
A Dialogue System to Teach Database Concepts

R. W. A. Hudson and J. A. Self
Department of Computer Studies, University of Lancaster, Lancaster LA 1 4YN, UK

This paper describes a program written to investigate the derivation of teaching strategies in computer-assisted
learning dialogue systems. The program endeavours to teach database concepts and is based upon a relational
database management system. The program's design, however, is intended to be independent of the particular subject
matter taught and is influenced by the recent emphasis on knowledge representation in artificial intelligence.

INTRODUCTION

Computer-assisted learning systems need both to under-
stand the knowledge to be taught and to have some
means of determining the sequence with which it should
be dispensed. Relating the two should be a student
model, that is, a representation of the knowledge
attainment of a student user. The program we will
describe derives its teaching strategy from such a student
model.

The program aims to help a student to become
proficient in the use of the commands necessary to
operate a database system. The principles demonstrated,
however, are domain independent and the system could
be modified to teach other subjects.

Research into the design of computer-assisted learning
systems has been submerged under the wave of micro-
computer euphoria. The large-scale demonstration pro-
jects of the mid-1970s—NDPCAL,1 PLATO2 and
TICCIT3—did not receive particularly favourable
evaluations,4"6 but these seem now to be considered
irrelevant as the projects themselves are technologically
obsolete. With the advent of microcomputers, there has
been a reversion to techniques discarded two decades
ago—simple drills, games, simulations and programmed
learning/

This project aims not to mimic the formal lecture or
tutorial nor to provide undirected practice and experience
but to provide a flexible environment in which (a) the
student or the system can initiate dialogue on any area
within the subject domain; (b) the student takes the
major decisions on whether to be instructed or not and in
which area he wants information; (c) the student can test
his skills using examples provided by the system; (d) the
student is instructed on concepts or skills that he desires
or that the system decides that he needs.

In this paper we first describe related work on
computer-assisted learning dialogue systems and then
summarize the database system which forms the domain
of expertise of our teaching program. The bulk of the
paper gives details of the components of the teaching
program itself, with an illustrative dialogue.

DIALOGUE SYSTEMS

Almost all the tutorial programs which are generally
available were written in author languages, i.e. program-

ming languages which at their simplest only provide
routines for displaying text, comparing a short student
response with a set of anticipated responses, and
transferring control to a specified 'frame' of material.
Since author languages are designed to be used by
teachers without programming experience, it is only to
be expected that most programs lack sophistication.
While a skilful programmer can lessen the regimentation
of the resultant dialogues by following convoluted paths
through the material, it is usually the case that 'the
teaching is primitive in accommodating individual
differences since the decision rules are largely based only
on the last response of the student' and 'there is little
attempt to build up a representation of (the student's)
knowledge and skills'.8

Disagreement with the underlying educational philos-
ophy of such programs and an appreciation of their
computational naivety led several researchers to try to
develop learning environments in which the student had
more control over what was discussed and in which more
meaningful dialogues could be supported. Many of the
problems which this task imposes lie within the realm of
artificial intelligence. It would, however, be something of
a digression to argue the case for artificial intelligence in
computer-assisted learning (but see Refs. 9 and 10) and
so we will merely give brief descriptions of a few projects.

The SCHOLAR system was the first attempt to build
a 'mixed-initiative' dialogue system,11 i.e. one in which
both the student and the computer can ask questions.
The subject domain was the geography of South America,
knowledge of which was held in a static graph structure.
This structure was not, however, used to generate a
teaching strategy, topics for discussion being selected at
random. As a result, dialogues with SCHOLAR lack the
purposeful nature of good tutorials.

Most subsequent dialogue systems have gained pur-
posivity by adopting game-playing or problem-solving
environments. For example, WEST12 attempts to moni-
tor a student's attempt to play a simple board game in
order to coach the student by interrupting, when
appropriate, to give advice on the arithmetic and strategic
skills involved. The program compares the student's
moves with those that ought to be made (as determined
by its own 'expert procedure') to determine the student's
weaknesses. The student is modelled by a vector of
numbers, each number representing his mastery of some
skill.

With SOPHIE,13 the student has to try to isolate the
fault in an electronic circuit by asking for measurements

CCC-0010-4620/82/0025-0135 $02.50
© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 3 5

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/135/527304 by guest on 21 August 2022

R. W. A. HUDSON AND J. A. SELF

at different points in the circuit. In addition to answering
the student's questions, SOPHIE comments on the
student's hypothesis, but does not provide assistance
unless requested to do so. Like SOPHIE, GUIDON14 is
built around an 'expert system',15 in this case, MYCIN16

which acts as a consultant on infectious diseases.
GUIDON monitors a student's diagnosis by comparing
his questions with those that would be asked by MYCIN
in the same situation.

Such systems emphasize the use of 'mixed-initiative',
natural language dialogues in discovery learning situa-
tions but tend to ignore the primary teaching process.
They assume that the student has already been taught the
necessary material and merely needs practice in applying
it. However, in most tutorials basic material may have to
be offered, and our system attempts to do this within a
problem-solving environment.

EDBMS

The artificial intelligence-based dialogue systems empha-
size the fact, ignored by author language dialogue
systems, that to sustain a conversation one must under-
stand the topic of conversation. Thus, programs should
themselves be able to solve problems posed to students.
In our system the role of 'expert program' is played by
EDBMS, an educational database management system
based on the relational model of data storage and
designed to provide a student with practical experience
in database techniques.17 (Commercially available
database systems would not be appropriate since they
could not be modified or used flexibly enough.)

EDBMS provides a query language to enable a student
to manipulate, reorganize and retrieve data held in
relational form using high-level algebraic operations
(selection, projection, join, division, union, difference,
intersection, cartesian product, etc.) denned in Ref. 18.
This language is designed for students familiar with the
function call notation of most programming languages.
Hence, each command consists of a command-name
followed by none or more parameters in brackets, e.g.

PROJECT(PARTS, PNAME, COLOUR).

Some commands, e.g. PROJECT, have a variable
number of parameters. Each relation held in the database
has a name (e.g. PARTS) and each relational or set
operation returns as its result a new relation which may
be retained in the database by assigning it to a relation
name;

NEW := PROJECT(PARTS, PNAME, COLOUR).

If the computed relation does not need to be retained it
may simply be printed:

PRINT(PROJECT(PARTS, PNAME, COLOUR)).

Commands may be nested, that is, wherever a relation is
required as a parameter a command returning a relation
may be used, e.g.

PRINT(PROJECT(SELECT(UNION(PARTS,
SUPPLIERS), WEIGHT, > , 15), PNAME)).

The language also provides commands for sorting a
relation on a specified column, for listing the names of

relations in the database, and for creating and deleting
relations by means of an interactive session with the
user.

Thus EDBMS is a small-scale database system de-
signed to enable a student to understand relational
operations. EDBMS ignores many of the problems of
practical systems, such as security and integrity. More
germane for our purposes, EDBMS, as it stands, provides
no direct teaching, by means of explanation or advice,
during a student session.

QUADBASE

The dialogue tutor system, QUADBASE, is intended to
provide both primary teaching material and a problem
solving environment. Our main concern has been with
the construction of a student model adequate for the
generation of a teaching strategy. It may be helpful first
to look at the illustrative dialogue given in Fig. 1.,

QUADBASE consists of a number of modules which
interact according to the diagram shown in Fig. 2, and
we will now consider these modules in turn.

Student model

The student model is the heart of the system. It holds
information on the student's hypothesized knowledge
state and is constructed from the student's performance
with the system and from assumptions made during the
operation of the explanation package.

The student model is in the form of a single entry point
flow graph, the nodes of which represent concepts to be
learned and the arcs of which determine the prerequisite
structure of the concepts. The particular graph used for
the dialogue of Fig. 1 is shown in Fig. 3: the details,
however, are not too important as the graph may be
changed simply by changing a data file. In contrast to the
'vector student model' of most dialogue systems, the
structure of our model enables a teaching strategy to be
generated.

The student's knowledge state is represented by
superimposing on the graph, for each node, a measure of
the student's understanding of the concept represented
by that node. These measures are held as numbers in the
range 0 to 100 and are modified throughout the teaching
session. Measures that fall below some threshold may
initiate some explanatory dialogue from QUADBASE.

While the flowgraph reflects the structure of the
knowledge to be taught, so that a sensible teaching
sequence could be generated by, for example, a depth-
first or breadth-first traversal, it does not describe a
completely predetermined sequence as is characteristic
of author language dialogue systems.

Input analyser

QUADBASE is always in one of two modes: 'command
mode', in which it will be expecting the student to be
inputting a database command, or 'tuition mode', in
which the student is undergoing instruction. The student
may change mode at any time. The input analyser,
therefore, is prepared for either kind of response: an

1 3 6 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 ©HeydenA Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/135/527304 by guest on 21 August 2022

A DIALOGUE SYSTEM TO TEACH DATABASE CONCEPTS

(We join the dialogue after some tuition has been
given and the student has been trying unsuccess-
fully to use PROJECT. The student's input is
underlined.)

No comma in PROJECT.
You are clearly have trouble with this command.
Would you like some help?

Yes

I will first of all give you the definition of project and then
an example.

Project is an operator for constructing a 'vertical' subset
of a relation—i.e. a subset obtained by selecting specified
attributes and eliminating others (and also eliminating
duplicate tuples within the attributes selected).

(Two lengthy examples follow.)

The commands for the above are:—
PROJECT(COUNTRY, CAPITAL) and
PROJECT(COUNTRY, CAPITAL, NAME).

Would you like to try an example?

Yes

Below are the relations held in the system
SUPPLIERS
PARTS
SP

Which relation would you like to project?
SUPPLIERS

OK—now project SUPPLIERS over CITY.

PROJECHSUPPLIERS. CITY)

Well done—you have got it.
Your result is the relation:—

CITY

From your performance I can see that you need more
practice using PROJECT and SELECT. I will now give
you an example in which both these commands will have
to be used.

Please would you retrieve and print the partnames of
parts supplied in London using a single command.

PROJECT(SELECT(PARTS. CITY. EO. LONDON).
PNAME)

Great stuff—middle stump!
The result of your command is:—

PNAME

SCREW
NUT
COG

ATHENS
LONDON
PARIS

Now type in a command.

Explain intersect.

I will explain intersect.
We define intersect as follows:—
The intersection of two union-compatible relations A and
B is the set of all tuples T belonging to both A and B.

Shall I continue with the explanation?

Explain union first.
I will explain union.
We define union in the following way:—
The union of two union-compatible relations A and B is
the set of all tuples T belonging to either A or B (or both).

Shall I continue with the explanation?

No

You interrupted my explanation of intersect.
Would you now like that to continue?

Yes

(and so on)

Figure 1. A dialogue with QUADBASE.

Performance
analyser

I Problem generator

16 Figure 2. QUADBASE modules.

© Heyden & Son Ltd, 1982

18

Project

Union compatibility

I
Functional dependency

I
Third normal form

Union Intersect Difference

Figure 3. Structure of the student model.

THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 137

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/135/527304 by guest on 21 August 2022

R. W. A. HUDSON AND J. A. SELF

input statement is first parsed to see if it corresponds to
a valid command format and, if this is not successful, is
assumed to be a natural language statement, e.g. 'Please
explain union first.' Keyword analysis is used on natural
language sentences, and this is adequate for our purposes
though, of course, limited compared to artificial intelli-
gence parsing techniques.

only the operation under discussion and then ones which
involve all the operations which the student needs to
practise. The problem generator uses a set of problem
formats.19 For example, for a simple projection request,
the format is PROJECT(re/, attr), where rel is selected
from the store of relations by the student and attr is
selected by a random number generator.

Performance analyser

Every successful and unsuccessful use of a database
command alters the student model and if QUADBASE
decides that the student is finding difficulty with some
concept, it will interrupt and offer assistance. Coaching
will only be given if the student agrees. During the
coaching session the student is given explanations and
practice examples on the troublesome concept.

The modification of the student model takes into
account the relationship between the nodes of the graph.
For example, an error with the PROJECT command
reduces the measure associated with the PROJECT node
and also, to a lesser extent, the prerequisite concepts
TUPLE, ROLENAME, etc. Consequently, a subsequent
error with, for example, SELECT may lead QUADBASE
to the conclusion that the source of the difficulty is really
a common prerequisite concept, e.g. TUPLE. Similarly,
QUADBASE increases the measures associated with the
prerequisite concepts of a successfully used command.

Explanation package

When the student requests an explanation or agrees to
one suggested by QUADBASE, the system traverses the
graph from the entry point to the node representing the
concept to be explained. If the measure associated with
a node is below the threshold (or if the student has
particularly requested an explanation) then QUADBASE
gives a definition of the concept, followed by optional
examples and practice questions, in a manner similar to
that of the TICCIT system.3 The teaching sequence,
once under way, can be altered by student interrupts, for
example, to ask for a reminder of the definition of some
concept or to return to the command mode.

Problem solver

A dialogue system which cannot answer questions, either
posed by the student or by itself (during a coaching
session) is of little use. Consequently, as explained above,
the artificial intelligence-based dialogue systems are built
upon 'expert problem-solving programs'. With QUAD-
BASE, the expert program is EDBMS, described above.

Operation of QUADBASE

When the student enters QUADBASE he is asked
whether he is familiar with the database concepts and
manipulations. If he considers that he is then he may
proceed to use EDBMS as he wishes (or to complete
accompanying worksheets). If the student is not confident
enough to use the system immediately he is asked which
concepts he would like explained. He may, if he wishes,
ask for a full tutorial.

As the student works through problems and receives
explanations, QUADBASE updates the student model
to reflect the student's current state of knowledge. As
long as the student is considered to be making satisfactory
progress QUADBASE does not intervene. If, however,
QUADBASE feels that the student is having difficulty
with a particular concept an explanation will be offered.
In addition, the student may at any time request an
explanation or make a general plea for 'help'. The
explanation given by QUADBASE is adapted to the
perceived student needs by making it depend upon the
measure associated with the corresponding node. If, for
example, the student requests tuition on a concept for
which the measure is high, QUADBASE will give only
a short explanation to act as a reminder and then ask the
student if he requires more information.

Knowledge base

The text for the definitions and examples given by the
explanation package is stored in a random file which can
be modified independently of QUADBASE. Each entry
in this knowledge base is identified by a number and the
numbers associated with the entries for a particular
concept are stored at the corresponding node in the
student model. These numbers, like the rest of the student
model, are stored in a data file. In this way the size of
QUADBASE is reduced and the system does not need
recompiling to change text output.

Problem generator

The practice problems are not stored in a text file but are
generated as and when needed by the explanation
package. First, problems are generated which involve

DISCUSSION

QUADBASE is a demonstration computer-assisted
learning system which provides basic teaching material,
a strategy for dispensing it, and a problem-solving
environment. It aims to teach a student relational
database concepts but its design is intended to be
appropriate for any subject domain in which the concepts
can be hierarchically organized. QUADBASE incorpo-
rates a student model from which a teaching strategy is
generated suited to the individual needs of the student.

The student model is the key component of a dialogue
system for it provides the means by which the knowledge
to be taught can be presented taking into account the
student's strengths and weaknesses. The student model
must have a structure which reflects the knowledge

1 3 8 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 © Heyden & Son Ltd, 1982

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/135/527304 by guest on 21 August 2022

A DIALOGUE SYSTEM TO TEACH DATABASE CONCEPTS

structure of the subject domain. In QUADBASE, the
student model is a flow graph, nodes represent concepts
and arcs the relationships between them. The model
assumes that teaching material has to be sequenced for
the student to be able to learn it effectively.

Recent dialogue systems have evolved towards game-
playing environments where the student is encouraged to
discover knowledge and exercise skills. While this
accords with the Piagetian school of educational thinking,
it is an approach which separates the presentation of
teaching material from the provision of game-playing
environments. It is our view that primary teaching

material needs to be available for presentation to a
student during a tutorial session.

With QUADBASE the emphasis has been on the role
of the student model and its relationship with the other
components. Some of these components (e.g. the input
analyser and problem generator) are merely adequate to
complete a working system but they can be improved
independently of other components. Some components
were left minimally developed in order to be able to
continue to run QUADBASE on the equipment available.
QUADBASE is written in Pascal and runs on a 64K
Eclipse with only 32K available to a user program.

REFERENCES

1. R. Hooper, The National Development Programme in Computer
Assisted Learning: Final Report of the Director, Council for
Educational Technology, London (1977).

2. D. L. Bitter, The wide world of computer-based education, in
Advances in Computers 15, ed. by M. Rubinoff and M. Yovits,
Academic Press, New York (1976).

3. M. 0. Merrill, Learner control in computer based learning.
Computers and Education 4,77-95 (1980).

4. J. Fielden and P. Pearson, The Cost of Learning with Computers,
Council for Educational Technology, London (1978).

5. R. T. Murphy and L. R. Appel, Evaluation of the PLATO IV
computer-based education system in the community college.
NSF Contract No. NSF-C731. Educational Testing Service,
Princeton, New Jersey (1977).

6. D. L. Alderman, Evaluation of the TICCIT computer-assisted
instructional system in the community college. Special Interest
Group on Computer Uses in Education (SIGCUE) Bulletin 13
(No. 3), 5-17 (1979).

7. J. A. M. Howe and B. du Boulay, Microprocessor assisted
learning: turning the clock back. Programmed Learning and
Educational Technology 16, 240-246 (1979).

8. J. R. Hartley, An appraisal of computer-assisted learning in the
United Kingdom. Programmed Learning and Educational Tech-
nology^. 136-151 (1978).

9. G. P. Kearsley, The relevance of Al research to CAI. Journal of
Educational Technology Systems 6, 229-250 (1978).

10. A. Gable and C. V. Page, The use of artificial intelligence
techniques in computer-assisted instruction: an overview.
International Journal of Man-Machine Studies 12, 259-282
(1980).

11. J. R. Carbonell, Al in CAI: an artificial intelligence approach to
computer-assisted instruction. Institute of Electrical and Elec-
tronic Engineers Transactions on Man-Machine Systems 11,
190-202(1970).

12. R. R. Burton and J. S. Brown, An investigation of computer
coaching for informal learning activities. International Journal
of Man-Machine Studiesii, 5-24 (1979).

13. J. S. Brown, R. R. Burton and A. G. Bell, SOPHIE: a step toward
creating a reactive learning environment. International Journal
of Man-Machine Studies 7, 675-696 (1975).

14. W. J. Clancey, Tutoring rules for guiding a case method
dialogue. International Journal of Man-Machine Studies 11,
25-^9(1979).

15. D. Michie, Expert systems. Computer Journal 23, 369-376
(1980).

16. E. H. Shortliffe. Computer-based Medical Consultations:
MYCIN. Elsevier, New York (1976).

17. R. W. A. Hudson, The development of an educational database
management system using the relational model of data storage.
MA Thesis, University of Lancaster (1978).

18. C. J. Date, An Introduction to Database Systems, Addison-
Wesley, Reading, Massachusetts (1977).

19. B. G. Palmer and A. E. Oldehoeft, The design of an instructional
system based on problem-generators. International Journal of
Man-Machine Studies 7, 249-271 (1975).

Received May 1981

© Heyden & Son Ltd, 1982

© Heyden & Son Ltd, 1982 THE COMPUTER JOURNAL, VOL. 25, NO. 1,1982 1 3 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/25/1/135/527304 by guest on 21 August 2022

