble mean has a lower correlation with the GPCC. In

subregion 3, which experiences winter rainfall, models

again underestimate the magnitude of the interannual

variability, a characteristic shared with the other ob-

servational datasets, but there is good correlation be-

tween the ensemble mean and the GPCC. In terms of

individual models in this analysis, ARPEGE5.1 gener-

ally performed better than other models and in many

cases was comparable to the ensemble mean; however,

the ensemble mean generally outperformed the results

from individual models. It is also noted that the ensemble

mean improves on the ERA-Interim in the north of the

domain in removing the wet bias over Angola and lowers

the magnitude of the dry bias over northern Mozambi-

que. However, there is no improvement over the ERA-

Interim rainfall over Lesotho and the surrounding

highlands.

Model biases were assessed across the Southern Af-

rican domain and during the wet season (DJF) most

models undersimulated precipitation in the northeast-

ern region of the domain. Higher precipitation biases

are found in the southeastern parts of the region, espe-

cially over regions of high topography. In the winter

rainfall region most models to a greater or lesser extent

underestimated precipitation and all timed the maxi-

mum rainfall month too early likely because of a mis-

representation of the descending limb of the Hadley cell

during July. Although different models exhibited dif-

ferent biases, the multimodel ensemble mean again

outperformed individual models.

Model biases were related to large-scale circulation

anomalies and where positive rainfall anomalies were

noted, corresponding low pressure biases and moisture

transport into the region could be inferred. Over regions

of high topography (e.g., Lesotho, Drakensberg) most

models had awet rainfall bias duringDJF, which is likely

a result of a combination of orographic uplift and mois-

ture flow into the region. Dry biases over the northern

parts of the domain were evident in 7 of the 10 models,

and these biases may be related to a westward shift of the

ITCZ through enhanced tradewinds and surface pressure

anomalies. It is also likely that in regions around Lake

Malawi the moisture cycle is not properly resolved.

Anyah and Semazzi (2007) showed that the coupling of

a three-dimensional lake model with the regional model

greatly improved rainfall simulations over the Lake

Victoria region.

The capability of CORDEX RCMs to capture the

seasonal variability in precipitation related to ENSO

events was also assessed. The models are found to sim-

ulate the drier than average conditions observed during

El Ni~no events over most of Southern Africa reasonably

well, though the magnitude and the extent of the wetter

conditions observed in the northern part of Mozambi-

que is somewhat reduced. The positive precipitation

anomaly in the central and eastern part of the domain

observed during La Ni~na events is also captured by most

models, though in some areas the full magnitude of the

wetter conditions is not simulated. Over South Africa the

spatial extent of the wetter conditions observed during is

La Ni~na years is exaggerated in almost all models.

On average all RCMs capture themain features of the

seasonal mean rainfall distribution and the seasonal and

annual cycle. However, large biases can be found in in-

dividual models depending on the region and the season,

as has also been found in earlier multimodel studies

(Druyan et al. 2010; Paeth et al. 2011). Nikulin et al.

(2012) point out that formany of the downscaling groups

this was the first time downscaling over Africa where

land–convection interactions play a leading role in
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defining details of the precipitation climate. The multi-

model average generally outperforms any of the individual

models with biases of similar magnitude to differences

between the observational datasets and in some regions

is lower than the reanalysis bias. This is largely a result of

cancellation of opposite signed biases across the models

and highlights the importance of working in the context

of multimodel ensembles when simulating and assessing

Southern African climate characteristics. The biases

could be related to some degree to large-scale circulation

features, but this was not properly quantified because of the

unavailability of relevant data. We also relate the largest

potential source of bias to the internal physics of themodels

including cumulus, PBL, and land-use representations.

We have presented the results of the CORDEX sim-

ulations for Southern Africa and posited some potential

sources of the rainfall biases seen. As downscaling groups

begin to publish details on the model runs, as, for exam-

ple, Hern�andez-D�ıaz et al. (2013) have recently done in

their assessment of theCRCM5,we hope that the reasons

for these biases will be more clearly elucidated. It is

crucial to understand these as much as possible as the

group of RCMs employed in this study and others will

soon perform transient climate change downscalings

within CORDEX, forced by coupled GCM results from

CMIP5. In the near future these data will be made

available through a data repository and will be in

a common format (see Giorgi et al. 2009; Jones et al.

2011). We conclude that the regional models used here

can be used for the assessment of future climate

projections and also suggest that, through the ensemble

mean, they are likely to improve on rawGCMdiagnostic

output such as rainfall as well as their prognostic drivers.
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APPENDIX

Comparison of Gridded Datasets with Station Data

We investigate the adequacy of gridded rainfall prod-

ucts by comparing them against station data obtained

FIG. A1. Correlation coefficient andRMSE betweenmeanmonthly precipitation data from 428 stations in SouthAfrica andMozambique

and GPCC, UDEL, and GPCP gridded observational datasets (for the period 1990–2006).
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from the South African Weather Service (SAWS) and the

Instituto Nacional de Meteorologia (INAM). Mean

monthly precipitation data, derived from daily records for

the period 1990–2006 from428 stations in SouthAfrica and

Mozambique, are compared against two gauge-based

gridded observational datasets,GPCCandUDEL, and the

GPCP satellite–gauge dataset. Station monthly mean data

was exclusively computed formonthswithoutmissing daily

values which yielded generally highmean data availability

ranging from 76% to 100% with an average of 98%.

The closest grid point used in the comparison is de-

termined by the absolute minimum distance to the sta-

tion. There is good agreement for all gridded data, with

mean correlations of 0.89 for GPCC, 0.82 for GPCP, and

0.78 for UDEL (Fig. A1). The mean RMSE (mmday21)

is found to be lowest on average for UDEL (0.29) and

slightly higher for GPCC (0.49) and GPCP (0.67).

The GPCC and UDEL datasets partly share the same

gauge stations and differences can arise from the different

processing algorithms and the levels of data availability

for given time periods. We note that the higher RMSE

associated with lower correlation for some stations on the

north side of the bay of Maputo in GPCCmay be a result

of occasional mismatching of extremely rainy months.

As an example, November 2000, among all November

months for 1990–2006, shows the relative largest differ-

ence between GPCC and stations with a strong under-

estimation of rainfall by GPCC over this sector. UDEL

also strongly underestimates rainfall for this month while

GPCP captures the peak.

Compared to other regions of the world, there are

very few stations in certain regions of Southern Africa,

which makes it difficult to quantify the uncertainties

between the different observational datasets. Where

there are areas in the region that have fewer stations that

can be used in the production of the GPCC product the

uncertainties would be larger with respect to other ref-

erence datasets. For the density of in situ rainfall records

used by GPCC, please see Fig. 3 in Nikulin et al. (2012).

This example demonstrates that the gridded prod-

ucts generally represent rainfall over South Africa and

Mozambique well, as they partly share the same gauge

stations. However, local differences do occur in areas

where there are fewer stations and these differences

can be important.
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