
A Diagonal Theorem for Epireflecfive Subcategories 
of Top and Cowellpoweredness (*)(**). 

Summary. - J~or a quotient.reflective subcategory ~ o/the category Top o/topological spaces the 
following (( diagonal theorem ~ is proved: a topological space (X, ~) belongs to 9~ if/ the 
diagonal Ax is (v• where, for (X, z)e Top, ~ denotes the coarsest topology 
on X which has as etosev~ subsets al~ the equalizers of pairs o/conti~uous m~ps with eodomai~ 
i~ ~. Furthermore an explicit description of T~ ]or several quotient reflective subeategories 
defined by means of properties of subspaces is given. It  is shown that one of them is ~o~ 
co.(well-powered). 

1 .  - I n t r o d u c t i o n .  

Recal l  t h a t  for  the  subc~tegory  H a n s  c Top of t t~nsdorff  spaces the  following 

~ssert ions are  t rue  (and well known) :  

(a) A cont inuous  m a p  f: X - >  Y be tween  Hausdor f f  sp~ces is an  ep imorph i sm 

in Haus  iff ](X) is dense in Y. 

(b) A topological  space X is H a  usdorff iff the  di~gonaI Ax is closed in X •  

(e) H a a s  is co-(well-powered),  i.e. for each X ~ Haus  there  exis ts  a set  5 v of 

Haus -ep imorph i sms  defined on X,  such t h a t  for  eve ry  t t an s - ep imorph i sm ] on X 

the re  is an h o m e o m o r p h i s m  h wi th  h o / e  ~ .  

I t  was a p rob l em  for  some t ime  to find a c o u n t e r p a r t  of those resul ts  for  o ther  

classes 9~ of topological  spaces. Fo r  epireflect ive subcategories  ~ of Top,  a con- 
ven ien t  modif icat ion of  (a) was found and  inves t iga ted  [2]. The basic not ion is the  

new closure opera to r  (defined in [14]) induced b y  !2/. Then (a) changes to :  a con- 
t inuous m a p  ]: X -> ~ in 9 / i s  an  ~[-epimorphism iff ](X) is dense in ]r wi th  respec t  

to  the  new closure ope ra to r  [4]. 

(*) Entrain in Redazione il 13 febbraio 1985; versione riveduta il 2 settembre 1985. 
(**) This work was prepared whilst M. Hv~]~ was C.N.R. visiting professor at L'Aquila 

University and was partially supported by a research grant of the Italian Ministry of Public 
Education. 
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Several authors obtained the result (b) for other subcategories by modifying 
the product topology, e.g., t t O F F ~ 2 ~  [8] for To-sp~ces and for T~-spuces, MV~- 
DESHWAR and NAIM-PALLY [13] for semi-Hausdorff ~paccs, LAwsoN and MADISON [12] 
for spaces in which every compact subset is Hausdorff, Sen~6DE~ [15] for Urysohn 
spaces. I t  was observed in [2] and [17] tha t  in several examples the result (b) is 
true if the topology on X •  is the one given by the new closure operation. We 
shall prove here that for quotient-reflective ~ubeategories (and only for them) the 
result (b) is true in this general setting, covering all previous results. 

As for co-(well-poweredness) in (c) the situation is more complicated. For a 
long time there wasn't  any known example of s non co-(well-powered) epirefiec- 
t i re  subcutegory of Top. In 1975 Hn~xLIe~ [6] produced the first example. I t  was 
the epireflective hull of a proper class of strongly rigid spaces. In 1983 Som~SDE~ 
proved the non co-(well-poweredness) of the category of Urysohn spaces [16]. We 
recall tha t  such ~ subcategory cannot be simply cogenerated, tha t  the new closure 
operator does not commute with the product ~nd that  this operator cannot preserve 
epimorphisms [3]. We shall prove here tha t  the category of spaces in which every 
compact subset is ttuusdocff is not co-(well-powered). 

We shall study several quotient reflective subcategories of Top which are defined 
by means of properMes of subspaces. For these subcategories an explicit description 
of  the new closure operator is given and i~ is shown tha~t all but one are co-(well- 
powered). 

2. - The  d iagonal  t h e o r e m .  

R~call that  9/c Top is epireflective iff it is closed under the formation of pro- 
ducts and subspaccs. ~5oreover it is quotieat.reflectlve iff it is epirefiective and 
closed undeI finer topologies [5]. Note that  for an epireflective subcategory 9i of 
Top and X in the quotient reflective hull Q(9/) of 9~, the 9/-reflection map r~: X --> r X  
is the identi ty on the underlying sets. 

Th~ categorical terminology is that  of [4]. For results on topological cpireflec- 
tions see [5]. 

I f  1, g: X - ~  Y are continuous maps, Eq if, g) will denote the equalizer of ] 
and g, i.e. Eq (1, g) = {$ e X: ](x) ~- g(x)}. 

])EFI~ITIONS 2.1 [2]. -- Let 9/ be an epireflective subcategory of Top. 

(a) A subset M of a topologicaA space X is said to be ?I-closed in X iff there 
exist A eP~ and continuous maps f ,g :  X--->A such tha t  M--~ Eq(f ,  g). 

(b) The 9/-olosure of a subset H if X, denoted by [H]~, or simply by [H], is 
defined as the intersection of all 9/-closed subsets contail)ing M. 

(e) ~ pair of continuous maps (/,g: X - - > A )  with A e p /  is said to be sn 
9~-separating pair for (x, M) iff ](x) r g(x) and M c Eq (f, g). 
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Obviously x ~ [M]e iff there exists an 91-~eparating pair for (x, M). The 9/-clo- 
sure is an  extensive, monotone and idempotent  operator. Nevertheless i t  is not  in 
general addit ive,  i.e. a Kuratowski  operator, l%r a topological space (X, z), T e will 
denote the coarsest topology on X which contains as closed sets all 9~-closed sub- 
sets. ~ < v~ for every (X, ~) ~ 91 iff N c t Iaus--~he subcategory of Hausdorff  spaces. 
The reverse inclusion is not  t rue in generpA for categories 91 r Haus.  In  fact  if 91 
is the smallest epireflective subcategory containing the Hausdorff  spaces and a 2"~ 
not  IIausdorff strongly rigid space (Y, a) (see [9] for an example of such a space), 
then  ae is the eofinite topology, so ae < g. In  [2, 3] an explicit description of z~ 
for several epirefleetive subcategories 91 of Top is given. 

THEOREM 2.2. - Let  91 be an epirettective subcategory of Top and Q(91) be the 
quotient  reflective hull  of 9/. A topological space X belongs to Q(9/) iff the diagonal 
Ax is 91-closed in X •  

P~OOF. - Since, for each X a Q(9/), the 91-reflection map r: X --~ rX is the iden- 
t i t y  on the  under ly ing sets, then  Ax = Eq (roz~, roz2), where a~ are the projec- 
t ions,  thus  Ax is N-closed in X •  

Conversely suppose tha t ,  for a topological space X,  Ax is N-closed in X •  
I f  X ~ Q(91)then there exist x ~ y in X such tha t  fix) = r(y). Being Ax 91-closed, 
there exists an ?I-separating pair (], g: X •  for ((x, y), Ax). S e t ] , ,  g,: X ~ A  
defined by ]~(t) = ](z, t), g~(t) = g(z, t) and )F;, g;: r X  - . A  such t h a t  J]or = ]., 
g:or = g~. Then 

] ( x ,  v)  = i (y) = g ( r ( y ) )  = = / ( x ,  = = = 

-~ g~(r(x)~ g~(r(y)) g(x, y) - -a  cont rad ic t ion .  

3 .  - t l a u s  ( ~ ) - s p a c e s .  

Let  ~ be a class of topological spaces closed under  continuous images and let 91 
be an epireflective subcategory of Top. Se~ 

91(~) = { X e T o p :  M c X ,  M e ~  imply  M e ? l } .  

:LElU_~A 3.1. -- 91(~) is epireflective (resp. quotient-reflective) in Top whenever 9I 
is epirefleetive (resp. quotient-reflective). 

PROOF.- Obviously 91(~) is stable under  subspaces and it  is closed under refine- 
ments  whenever  9/ has t ha t  property.  Moreover if {X~}z is a family  of spaces i~ 
91(~) and M c  I -[Xi  is in ~3, then  M ~ =  ~ M e ~ ,  hence M~a9/ ,  consequently 

M e 9 1  since M c  [ I  M~. 
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We shall s tudy  now the  ~(~)-closure operator  for 9~ = Hans and ~ the class of 
spaces of cardinal i ty  less t h a n  o~' equal  to an infinite cardinal  ~ .  Thus Haus ( ~ ) =  
= Hans (r consists of spaces in which every r (subspace of cardinal i ty  ~n) 
is Hausdorff.  Set [ ] ~ ( ~ ) =  [ ]~ and  ~ s ( ~ ) =  7~.  

~or  X ~ Top and  M c X, X U~ X will denote the  quotient  of the co-product 
X II  X = X •  1,} obtained by ident ifying each (m, 0)~ m e M, wi th  (m, 1). The 
continuous maps k~: X--+ X IIM X, X U X ! ~  X UM X - %  X are respectively defined 
by  k~(m) = ($~i), g(z, i) = (m, i) and p ( m , i ) = m ,  i = 0 , 1 .  

LE~-LWX 3.2 [2]. - I f  92 is quotient-reflective, X e 92 and M c X, then  M -- [M]~ 
iff X l  i~Xe92.  

Let  SUS be the full subcategory of Top whose objects arc the spaces in which 
every convergent sequeue,~ has precisely one accumulat ion point,  namely  its l imit  
point.  I t  was shown in [17] tha t ,  for each SUS-space (X, 7), Vsc s coincide~ with the  
sequential ref inement  of 7. 

Pr~0POSITION 3.3. -- For  each (X, 7) e Hans (r v < 7~ < 7so s. 

P~ooF. - Every  Haus (r X belongs to SUS. In  fact  if (m,) converge $ 
to m in X then,  for each y e X, y # m, the  subset M of X consisting of m, y and  a ll 
m,, being an  ~n-subspaee, it is Hausdorff.  Then there exist neighbourhoods U~ an d 
U~ in X such tha t  U~ r U~ (~ M = ~). "Since (m,) converges to w~ then  U~ n M is 
a finite set. Since X is a T~-space there  exists a neighbourhood of y which is dis- 
joint  f rom M and  X e SUS. Since Hans (~) c SU8, 7~ < 7su s whenever  (X, 7) e 
e H'~us (~@. To show t h a t  ~ < %~, because of 3.1 and 3.2, we prove t h a t X  LJrX e 
e Hans  (~) whenever  2~ is a closed subset of X. Le t  M be an  ~-subspace of 
X U ~ X a n d a ,  b e M ,  a=/=b. I f  a =  (m, 0), b = ( m ,  1 ) , t h e n  U = = ( X ' ~ F ) •  and  
U b = ( X ~ F )  • {1} are disjoint neighbourhoods of a and  b in X U~ X. I f  a -~ (m, i), 
b = (y, i), m #  y~ set M ' =  { z e X :  (z, i) e M}. Then,  being M' an  ez-subspace of X,  
there  exist neighbourhoods U~ of m and  U~ of y such t h a t  U~ r U~ r M ' =  ~. Thus 

= x {0}) u ( x {1}) a n d  = ( x {0}) u x {1}) arc  neighbo rhoods of  
a and  b in X I I F x  and  U~(3 U ~ c 3 M = ~ .  

I t  follows from 3.3 t h a t  the snbcategory consisting of the  Hans (r (X, 7) 
sat isfying the  condit ion 7~ ~ ~ is corefieetive in Hans (m)i the  eoreflection of 
(Y, ~) c h a r t s  (~) being 1~: (](, % )  -+ (Y, a). 

L E ~  3.4. - ~or  a t t ans  (~)-spuce X and ~-subspace M of X, [M]~ = ~]I 
and  ~-I is Hausdorff.  

P R O O F .  - By 3.3 always [M]~ c • .  On the  other  hand  if M is an  ~-subspace 
and  m e ( M \ [ M ] ~ )  then  in the  space X I I~Ml~ X, which belongs to Hans (on) by  
3.1 and 3.2, every intersection of a neighbouhood of (m, 0) wi th  a neighbourhood 
of (m, 1) intersect  M. Thus M t3 {(m, 0), (m, 1)} is an r of XI  IE~j~X 
which is not  Hansdorf f - -a  contradiction. Thus M = [M]~. I f  m and y are dif- 
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fe ren t  points  in M, theu  there  exist  open neighbourhoods U. and  U~ such t h a t  
U~ (h U~ (3 M = 0. Thus U~ (3 U~ (3 2~ : O and ~-I is Hansdorff .  

For  X s Haas  (~) and M c X, se~ 

cl~ (M) = {x e X:  x e M n  S for some ~g-subspace S} . 

T~EOUE~ 3.5. - For  M c X, X ~ Haas  (ca), the  following condit ions are equi- 

va lent :  

(i) X [A~ X e Haus  (~) ;  

(ii) M - =  [M]~;  

(iii) M = cl~ (M). 

I>gOOF. - (i) ~ (ii): I t  follows f rom 3. !  and  3.2. 

(ii) ~ (iii): Suppose x e  M ( 3  S for some ~-sabspace  ~q and  let  (J, g) we a 
Haas  (~)-separat ing pair  for  (x, M). Being If(S)] < r then ,  b y  3.4, ~here are open 
neighbourhoods U of ](x) and V of g(x) such tha t  U r V (3 J(S) ----- 0. By  ~he con- 
t inui ty ,  there  exists an open neighbondhood W of x such t h a t  J(W) c U and  g(W) c V. 
Consequent ly  W ( 3 M r ~ N - = 0  (if z f f ( W A M ) ( 3 N  th en  J(z)=g(z) belongs to  

U (3 V (3 ](S) c U ~ V (3 J (S) - -a  contradict ion).  Thus x ~ [M],~ = M. 

(iii) ~ (i): Le t  S be an  ~-subspace of X[AMX and x , y e S ,  x # y  (we m a y  
suppose th~.~t S is symmetr ic ,  i.e. S ~ p-~(p(S)). I f  p ( x ) #  p(y), t hen  there  exist  

open neighboirhoods U of p(x) and  V of p(y) in X such t h a t  U n V (3 p(S) = 0. 
Thlls p-~(U) and  p-~(V) are (open) neighboarhoods of x and y in X I I M X  and  
p-~(U) ( 3 p - l ( V )  (3 S = 0. I f  p(x) = p(y), hence p(x) ~ M, by  hypothes is  there  

exists an open neighbourhood U of p(x) such t, har U (3 M (3 p(S) = 0. Thus, for  
each z ~ (U (~ M) we m a y  find an open neighbo~rhood V~ c U wi th  V. (3 p(S) -= 0. 
~nt  w = U ~  and V,=q((V•215 i = 0 , 1 .  ~hen Uo ann V, 

z, e U n M  

are (open) neighbonrhoods of x and y in X [-J~ X and  Uo (3 /71 (3 S = 0 since 

q-~(uo n U~ n Z) = 

_ ( (v •  (w • n ((v • (w• ~ (~(s)• ~})= 
= ( w •  1}) n (p(s ) •  ~}) = o .  

CouoLI~A~Y 3.6. - (a) The Hans  (m)-closure is the  idempo ten t  hull of el~. In  

par t icu lar  the  Haas  (r is a Kur~towski  operator .  

(b) Fo r  each ( X , ~ ) e H a u s ( c z ) ,  T ~ =  (%~)~ and  ~ implies ~ > c o - ~  

topology.  

(e) X e T o p  is a Haus  (~)-space iff cl~ ( 2 x ) =  Ax in X x X .  

(d) Fo r  each infinite cardinal  ~ the category Hans (~) is co-(well-powered). 
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P~oo~. - (a) and the second half part  of (b) are obvious and (e) follows from 2.2. 

(b) We need the following identi~y: 

for each X e  Baus(~) ,  M c X  and S r of X. By 3.4, [M (~ [ S ] j ~  = 

=- [M ~ S],~ and by 3.3, [M ~ S]~ c M ~ S. Conversely, if x 6 [M(~ S]~ then for 

each ~,-subspace T c X, x ~ (M n S) n T, in particular x ~ (M (3 S) (3 S = M n  S. 

(d) (t) Denote cl~(M) = cl, , ,(m{cl~(M): f l<~}) .  Then !..~!~1(22 )++~(M)= 

- Ina. ed,  ake e o.1 ' ' ( i ) ,  i .e .  x e e L  ( U  ( i ) :  --< 

hence xem{c l~  (M): fl _< (2~)  +} (3 S for some ~,~-subspaee S. Since S is Hausdorff, 
IZ I _< 22~ and, consequently, S r~ (U {cl~ (M): fl _< (2~') +} c U {el~ (M): f l<  8} for 

some 8 < (2x~) +, which implies x s cl~ (M) c c l  ( (M). 

(2) ]cl~ (M)] _< IM] ~s~. Indeed, cl~ (M) = U {M ~ S: S is ~n-snbspacc{ 

and IM ~ SI -< 2 since M (3 S c S and S is Hausdorff, [SI -< 2~" There are at 

most [M] e~ different subsets of the form M ~ S, hence the ~ssertion. 

(3) I[M]~I < [M] ~ .  That inequality follows from (1) and (2) by transfi- 

x__ ~ 2 3 / 2 ~  ~ < nite induction ((1) implies [M]~ cl~:'~I§ andby  (2), el~(M) _< (]~l" I ] ) - -  

4 .  - H a u s ( C o m p ) - s p a c e s .  

Let Comp be the class of compact spaces. Then Haus(Comp) is the subc~egory 
consisting of the spaces in which every compact snbspace is Hausdorff. These 
space where introduced by IJAWSOh ~ and MA~)ISO~ [11]. Every compact subspace 
of a Haus(Comp)-space i~ closed but the converse is not true. By 3.1, Haus(Comp) 
is quotient-reflective and, ZHau~(Com~) < ZSVS for each (X, x) ~ Haus(Comp) since 
Haus(Comp) c SUS. Set [ ]n~s(com,)= [ ]~ ~nd v~a~s(com~)= T~. 

t~or X e Haus(Comp) and M c X, set 

c l ~ ( M ) = { x e X :  x e M n K  for some compact K c X }  . . . .  

The closure opera,or el~ was used by _A_RHANGEL'SKII and F~ANX_LI~ [1] (see 
also [10, 11]) to introduce the concept of compact order of a k-space. Recall tha t  
a topological space X is a k-space iff a sub~et _F of X is closed (open) in X whenever 
P n K is closed (open) in 22 for each compact subset K of X. The subeategory of 
k-spaces is coreflective in Top and the corefiection of (Y, ~) is l r :  (Y, 0') -+ (I/~ ~), 
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where U e a'  iff the  intersect ion with each compact  subspace K of (Y~ a) is open 
in K.  

THE01~]~)'r 4.1. - For  each M c X ,  X eHaus (Comp) ,  the following conditions 
are equivalent :  

(i) X U~ X e t taus(Comp);  

(ii) M =  [M]k; 

(iii) M = clr~ (M). 

P~ooF, - Since Haus(Comp) is quotient-reflective,  (i)~:~ (ii) follows from 3.2. 

(i) ~ (iii): Le t  x eelk ( M ) \ M  and  K a compact  subset  of X such t h a t  
x ~ M n K.  The subspace p-~(K) is compact  (since i t  is a quot ien t  of the  compac t  
K U K) t hen  H = p-l(K) w {(x, 0, (x, 1)} is compact ,  so i t  is Hausdorff .  Now eve ry  
ne ighbourhood U0 of (x, 0) and U1 of (x, 1) are such t h a t  Uo• U~(Sp-I(K (~ M) # 0, 
since 

/Co~(U. n Gnp- ~ ( K  n M)) = kO~(~J0) n k;-l(G)n ( K n  M) and ko~(U.) n k-[~(U~) 

is a neighbourhood of x. This contradicts  the  IIausdorff~less of H.  

(iii) ~ (i): Suppose K c  X I I M X  a compact  not  Hau~dorff subspace. Since 
every  x, y ~ K such tha~ p(x) #- p(y) are separa ted  (X e Haus(Comp)),  then  there  
exist  (x, 0), (x, 1) e K  which are  not  separa ted  in K. Thus x ~ M  and x e M n K  
which contradicts  (i). 

Col~oI~LAI~u 4,2. - Le t  (X, v) be a Haus(Comp)-spaee.  

(a) (X, zk) is the  k-eorefleetion of (X, z). 

(b) T~ = (r~)~ and  ~ = rT~ iff (X, z) is a k-space. 

(e) X e T o p  is ~ Haus(Comp)-spaee iff ed~(Ax)= Ax in X •  

THE0~E~ 4.3. - The ca tegory Haus(Comp) is not  co-(well-powered). 

Puoo~.  - Le t  Xo be a countable  set {x0, ~: n ~ w}, fl > 0 an ordinM and  suppose 
t ha t  for all ordinals a < fl sets X~ and countable  sets {G,~: n e o~} c X~ were de- 
fined in such a way t ha t  

(1) if ~ + 1 < fl then  X~+ 1 is an infinite maximal  almost  disjoint family  of 
countable  subsets of X~; 

(2) if 0 < ~ < f i  and r162 is l imit ,  then  X~ is the  countable  set {x~,~: n e w }  
and  x~,~ = {x~,~: y < ~} for n z co, 
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Then X~ is defined as follows: if fl is isolated then  X~ is an infinite maximal  
~lmost disjoint family  of countable sets in X~_~ and x~.~: n e ~o} is an  arbi t rary  
countable subset of X~; if fl is l imit  then  X~ is the countable set ({x~.,: a < f l } :  

w e  d e n o t e  = < 

By this transfinite induction,  the  sets X~ are defined for all ordinals; we shall 
denote by  Y~ the set (J Xv. 

The topology of Y~ is defined ~s the finest one such t h a t  each point  x e Xo, 
fi ~ a, is the  l imit  of x r  U X~ which means the  following: if fl is isolated and  

y<fl 

x = {x.} r X~_I, then  the sequence {x,} converges to the point  x e X ~ ,  therefore 
the basic neighbourhoods of x are the sets (x) t) (_J { U . :  n ~ k} where k e co, U~. 
is a neighbourhood of x~ in Iz~_x. i f  fi is l imit  ~nd x ----- xz.,, t hen  the  net  {x,.,: 

< fl} converges to x~., and the basic neighbourhoods of x~., are the  sets 

(x~,,) ~) U{U%, : 8 < y < fl, y isolated} u U {x~.,: ~ < ~ < fi, y l imit},  

where 6 < fl, U%. is a neighbourhood of xr. . in Yr (thus the  mapping {y ~ x~.,: 
y ~ fl} on the compact  ordered space fl + 1 of ordinals into Y~ is continuous and 
hence the  subspace {xv,~: y ~ fl} of Y~ is compact).  

One can easily ~how tha t  IZ~ is an open subspace of Yo for ~ ~ fl, Y~+I\Y~ 
is closed discrete and every Y~ is a Tl-space. I f  we prove tha t  every space :Y~ 
belongs to Haus(Comp) then  we are ready because the embeddings :Yo--~ Y~ are 
epimorphisms in t taus(Comp) and ]Y~[ ~ ]~1 for all ordinals ~. 

So, take  a compact  set c in Y~. To prove tha t  C is Hausdorfi ,  it  suffices to 
show tha t  C'c~ X~ is finite for each fl =< ~ (C' is the set of accumulat ion points 
of C in :Y~). Indeed,  take x e C n X~, y e C Ch Xv. I f  one of the points x, y does 
not  belong to C' then  x, y are tr ivial ly separated by  disjoint neighbourhoods in C. 
Suppose t ha t  x, y e C' and,  s~y, fl ___ y. I f  fl < ? then  y has a neighbourhood in I7~ 
disjoint with (x)~3 (C'(h X~), hence y has a neighbourhood U in Y~ such tha t  
Uc~ Y~ch C c X ~ \ ( x ) ;  since x h~s a neighbourhoed V in Y~ such tha t  V c  Iz~, 
V ~ Xo = (x) i t  follows tha t  U ch V (~ C : 0. I f  fl : 7 is an isolated ordinal, t hen  
x, y have neighbourheods U, V such t h a t  U (~ V n X~_I -~ 0, U c~ X~_~ n C'----- 0, 
V n X~_~ (~ C'~- 0, hence one can find such neighbourhoods U, V t ha t  U ch V (h 
ch C = 0. I f  fl ----- y is l imit ,  x = x~.,, y x~,k, then  x has a neighbourhood U such 
tha t  Uc~Cc{x~,,~: ~ f l )  t J ( J{U~:  ~ < f l ,  ~ isolated}, where U~cX~_~\C! is a 
neighbourhood of x~.~ in X~_~ w X~ and  y has a corresponding neighbourhood V; 
since U0, V~ m a y  be chosen disjoint, there are such neighbourhoods U, V with 
v n v n c = o .  

Thus i t  remains tO prove t h a t  C' n X~ is finite for each fl ~ ~. Suppose t ha t  
C' ch X~ is infinite foc some fl and  take the first such ordinal, l~e~lize at  first t ha t  

sequence {x~) c Y~ has no accumulation poiut  iff ei ther there  is a y < ~ such tha t  
](x,~} ~ X ~ ] - ~  co or there is k e t o  such tha t  ](r: 7~ ,~  {x.}}] = co; if ( x . } c x  for 
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some x ~ Xv then  {x.} has the  unique accumulat ion point  x if ~ is isolated, and  
i f  �9 = a n d  = sup  {xo} n X 0}.  

If r is isola*~ed then IC 'n  Xa_~! < o and, hence, IC (3 Xa_~] _> eo (otherwise 
I C ' N X ~ ] < c o  since each x e C ' f ~ X ~  has a neighbourhood U with U(3 Y~_~(~ 
(~ C c Xz_~). By  the  construct ion of X~ and the last claim of the  preceding para-  

graph,  IC ~ X~ I > m, and  ]C ~ X~+,] > co for an y  n ~ co. Such a s i tuat ion cannot  
occur because e i ther  ~ = f l-~ n for some n, which con t rad ic t s  the fac t  t h a t  
IC (~ X~] < co (since X~ is closed discrete in Y~) or fl + o~ g e and then  t h e r e  is a 
sequence {x,} with x~ e C~X~+, \ {x~ .~:  kew}  hr, ving no accumulat ion point  in C 
(in fact ,  nowhere).  

I f  fl is l imit  and C ' ~  X~---{xz ,~:  n e  co} then  e i ther  there  is a sequence 
{x~} = {xr.,~ : m ~ co} c C with increasing sequences {y~} c fl and {l~} c {k~} or 

{7: C\{x.e,,~: m e  co} ~ O} is residual  in fl ~nd then  one can find a sequence 
{x~} c C (3 Y~ disjoint with {x,.,~: ~ < fl, m e ~o} and such t h a t  f{Y: x.~ e X~}] = to. 
In  bo th  cases the  sequence {x~} has no accumulat ion point  in C (in fact ,  nowhere).  

The proof  is finished. 

In  [10] K , t ~ A N  showed the  existence,  for each ordinal  ~, of a Hausdorff  k-space 

K~ with k-order ~. These spaces cannot  be used to prove 4.3 since t h e y  are t t au-  
sdorf f - - for  any  M c K ~ ,  [ M ] k c ] ~ ,  hence I[M]~[ < 2  21MI. 011 the  o ther  hand,  for 

each ordinal  /?, the  space (JX~ in 4.3 has k-order ft. 
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