
A Diagnostic Framework for Integrated Time-Triggered Architectures

P. Peti and R. Obermaisser
Vienna University of Technology, Austria

email: {php,ro}@vmars.tuwien.ac.at

Abstract

Integrated architectures promise substantial technical
and economic benefits in the development of distributed em-
bedded real-time systems. In the context of diagnosis new
diagnostic strategies can be applied by taking the physical
and functional structure of an integrated system into ac-
count. In this paper we present a diagnostic framework
that is designed to tackle prevalent diagnostic problems in-
dustry is currently facing, such as the trouble-not-identified
phenomenon in electronic systems. So-called Out-of-Norm
Assertions (ONAs) are employed that combine diagnostic
information to correlate experienced failures in order to de-
cide on the type fault (e.g., transient vs. permanent, inter-
nal vs. external) affecting the system. Based on a prototype
implementation of the integrated time-triggered DECOS ar-
chitecture we show the feasibility of this diagnostic strategy.

1 Introduction

The development of effective diagnostic systems stayed
behind the recent increase of electronic systems in modern
means of transportation. One reason for the diagnostic de-
ficiencies of modern On-Board Diagnosis (OBD) systems
is the fact that diagnosis is often treated as an add-on to
electronic systems rather than an integral part of the archi-
tecture.

For instance, when an OBD system of a car detects a
violation of the specification of an Electronic Control Unit
(ECU), a breakdown log entry is written, recording the con-
dition of the vehicle when a failure occurs. This so-called
freeze frame provides important information for the failure
cause analysis. The maintenance engineer can use this col-
lected data for getting insight into the context of the system
malfunction. However, this information is often insufficient
to understand the complex processes within the system that
caused the subsystem to fail, since typically only local in-
formation is provided that does not allows to correlate ex-
perienced component failures at different parts of the sys-
tem [1]. As a consequence, the problem of the identifica-
tion of faulty Field Replaceable Units (FRUs) has become a
predominant challenge that needs to be solved in distributed
embedded real-time systems.

In order to cope with industry demands on diagnosis, the

detection and subsequent identification of the FRUs caus-
ing malfunction should be supported by the system archi-
tecture. In order to include diagnosis into the design process
a framework should be provided that can be parameterized
according to the developer’s needs and thus avoids costly
redesign of individual diagnostic solutions at application
level. In particular, the system architecture needs to support
the maintenance engineer by providing information about
the health status for each FRU that acts as a foundation for
the decision process whether a FRU remains in the system
or will be replaced. This online analysis of the gathered
diagnostic information is required for future generations of
computer systems to reduce the numbers of cannot dupli-
cate failures, i.e. failures that cannot be reproduced at the
service station (see for instance [2]).

In this paper we look at diagnosis in the context of inte-
grated architectures. Integrated architectures promise mas-
sive cost savings due to the multiplexing of hardware re-
sources among different applications. Furthermore, the re-
sulting reduction of wiring and connectors results in de-
pendability improvements. In addition, integrated systems
permit a better tactic coordination of tightly coupled control
activities in different application subsystems. For this rea-
son, integrated architectures are becoming more and more
interesting for deployment in the automotive domain, in or-
der to resolve the pending one function – one ECU problem
associated with increasing complexity and costs.

In this paper we present the diagnostic framework of the
DECOS integrated architecture that deploys Out-of-Norm
Assertions (ONAs) to judge about the condition of the con-
stituting FRUs of the integrated system. ONAs take the
characteristics of faults in the time, value and space domain
into account in order to discriminate between different types
of faults that are affecting the operation of the distributed
system. ONAs operate on the distributed state of the sys-
tem in order to allow correlation of experienced failures to
improve the accuracy of the analysis process. Our solution
adheres to the following requirements imposed by industry:

• Focus on Transients. The types and causes of failures
for electronics have changed over the years. Failure
analysis in recent years has revealed that permanent
failures have been reduced by improvements in tech-
nology but due to the higher level of complexity and
downsizing other failure classes have emerged [3]. The
tremendous improvements made by the IC industry

1

with respect to permanent failure rates are extenuated
by increasing transient failure rates for instance due
to semiconductor process variations, shrinking geome-
tries, and lower power voltages [4]. Consequently, the
diagnostic services must especially be designed to han-
dle transients.

• Detection of Correlated Errors. Diagnostic systems
operating on only the internal component state pre-
clude the possibility to detect and analyze correlated
failures or system anomalies at different nodes.

• Avoidance of the Probe Effect. Any diagnostic sub-
system must avoid the introduction of probe effects [5]
that may forge the outcome of the diagnostic subsys-
tem. This is especially important in case of real-time
systems, where the diagnostic messages must not com-
promise the real-time traffic in any way.

• Intellectual Property Protection. Diagnosis is of-
ten equated with revealing of internal information.
The presented framework allows the realization of ad-
vanced diagnostic strategies by solely operating on the
interface state of the linking interfaces [6] without re-
vealing any internals of the application.

The paper is organized as follows. Section 2 introduces
the DECOS integrated architecture, including an overview
on the diagnostic services of the architecture. In Section 3
a framework for diagnosis is presented that can be parame-
terized by the system and application designers. Within this
framework the deployed ONAs are executed and evaluated.
In Section 4 we elaborate on the specifcation of ONAs us-
ing timed automata. Furthermore, we discuss the execution
scheme that builds upon the sparse time base of the under-
lying time-triggered core system. In Section 5 the prototype
implementation of the framework is described. On the basis
of an ONA for the detection and classification of borderline
failures (e.g., connector failures) we show the feasibility of
this diagnostic strategy.

2 The Integrated Diagnostic Architecture

This section describes the DECOS integrated architec-
ture for dependable distributed embedded real-time sys-
tems [7] and focuses on the integrated diagnostic services.
The DECOS integrated architecture provides a framework
with generic architectural services for integrating multiple
application subsystems within a single, distributed com-
puter system, while retaining the error containment and
complexity management benefits of federated systems.

2.1 Functional System Structure

For the provision of application services at the controlled
object interface, the real-time computer system is divided
into a set of nearly-independent subsystems, each providing
a part of the computer system’s overall functionality. We

Component condition assessment

Advanced maintenance strategies

Engineering feedback

Offline analysis

Experienced faults are

classfied according to

maintenance-oriented

fault model into internal,

external and border faults

Internal

hardware faults

Random external

hardware faults

Software faults

Detection Transport Analysis

Figure 1. Diagnostic Services of DECOS

denote such a subsystem as a Distributed Application Sub-
system (DAS), since the implementation of the correspond-
ing functionality will most likely involve multiple compo-
nents that are interconnected by an underlying communica-
tion system. The implementation as a distributed system is a
prerequisite for establishing fault-tolerance by redundantly
performing computations at separate components that fail
independently. In addition, the DECOS integrated architec-
ture groups DAS with the same criticality into subsystems
(e.g., safety-critical vs. non safety-critical).

In analogy to the structuring of the overall system, we
further decompose each DAS into smaller units called jobs.
A job is the basic unit of work that employs a virtual
network for exchanging information with other jobs, thus
working towards a collective goal. The access point of a job
to the virtual network is denoted as a port. Depending on
the data direction, one can distinguish input ports and output
ports. A job employs input ports for exploiting the services
of other jobs, while output ports enable a job to provide its
own services. Depending on the application context, either
the event-triggered or time-triggered paradigm is supported
by the virtual network infrastructure.

2.2 Waist-Line Architecture

The integrated DECOS architecture is based on a time-
triggered core architecture that meets the safety require-
ments of ultra-dependable applications. The core of such an
integrated distributed architecture for time-critical systems
must provide four core services: predictable transport of
messages, fault-tolerant clock synchronization, strong fault
isolation, and consistent diagnosis of failing nodes. Any ar-
chitecture that provides these core services can be used as
a base architecture for the DECOS integrated system archi-
tecture.

Based on the core architecture, high-level services such
as a virtual network service as the communication in-
frastructure tailored to the needs of each DAS, an encap-

2

sulation service for ensuring inner-component error con-
tainment, hidden gateways for the interconnection of DAS
to improve quality of service and eliminate resource du-
plication, a redundancy management service (e.g., voting),
and the diagnostic service as illustrated in Figure 1 are de-
ployed. In the remainder of this paper we will focus on the
diagnostic service.

2.3 Integrated Support for Diagnosis

The model of the diagnostic architecture [8] as illustrated
in Figure 1 can be divided into three consecutive steps.
Once a fault (either software or hardware) affects the sys-
tem and is detected by the detection mechanisms of the di-
agnostic services, a corresponding message is disseminated
via a dedicated virtual diagnostic network. A virtual net-
work is an encapsulated overlay network on top the time-
triggered core physical network [9]. The high-level virtual
network service ensures that fault isolation between virtual
networks of different DASs is guaranteed and that temporal
properties are not invalidated by interference of communi-
cation activities between different DASs. The subsequent
analysis of this information is located in an encapsulated
diagnostic DAS in order to determine the nature of an ex-
perienced fault with respect to a maintenance-oriented fault
model. The diagnostic DAS outputs a trust level for each
component, that acts as the foundation for the decision of
the maintenance engineer on the question whether a FRU
should be replaced or remain in the system.

The diagnostic framework decouples architecture level
diagnosis from application level diagnosis to reduce the
complexity and the associated efforts for the application
developers. These mechanisms are parameterized by the
application developers and eliminate the need for the de-
ployment of proprietary solutions. The architecture level di-
agnosis techniques (e.g., identification of component hard-
ware failures) are independent of a particular application
and need not be covered by the respective application level
diagnosis strategy (e.g., plausibility checks). In addition, a
revalidation of the systematic diagnosis mechanisms by the
manufacturer is rendered obsolete if the coverage of the de-
ployed mechanisms has been validated.

2.3.1 The Maintenance-oriented Fault Model

As stated in [10] the concept of fault is introduced to stop
the recursion of the “fault-error-failure” chain. From a
maintenance point of view, we are only interested in cat-
egorizing the type of fault of the experienced failure into
classes that allow a determination whether a replacement
is the correct maintenance strategy. Thus, by traversing
backwards the fault-error-failure chain [10], it must be pos-
sible for the diagnostic subsystem to determine whether a
change of a FRU can eliminate the experienced problem,
or if a replacement (i.e. change of hardware or update of
software) will prove to be ineffective. On the basis of the
maintenance-oriented fault model a corresponding mainte-
nance action for each fault class needs to be stated.

Wearout

Time

Value

Massive Transient

increasing frequency

as time progresses

approximately at the same

time (within a small delta)

multiple components with

spatial proximity

increasing deviation from

correct value, at the verge

of becoming incorrect

multiple bit flips

Connector Fault

arbitrary

one component

message omissions,

syntactic invalid frames

on a channel

Software Fault

peak-load scenario,

clustered

components with

communication relationship

message omissions

Space one component only

Figure 2. Summarized Fault Patterns

Consequently, we stop the recursion at Field Replaceable
Unit (FRU) level. In the context of the DECOS architec-
ture in case of hardware faults the FRU is considered to be
system component (i.e. node computer), while for software
faults the FRU is considered to be a job. The fault classi-
fication for each FRU needs to be derived by analyzing the
prevalent types of faults affecting the given FRU. For a de-
tailed discussion on the maintenance-oriented fault model
see also [11].

2.3.2 Operation on the Distributed State

The pivotal strategy of the diagnostic services is the opera-
tion on the distributed state established via the underlying
core services of the integrated architecture due to the avail-
ability of a global sparse time base. In combination with the
rigorously applied encapsulation services (both at inter- and
inner-component level) [9, 12], this strategy allows to trace
correlated system anomalies back to the FRU responsible
for the experienced system behavior.

Whenever a fault affects one or more constituting parts
of the distributed system, a change of state can occur that
leads to an unintended state denoted as an error [10]. De-
pending on the type of fault (e.g., internal or external fault,
software or hardware fault), the unintended state will ex-
hibit a characteristic manifestation in time, value and space.
To capture the characteristics of the fault-induced distrib-
uted state changes, we introduce the concept of fault pat-
tern [13]. A fault pattern is the set of state variables that
has been identified as subject to fault-induced state changes
along with corresponding properties in value, space, and
time. Different types of faults show different fault patterns
on the distributed state (see Figure 2 for some typical exam-
ples).

2.3.3 Out-of-Norm Assertions

In the diagnostic architecture so-called Out-of-Norm Asser-
tions (ONAs) [13] are deployed that are checked against
the distributed state established by the use of a sparse time
base [14]. We define an Out-of-Norm Assertion (ONA) as
a predicate on the distributed system state that encodes a
fault pattern in the value, time and space domain. ONAs
are triggered, whenever all symptoms of a particular fault
pattern are detected on the distributed state. A symptom
is a condition on a set of local interface state variables of
a particular component that is monitored to detect devia-
tions from the interface specification. An ONA will likely
be composed of more than one symptom, each operating on

3

SY@

A

SY@

B

SY@

C

SY@

A

SY@

B

SY@

A

SY@

C

SY@

E

SY@

B

SY@

D

SY@

A

D
is

t
r
ib

u
t
e

d

S
t
a

t
e

I
n
t
e
r
f
a
c

e

S
t
a

t
e

A fault pattern on distributed state

is represented by a corresponding

Out-of-norm Assertion

ONAs can be

hierarchically

structured

SY@

AOut-of-norm Assertion
Symptom at Component A specified

on the Interface State Variable(s)

TIME

SPACE

VALUE

Figure 3. Definition of Out-of-Norm Assertion

the interface state of a different component. As depicted in
Figure 3 ONAs can be hierarchically structured. This al-
lows for the exploitation of identified symptoms for the im-
plementation of different ONAs. ONAs operate solely on
the interface state. This way, the internals of jobs remain
hidden. This ensures two main requirements imposed by
industry, the protection of intellectual property and no need
to change existing application code.

ONAs do not provide a definite classification whether a
component is correct or incorrect in case only a subset of the
specified symptoms fires. In this case, we speak of an anom-
aly, i.e. we cannot ascribe the behavior of the component to
a specific fault pattern. In order to decide on the mainte-
nance action for a component, an assessment over time is
necessary. The repeated evaluation of evidence gathered by
ONAs provides the foundation for the analysis process that
ultimately decides whether a component is correct. ONAs
are gathering evidence in order to decide on a particular pat-
tern affecting the state of the system. This process can be
compared with a gathering evidence of different diagnos-
tic techniques in medicine (e.g., temperature measurement,
computer tomography, x-ray). In case sufficient evidence is
gathered, a suspicion for a particular disease is confirmed
or falsified.

3 The Diagnostic Framework

In order to integrate diagnosis into the development
process, a framework that supports both, the application de-
velopers and system designers is needed. Such a framework
also helps the developers to precisely specify the diagnos-
tic checks and to treat diagnosis not as an addendum but as
an integral part of all development phases. By applying a
framework, additional design faults can be avoided by pro-
viding the possibility to automatically transform the symp-
tom detectors and analysis specifications (i.e. the ONAs)
into executable code that can be executed as part of the high-
level services.

Event-triggered

DAS

Realization of the DECOS Services
(e.g. Communication Controller, Operating System, Middleware)

TIME-TRIGGERED PHYSICAL CORE NETWORK

Event-triggered

DAS

Time-triggered

DAS

Architecture-

Level Diagnosis

Application-

Level Diagnosis

INOUT INOUT

INOUT IN INOUT IN INOUT IN INOUT IN

Architecture-level

Symptom Collector

Application-level

Symptom Collector

Application-specific

Symptom Collector

Application-specific

Symptom Collector

TIME-TRIGGERED PORTSEVENT-TRIGGERED PORTS EVENT-TRIGGERED PORTS

ELECTRONIC CONTROL UNIT

Figure 4. Architecture-Level and Application-
Level Symptom Collection

3.1 Symptom Collection on the Local In-
terface State

As defined in Section 2.3.3, symptoms are the local man-
ifestation of fault patterns at a single component. Since
the diagnostic framework supports architecture-level and
application-level diagnosis, symptoms for both types need
to be supported. Typically, application-level symptoms
are defined on the ports of jobs and monitor all incom-
ing and outgoing messages, architecture-level symptoms
are deployed for the detection of failures at the core and
high-level services of the integrated architecture. By cor-
relating the information from both, application-level and
architecture-level symptoms a finer differentiation between
hardware and software faults is possible, thus overcoming
today’s ECU centered diagnosis schemes.

Architecture-level Symptom Collectors. As indicated in
Figure 4 the architecture-level symptom collector is inde-
pendent of any job-specific application logic. These checks
include for example the state of the membership, the clock
correction term, or the health state of the connection to the
physical network (e.g., message reception on all replicated
physical channels). In addition, architecture-level symptom
collectors are applied to gather diagnostic information orig-
inating from the operating system (e.g., partitioning fail-
ures) or high-level services (e.g., queue overflows at the vir-
tual network service). This enables reuse of the specified
checks in a large variety of systems in case the symptom
has proven in the field to provide valuable diagnostic infor-
mation. Architecture-level diagnostic checks do not need
to include any knowledge about the physical or functional
structure of the system. This is solely encoded into the ONA
processing the information provided by the symptom col-
lectors.

Application-level Symptom Collectors. While
architecture-level symptoms are checks on interface

4

Time

Action Lattice

.
.
.

.
.
.

.
.
.

ONA

Assessment

Trajectories

(A,B)

A B

Figure 5. Assessment Process

state variables of a component, application-level symptoms
are evaluated against the port state of the jobs hosted
on a component. Thus, an application-level symptom
collector monitors the behavior of the job at one or more
ports of a link of the respective virtual network [9]. In
contrast to architecture-level symptoms, application-level
symptoms highly depend on the application context and
need thus be devised by the application developers. Only
the deep understanding on the dynamics of the application
and relations between the different jobs allows defining
meaningful symptoms.

3.2 Transport of Diagnostic Information

Whenever a symptom collector detects a violation of a
linking interface specification, the symptom collector sends
a diagnostic message to the analysis subsystem via a so-
called virtual diagnostic network. This network is estab-
lished by exploiting the high-level virtual network service.
Such a virtual solution has two main advantages. At first,
real-time traffic is not compromised in any way since the
bandwidth for the exchange of diagnostic information is
fixed a priori at design time. This way a deterministic mes-
sage exchange for all non-diagnostic DASs is guaranteed.
Secondly, the purely virtual solution ensures that no addi-
tional hardware faults are introduced due to wiring or con-
nector problems. Consequently, no probe effect is intro-
duced [5].

3.3 Analysis

The analysis of the gathered diagnostic information
(i.e. symptoms) is realized in a designated DAS – the diag-
nostic DAS – to ensure that the diagnostic subsystem can-
not interfere with jobs of other DASs and to not restrict the
choice of implementations (e.g., central diagnostic compo-
nent vs. distributed solution). As defined in Section 2.3.3
and illustrated in Figure 3 an ONA combines information
from the value, time, and space domain in order to improve
the accuracy of the analysis process according to previously
introduced maintenance-oriented fault model.

Value Domain. Checks regarding the value domain are
handled by the symptom collectors on the interface state of
a component or job as described in Section 3.1. Typically,
knowledge about the physical interrelationships is used to
define meaningful value domain checks (e.g., threshold val-
ues, allowed range of values) and allows for example to re-
late values from different sensors (e.g., plausibility checks
for a state estimation model).

Time Domain. The evaluation process performed by the
diagnostic DAS is illustrated in Figure 5. The evaluation
process is based on a consistent notion of state, which is
provided through the action lattice of the sparse time base
established by the core services [14]. The arrows in Fig-
ure 5 indicate the assessment trajectories. At first both ar-
rows show component conformance with the specification,
i.e. correct interface states. As time progresses arrow A ex-
hibits an increasing confidence for a violation of the spec-
ification, while arrow B indicates a component behavior
in accordance with the specified service. In particular, by
exploiting the time domain, a distinction between transient
(i.e. non-destructive external) and intermittent (i.e. internal)
hardware faults is possible [15].

Space Domain. The introduced integrated architecture
provides a finer granularity of diagnostic information than
federated systems. The assessment process exploits this
knowledge about the functional and physical structure of the
integrated architecture. The decomposition of the overall
system into DASs with respective jobs is a key element for
a more precise differentiation of experienced faults. By in-
cluding the three dimensions of time, value, and space into
the judgment process, a discrimination into internal hard-
ware faults, external hardware faults and software faults is
possible [4]. For instance, consider the system depicted in
Figure 6. In case a software fault hits the jobs A1, A2, and
A3 of the non safety-critical DAS A, the fault effects only
the DAS A, since the error containment mechanism of the
architecture ensures that this fault cannot propagate to other
DASs. In contrast, in case a hardware fault hits a com-
ponent hosting multiple jobs of different DASs, it is very
likely that the impact of this fault is not limited by DAS
borders. A hardware fault will cause multiple jobs hosted
on one component to fail (e.g., the jobs A3, C1, C2, and S2

on component 2 in Figure 6).
The recognition of correlated job failures is also impor-

tant in the detection of faults affecting architecture sup-
ported fault-tolerance mechanisms, such as Triple Modu-
lar Redundancy (TMR) mechanisms. This fault-tolerance
mechanism is characterized by the replication of identical
jobs on three different components in order to tolerate single
hardware faults. In case the jobs S1, S2, and S3 are forming
a TMR system, the spatial dimension of an ONA covering
deviations in the services of the three replicas spreads across
components 1, 2, and 3 (since a component is the FRU with
respect to hardware faults). In case one of the replicated
safety-critical jobs fails, an analysis if correlated failures of

5

Jobs of the safety-

critical DAS

Jobs of the non

safety-critical DASs

Component 1 Component 2

Component 3 Component 4

TIME

SPACE

VALUE

Figure 6. Judgment According to the Three
Dimensions: Time, Value and Space

jobs of other DAS executed at the same time on the same
component exist will supply evidence whether a hardware
fault effects the component.

4 Specification and Execution of Out-of-
Norm Assertions and Symptom Collectors

Since ONAs encode fault patterns on the distributed state
of the system, methods that allow expressing characteris-
tics in the value, time, and space domain. In the proposed
framework we use timed automata for both the specifica-
tion of symptoms (i.e. component/job local checks on the
interface state) and the consecutive analysis process. The
underlying sparse time base allows the precise definition of
execution semantics that are also subject of discussion in
this section.

A timed automaton [16], i.e. a state transition graph an-
notated with timing constraints, has an intuitive syntax and
semantic that makes it especially interesting in the specifi-
cation and design of diagnostic algorithms. Furthermore,
using timed-automata as the specification method has also
the significant advantage of having a representation that can
easily be transformed into a machine executable form.

4.1 The Timed Symptom/Analysis Au-
tomaton

Since the timed automata used for the specification of
ONAs need to be executable, we restrict timed automata de-
fined by [16] to be nonzeno (i.e. there is no infinite sequence
of transitions without any progression of time in between),
deterministic and require that the invariant of each location
is complementary to the guards of all outgoing edges, i.e. an
edge must be taken as soon as possible. In the following we
extend the definition by [16] to be suitable for our purposes.

Guards and Actions. In order to formally define the
timed symptom/analysis automaton, we specify what con-
straints are allowed as the enabling conditions called guards
of a timed automaton. We define the set Φ(X, V, M) :

(X, V, M) �→ (T, F) of guards for a set of clocks X , vari-
ables V , and messages M via the following grammar:

ϕ := x ◦ c | x ◦ v | x ◦ m | v ◦ c | v ◦ m |
v ◦ v′ | m ◦ m′ | av(m) | ¬ϕ | ϕ1 ∧ ϕ2,

where x is a clock in X , c is a constant in N, v and v′ are
variables in V , m and m′ are messages in M . ◦ is a binary
relation (≤, <, =). av(m) tests whether a message m is
available at the respective input port (only needed for event-
triggered communication).

The set of actions Λ(X, V, M) : (X, V, M) �→
(X, V, M) is defined via the following grammar:

λ := x := c | x := m | v := c | v := m | v := v′ |
m := c | m := v | m := m′ | mdiag! | m? | λ1; λ2,

where x is a clock in X , c is a constant in N, v is a variable
in V , and m is a message in M . mdiag! ∈ M is a diagnostic
message to be disseminated via the virtual diagnostic net-
work, and m? reads message m from the respective input
port. Note, that in case of event-triggered communication
m? is consuming, in contrast to av(m).

Definition of the Syntax. A timed symptom/analysis au-
tomaton A is a tuple 〈L, L0, X, V, M, I, E〉, where

• L is a finite set of locations,

• L0 ∈ L is the initial location,

• X is a finite set of clocks,

• V is a finite set of variables,

• M is a finite set of messages,

• I is a mapping that assigns to each location an invariant
as a constraint in Φ(X, V, M) (I : L �→ Φ(X, V, M)),

• E ⊆ L × Φ(X, V, M) × Λ(X, V, M) × L is a set
of transitions. A transition 〈s1, ϕ, λ, s2〉 represents an
edge from location s1 to location s2 with guard ϕ.
The guard is a constraint of clocks X , variables V and
messages M and determines when the transition is en-
abled. The action λ is a set of assignment and message
operations to be performed.

4.2 Execution of the Timed Automata

The timed symptom detection/analysis automata are ex-
ecuted on the action lattice of the sparse time base. In the
silence interval with respect to the communication services
both the timed automata for symptom detection and analysis
as part of an ONA are executed. The algorithm is presented
in Figure 7 and works as follows:

1. The time variable is set to the beginning of the last
interval of activity of the sparse time base with respect
to the action lattice for virtual network service T =

6

clocks X
variables V
messages M
current location s

T = Tactivation − n
while (T < Tactivation)

while (∃ 〈s1, ϕ, λ, s2〉 ∈ E with ϕ = T ∧ s = s1)

(X, V, M) := Λ(X, V, M) //execute action

s := s2 //new location

end
T = T + 1 //advance time

∀x ∈ X : x = x + 1
end

Figure 7. Execution Step (n ticks) of the
Timed Automaton A

Tactivation − n, where Tactivation, is the actual global
time. n denotes the number of ticks elapsed during on
interval of silence and activity.

2. As long as the simulation time T is smaller than the ac-
tual time Tactivation, the execution continues. In case
this condition does not hold, the execution of this au-
tomaton is terminated for this activation cycle.

3. A transition is taken whenever a guard ϕ is enabled. In
case no guard evaluates to T, the following step (4) is
skipped.

4. If a transition is taken, all corresponding actions λ are
executed (e.g., updating of variables, message recep-
tion) and the current location is updated.

5. Both the global simulation time T and local clock vari-
ables X are increased by 1. Continue with step 2.

5 Realization of the Diagnostic Services for
Borderline Faults

In the following section we exemplarily describe how the
introduced ONAs are implemented in the context of the in-
tegrated DECOS architecture. We thereby focus on the de-
tection and analysis of component borderline faults accord-
ing to the fault model introduced in Section 2.3.1.

Wiring plays a central role in any distributed system en-
vironment, since it provides the infrastructure for exchang-
ing the data between components. Like any other part of
the system, the electrical interconnection system is exposed
to environmental stress as well as assembly and design
faults. Considering that a typical middle-class car has about
40 ECUs and approximately 800 wires [7], the likelihood
of connector problems is high. In fact, recent studies [17]
indicate that 30% of electrical failures can be attributed to

connector problems. Wiring problems, especially connector
problems, are difficult to detect, since the inspection itself
can be the corrective action (e.g., loose contacts). For this
reason, it is important to provide means for the online de-
tection of connector failures.

5.1 Implementation Platform

Our prototype implementation of the DECOS archi-
tecture consists of a cluster of five components using
TTP/C [18] as the time-triggered core communication ser-
vice. On each system component the embedded real-time
Linux variant Real-Time Application Interface (RTAI) [19]
is employed for establishing an encapsulated execution
environment for hosting multiple jobs on one physical
component. For this partitioning the capabilities of the
RTAI/LXRT extension are heavily utilized. For more in-
formation on the used hardware and software platform see
also [12].

5.2 Detection of Component Borderline
Symptoms

The TTP/C controller determines the frame status for
each received frame [18]. Depending on this message status
field, the application can read or discard the received mes-
sage. This so-called Error Indication Field allows an analy-
sis of the status of the communication channels. The TTP/C
controller compares the frames from both channels and de-
clares the received frame as correct as long as one frame is
correct. This strategy is suitable for application transparent
fault-tolerance, however, an integrated diagnostic solution
must take the information from both channels into account
to enable an investigation of possible physical faults of the
replicated channels or bus drivers. In TTP/C we can use
the frame status information as described in the following
for judging whether a borderline fault is affecting the sys-
tem. As shown in Figure 9, TTP/C differentiates between
Correct Frames, Invalid Frames (i.e. syntactically incorrect
frames), Null Frames (i.e. no activity on the channel, not
even noise), and Incorrect Frames (i.e. wrong Cyclic Re-
dundancy Code (CRC)) [18].

In Figure 8 a timed automaton is depicted that imple-
ments the symptom detection on the frame status of each
physical channel. The timed automaton performs the check
on the status of the network in each TDMA slot (using
clock variable x) according to the cluster schedule of the
core network. Whenever, a new TTP frame is received,
the execution of the timed automaton progresses and the
frame status is evaluated. In case the frame status of chan-
nel 0 or 1 is other than correct, a corresponding diagnos-
tic message is constructed and forwarded to the virtual di-
agnostic network. This send operation is specified using
m(type,symptom#,u.c:)! in the automaton.

By replacing the generic check ϕ3 stated in Figure 8
commands for accessing the respective registers of the
physical communication controller the timed automaton can
be executed on the target platform.

7

Type Symptom# Timestamp Cluster Componentm(type,symptom#:u.c)!

Wait for

TDMA

slot

Check

frame

status

0:;: 232 x

0,!:

));1()0((:

).:#,(3

3

xm

correctchcorrectch

cusymptomtype

statusstatus

);(:1 SLOTx

10I)(321I

Figure 8. Symptom for Component Border-
line Faults

5.3 Transport of the Diagnostic Message

Once a symptom has been identified, this information
is encoded into a diagnostic message and forwarded to the
analysis DAS, responsible for executing the ONA that com-
bines the information to judge on the type of fault affecting
the system. The message content for the transport of bor-
derline symptoms is described in Figure 9. The message
includes information on all three domains as elaborated on
in Section 2.3.2.

Field Name Semantics
Message Type This field is set to TYPE ARCHITECTURE in order to

differentiate the message from application-specific symptoms.
Symptom ID The unique symptom ID is set to SYM CORRECT CH[0/1],

SYM NULLFRAME CH[0/1], SYM INVALID CH[0/1],
SYM INCORRECT CH[0/1], SYM OTHER CH[0/1],
SYM TENTATIVE CH[0/1] or SYM UNKNOWN CH[0/1].

Time Domain This field includes timestamp of the global time base.
Space Domain This field contains the identification of the physical cluster

and component.

Figure 9. Diagnostic Message

5.4 Analysis: Determination of Compo-
nent Borderline Faults

The analysis of the gathered diagnostic information
(i.e. symptoms) is shifted into a designated DAS – the di-
agnostic DAS – to ensure that the diagnostic subsystem
cannot interfere with jobs of other DASs. In our imple-
mentation we extend a simple threshold-based algorithm for
the analysis such as the α-count algorithm [15]. The ratio-
nale for the α-count mechanism is to decide on the point in
time when keeping a system component on-line is no longer
beneficial. The algorithm is partly based on the observa-
tion that intermittent (transient internal) faults exhibit a rel-
atively high occurrence rate after their first appearance [4].
The α-count is a threshold-based fault classification mech-
anism designed to identify permanent faulty components
from components affected by external transient faults. The

Pattern

detected

Discard

pattern

Check

time-

stamp

Time-

stamp

outdated

Corr.

message

received

Update

reference

time-

stamp

Increase

counter

Initial

symptom

message

compcountusymptomtypecorr

corrinitcusymptomtype

OKtimestampmtimeold

newfm

OKmav

#:).*;#,(

:).;#,(1

1

,.,0

,0,0,?,:

;)(:

);1
2

()()(:2
n

OKtimeT count

;0,:

;:

17

17

time

true

22 ;

)(:

);0(:

5

5

anomalyupdate

countusymptomtype OKm

OKmavtimeT

?,:

;)()()(:

:).*;#,(6

6

;0,0,0,0

,)()()(:

;:

16

16

oldnewftime

foldnew

true

corr

corrcorroldnew

1010 ;

1111;

1212;

;:

;2.:

12

:).*;#,(12

old

timetimestampm corrusymptomtype

;.,:

);2(.:

:).*;#,(11

:).*;#,(11

timestampmtimenew

timetimestampm

usymptomtypecorr

corrusymptomtype

;:

);2(.)2(:

10

:).*;#,(10

corr

corrusymptomtypecorr

f

timetimestampmtime

);(:15 mav);(:13 mav);(:14 mav

count

usymptomtype

OK

m

OKmav

?,:

;)(:

:).*;#,(9

9

Decrease

counter

Perm.

failure

33;

);1
2

()()(:3
n

OKtimeT count

;0),(:

;:

18

18

time

true

permanent

1818;

1717 ;

)(:

);(:

4

4

statsupdate

T

Wait for

symptom

message

Ok

received

countOK

true

:

;:

20

20

2020;

?:

);)((:

:).*;#,(19

19

usymptomtypem

OKmav

1919;

count

usymptomtype

OK

m

OKmav

?,:

;)(:

:).*;#,(8

8
count

usymptomtype

OK

m

OKmav

?:

;)(:

:).*;#,(7

7

countusymptomtype OKm

OKmav

?,:

);)((:

:).*;#,(21

21

2121; 2222 ; 2323;

countusymptomtype OKm

OKmav

?,:

);)((:

:).*;#,(22

22

countusymptomtype OKm

OKmav

?,:

);)((:

:).*;#,(23

23

Figure 10. Determination of Component Bor-
derline Faults

main idea of the algorithm is to keep track of every fault oc-
currence in each component. When the α-counter value ex-
ceeds a given threshold value, the component is diagnosed
as affected by a permanent/intermittent fault. Depending
on the expected frequency of permanent, intermittent and
transient faults the values assigned to the parameters of the
algorithm are set.

However, in contrast to typical analysis algorithms
processing only local information, the timed analysis au-
tomaton as shown in Figure 10 for the systemic diagnosis of
borderline failures correlates information from other com-
ponents of the cluster to indisputably judge whether a fail-
ure has occurred. In case no correlated symptoms have been
detected the increase of the α-counter value is marginal.
By contrast, once a correlated information is detected, the
value is multiplied with the weighting factor Ψcorr to em-
phasize the importance of such correlated information. This
way the α-counter is increased by a significant higher value
compared to the case when only a single symptom has been
detected.

Since in our prototype implementation a core commu-
nication network with two replicated channels is used, for
each component two ONAs for the determination of border-
line faults are required (i.e. one for each channel).

5.4.1 Definition of Thresholds and Weighting Factors

Every threshold-based analysis technique depends on the
setting of the parameters that determine the behavior of the
algorithm [15]. We use the following parameters in our pro-
totype implementation

• the penalty weighting factors (Ψnew,Ψold,Ψcorr,
Ψpermanent,Ψα−init)

• the α-counter threshold (Tα), and

• the timing parameters (Γα, ∆).

8

As shown in Figure 10 the threshold value Tα determines
when a fault pattern is detected and stored in the analysis
data structures (the action λ4 := update(stats)). The para-
meter Γα defines the length of the time interval between de-
creasing the α-counter value in case no symptom message
is received. The constant ∆ is used for specifying the time
window during which correlated information with respect to
the previously received symptoms is processed. Whenever a
symptom with a timestamp is received that strengthens the
belief in the correctness of the previously received symp-
tom(s) the variable fcorr is increased, the holds the number
of correlated messages. The value of fcorr is multiplied by
the weighting factor Ψcorr before adding to the α-counter
value to amplify the impact of diagnostic information that
has been confirmed by other components of the system
(i.e. following the cross-checking principle [13]). After
processing all incoming symptoms the α-counter value is
updated according to the transition enabled by guard ϕ16

and action λ16:

α = α + (new · Ψnew) + (old · Ψold) + (fcorr · Ψcorr)

where, new holds the number of newly received messages
(with future timestamp), old holds the number of received
messages with outdated timestamp (due to possible delays
introduced by the event-triggered virtual network service).
The weighting factors Ψnew and Ψold are used to define the
impact of outdated symptoms (stored in the variable old)
and new symptoms (stored in the variable new).

5.4.2 Implementation of the Timed State Machine

In the following we discuss relevant implementation details
of the state machine described in Figure 10.

Global Time. Since the progression of the execution trace
of the automaton implementing the analysis algorithm de-
pends on the progression of real-time, all local clock vari-
ables are synchronized with the global time provided by
the underlying time-triggered core network. As already
stated, the 16 bit global time provided by TTP is extended
to a node local 32 bit time field to implement timing con-
straints exceeding 16 bit (or approximately 330 ms in the
used schedule and TTP cluster configuration). Of particular
interest with respect to the progression of real-time is state
CHECK TIME STAMP, where the following timing analysis
is performed:

• In case ϕ10 := (timecorr − ∆
2) <

m(type,symptom#,u.∗:).timestamp < (timecorr + ∆
2)

is enabled, a correlated diagnostic message has been
detected and the correlation factor fcorr is increased.

• In case ϕ11 := m(type,symptom#,u.∗:).timestamp ≥
(timecorr + ∆

2) evaluates to T, a message with a new
symptom has arrived. As a consequence the new
counter is increased and the variable holding the ref-
erence timestamp timecorr is updated accordingly.

• In case ϕ12 := m(type,symptom#,u.∗:).timestamp ≤
(timecorr − ∆

2) a message with an outdated timestamp
has arrived. This condition might fire, due to possible
message delays at the virtual event-triggered network.
If the guard ϕ12 evaluates to T, the old counter is in-
creased and later added to the α-counter value.

Although a node local 32 bit timestamp is used in the im-
plementation, a time overflow might occur. This has been
taken into account in the prototype implementation.

Event Semantics. The use of event semantics for encod-
ing diagnostic information has the advantage of effective
usage of the available bandwidth for diagnosis. Since only
changes in interface state variables are distributed, a failure
is active as long as no message is received, stating that a
correct state of the variable has been restored. Whenever
no confirmation messages arrive, a permanent failure is as-
sumed. This issue has to be taken into account when imple-
menting the analysis algorithm.

Therefore, the variable OKcount holds the number of
received messages indicating that the status of the chan-
nel is correct. If the message data field contains the
symptom SYM CORRECT CH0/1 the variable OKcount is
incremented, otherwise decremented (see also the transi-
tions ϕ6, λ6 and ϕ19, λ19 in Figure 10). In the correct
case OKcount equals the number of components in the sys-
tem. Consequently, the function av(m) needs to return
the symptom value for implementing this strategy. As de-
picted in the timed automaton, in case the value of OKcount

is smaller than the number of the deployed physical compo-
nents, there are two possible transitions:

• If OKcount ≥
⌊

n
2

⌋
+ 1 evaluates to T, then the major-

ity of the nodes in the cluster have confirmed that the
channel status is correct again. In case OKcount does
not equal the number of components, the counter is in-
creased over time. In the implementation every 5 · Γα

time units, OKcount is incremented by one to compen-
sate for missing “OK messages”.

• If OKcount <
⌊

n
2

⌋
+ 1 evaluates to T, then only a mi-

nority of the nodes in the cluster have confirmed that
the physical connection to the time-triggered core net-
work has been reestablished. In this case a permanent
failure has been detected and the α-counter value is in-
creased by Ψpermanent every Γα time units as long as
either the missing “OK messages” arrive or the thresh-
old Tα is exceeded.

Exceeding the Threshold Tα. In case the α-counter
value exceeds the threshold Tα, the global analysis data
structure is updated accordingly. Then, the timed automa-
ton is reset and the execution starts over again. Reoccurring
overstepping of the threshold then results in additional ONA
firing and thus strengthens the belief in the previous analysis
results. However, alternative strategies can be implemented.

9

Out-of-Norm Analysis

0

50

100

150

200

250

300

350

1 31 61 91 121 151 181 211 241 271 301

Time

A
lp

h
a
 C

o
u

n
te

r

Below Threshold Permanent Failure Exceeding Threshold

Init

Init+Corr

Permanent

Channel Failure

Single Failure Pattern Discarded

Threshold Exceeded =

Pattern Detected

Threshold Exceeded =

Pattern Detected

Increase due to Correlated

Failure Messages

Figure 11. Alpha Counter Strategies

For example, after exceeding the threshold Tα the compo-
nent can be declared as permanent faulty and scheduled for
maintenance action.

Decrease of the α-counter. In case α ≤ 0 the fault pat-
tern for a channel fault is discarded. Since the diagnostic
architecture follows the record any single anomaly design
principle, the anomaly counters for the respective compo-
nent are increased. Subsequently, the timed automaton is
reset and the execution starts over again by initializing the
automaton data structures. The idea behind introducing an
anomaly counter is the strategy that a high anomaly counter
can be used as engineering feedback for a possible pending
problem.

5.4.3 Parameter Settings

In the implementation of the threshold-based analysis al-
gorithm depicted in Figure 10 the following values for the
parameters are used: Γα is set to an interval of 30 seconds.
In case no further symptom is received within 30 seconds,
the α-counter value is decreased by one. In the prototype
configuration, messages with a timestamp differing no more
than one TDMA round are assumed to be correlated. This
opens a time window for processing correlated information.
A single symptom increases the α-counter value only by 2
as defined Ψnew, whereas any additional correlated symp-
tom message increases the α-counter value by 30 corre-
sponding to the parameter Ψcorr. The parameter Ψα−init de-
fines the penalty for the first occurrence of a symptom and
is set to 20. Ψpermanent increases the α-counter value by 50
every Γα time units in case a permanent channel failure is
detected.

5.4.4 Implementation Results

Figure 11 depicts the measurement results of experiments
analyzing the performance of the implemented α-counter
strategy. On the basis of three chosen representative fault
types, namely

• Permanent internal borderline failure (denoted as “Per-
manent Failure”)

• Transient internal borderline failure (denoted as “Ex-
ceeding Threshold”)

• Transient external borderline failure (denoted as “Be-
low Threshold”)

we describe the measurement curves of the α-counter val-
ues in more detail. The x-axis of the diagram presented in
Figure 11 shows the progression of time. Each time unit
corresponds to Γα, i.e. the time that has to elapse without a
the reception of a symptom message to decrease the value
of the α-counter. The y-axis represents the value of the α-
counter.

Permanent internal channel failure. As depicted, once
a permanent channel failure occurs, the value of the α-
counter is increased by Ψpermanent every Γα macroticks.
Since no message with symptom SYM CORRECT CH0/1
is received, indicating that the physical link is successfully
established again, and the majority of the components in the
cluster support this view (OKcount < n

2 + 1), an increase
of the α-counter value exceeding Tα is the result. Conse-
quently, the channel is declared as being permanent faulty
and a corresponding entry into the diagnostic data structures
is written.

Transient internal channel failure. The diagnosis of
communication blackouts on the deployed bus systems is
of critical importance. Since transient internal channel fail-
ures require maintenance action such as inspection of the
cable loom or change of a defective ECU, accurate diag-
nosis is vital to keep warranty costs low. The following
points as highlighted in Figure 11 are of special interest. At
t = 23 a channel failure is detected and processed, result-
ing in an increase of Ψα−init of the α-counter value. Since
correlated failure messages confirm this channel failure, the
term new · Ψnew + fcorr · Ψcorr is added to the value of the
α-counter. As depicted, the continuous detection of symp-
toms indicating a potential internal channel failure causes
that the fault pattern is never discarded. In fact, the reoccur-
ring correlated symptom detections result in an increase of
the α-counter value beyond Tα as time progresses.

Transient external channel failure. According to the
maintenance-oriented fault model, transient external faults
are falling into the category of faults where no mainte-
nance action is required to restore the intended function-
ality. Whenever, the first diagnostic message with a symp-
tom that is relevant for the analysis of component border-
line faults is processed the α-counter is increased accord-
ing to Ψα−init. The curve presented in Figure 11 shows
this increase in the beginning, due to an unconfirmed symp-
tom message. Whenever the α-counter value, that decreases
over time, is 0 again, the fault pattern is discarded and the

10

timed automaton reset after writing an entry into the analy-
sis data structures. Then the execution of the timed automa-
ton restarts in state “initial symptom message”. Note, that
although the ONA never fires, i.e. the threshold Tα is never
exceeded by the α-counter value, every entry made into the
analysis data structures whenever the fault pattern is dis-
carded is an indication for an anomaly. This data can pro-
vide important feedback when analyzing a large population
of maintenance records.

6 Conclusion

Integrated architectures offer the possibility for diag-
nosis exceeding state-of-the-art solutions by operating on
the distributed state in order to exploit knowledge about
the physical and functional structure of the system in the
analysis process. In this paper we introduced a framework
that supports execution of so-called Out-of-Norm Asser-
tions (ONAs) in order to reduce the fault-not-found ration
in electronic systems. Timed automata are used to specify
both the local detection mechanisms as well as the global
analysis algorithms that combine the gathered diagnostic in-
formation in the space, time, and value domain in order to
decide on a particular maintenance action. A prototype im-
plementation has shown the feasibility and effectiveness of
this strategy.

Acknowledgments

This work has been supported in part by the Austrian Advanced

Automotive Technology Project under project No. 809437 and the

European IST project ARTIST2 under project No. IST-004527 and

the European IST project DECOS under project No. IST-511764.

References

[1] J. Barkai, “Vehicle diagnostics–are you ready for the

challenge?” in Proc. of Automotive & Transportation
Technology Congress, 2001.

[2] D. Thomas, K. Ayers, and M. Pecht, “The ’trouble

not identified’ phenomenon in automotive electron-

ics,” Microelectronics Reliability, 2002.

[3] M. Pecht and V. Ramappan, “Are components still

the major problem: a review of electronic system and

device field failure returns,” IEEE Transactions on
Components, Hybrids, and Manufacturing Technol-
ogy, 1992.

[4] C. Constantinescu, “Impact of deep submicron tech-

nology on dependability of VLSI circuits,” in Pro-
ceedings of the International Conference on Depend-
able Systems and Networks, 2002.

[5] J. Gait, “A probe effect in concurrent programs,” Soft-
ware Practice and Experience, 1986.

[6] H. Kopetz and N. Suri, “Compositional design of RT

systems: A conceptual basis for specification of link-

ing interfaces,” in Proc. of 6th ISORC, 2003.

[7] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino, and

S. Cerchio, “An integrated architecture for future car

generations,” in Proc. of the 8th ISORC, 2005.

[8] P. Peti, “Diagnosis and maintenance in an integrated

time-triggered architecture,” Ph.D. dissertation, Vi-

enna University of Technology, 2005.

[9] R. Obermaisser, P. Peti, and H. Kopetz, “Virtual net-

works in an integrated time-triggered architecture,” in

Proc. of 10th IEEE WORDS, 2005.

[10] A. Avizienis, J. Laprie, and B. Randell, “Fundamental

concepts of dependability,” LAAS-CNRS, Tech. Rep.,

2001.

[11] P. Peti, R. Obermaisser, and H. Kopetz, “A

maintenance-oriented fault model for the DECOS in-

tegrated diagnostic architecture,” in Proc. of the WP-
DRTS, 2005.

[12] B. Huber, P. Peti, R. Obermaisser, and C. E. Salloum,

“Using RTAI/LXRT for partitioning in a prototype im-

plementation of the DECOS architecture,” in Proc. of
the 3rd WISES Workshop, 2005.

[13] P. Peti, R. Obermaisser, and H. Kopetz, “Out-of-norm

assertions,” in Proceedings of the 11th RTAS, 2005.

[14] H. Kopetz, “Sparse time versus dense time in distrib-

uted real-time systems,” in Proc. of 12th ICDCS, 1992.

[15] A. Bondavalli, S. Chiaradonna, F. D. Giandomenico,

and F. Grandoni, “Threshold-based mechanisms to

discriminate transient from intermittent faults,” IEEE
Transactions on Computers, 2000.

[16] R. Alur and D. L. Dill, “A theory of timed automata,”

Theoretical Computer Science, 1994.

[17] J. Swingler, J. McBride, and C. Maul, “Degradation

of road tested automotive connectors,” IEEE Trans-
actions on Components and Packaging Technologies,

2000.

[18] H. Kopetz, Specification of the TTP/C Protocol. TT-

Tech, 1999.

[19] D. Beal et al., “RTAI: Real-Time Application Inter-

face,” Linux Journal, Apr. 2000.

11

