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1. Introduction

Spaces with dominating mixed smoothness properties of Sobolev type have
been introduced in 1962 by S. M. Nikol'skii (see [3], [4]). The simplest case
on the plane R? is characterized by the norm
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where 1 < p < 00. This norm makes it clear what is meant by “dominating
mixed smoothness properties”. Later, spaces of this type were studied exten-
sively, mostly by Soviet mathematicians: extensions to R", spaces with
dominating mixed smoothness properties of Besov type, of Bessel-potential
type etc. The abstract interpolation theory in Banach spaces proved useful
for spaces of this type. References may be found on pp. 80, 81 in [8]. In the
seventies it became clear that the Fourier-analytical techniques, which had
been used so successfully in the theory of the isotropic spaces of type B},
and F),,, are also adequate tools for the study of spaces with dominating
mixed smoothness properties. In a series of papers H.-J. Schmeisser devel-
oped on this basis a far-reaching theory of these spaces. He gave a thorough
description of his results in Chapter 2 of [8]. On the plane R? three types of
spaces with dominating mixed smoothness properties are considered, S7;B,
*sF and SB;; where F=(ry, 7)), p=(py, p)) and §=(q,,q;) Wwith
—00 <r; <, 0<p;, <, 0 <g; < 0. The first two classes are counter-
parts of the isotropic non-homogeneous spaces B, and F},, on the plane,
while the third class includes essentially those spaces which have recently
been used in order to describe the needed smoothness properties of kernels
K(x,, x;) of integral operators

(1) S = [K(x1, x3) f (x5)dx,.
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This part of the theory of integral operators is due to A. Pietsch [5]; cf. also
the two recent monographs [2], [6], where the plane R? is mostly replaced
by the torus T2, squares or smooth bounded domains in the plane or in R".
A remark seems to be in order. In the just cited references the smoothness
properties of the kernel K(x,, x,) are described via vector-valued Besov
spaces Bj ,(A), where 4 is a Banach space, which, in turn, is another Besov
space. It is a somewhat delicate question whether these spaces coincide with
some of the above spaces SBj; or with few other possibilities to define
corresponding spaces. However, this problem seems to be settled now by the
survey [7]. The Fourier-analytical approach to integral operators of type (1)
was first outlined in [11]. We also refer to [8], 2.5.1, where further results
and references may be found. In any case this connection with integral
operators sheds new light on spaces with domipating mixed smoothness
properties. Also the present paper is motivated by this connection. If the
above integral operator belongs to the trace class then we have under some
restrictions

Y A= [K(x, x)dx,

where the A;/s are the corresponding eigenvalues (see e.g. [1], 111,8.4, 10.2).
Hence only the knowledge of K(x,, x,) on the diagonal x; = x, is needed.
For further assertions on the distribution of eigenvalues one apparently
needs a knowledge of K (x,, x,) for all admissible couples (x,, x;) (see [2],
[5], [6]). In any case this connection was the origin of the question about
traces of functions belonging to spaces with dominating mixed smoothness
properties on the diagonal x;, = x,. We acknowledge that problems of this
type were brought to the author’s attention by a lecture of Professor T. Figiel
at the 27th Semester at the Banach Center in the Spring of 1986. Whether
the results obtained (or rather their obvious T2-counterparts) can be used to
prove assertions for eigenvalue distributions of integral operators seems to be
doubtful, maybe severe restrictions for the kernels are necessary. On the
other hand, there is a similarity as far as the formulation of results is
concerned: cf. the theorem below in comparison with the theorem on p. 201
in [2].

In this paper we prove a diagonal trace theorem for spaces with
dominating mixed smoothness properties only in the technically simplest (but
typical) case. There is no doubt that the corresponding results should be true
for all of the above-mentioned spaces (under appropriate restrictions for the
parameters). But this has not been done yet -and some technical complica-
tions may occur. Of the three above-mentioned classes S} ;B, S5 ; F and SB};
in the sense of Schmeisser, the first is the simplest one. Furthermore, we
restrict ourselves to the case of Banach spaces, i.e. min(py, p2, 41, q2) = 1,
and even more we choose p =(p, p) with 1 < p < o and q, = ¢, =1 (with
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one exception where in the course of proof we also need the case p; = p,
= ¢, = q, = p). But this model case clearly exhibits the structure of this new
type of embedding theorems.

2. Preliminaries and definitions

Let R be the real line and let ¢(t) be an infinitely differentiable function on
R with

2 suppo <c[—2,2] and oe@t)=1 if|1|<]1.

Let ¢o=¢ and ¢;(t) =@(27/t)—@(27/*'t) where re€R and j=1,2,...
Then

suppo; < [-2/*1, =271 U227, 2] ifj> 1

and
Y oi()=1 if teR.
j=0

Let L,(R) with 1 < p < oo be the ustial complex function spaces on the real
line with respect to the Lebesgue measure. Let S'(R) be the Schwartz space
of complex-valued tempered distributions. The Fourier transform and its
inverse on S'(R) are denoted by F, and F;', respectively.

DeriniTION 1. Let —00 <r < o0 and 1 < p < occ. Then

®

(3) by(R) = {f] f€S'(R), If 1L, (RNI® = ¥ 2"IIFT " ¢; F; fIL,(R)ll <oo}.
j=0

j=

Remark 1. Recall that b,(R) = B, (R) are special Besov spaces on R
(see [9], [10]). In (3) we saved brackets and wrote Fi'g;F, f instead of
(Fi'[@;F, fD(t), an entire analytic function on R. It is well known that
b,(R) is a Banach space, it is independent of ¢ (up to equivalent norms) (see
[9], [10]). Beside these special Besov spaces we need occasionally the space
B}, ,(R), where one has to replace ||f|b}(R)||® in (3) by

) IS 1B, ,(RII* = (3 2 |\FT! o, F, f1L,(RI?)"°

j=0
(with the usual modification if p = o). Again B ,(R) is a Banach space,
independent of ¢ (see [9], [10]).

Let R? be the plane, the two-dimensional real euclidean space. Let
S’(R?) be the space of all complex-valued tempered distributions on R? and
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let F and F~! be the Fourier transform and its inverse on S'(R?). Let again
¢ and ¢; be the above functions. Then we put ¢;(x) = @;(x,) ¢;(x;) where
x=(X;,X)€R? j>0 and 1>0 integers. Furthermore, L,(R? with
1 < p < oo are the usual complex function spaces on the plane with respect
to the Lebesgue measure.

DeFINITION 2. Let 1 < p< o0 and r =(ry, r;) With —o0 <r; < oo and
—00 <r, <oo. Then

®) b (RY) = Ifl feS'(RY,

ISR =Y Y 22 F o, FfIL,(RY) < ).

j=01=0
Remark 2. These are special spaces with dominating mixed smoothness
properties. In the notation of H.-J. Schmeisser we have
b,(R?) = S5;B(R*  with p=(p, p) and §=(1, 1)

(see [8], p. 82). Beside these spaces we occasionally need the spaces
S5 5 B(R?), where one has to replace ||f|b}(R?)||° in (5) by

(6) If1S5; BRI =(3 3 2" 2P F-1 g, Ff|L,(RY)P)"”

j=01=0

(modified if p = o). Again, F~! ¢; Ff must be understood as in Remark 1.
These spaces are Banach spaces, they are independent of ¢ (up to equivalent
norms). Details may be found in [8].

3. Results and comments

Let 1<p< o and r =(ry, r,) with —00 <r; <o and r, 2> 1/p. Then the
trace operator T,,

) T;: f(x1, x2) = f (x4, 0),
is a retraction
8) from b7,(R?) onto b,'(R)

(see Fig. 1). This follows from the theorem on p. 133 in [8] and its proof on
p. 134. Retraction means that there exists a bounded linear extension
operator E, from b,'(R) into b’,(R? such that

©) T, E, =id (identity in b (R)).

Hence this assertion covers both direct and inverse embedding theorems, in
particular, (7) is an “onto” map. The aim of the paper is to prove the
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diagonal counterpart of this result. Let

(10) T: f(x1, X2) = f (x4, X,).

By the above explanations it is clear what is meant by “retraction”.

1} K
2
l 7
4] é
n ¥
7
YU L ‘1/p
1/p ’
” 1/p
Fig. 1 Fig. 2

THEOREM. Let p, ry and r, be real numbers with 1 < p < o and
(11) ¢ =min(ry+r,—1/p, ry, ry) > 0.
Then T is a retraction
(12) from b,(R?) onto BE(R), r=(ry, ry).

Remark 3. See Fig. 2. If max(r,, r,) = 1/p then the result is similar to
the case of the above-mentioned embedding (7). On the other hand, if
max(ry, r;) < 1/p and r,+r, > 1/p then one obtains a new type of em-
bedding theorem. It is this part of the theorem which looks similar to [5], I,
and [2], p. 201 (these comments must always be understood in the sense that
the plane R? can be replaced by the 2-torus T?).

4. Proofs

We break the proof of the above theorem into 6 steps.

Step 1. We begin with some preliminaries. Beside the original copr-
dinates (x,, x,) and their Fourier counterparts (£,, £,) we introduce

1 1
y =_(x +x)s y =_(x —-X )’
1 \/5 1 2 2 \/i 2 1

and their Fourier counterparts (n,, n,) given by

1 1
m=—7=+&), m=-—=-¢&),
1 \/‘i 1 2 2 \/2 2 61



480 H. TRIEBEL

(rotation by n/4 in R2). We switch freely from the original x-¢-coordinates to
the rotated y-n-coordinates. Let ¢; and ¢; be the same functions as in
Section 2. Let f(x,, x;) = g(y,, y,) be a function for which it makes sense to
speak about the trace f(x;, x;) =g(y;, 0). As above, F, and F;! stand for
the one-dimensional Fourier transforms and F and F~! for the two-dimen-
sional Fourier transforms. Of interest is the decomposition of g (y,, 0) in the
sense of (3). We have

(13) [Fi! oi(n)F.g(-, 0] = [F~! @;(m) Fgl(y:, 0)

= Y [F ' ouy, &) @;(n) Ff 13y, 0).
ki=0

By a geometric reasoning it follows that the sum on the right-hand side of
(13) can be reduced to the following three prototypes:

(14) Z [..]J0», 0= Z (F_l @;(€1) ¢i(S2) ‘Pj('h)Ff)()’h 0)
ki=0 =0

+
1

M-

(F~ ' @i(&1) @;(E2) @(ny) Ff)(yy, 0)

0

+ Z (F-l(pj+k(él)(pj+k(éz)q)j('11)Ff)(yls 0+...

k=0
where + ... indicates terms with the same structure, maybe with
@j+1(Ey) @(E,) instead of @;(&,) @(S,) or with ;4,41 (1) @;44(E2) instead of
©i+1(&1) @j+1 (&) etc. These additional terms come from the overlapping of
the ¢;s and the ¢,’s. They can be treated in the same way as the three
prototypes to which we restrict our attention in the sequel. In this sense it
follows from (13) and (14) that

(15 IIFT' @;(n) F1g (-, 0| L, (R

< Z IF = @;(€1) @1(€2) ;(n1) ) (1, O)IL,, (R)]
+ Z ”(F_l(Pt(fl)‘l’j(fz)(Pj('h)Ff)(hs 0)|Lp(R)”
=0

+ .ZOH(F—1 ‘Pj+k(fl)¢j+k(§z)¢j(fl1)Ff)(yl,0)|LP(R)”+
k=

Step 2. We deal with the terms on the right-hand side of (15) where the
first and second sums are completely symmetric to each other. We have

ej( =y (277 with y(®)=¢@)—e(2) and j=1,2,...
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(see the beginning of Section 2). Let j > 1> 1. We use the dilation
&y “’2"'61,, ¢2 "’2léz-

Then it follows by elementary calculations that

(16) [F—1 ‘Pj(fl) 01(&2) (Pj('h)Ff] (%1, X2)

1 1 .
= [F'l V(DY (€)% (DY (‘ﬁél +7§2_’Hfz)

XFf(z_j'a 2—1')(6‘1’ §2)](2jx1’ 2’x2)’

where x (£) is a compactly supported C® function on R?, identically 1 on the
support of ¥ (&,)y¥ (&,). Because y, = 0 coincides with x; = x, we obtain

(17) ”(F_l ©0i($) @1(&2) (Pj('ln)Ff:)(Yu O)ILp(R)”

Il - PR Py )
-“[F w(él)w(cz)x@)w(ﬁc,+ﬁ &

xFf (279, 271) (s, fz)](2’x1, 2'x1)IL,,(R)”

=2777P||[...J(xy, 27/ x))| L, (R
< 2777||sup |[...J(x1, x2)| L, (R)I

xy€eR

<2 IPIF Y (EDWED F 277, 271) (G, $2)](x1s X)Ly (RO,

In the last estimate in (17) we have used first a Nikol'skii inequality for
mixed norms (see [8], 1.6.2, with « =0, p = (p, p), u, = ©, u, = p), and
secondly a Fourier multiplier theorem for L,(R? (see [10], 1.5.2, or [8],
1.8.3). (Here one needs the auxiliary function » for the first and last time.) In
particular, the constant ¢ in (17) is independent of j, | and the function f.
Retransformation yields

(18)  |I(F™" 9;(£1) @:(€2) @;(n1) Ff ) (31, O)| L, (R)|
< 2||F~1 ¢;(¢1) @i (&) Ff | L, (R,

where ¢ is independent of j, | and f. By immaterial modifications (18) holds
not only for j = [ > 1 but also for j > | > 0. Hence, (18) covers the first sum
on the right-hand side of (15). The second and third sums in (15) can be
treated in the same way. Hence, (15) yields at least the first two sums on the
right-hand side of the following estimate:

31 — Banach Center t 22



482 H. TRIEBEL
(190 HF7'o;(m) Fig(-, OIL,(R)I

J
<c Y 2P\F " 9;(E) @u(E) FFIL,(RY)|
1=0
J
+¢ Y 2P (|F~ 1 g,(&y) 0;(E) Ff | L, (RY)||

=0

a0

+c ) 29TOPNIF 5 (81) @4 CD F L, (R + ...,

k=0

where again + ... indicates terms of similar type. As for the third sum on the
right-hand side of (19), in the counterpart of (17) we use first the Nikol'skii
inequality from [8], 1.6.2, as above and afterwards the homogeneity property
for L, Fourier multipliers, which yields

IF~ W EDW (&P 2E + 2 V2E) Ff|L,(RY)|
S clIF 'Y (€)Y (&) FfIL, (R,
where ¢ is independent of k =0, 1, 2, ... This completes the proof of (19).

Step 3. With the help of (19) we prove the direct part of the theorem.
Let f b, (R?) where we may assume that f(x,, x,) is smooth: If p < o then
‘the C* functions with compact support are dense in b},(R?), and b, (R?)
consists of continuous functions. In any case we may assume that f(x,, x,)
makes sense, pointwise. We apply (19): We multiply (19) with 2% and sum up
over j. The third term causes no trouble because

aj+j+Tk < (Q+;1))(j+k) <(ry+ry))(j+k).

As for the first and s.econd terms we have

gi+lp=rij+ryl+(j-1(e—r)+l@e—ri—ry+1/p) <ryj+r,l
and

gj+lp=ril+rj+(j—Dle—r)+le—ry—r +1/p) <1y l+1,j,
respectively. Then multiplication of (19) with 2/ and summation yields
(20 TS 13RI < clIf 165, (R |
Hence, the direct part of the theorem is proved.

Step 4. We construct an extension operator. Let r; < 1/p and r, < 1/p;
hence 0 < ¢ =r,+r,—1/p. Let g(y,) €b?(R) = B%, (R). We use the extension
procedure from [10], 2.7.2, (see in particular formula (26) on p. 135). Let
f(y1, y2) €B4/P(R?) be the extended function (in comparison with (26) in
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[10], 2.7.2, the roles of g and f must be changed). We may assume (after
some immaterial modifications compared with [10], 2.7.2, that

(21) suppFf ol n=(1, ), Il = 1, Inal Z clpyl} = O

where ¢ > 0 is at our disposal. Now we transform the situation from the y-n-
coordinates to the x-E-coordinates in the sense of Step 1 (rotation by n/4).
Hence g €b?(R) is given on the diagonal x, = x, and extended in the above
way to f €B2}'”(R?. However, Ff is supported by a triangle-like domain
around the diagonal with a small aperture. Then f €B¢%'/?(R? and ¢+ 1/p
=r,+r, yield f€b}(R? and the proof is complete (under the assumption
r, <1/p and r, < 1/p).

Step 5. Let ry >0, r, >0 and 1< p <. Let g(x,) b, (R) = B}, (R)
be given on the diagonal x, = x,, now parametrized by x,. We look for an
extension f(x,, x,) €b}(R?) with r = (ry, r,). The basic idea is to construct
f(xy. x;5) at least locally as h(x,)-g(x,). However, this causes some trouble
and we need some preparations. First we switch over from b} (R) = B}, (R)
to B},(R) and from b}(R?) = S5;B(R? with p=(p,p) and g=(1,1) to
S% 5 B(R?) with p = (p, p) (see Remark 1 and Remark 2, in particular (4) and
(6)). These modified spaces have a localization property which can be
described as follows. Let x(t) be a C*® function on the real line with

suppy < [—1, 1], Y x(t—my=1 for all teR.

Let x(t—m) = x,(t). Then

a0

(22) If1BS,(RIP ~ X lixmf1Bs,(RIP, @=r4 >0,

m=—
(with equivalent norms and a modification if p = o) and

[ <] ®©

23)  f1S5:B(RANP ~ 3. 2 Mtmy (61) Xmy (x2) £ 15,5 B(RA)IIP

my=— o my=—®

with r =(ry,r)), ry >0,r, >0, p=(p, p), | <p <o (with equivalen{ norms,
and a modification if p = o). The prdof of (22) can be based on

dh

1
(24) 1S | BS,p (R)P ~ LS 1L, (RII”+ _\'Ihl"”’IIA;’."fIL,,(R)II”T,
0

where M may be any natural number with M > o and
(25) (W) =f+D—f(), 4% =44,

are the usual differences on R. Moreover, (24) has a counterpart for the space
r s B(R. Let (43} f)(x,, x,) be the differences (25) with respect to the x,-
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direction, and similarly for 4},. Furthermore, we put 4} = A,,1 141,,2 , where
= (Ml’ Mz) and h = (hl’ hz) ERz Then

-r dh
(26) If1S55BRIIP ~ I f 1L, (ROIIP+ .flhl ‘plldfl'fle(Rz)ll”-;

1 - h

+ [l N2 fIL, (R2)||’

0
lf dh, dh,
hy h,

where M =(M,;, M,) may be any couple of natural numbers with M, >r,
and M, >r,. This result is due to H -J. Schmeisser and it may be found m
[8], 2.34, p. 122 with ’ instead of ‘ But it can be proved easily that \
Schmeisser’s result can be replaced by ‘0 (up to equivalent norms). Now (23)
can be established on the basis of (26). Next we assume that g(x,) eB,, »(R) is
given on the diagonal x; = x,. Let y(t—m) be the above functions and let
A(t) be a C* function with compact support and A(¢) = 1 if |t < 1. Then we
claim that

1
+ [ Jlbsl " 1) T AN S I Ly (RO)P———
00

(27 g = f(xy, x3) = Z Alxz—m) x(x; —m)g(x,)
is an extension operator from B:,fp(R) (on the diagonal) to S5 ; B(R?) with the

desired properties for all admissible r = (r, r,). First we remark that
a

(28) SO, x)) = Y Axy—m)y(x; —m)g(xy)

m= — @

Z x(x1—m)g(xy) = g(x,)

on the diagonal. We wish to prove that
(29) 1.£185,5 BRI < cligl By (R)I

where ¢ is independent of g. By (22) and (23) it is sufficient to prove
(30) |4 (xz—m) x(x, —m)g(x1)|S5; BRI < cllx(x; —m)g(x,)| By (R
We use (6). It follows that
(1) WF @ FA(xg—m) x(x; —m)g (x| L, (Rl
=IFT' @ Fy AL, (RIIFT " @; Fy x(-—m)g ()L, (R
< en27™|IFr @ Fux(-—m)g ()IL, (R,

where the positive number N is at out disposal and cy is independent of I.
Now (30) is a consequence of (31) and (6). Hence, (29) is proved.
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Step 6. Let againr; >0,r, >0and 1 < p < co. We claim that E: g — f,
defined by (27), is also an extension operator from b:,‘ (R) (given on the
diagonal x, = x,) into b,(R?). By Step 5 we know that E is an extension
operator from B,. (R) into S%5B(R?). This property is preserved by the real
interpolation method (-, -)p,. Let 0 <r, <r; <oo. We have

32 (B (R), B}L,(R)).; = B, (R) = b (R),

re=01—0ro+0r;,, 0<6<1 (see [9], 24.1). Let r®=(ro,7;) and r!
=(r,, r;). In order to calculate

(33) (S5 B(RY, S35 B(RY)s

we can use the method of retraction—coretraction which we described in [9],
24.1. Let A be an arbitrary complex Banach space. Let o be a real number
and 1 < p < o0. Then, by definition,

=18 & =)o IEII = (T 27711E1 417)" < o)
j=0

(modified if p= o). Let —00 <6y <0, <0 and 0 <6 <1. As a special
case of Theorem 1.18.2 in [9] we have

(34) (5°(A), I} (A))py = 15(A)  with ¢ =(1-0)6,+00,.

By the above-mentioned method and by (6) the interpolation in (33) can be
reduced to (34) with gy =ry, o, =r, and A =1,>(B) where B = L,(R?.
ra—e

Furthermore, we have l,',2 (B) <l "(B) if ¢ > 0. Then this elementary em-
bedding and (34) yields

(35) (S35 B(R?), S55B(RY), < S5:B(R?) = b} (RY

with § = (1, 1), provided that r® = (r,, r, —¢) with ry = (1 —6)ro+6r, and & > 0.
Hence by the interpolation property, E is a bounded linear extension
operator from b,'(R) (on the diagonal x, = x,) into b,(R?) for any r, >0
and r =(ry, ry) with r, > 0. This covers in particular the case 0 <r, <r,,
r, >1/p, 1 < p < oo, and, by symmetry, also the case 0 <r, <r,, r; > 1/p,
1 < p< oo. The proof is complete.
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